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Abstract

The lateral line system on fish has been found to aid in schooling behavior, courtship
communication, active and passive hydrodynamic imaging, and prey detection. The
most widely used artificial prey stimulus has been the vibrating sphere, which some
fish are able to detect even when the signal velocities to its lateral line are orders
of magnitude smaller than background current velocities. It is not clear how the
fish are able to extract this signal. This thesis uses a series of computational fluid
dynamic (CFD) simulations, matched with recent experiments, to quantify the effects
of 3D fish body parts on the received dipole signals, and to determine signal detection
abilities of the lateral line system in background flow conditions.

An approximation is developed for the dipole induced, oscillatory, boundary layer
velocity profile over the surface of a fish. An analytic solution is developed for the case
when the surface is a wall, and is accurate at points of maximal surface tangential
velocity. Results indicate that the flow outside a thin viscous layer remains potential
in nature, and that body parts, such as fins, do not significantly affect the received
dipole signal in still water conditions. In addition, the canal lateral line system of the
sculpin is shown to be over 100 times more sensitive than the superficial lateral line
system to high frequency dipole stimuli.

Analytical models were developed for the Mottled Sculpin canal and superficial
neuromast motions, in response to hydrodynamic signals. When the background flow
was laminar, the neuromast motions induced by the stimulus signal at threshold had
a spectral peak larger than spectral peaks resulting from the background flow induced
motions. When the turbulence level increased, the resulting induced neuromast mo-
tions had dominant low frequency oscillations. For fish using the signal encoding
mechanisms of phase-locking or spike rate increasing, signal masking should occur.

Thesis Supervisor: Houshuo Jiang
Title: Associate Scientist, Applied Ocean Science and Engineering
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Chapter 1

Introduction

1.1 Motivation

Nature often shows elegant ways of solving a whole host of engineering problems, and

inspiration and understanding of physical principles can be gleaned from studying

these solutions. Fish have a lateral line system which enables them to passively sense

the environment around them (see figure 1-1). Although general research of the fish

lateral line system has been conducted for over 150 years, a more serious pursuit of

this study occurred after WWII in hopes of aiding sonar technology (Cahn, 1967).

The lateral line is a mechanosensory system (see figure 1-2) which uses the de-

flection of hair cells (see figure 1-3) to encode the movements of the adjacent fluid

(Bleckmann, 1993). It consists of an organized distribution of canal and superficial

(surface) neuromasts, each of which has hair cells covered by a gelatinous covering

called a cupula that protrudes into the surrounding fluid. As fluid moves past the

neuromast, viscous drag forces cause it to shear, which in turn sends nerve impulses

to the brain (see figure 1-4).

In 1966, the first conference devoted solely to the lateral line was held to bring

the best researchers together to resolve controversies over the role of the lateral func-

tion, and namely, whether it was a pressure or displacement detector (Cahn, 1967).

Already the structure and function of the lateral line organ, the neuromast, had been

determined (Flock and Wersall, 1962; Flock and Duvall, 1965; Flock, 1967), nerve

14



A B

Figure 1-1: (A) The Mottled Sculpin, Cottus Bairdi, is a benthic fish which uses
its lateral line system for prey detection. (B) A computer model of the Mottled
Sculpin and a nearby artificial prey (blue/red sphere). The vibrating sphere, which
represents the flapping of a fish tail, oscillates back and forth, creating a dipole signal
that propagates throughout the fluid medium. The interaction of the dipole signal
with the fish body is sensed by the lateral line system of the fish. The photograph of
the Mottled Sculpin is used with the permission of Mike Guerin.

activity studied (Harris and Flock, 1967; Gorner, 1967), and some evidence found for

the role of lateral line in prey detection and localization, active and passive hydrody-

namic imaging, surface feeding, rheotaxis (for small currents), schooling, and mating

(Dijkgraaf, 1967). These functions of the lateral line have since been confirmed (see

Coombs and Montgomery, 1999, for a substantial listing of confirming experiments).

As the demand for the use of autonomous underwater vehicles (AUV’s) increases,

many functions of the lateral line seem potentially beneficial for the AUV’s. If low

power / low processing solutions can be found for passive obstacle detection, wake

detection, and even schooling with other AUV’s, on board resources can be used for

other higher order tasks. Fabrication of some prototype mechanical lateral lines have

already begun (Yang et al., 2006).

The problem that the fish have solved is being able to extract useful information

from the environment around them, even when there is noise from self-flow water

motions, or general background flow induced noise. They can detect water displace-

ments from a vibrating source which are magnitudes smaller than the mean flow
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Figure 1-2: The lateral line system of the Mottled Sculpin is represented by the black
dots and the solid grey markings. The black dots represent the location of superficial
(surface) neuromasts (see figure 1-3). The solid grey markings represent the location
of subdermal canals, and the black ovals on the grey markings represnt the canal
neuromasts contained within the subdermal canals (see figure 1-4). The drawing is
from figure 1C of Yang et al., 2006, and is used with the permission of Sheryl Coombs,
and with the permission of the Proceedings of the National Academy of Sciences of
the United States of America.

signals present (Kanter and Coombs, 2003; Bassett et al., 2006; Chagnaud et al.,

2006 ).

Much of the information that has been learned about the lateral line has been

from behavioral and neuro-physiological experiments. Though necessary, it is cur-

rently too difficult to measure the hydrodynamic signals present around the fish, the

corresponding nerve responses, and the behavior that results. This is the case, if for

no other reason, because the act of measuring in one arena affects the outcome in

another. For example, obtaining nerve responses requires that the fish be connected

with wires, limiting or potentially affecting any natural behavioral responses. An-

other significant challenge is that the information desired is located in 3D space and

time. Selective measuring is required in order to proceed.

Time series of velocity magnitude at particular points in space can be measured

using hot-wire anemometry techniques, while velocity time series at individual points

in space can be measured using instruments such as an Acoustic Doppler Velocimeter

(ADV). Vector velocities projected onto a 2D plane can be measured using Digital
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A B

Figure 1-3: (A) A micrograph of the cilia of a hair cell, poking through the surface of
the skin. The cilia have a height of 8 µm in this picture. (B) A hair cell. The bending
of the stereocilia towards the kinocilium causes the hair cell to send nerve impulses
to the brain. From Kandel, Schwartz and Jessell, Principles of Neural Science, 4th
Edition, 2000, p. 615. Reprinted with the permission of McGraw-Hill.
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Particle Image Velocimetry (DPIV), which tracks the movements of tiny glass beads

over successive strobes of a sheet of laser light. Currently, however, there is no

way (known to the author) to obtain full velocity information throughout an entire

volume without resorting to temporal averaging and situations that are statistically

stationary in nature. This limitation on measuring velocity also limits the extraction

of instantaneous pressure throughout the water volume.

Numerical simulations using the Navier-Stokes equations, or using Potential flow

theory (when simplifications are justified), have been used successfully for hydrody-

namic research and analysis. The undulatory motion responsible for tadpole motion

(Liu et al., 1997), the self-propelled motion of an anguilliform swimmer (Carling et

al., 1998), the flapping fin motion of aquatic flight (Walker and Westneat, 2000), and

the vorticity control exercised by swimming fish (Wolfgang et al., 1999; Zhu et al.,

2002) are some examples where numerical simulation helped uncover fundamental

physical principles. This thesis hopes to use numerical simulation to fill in data gaps

not obtained experimentally.

With the basic structure and function of the lateral line fairly well determined,

the shift in research focus has been to link realistic environmental situations to corre-

sponding brain stem responses. The goal is to determine what hydrodynamic signals

are most relevant to the animals. The flow and signals on the animal will likely be

body type and situation specific. It is important to know exactly what hydrodynamic

signals are present at the lateral line, and computational fluid dynamics (CFD) can

be of significant assistance in quantifying the 3-dimensional, time-dependent hydro-

dynamic flow fields around the animals.

This thesis will examine two fundamental situations: signals present on the body

with no relative water motion (i.e. no noise or still water), and the same signals

present on the body with relative water motion (i.e. self-flow noise and/or background

flow). It is important to begin with the still water case, so that the received signals

can be quantified, and so that any distortions to those signals that occur in flowing

water can be empirically determined.
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Figure 1-4: The canal lateral line system consists of subdermal canals located beneath
the epidermis and scales of a fish. Within the canals are located neuromasts, which
are groupings of hair cells. There is generally one neuromast between any two pore
openings. The pressure difference between the pore openings drives the fluid within
the canal. The cupula is protective, gelatinous covering, which is sheared by the drag
force of the passing canal fluid. This in turn causes bending of the cilia, and the hair
cells respond by sending impulses to the brain. Copyright and Disclaimer c©- Charles
H. Mallery, Department of Biology, University of Miami. All rights reserved. 1

At the same time, a number of fundamental questions will be answered. How

does the presence of the body and its fins affect the received hydrodynamic prey-

generated signals to the lateral line? What are the noise characteristics of background

flow and self-generated flow to the lateral line? What do hydrodynamic fields of

biological stimuli look like to the lateral line in noisy environments, and how can prey

localization be pursued by the fish in those situations? Specific experimental cases

will be duplicated so that CFD results can be combined with neural and behavioral

data.

1Reference: http://fig.cox.miami.edu/ cmallery/150/neuro/c7.49.12.lateral.line.jpg These web
pages are for academic teaching purposes only and contain copyrighted materials from the Biol-
ogy textbooks used for the courses I teach at the University of Miami. The views and opinions
expressed on these course-subject linked-home pages are strictly those of the author, Charles H.
Mallery, a faculty member in the College of Arts and Sciences at the University of Miami. These
web pages are equivalent to personal home pages and provide an academic class room forum for
the self expression of the instructor, Charles H. Mallery. The contents of these pages may include
academic subjects, as well as interesting stylistic presentations of class subject material. Although
the contents of these linked pages are not in any way an official publication of the University of Mi-
ami, we hope that the educational information in them will be useful to students. The contents and
the links have not been reviewed or approved by the University of Miami. The University of Miami
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1.2 1st problem - body presence and body parts

effects on the received stimulus signal

The experimentalists alternative to measuring the whole hydrodynamic field has been

to use simplified situations which allow for the analytic modeling of the fluid envi-

ronment, with subsequent verification at select points. From a conceptual point of

view, there are two categories of local hydrodynamic signals to model. One is due to

external sources, such as nearby obstacles, other schooling fish, or prey. The other

is due to self generated flow, from either its own swimming motion or from holding

station against a background flow. The reason for the division is that self generated

signals must be distinguished by the fish from externally received signals.

Typical external sources could include the changing volume of an air bladder,

the flapping of a tail, the wake behind an animal or object, struggling motions, and

turbulence. These can be (crudely) represented by monopole, dipole, and multipole

sources respectively, although arguably the most biologically relevant signal is the

dipole source (Kalmijn, 1988). One reason for this is that higher multi-pole sources

decay much more rapidly with distance, so that after short distances, the mono-

/dipole sources present in the signal dominate. However, in close proximity to the

fish, it can be expected that more complex signals are received by the fish lateral line.

The dipole source can be physically realized by oscillating a tiny sphere in water.

A typical scenario would have a motor outside of the holding tank, with the sphere

inside the tank attached by a thin rod. Having separate structures to hold the motor

and to hold the tank isolates any vibrations, and this set up has shown to adequately

reproduce a hydrodynamic dipole signal throughout the holding tank when no body

is present (Coombs et al., 1996).

accepts no responsibility for the contents of these linked pages. If you think you might be offended
by the contents of these pages, you should not continue any further. You may print, reproduce, or
use the information and images contained on these biology-course home pages, housed within the
University of Miami’s Biology Department’s server, for non-commercial, personal, or educational
purposes only, provided that you (1) do not modify such information, and (2) include both this
notice and any copyright notices originally intended and included with such information.
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Analytical solutions - no body present

The oscillating sphere in an unbounded medium has an analytic solution (Lamb,

1945), and outside a small boundary layer around the sphere surface the hydro-

dynamic field is effectively potential in nature (van Netten, 2006). Use of a tiny

oscillating sphere to represent prey motions began over 40 years ago, and has been

the predominant choice ever since (for example, Denton and Gray, 1982; Coombs et

al., 1996; Coombs and Conley, 1997a,b; Kanter and Coombs, 2002; Curcic-Blake and

van Netten, 2006; van Netten, 2006; Yang et al., 2006). However, these studies which

used potential flow theory to arrive at the analytic solution for the pressure field ne-

glected the presence of the body, and the presence of the tank boundaries. The first

(and definitive) attempt to include the fish body in the potential flow solution was

performed by Hassan (1985, 1992a,b).

Potential flow solutions - axisymmetric body present

In using potential flow theory, or in using numerical simulations, the fish body is

modeled as a solid object. Fish are longitudinally rigid, allowing for relative motions

to exist between the fish and the ambient fluid (Denton and Gray, 1982). Although

there is certainly sideward motion in swimming motions, this can be neglected for

cases of gliding or in sitting on the bottom of a tank. Hassan mathematically treated

the fish body like a series of carefully located and calculated point sources and sinks.

In 2D cases, Hassan (1985) compared the signals that three fish shapes, circle, oval,

and tear drop, would receive when gliding past or approaching directly a cylinder

(circle). By allowing the size of the cylinder to increase to almost infinity, the cylinder

becomes a wall. In 3D cases, Hassan (1992a,b) used slender body theory to create

three axi-symmetric body shapes - prolate spheroid, drop-like, and fish-like. Again

this required the careful calculation of the locations and amplitudes of a series of

point sources and sinks. Here the received signal was examined for a fish gliding

through water, approaching or gliding along a wall, and being stationary next to an

oscillating sphere.
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The first problem: - What effect does the body presence and body parts have on

the received dipole signals to the lateral line? Under what conditions is potential flow

theory still useful?

What has not been addressed in the literature is how the presence of body parts might

affect the local hydrodynamic field and the received signals upon the lateral line. In

particular, the pectoral fins can be substantial in size relative to the fish body, and

it is important to know how their presence alters the local flow field for the nearby

lateral line organs. Modeling body parts, such as thin fins, would make any analytical

solutions intractable or unsolvable. This is where the use of computational fluid

dynamic simulations becomes necessary, as it is able to handle the added complexity,

and produce the complete viscous, space-time results.

1.3 2nd problem - signal extraction in turbulent

flow

Studies have been conducted which show that the canal lateral line is able to faithfully

encode pressure gradient signals from oscillating dipole sources (Coombs et al. 1996).

These studies have mostly been done in still water situations, and research is just

beginning to examine the effects of water flow stimuli to the lateral line (Voight et

al., 2000). Strictly by the mechanics and arrangement of neuromasts, it was predicted

that the surface neuromasts would be quickly saturated by the external flows, but that

canal neuromasts would remain undisturbed by steady flows. This has proven largely

to be true, and some studies suggest that nerve fibers can be classed as either type

I or II fibers based on their response or lack of response to steady flows (Englemann

et al, 2003; Chagnaud et al., 2006).

The effect of background flow on prey detection

Experiments were conducted to determine to what extent the surface and canal neu-

romasts would be able to respond to a dipole source stimulus in background flow
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(Englemann et al. 2002; Bleckmann et al. 2003; Kanter and Coombs 2003; Bassett et

al. 2006; Chagnaud et al. 2006) and to a passing object stimulus in background flow

(Bleckmann et al. 2003; Englemann et al 2003). From these studies it was concluded

that there were two types of neural fibers being innervated. Type I afferent fibers

were overstimulated in background flow, and therefore most likely innervated surface

neuromasts which respond in some fashion to the velocity of the external flows to

which they are exposed. Type II afferent fibers showed little difference in responses

to still and running water, and so most likely innervate canal neuromasts, which are

only exposed to the external flow through canal pores, and respond to the pressure

differences between pore openings.

The characterization that type I fibers are completely overwhelmed by background

flow is not quite accurate. There is actually a large variance seen in the masking of

type I fibers to an oscillating signal in background flow (Englemann et al. 2002),

suggesting that some type I fibers may aid the type II fibers in signal detection

even in strong background flows. Recent study of unidirectional flow past a benthic

fish shows that there are pockets of recirculation behind the pectoral fins where the

flow can be an order of magnitude smaller than the ambient flow (Coombs et al,

2007). This more complex flow around the body may allow for regions where surface

neuromasts are not saturated, and can aid in signal detection.

For the lateral line of Gobiomorphus cotidianus, which consists of mostly surface

neuromasts, it was able to detect water velocities of approximately 0.1 mm/s in still

water, but only 1 mm/s in water moving at 4.5 cm/s (Bassett et al., 2006). For the

Mottled Sculpin, the canal neuromasts where able to detect water velocities of 1-10

peak-peak µm/s in background flows as high as 8cm/s, and there was only a two-fold

increase in threshold detection for a four-fold increase in water velocity (Kanter and

Coombs, 2003). Even when the flow conditions are more noisy (e.g., due to a cylin-

der placed at various upstream locations of the fish), signal reception characteristics

remain similar to those in still and running water backgrounds (Chagnaud et al.,

2006).
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Self flow noise (from gliding) - using potential flow theory

There remains the question of what amplitude and frequency a biologically relevant

signal needs to be in order to distinguish itself above the low frequency, high amplitude

signal generated from self flow induced noise. One series of mathematical studies

determined the steady signal amplitude by using potential flow theory to model the

presence of the fish body gliding through the water, gliding past or over obstacles, or

receiving signals from an oscillating dipole source (Hassan 1985, 1992a, 1992b, 1993).

Hassan (1985) used potential flow theory to examine the velocity and pressure dif-

ference signals received by a 2D fish lateral line as it glided toward or past a stationary

cylinder. Alterations in the received signals caused by the obstacle unambiguously

encoded both its size and distance through amplitude and zero-crossing combina-

tions. Unfortunately, the only 2D comparisons for normalized pressure differences

come from Hassan comparing one cylinder either passing or directly approaching a

stationary cylinder (instead of using fish-like shapes). For a cylinder passing an ob-

stacle (stationary cylinder) in very close range (approaching 1/40th of the cylinder’s

width), the induced alterations to the normalized pressure gradient signal had values

up to 50, which is much greater than that of self flow generated signals whose values

were less than 1. When the cylinder approached the obstacle (stationary cylinder)

head on, changes in current velocity were not noticeable until the front of the moving

cylinder was less than one body length away from the obstacle, but then the changes

in current velocity increased rapidly with decreasing obstacle distance.

This was followed by 3D studies using potential flow theory to more carefully

examine how vector quantities of velocity and pressure gradients could be encoded

over the entire surface of the fish (Hassan 1992a, 1992b). When gliding through the

water or approaching a plane surface, pressure gradients are strongest in the front of

the fish, while almost absent elsewhere (Hassan 1992a). Secondly, altering the body

shapes leads to very different stimulus signals. This becomes especially evident when

these bodies are gliding above or alongside surfaces, where velocity flow patterns over

the surface of each body are unique to each body shape (Hassan 1992b).
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The second problem: What are the noise characteristics of background flow for

a streamlined body (retracted fins) versus a bluff body (extended pectoral fins)? Do

self-generated flow patterns around the bluff body create pockets of improved signal

reception?

Potentially flow theory is not valid inside regions of flow separation, recirculation, or

turbulence. Yet the boundary layer of swimming fish has turbulence (Anderson et

al., 2001), the boundary layer of stationary fish in background flow has indications of

turbulence (Englemann et al., 2002), and benthic fish in background flow has large

pockets of recirculation (Coombs et al., 2007). CFD can be used to better quantify

what signals the lateral line is receiving in these situations.

1.4 Thesis Overview

The main goal of this thesis is to characterize the effects of an oscillating dipole

signal to the fish lateral line, taking into account the body-signal interaction, and the

presence of background turbulence. Ideally, quantifying when signals will be at the

edge of detectability at one extreme, or saturation at the other extreme, will aid our

understanding of what the fish might need to do in order to maximize the information

content of signals.

This is by nature a 3D problem, and only 3D studies will adequately capture the

relevant flow field information. The challenge then is to utilize 2D simulations in

such a way as to illuminate any interesting situations that might merit further inves-

tigation in the 3D environment of physical experiments or carefully chosen numerical

simulations.

One goal of this thesis is to determine how 2D simulations for realistic body shapes

compare with 3D simulations. There is a considerable computational cost savings for

running simulations in 2D. For modeling a physically relevant environment needing

small scales (mm spacing along the lateral line), and large scales (cm spacing at

tank boundaries), there can be an order of magnitude difference in the number of

grid cells used between 2D and 3D simulations. This translates into the ability for
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a much larger parameter space to be explored. However, care must be taken to find

what aspects of the two-dimensional results will carry forward into the more relevant

three-dimensional world.

By choosing to conduct 2D simulations, the local hydrodynamic flow is forced to be

in alignment with the direction of the canal system. In a 3D study, the canal system

would serve to work in step with surface neuromasts to identify the directionality

of the hydrodynamic flow. As the flow moves increasingly to the perpendicular of

the canal alignment, stimulation for the canal neuromasts and surface neuromasts

in alignment with the canal will die down while stimulation to surface neuromasts

aligned to the perpendicular will increase (Hassan, 1993).

The real lateral line will have locations and orientations that specifically sample

the pressure and velocity field in a unique way. For example, when the prey is

swimming vertically past the fish, in the dorsal/ventral plane, the pressure gradient

would be flat around the 2D lateral line (or 3D midplane lateral line), whereas the

infraorbital lateral line locations would more readily detect these motions. Hassan

(1993) has pointed that the combinations of orientations of the real lateral line sections

theoretically allow for unique encoding of the any orientation and location of the

dipole source.

Another goal of this thesis is to understand the role of the effect of the sur-

face boundary layer on the received signals. There are in fact a number of different

boundary layers that can develop, depending on the local hydrodynamic conditions.

Oscillitory flow, such as an oscillating dipole signal created by a flapping tail, will

create a boundary layer on the receiving surface that has a height which is inversely

proportial to the square root of the oscillation frequency. Depending on the frequen-

cies present, the height of this reduced flow region may be greater than the height of

the superficial neuromasts which detect the surface flow. A second type of boundary

layer develops from moving background flow, or eqivalently, a gliding motion by the

fish. The height of this boundary layer grows larger from the point of attachment at

the nose to the back of the fish. It scales according to the Reynolds number. Even

within this boundary layer, portions of it may be laminar, and other portions tur-
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bulent. A swimming fish has an undulatory boundary layer (Anderson et al., 2001),

whose height and characteristics change with the traveling body waves. Finally, in

regions of recirculation, all types boundary layers may be present, including regions

of separation and reattachment.

To resolve the boundary layer numerically, there have to be enough samples in

space to capture the hydrodynamic changes, and in particular, the gradients. For each

type of boundary layer described, there are different spacing resolution requirements.

In general, a high frequency oscillatory flow (e.g. 50 Hz) has a boundary layer height

of about 80 µm, and demands the most computationally of all boundary layer types.

At the writing of this thesis, computational time and memory limits prevent the

boundary layer resolution for the 3D, unsteady, background flows.

Thesis structure

Chapter two will begin the series of 2D simulations. First, the dipole signal next

to a wall is simulated, and results are compared to potential flow theory predictions in

order to verify the numerical CFD code. In addition, the flow in the boundary layer

is compared to an analytical model of oscillatory flow next to a flat plate. Although

the conditions under which the analytical model is valid are violated by the nature

of flow due to an oscillating dipole signal, it is shown that there are large regions

along the wall which are well predicted. A coarse grid model which does not resolve

the boundary layer flow, is tested to see how well it predicts the flow just outside

the boundary layer. The combination of a coarse grid simulation and the analytical

model for flow within the boundary layer, may give results which adequately match

the fully resolved boundary layer simulations.

Chapter two will then see how well a coarse grid simulation, in conjunction with

the analytical model for flow within the oscillatory boundary layer, predicts results

from fully resolved boundary layer simulations around fish-like bodies. In particu-

lar, predictions for pressure and velocity around a NACA 0020 shaped body will be

compared with those of a mid plane slice through a Mottled Sculpin body with fins

retracted, and with fins extended. Finally, the effect of the pressence of fins on the
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received dipole pressure gradient signal is examined through a parameter study which

moves the location and direction of an oscillating dipole signal.

Chapter three will present background material on the biological structure of the

lateral line system, and on the analytical models found in the literature which descibe

how the neuromasts physically encode local hydrodynamic signals. Models specific

to the Mottled Sculpin, a representative benthic fish chosen for study in this thesis,

will also be developed. The end goal of this chapter is to have a model which gives

a dynamic range of detectable hydrodynamic motions, from the lowest amplitude

signals needed for detectability, to the higher amplitude signals which cause saturation

and loss of information. There is enough information in the literature to verify this

threshold model for cases where there is no background flow.

Chapter four begins the first of the 3D numerical simulations. First, an oscillating

sphere next to a wall is simulated, and the pressure and velocity signals are compared

with predictions using potential flow theory. A 3D extension of the analytical model

for oscillatory flow within the boundary layer next to a wall is checked against nu-

merical simulation results using a resolved boundary layer mesh. The strain rate

prediction is validated for points corresponding to maximum velocity along the wall,

parallel to the projected axis of vibration, using spheres of various diameter, location,

orientation, and oscillation frequency. The relative error in the strain rate prediction

over the whole surface is also examined.

Chapter four then begins 3D simulations using a realistic body shape for the

Mottled Sculpin. Actual lateral line locations are modeled, so that differences in the

effect of the retracted and extended fins can be examined. The first set of simulations

match the real approach of a blinded mottled sculpin attacking a vibrating sphere.

The sculpin approaches in a step-like fashion, first waiting, then moving, then waiting,

and so on (Coombs and Conley, 1997). In each of these situations, the fish changes

its body orientation relative to the vibrating sphere, and so the hydrodynamic signals

present upon the lateral line will be changing with each step. By setting up identical

cases where pectoral fins are extended or retracted, the effect of fins on the received

signal can be examined for the first time.
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Chapter four concludes with a parameter study of changing locations and orien-

tations of the dipole signal. The strain rate prediction using a coarse grid model

in conjunction with the analytical model for oscillatory flow is validated against a

resolved boundary layer simulation for a body with no fins at all. The signals to the

canal lateral line system are compared with signals to the superficial lateral line sys-

tem. The relative diffences in detection threshold levels are compared quantitatively,

offering insights into dipole localization.

Chapter five re-examines the threshold of detection and saturation models when

background flow is included. At issue is the fact that the flow around a curved body

shape creates accelerated flow, causing mean pressure gradients to deflect the canal

neuromasts, even to the point of saturation in some cases. The models are utilized to

show their response to these strong signals, and methods used by the fish to adapt to

these signals are discussed. New definitions for threshold of detection and saturation

are presented for use in background flows. The thresholds depend on quantizing

oscillatory pressure gradient signals to the lateral line, or alternatively, quantizing

the neuromast motions resulting from background flow fluctuations. Chapter five

also simulates background flow past the 3D body shapes. The experiment of Kanter

and Coombs (2003), with the fish detecting an oscillating dipole signal in background

flow, is numerically modeled using Large Eddy Simulation (LES) tools to account for

the presence of turbulent structures in the flow. The masking effect of increasing levels

of background turbulence on the received dipole signal is quantized, and mechanisms

that the fish might use in order to detect the relatively small signal are considered.

A conluding chapter follows, which summarizes the findings of the thesis and looks

toward future research.
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Chapter 2

The effect of the boundary layer

and body parts on the received

dipole signal in still water: 2D case

2.1 Introduction

The dipole signal has been used extensively in experiments because of its ease of

implementation and tractable flow field solutions. The lateral line hair cells are able

to detect and encode the dipole signal, as shown by the fact that the firing rate of

nerves associated with individual canal neuromasts correspond to the modeled and

measured pressure differences upon them (Coombs et al., 1996; Curcic-Blake and van

Netten, 2006).

There is a biological basis for an oscillating dipole signal. Denton and Gray (1983)

measured the flow field around an artificial tail undergoing flapping motions up to

10 Hz. They used tails 6 cm long, modeled after herring or sprat tails, and 2.5 cm

in height at the tail end. They compared a flexible tail, a rigid tail, and one which

was rigid at the root but flexible at its end, and found that they produced similar

flow fields. Quantitatively, at angles perpendicular to the long axis of the tail, the

peak-peak pressure declined according to a power function with exponents ranging
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from -1.25 to -2.59, with -2.1 being the mean, and -2.0 being the expected result for

an oscillating sphere. The measured values of pressure followed the expected cosine

law for angles greater than about 30 degrees, where 0 degrees is in the direction of the

long axis of the tail. The flow field directly behind the tail does not match the flow

field of an oscillating sphere since the fish employ thrust dynamics to propel forward,

and there is a complex wake left behind.

Comparing absolute values of pressure in the > 30 degrees region was difficult,

since it was hard to know what size sphere to compare the tail to. With the sphere

diameter equal to the tail end height, the pressure amplitudes where just over twice

those predicted for an oscillating sphere. Denton and Gray have shown that the

oscillating sphere has biological grounds for use as a model for swimming fish when

looking at the flow field beside the tail of the fish, but not behind it.

Kalmijn (1988) has also argued for the biological importance of a dipole signal.

The various motions of a fish can be represented by a combination of monopole

sources. When the motion is complex, and potentially irratic, multiple-pole com-

binations are necessary to represent the flow field produced. However, in the local

hydrodynamic flow field (i.e. not the propagating sound wave), the pressure field

decays as roughly (1/r)p , where p is the number of poles. Very quickly, in the ab-

sence of strong monopole sources (such as an expanding air bladder), the dipole signal

(p=2) will dominate the higher-order components of the signal. A gliding fish would

produce a dipole signal, while an undulating fish would produce a quadrupole signal

(p=4) consisting of the head and tail dipole signals in combination.

In many studies that use a dipole signal to elicit neural or behavioral responses,

the presence of the body is not part of the model of the hydrodynamic field. Hassan

(1985; 1992a; 1992b) has shown that the presence of the body alters the dipole field,

and consequently the pressure and velocity around the fish body is different than what

would be calculated or measured at the same location without the body present.

Another consideration is the boundary layer that forms on the surface of the fish.

For oscillating signals, this boundary layer is inversely proportional to the square

root of the frequency. The frequency dependence of the boundary layer mostly effects

31



the velocity around the surface neuromasts, whose heights keep them either fully or

partially submerged in the boundary layer at low to high frequencies, respectively.

Kalmijn (1988) points out that the neglect of considering the boundary layer has lead

to some experimental data being interpreted wrongly.

Though the effect of the body presence has been calculated by Hassan, his work

was based on axisymmetric bodies only. Hassan used potential flow theory to obtain

the flow field results, which by definition excludes viscous effects, and therefore the

boundary layer effects. Windsor (2008) re-examined some of Hassan’s scenarios while

studying the swimming behavior of the blind Mexican cave fish (Astyanax fasciatus).

Windsor compared DPIV results of the hydrodynamic flow field around the fish to

that of numerical simulations for a fish gliding through open water, gliding next to

a wall, and heading directly at the wall. The 2D and 3D numerical fish bodies were

axisymmetric, like in Hassan’s case, but the boundary layer was resolved. What has

not been considered in the literature is how the presence of fish body parts, namely

extended pectoral fins, might alter the dipole signal. Benthic fish such as the Mottled

Sculpin use their pectoral fins to hold station against oncoming flows, and hovering

fish use their pectoral fins to maintain stability.

The first goal of this chapter is to examine the boundary layer created by an

oscillating dipole source next to a surface (wall or fish), and see if there is a way

to predict what the flow will look like. It tests the idea that the flow next to a

surface is for the most part forced to be parallel to the surface, and locally might

appear as a uniformly oscillating fluid above a flat plate. Stokes (1861) provided an

analytical solution for a plate oscillating in a still fluid, and the counterpart is that

of a fluid oscillating next to a wall. By changing the frame of reference to the plate,

whose motion in this analogy would match the wall-parallel motion of the oscillating

cylinder, the desired result is achieved. The velocity profile is given as (Lamb, 1945)

U = U∞

[
e−y
√

ω
2ν cos

(
ωt− y

√
ω

2ν

)
− cos(ωt)

]
, (2.1)

where U∞ is the magnitude of uniform fluid undergoing oscillations, ω = 2πf is the
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radian frequency of oscillation, y is the vertical height above the wall in the boundary

layer, ν is the kinematic viscosity of the fluid, and t is time. The term that is to be

predicted is U∞ , and potential flow theory may be able to do this.

However, there is a significant difference between a uniform flow oscillating above

a plate and that of an oscillating flow above a surface created by a dipole source.

In the former case, the pressure gradient is everywhere uniform, and the velocity

perpendicular to the surface is everywhere zero. In the latter case, the pressure

gradient is not uniform, but has a specific pattern based on the orientation of the

axis of oscillation relative to the surface. Secondly, there are stagnation points where

the velocity is locally zero, and the velocity perpendicular to the surface is only zero

at the surface. Nonetheless, there should be large regions where the flow is well

predicted.

The second goal of this chapter is to compare the results of using a fine mesh to

resolve the boundary layer around the fish, to that of using a coarser mesh which

doesn’t resolve the boundary layer, but does effectively predict the flow outside of

the boundary layer. This coarse mesh solution, used with the analytical solution

described above, may be able to predict the flow within the boundary layer around

the fish. Using a coarser mesh can have large savings in computational memory and

time when simulating time evolving flows, or any kind of 3D flow.

The final goal of this chapter is to use a series of 2D simulations to look at what

effect extended pectoral fins have on the received dipole signal. The signal that forms

under still water conditions will be considered the base signal, which can then be

compared to the received dipole signal under moving water conditions.

2.2 Methods

The chapter is organized into a series of 2D numerical simulations. The first simula-

tion models the dipole signal interaction with a wall. It is assumed that the side of the

fish will act like a wall to a source in close proximity. The next set of simulations will

test the validity of this assumption, and compare how the curvature and finite size
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of a streamlined fish alter the flow field. Then the fish body with extended pectoral

fins is included in the simulations. Finally, a parameter study is conducted altering

the location and orientation of the dipole field, to see how the signals are altered.

2.2.1 General numerical method

There are many numerical schemes available for solving differential equations like the

Navier-Stokes equations. The Navier-Stokes equations are a complete description of

viscous fluid flow. Solving a particular fluid flow problem is a bit of an art. Com-

putationally, it is impossible to represent all scales of space and time, and the most

difficult fluid flow problems involve multiple scales. For instance, when turbulence

exists, anisotropic swirling eddies of fully developed flows take the size of the physical

boundaries. The energy cascade is to ever smaller motions at ever increasing frequen-

cies, until finally the energy dissipates through motions that have become locally

isotropic.

The art of numerical simulations is to make decisions about what to model and

what to approximate. Perhaps the most difficult choice is how to grid the domain, or

equivalently, discretize the equations. The domain needs to be resolved in the right

locations, so that computational time is not wasted in regions where there is not

much change in the flow field. In unsteady simulations, the region of grid resolution

may need to change as the flow itself evolves. The goal is to reach a grid resolution,

such that further increases in the resolution do not change the flow results. This is

not always possible, and in those cases, the main aspects of the flow need to be well

enough modeled.

In this thesis, the professional grid software GAMBITTM is used. GAMBITTM

offers the ability to grid both 2D and 3D domains, and offers many choices on how the

domain will be meshed. By far the most often chosen method in this thesis is to create

and resolve the boundaries, and then to allow GAMBITTM to mesh the interior of

the domain. Since shapes can be irregular, triangular (unstructured) meshes offer an

exceptional solution. However, near-wall meshing often does better with more regular

meshing, such as quadrilateral structures.
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The solver chosen is the professional software FLUENTTM, which uses the finite-

volume method to solve the Navier-Stokes equations for each cell. The equations are

spatially averaged over control volumes, whose individual sizes are established dur-

ing the meshing process. These new equations are discretized, and then linearized

in order to create a system of equations which includes unkown variables from its

own cell and from neighboring cells. For each unknown variable, the entire domain

is solved simulataneously using a Gauss-Seidal iteration scheme along with an al-

gebraic multigrid method. After the momentum equations are solved for the u, v,

and w velocities, a pressure-correction equation is solved to adjust the pressure and

velocity fields so that continuity is satisfied. The pressure is solved in a staggered

control-volume configuration (Patankar, 1980), using the PRESTO! (Pressure stag-

gering option) scheme. The process is then iterated until there is convergence to a

desired degree of accuracy.

The implicitly linearized equations are solved using the quadratic upwind inter-

polation (QUICK!) scheme (Leonard, 1991), which defaults to a second-order upwind

scheme whenever the grid has non-quadrilateral cells (Barth and Jespersen, 1989).

To reduce the number of iterations required for the unsteady, incompressible flows,

the PISO (Pressure-Implicit with Splitting of Operators) pressure-velocity coupling

scheme is used (Issa, 1986; Ferzieger and Peric, 1996). A deforming mesh model

(Demirdzic and Peric, 1990) allows for movement of spatial grid points to adjust for

motions of the cylinder (or sphere). Gradients are computed using a Green-Gauss the-

orem, and temporal discretization uses a first order implicit scheme. Details specific

to each simulation are given as needed.

Grid spacing and viscous vs. potential effects

When inertial forces dominate over viscous forces, that region of the flow can be

considered inviscid. However, next to any surface, there will always be a boundary

layer where the flow in the inertia dominated region transitions to match the flow

attached to the surface. In this region, viscous forces either match or exceed the

inertial forces. However, this region can be very small, being proportional to the
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inverse square root of frequency for oscillatory flows, or being dependent on the

distance from an initial point of contact on the surface for steady background flows.

Schlichting (1979) gives an approximate boundary layer thickness, δ, on the surface

in an oscillatory flow as

δ =
√

2ν/ω, (2.2)

where ω = 2πf is the angular frequency, and ν is the kinematic viscosity of the fluid.

How the boundary layer next to a wall or surface is meshed can have a big impact

on computation efforts. To accurately model the boundary layer, mesh spacing may

need to be on the order of microns. For 2D or 3D geometries, a few layers of micron

spaced points can quickly add hundreds of thousands to millions of discretized cells

to the computations. For unsteady flows, this can quickly become crippling.

When the grid size next to a surface is larger than the boundary layer, the effects of

the boundary layer are diminished or negligible. Under these circumstances, the flow

essentially behaves as if it were inviscid in that region. This can be of benefit or deficit,

depending on the desired results. For example, when all that is desired is a potential

dipole field, a course enough resolution around the oscillating sphere/cylinder will

cause the boundary layer effects on the velocity and pressure components to not be

modeled. However, to see the effects of an oscillating flow on the velocity profile next

to the surface of a wall (or fish body), the grid needs to be resolved.

In the case of a pressure distribution next to the wall or surface of the fish, the

boundary layer should present negligible effects, since the pressure passes through

almost unchanged. Coarse grid meshing should produce results almost identical to

resolved boundary layer meshes. This is valuable for the 3D background flow scenar-

ios, where the canal neuromasts naturally have a coarse (2 mm) spacing relative to

the oscillating boundary layer. Since it is thought that the superficial neuromasts are

already saturated by the flow, all that needs to be modeled is the signal to the canal

neuromasts. This provides a large computational savings.
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2.2.2 2D dipole next to a wall

A model case to consider is that of a dipole signal next to a wall. In 2D, this will be an

oscillating cylinder next to a wall. The numerical process is carried out in two steps.

First, an oscillating cylinder in an unbounded medium (or finite medium where the

effects of the boundaries are negligible) is simulated and validated against potential

flow theory. The purpose of this is to find the proper grid mesh needed to correctly

produce the dipole signal. Secondly, the presence of the wall is introduced. Again, a

course mesh near the wall should produce results that can be predicted by potential

flow theory, whereas the resolved mesh near the wall will allow for the boundary layer

velocity profile to be determined.

Potential flow solution for an oscillating cylinder in an unbounded medium

For potential flow theory, the potential function for an oscillating cylinder is given as

(Lamb, 1931)

φ = −
(

a2

r

)
U0 cos (θ) cos (ωt) , (2.3)

where a is the radius of the cylinder, r is the radial distance from the center of the

cylinder, θ is the angle from the axis of oscillation, U0 is the velocity amplitude, ω

is the angular frequency of oscillation, and t is the time. The radial and tangential

velocities can be found by taking their respective gradients of the potential function,

Vr =
∂φ

∂r
=

(a

r

)2

U0 cos (θ) cos (ωt) , (2.4)

and

Vθ =
1

r

∂φ

∂θ
=

(a

r

)2

U0 sin (θ) cos (ωt) . (2.5)

The pressure is given by the Bernoulli equation for potential flow,

p = −ρ

[
∂φ

∂t
+

1

2
|∇φ|2 + gz

]
+ F (t) . (2.6)
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When the gradient squared term is small in comparison to the time changing terms

(and with gravity ignored), it reduces to

p ≈ −ρ
∂φ

∂t
= ρ

(
a2

r

)
U0ω cos (θ) sin (ωt) . (2.7)

Numerical set up

To model potential flow around an oscillating cylinder, the correct node spacing

around its circumference has to be determined. One issue is the cell centroid location

for the cells which lie on the perimeter of the cylinder. Cell centroids should not

reside too close the cylinder, which would have the effect of resolving the oscillating

boundary layer that develops over the cylinder surface. On the other hand, the cell

centroids can not be located too far from the surface, or the desired inviscid flow

will also be left unresolved. When meshing with triangular cells, the cell centroid is

located 1/3 the distance along the perpendicular bisector of the base leg. Triangular

cells whose base lies on the cylinder perimeter leave a gap which can be filled by an

inverted triangle. For these cells, whose triangle apex just touches the perimeter of the

cylinder and whose base connects the apexes of adjacent triangles, the cell centroid is

2/3 the distance from the apex to the base along its perpendicular bisector. In terms

of node spacing, or equivalently the base length of an equilateral triangle, b , the cell

centroids lie in the range (
√

5/6− 2
√

5/6)b, the average being a little more than 0.5b.

When the triangles are not equilateral, the location of the centroid can deviate from

this analysis. In these simulations, the lower bound to this range was found to be

about 0.3b, rather than the 0.37b predicted.

Another issue is the node spacing to surface curvature ratio, b/r, which can equiv-

alently be written as 2π/n , where n is the number of nodes. If this ratio is too large,

the cylinder shape may not be accurately modeled, and as the cylinder moves the flow

will be mis-modeled. Finally, grid spacing must always be chosen to resolve pressure

and velocity gradients, and to capture the temporal aspects of the flow (such as ad-

vection). The courant number for the mesh around the cylinder surface is U0∆t/b ,

and should be close to or less than unity. U0 is the velocity amplitude of the cylinder,
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and ∆t is the time step.

In a series of grid refinement tests, it was found that having nodes spaced about

1/3 mm apart (b/δ ≈ 4) around the circumference of a cylinder with a 3 mm radius

very accurately reproduced the drag on a cylinder oscillating at 50 Hz according to

potential flow theory (not shown). However, nodes spaced only 1 mm apart (b/δ ≈

12.5) was all that was needed to correctly reproduce the pressure and velocity flow

field for the same 50 Hz frequency (figure 2-1). The node spacing to curvature ratio

was about 0.1 in the former case, and about 0.3 in the latter.

15 10 5 0 5 10 15

-1
-0.8
-0.6
-0.4
-0.2

0
0.2
0.4
0.6
0.8

1

Instantaneous pressure along
 axis of vibration (phase=π/2)

distance (diameters )

 

 

15 10 5 0 5 10 15

0

0.2

0.4

0.6

0.8

1

Instantaneous velocity magnitude
along axis of vibration (phase=0)

distance (diameters )

 

 

A B

|U| / Uo
p

ρωaU0

coarse grid
s imulation

potential 
flow theory

Figure 2-1: 2D potential flow field: pressure and velocity field validation. The node
spacing is approximately 1 mm around the cylinder circumference, and the frequency
of oscillation is 50 Hz. This spacing is considered ’coarse’, in the sense that it is unable
to accurately resolve the boundary layer around the oscillating cylinder. However,
this is the desired effect, as it is able to reproduce the ’potential’ flow field.

Potential flow equations (eqns. 2.4 - 2.7) show that the velocity and pressure fields

scale geometrically according to some function of the ratio of the radius, a, to the

location in space, r. Therefore, the figures are presented in normalized units. The

numerical solver, FLUENTTM, runs in dimensional units, and so that is how this

information is presented here in the text. A cylinder with a 3 mm radius was placed

at distance of 2.1 cm from the wall, and it was enclosed by a circular region with a
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15 mm radius. In this deformable region, node points were allowed to move as the

cylinder oscillated. The outer dimensions were 30x16.3 cm, the bottom 3 mm next

to the wall being assigned to the boundary layer region.

For the coarse grid mesh, the wall boundary layer was meshed with triangular

cells whose nodes were spaced 2 mm apart ( b/δ ≈ 25 ). This coarse spacing appears

to be adequate to capture the potential flow field effects near the wall (see figure

2-5), and is probably aided by the fact that the node spacing to curvature ratio is

zero. The sides of the designated wall boundary layer mesh were 3 mm in height, and

had a node place at the midpoint, 1.5 mm. For the resolved boundary layer mesh,

quadrilateral cells were used. The first cell had a height of 5.5 µm (δ/14.55 ), and

each of the subsequent 15 cells grew at a rate of 1.4 times the cell beneath it. The

base of the quadrilateral cells were all 1 mm length (12.5δ ).

The side boundaries above the designated 3 mm boundary layer space had node

lengths beginning at approximately 2.1 mm, and growing at a rate of 1.05 times the

previous spacing. The top boundary, far away from the wall and oscillating cylinder,

had node lengths 1 cm apart. The perimeters of the cylinder and of the deforming

region had node lengths of approximately 1 mm apart. GAMBITTM filled the entire

rest of the space (excluding the boundary layer) with triangular cells. Figure 2-2

shows a zoomed in view around the cylinder and wall for the coarse and resolved

boundary layer grids.

The wall boundary was given no-flux and no-slip boundary conditions, correspond-

ing to velocity components being zero. One side boundary was given zero pressure,

and the other two sides were assigned symmetry boundary conditions. The cylinder

velocity was set to U0 cos (ωt) along the axis of vibration, with U0 = 7 mm/s, and

the frequency of oscillation ( ω = 2πf ) set to f = 50 Hz. By the no slip boundary

condition, the fluid velocity at the cylinder surface is equal to the cylinder velocity.

The amplitude of the cylinder motion is defined as U0/ω , which means the maximum

displacement is about 22 µm. Therefore, the node displacement within the deforming

zone was minimal, since nodes were spaced between 1-2 mm apart within this region.

FLUENTTM solved the unsteady simulations with a time step of f/100, where f is
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Zoomed in view of 2D Grid domain for an oscillating cylinder next to a wall

unresolved boundary layer
for "potential flow solution"

 resolved boundary layer
for "viscous flow solution"

A B

Figure 2-2: The grid domain for an unresolved boundary layer (’coarse’ grid) and
resolved boundary layer. The coarse grid provides the ’potential flow’ solution, since
it has nodes in the inviscid region, whereas the resolved boundary layer grid has nodes
in the viscous layer next to the wall. The cylinders have their centers located at a
distance of 7 radii from the wall.

the frequency of oscillation.

Potential flow solution for an oscillating cylinder next to a wall

Potential flow theory cannot be used to predict the wall-parallel component of velocity

in the boundary layer of an oscillating fluid next to a wall, but may be able to predict

what can be considered the velocity outside the boundary layer, U∞ . Secondly,

the wall-vertical component within the boundary layer may be able to be partially

predicted by potential flow theory. Finally, since the pressure is not really affected

by the boundary layer, potential flow theory should be able to predict the pressure

at the wall at all phases of the flow oscillation.

For predicting the vertical velocity component, the solution for a uniform flow

oscillating next to a wall does not have a vertical velocity component, and may

superpose itself onto the potential flow component. The reason for stating that it

will only be partially predicted is because technically the flow next to the wall due to

an oscillating cylinder is not uniform, and actually does have a vertical component

which varies in magnitude based on the location in the flow field and the phase of the
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oscillation. When the vertical component due to the oscillatory flow is minimal, the

potential flow solution for the vertical component in the boundary layer next to the

wall should be well predicted.

When potential flow theory is valid (i.e. incompressible, inviscid, irrotational),

then ∇2φ = 0 is valid throughout the medium. This is a linear equation, allowing

for any φ =
∑
i

biφi , as long as the no-flux kinematic boundary conditions are sat-

isfied, ∂φ/∂n = Un . Here, bi are constants and n specifies the normal direction.

The method of images may be employed to represent an oscillating cylinder near

a wall by superposing a second, mirrored oscillating cylinder an equidistant across

the imaginary line that would be the wall. This is better illustrated using Cartesian

coordinates, so that for a cylinder with axis of oscillation parallel to the x-axis,

φ = −a2

r
U0

x

r
cos ωt = K

x

(x2 + y2)
, (2.8)

where K = −a2U0 cos ωt , a is the radius of the cylinder, and U0 cos (ωt) was previ-

ously defined as the velocity amplitude of the cylinder motion. The relation x = r cos θ

was used to remove the cos θ term of equation 2.3, and the other coordinate transfor-

mation is y = r sin θ , and r2 = x2 + y2 . A wall along the x-axis may be formed by

superposing these two cylinders at a distance of d and −d away from the wall axis,

φcyl-wall (x, y) = φ (x, y − d) + φ (x, y + d) . (2.9)

When evaluating φcyl-wall at the wall, y = 0 , then φ (x,−d) = φ (x, +d) , and the

magnitude is doubled, φcyl-wall (x, 0) = 2 φ|y=0 . Equation 2.9 is not the exact solution,

since only the boundary condition at the wall is satisfied, but not the boundary

condition at the cylinder. The presence of the image cylinder will create a flow field

that should be altered by the presence of the cylinder. In order to enforce the no-flux

condition on the surface of the cylinder, an image cylinder needs to be placed within

the cylinder. This new condition needs to be reflected on the other side of the wall

boundary. These recursive effects are clearly neglected in equation 2.9, and would

require additional biφi terms to solve for the exact solution. However, these recursive
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effects become less significant the further the cylinder and image cylinder are located

from each other, and for the cases considered in this thesis, are neglected.

When the axis of oscillation is at a counterclockwise angle α relative to the wall,

and its image is at a counterclockwise angle of −α relative to the wall, equation

2.9 can be modified as φcyl-wall (x, y, α) = φ (x, y − d, α) + φ (x, y + d,−α) , and the

coordinates for the cylinder and its image undergo a rotational transformation of α

and −α , respectively. The result is

φcyl-wall (x, y, d, α) = K

[
x cos α− (y − d) sin α

x2 + (y − d)2
+

x cos(−α)− (y + d) sin(−α)

x2 + (y + d)2

]
.

(2.10)

The pressure along the wall is

pwall(x, 0, d, α) = κp

[
x cos α + d sin α

x2 + d2

]
, (2.11)

where the constant κp = 2ρωU0a
2 sin(ωt) . The gradient of the potential function

is required to find the velocity throughout the fluid, whose components in cartesian

coordinates are

Vx =
∂φcyl-wall

∂x
= K

[
cos α

x2 + (y − d)2
− 2x2 cos α− 2x(y − d) sin α

(x2 + (y − d)2)2

]

+K

[
cos α

x2 + (y + d)2
− 2x2 cos α + 2x(y + d) sin α

(x2 + (y + d)2)2

]
, (2.12)

and

Vy =
∂φcyl-wall

∂y
= K

[
− sin α

x2 + (y − d)2
− 2x(y − d) cos α− 2(y − d)2 sin α

(x2 + (y − d)2)2

]

+K

[
sin α

x2 + (y + d)2
− 2x(y + d) cos α + 2(y + d)2 sin α

(x2 + (y + d)2)2

]
. (2.13)

At the wall, Vy is zero as expected, and Vx is nonzero, which is in keeping with an

inviscid solution. The vertical component of velocity within the boundary layer is

nonzero, and can now be predicted by equation 2.13. The wall-parallel component
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predicted by equation 2.12 does not change much throughout the boundary layer,

and can be used to predict the fluid flow just outside of the viscous boundary layer,

U∞ .

2.2.3 2D dipole next to fish-like bodies

To explore the effects of body curvature on the received dipole signal, a smooth shaped

fish is compared with cross-sections of an actual fish. To represent the smooth fish

shape, a NACA 0020 profile was used, with its width matching the width of the other

fish models. The NACA profiles are a series of experimentally derived airfoil shapes

that have good lift and drag properties. The four digits are the inputs to an equation

which generates its specific shape (Jacobs, Ward, and Pinkerton, 1932; Abbott and

Von Doenhoff, 1959). The dimensions of a real fish body were taken from the cross-

section of a Lake Michigan Mottled Sculpin, at the halfway height of the body. This

gave a length of 7.6 cm and width of 2 cm. A cross-section of the pectoral fins gave

a thin slice of approximately 1.5 cm in length at roughly an angle of 45 degrees away

from the body (see figure 2-3).

Numerical set up

For the coarse grid mesh, points around each body 2 mm apart were mapped to a grid.

For a 50 Hz signal, the boundary layer is δ ≈ 80 µm. With the base length, b, of each

triangular mesh cell equal to the node spacing, the ratio b/δ ≈ 25 is similar to the

flat wall case. An elliptical region circumscribed the fish (and fins), with nodes 2 mm

apart around the perimeter. A cylinder 6 mm in radius was placed 5 cm away from

the longitudinal midline of the fish, at about a distance of half way between the nose

and tail of the fish. It had 20 nodes placed around its perimeter (approximately 2 mm

apart), giving a node spacing to curvature ratio of approximately 0.3 and b/δ ≈ 24.6.

The cylinder was surrounded by a deforming region 4 times its radius, with nodes

spaced 2 mm apart around the perimeter. The exterior region was 40x40 cm, with

nodes spaced 2 mm apart. All interior regions were evenly meshed with triangular

44



boundary layer around tail tip

boundary layer around tail tip

boundary layer around fin tip

unresolved boundary layer mesh resolved boundary layer mesh

unresolved boundary layer mesh resolved boundary layer mesh

unresolved boundary layer mesh resolved boundary layer mesh

Zoomed in views of the meshing for the NACA 0020 and sculpin with fins retracted/extended bodies

NACA 0020

Sculpin with fins retracted

Sculpin with fins extended

Figure 2-3: The grid domain for an unresolved surface boundary layer (’coarse’ grid)
and resolved surface boundary layer around various fish bodies. The coarse grid
provides the ’potential flow’ solution, since it has nodes in the inviscid region, whereas
the resolved boundary layer grid has nodes in the viscous layer next to the wall. The
cylinders have their centers located at a distance of 8.33 radii from the longitudinal
midline of the fish. The NACA 0020 profile is one of a series of NACA profiles, which
are airfoil shapes that NASA scientists discovered had good lift and drag properties.
The 4 digits are inputs to empirically derived equations which dictate the shape of
the airfoil (Jacobs, Ward, and Pinkerton, 1932).
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cells of uniform size.

For the resolved grid mesh, nodes were spaced evenly at 100 µm ( 1.25δ ) apart

around the perimeter of the fish bodies. The height of the first node above the surface

was 10 µm ( δ/8 ), and subsequent nodes were located at intervals of 1.4 times the

previous interval for a total of 8 layers. An elliptical region large enough for the

fish (and fins) to reside in was created to force the highly resolved region to come

to a coarse meshing relatively quickly. Nodes 1 mm apart were placed around this

perimeter, and the interior meshed with triangular cells. A cylinder of 6 mm in radius

was placed at the same location as in the coarse grid mesh, but nodes were placed

at 1 mm intervals around its perimeter, giving a node spacing to curvature ratio of

0.17 and b/δ ≈ 12.5. The cylinder was surrounded by a deforming region 4 times its

radius, with nodes spaced 1 mm apart around the perimeter. The exterior region was

40x40 cm, with nodes spaced 1 mm apart. The region between the ellipse and outer

boundaries was evenly meshed with triangular cells.

The fish and cylinder surface boundaries were given no-flux and no-slip boundary

conditions, corresponding to velocity components being zero. One side boundary was

given a zero pressure condition, the opposite side was given a zero velocity condition,

and the final two sides were assigned symmetry boundary conditions. This combina-

tion of boundary conditions minimizes the impact that finite boundary locations have

on the flow field generated by the oscillating cylinder. The cylinder velocity was set

to U0 cos (ωt) along the axis of vibration, with U0 = 7 mm/s, and the frequency of os-

cillation ( ω = 2πf ) set to f = 50 Hz. FLUENTTM solved the unsteady simulations

with a time step of f/100, where f = 50 Hz was the frequency of oscillation.

2.2.4 Changing dipole locations and orientations study

Most studies consider the relevant hydrodynamic signals while neglecting the presence

of the receiving body. However, both the presence of the body, and any protruding

parts, alters the local hydrodynamic field. For the biologist, it is important to know

what signal the animal is responding to, and for the engineer writing pattern recogni-

tion programs, distortions need to be addressed. Using computational fluid dynamics
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(CFD), 2D simulations are computed for a dipole source at various distances and

orientations in relation to both a streamlined body profile and a body with extended

fins. This scenario is commonly found in the literature (Coombs et. al, 1996; Coombs

and Conley, 1997b; Curcic-Blake and van Netten, 2006; Yang et. al, 2006), and can

represent a small prey moving in a variety directions relative to the side of the fish.

A dipole source will produce a signature spatial gradient along the lateral line,

providing information about the location of the source relative to the body (Curcic-

Blake and van Netten, 2006). Taking the gradient of pressure in the direction parallel

to the wall, equation 2.11 becomes

∂pwall(x, y, d, α)

∂x

∣∣∣∣
y=0

= κp

[
cos α

x2 + d2
− 2x2 cos α

(x2 + d2)2 −
2xd sin α

(x2 + d2)2

]
, (2.14)

where κp = 2ρωU0a
2 sin(ωt) , and d is the distance the cylinder was placed away

from the wall. When α = 0 , the zero-crossings (or nulls) occur when x = ±d , and

the maximum value occurs at x = 0. Therefore, zero crossings encode the distance

of the cylinder, and the location of the peak along the wall encodes the location of

the cylinder along the wall (i.e. it is the perpendicular bisector of the wall, drawn

through the center of the cylinder).

In a similar manner, when α = π/2 , the zero-crossing is now the location of

the perpendicular bisector, and the cylinder distance can be found by setting the

derivative of the pressure gradient equal to zero. This relation occurs when the

pressure gradient is at either of its two peaks, x = ±d/
√

3 . Figure 2-4 shows the

plots for the pressure gradient when a cylinder oscillates at angles of 0, 30, 60, 90

degrees relative to the x-axis. Using the spatial encoding clues, the plot reveals that

the cylinder is located on the y-axis at a distance of 10 units away.

For the numerical simulations, a cylinder 3 mm in radius was placed at either 3

cm or 5 cm away from the longitudinal midline of the fish body, in locations ranging

from the front to the tail of the fish. The coarse grid meshing around the cylinder

and fish bodies has already been described. The nodes around the fish bodies were

at 2 mm intervals, and from these points three sections were selected to represent
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Figure 2-4: Pressure gradient patterns on a wall due to an oscillating cylinder. As the
axis of oscillation is varied between 0-90 degrees, pressure gradient patterns specific to
each angle appears on the surface of a wall, and also on the surface of the canal lateral
line of fish. The locations of peaks and zero crossings uniquely encodes information
about the location of the cylinder (see text). The pressure gradient is really a pressure
difference between canal lateral line pore openings, whose direction is assigned to show
continuity over the whole lateral line.

48



idealized pore openings on a left, front, and right canal lateral line. The pressure

difference between pore openings was calculated according to (p2 − p1)/2 mm (see

figure 2-4).

The boundaries of these simulations were 375x100 cm, with nodes around the

perimeter spaced at 10 cm intervals. Three sides were given a zero velocity boundary

condition, and the fourth side a zero pressure boundary condition. Pressure needs to

be specified at one side for the equations to be solved. The boundaries are located

far enough away from the oscillating cylinder that the flow induced velocity at these

boundaries is effectively zero. The cylinder velocity was set to U0 cos (ωt) along the

axis of vibration, with U0 = 1.6 mm/s, and the frequency of oscillation ( ω = 2πf )

set to f = 25 Hz. FLUENTTM solved the unsteady simulations with a time step of

f/100, were f is the frequency of oscillation.

As equation 2.14 shows, results can be normalized by ρωU0 sin (ωt) , leaving a

dimensionless geometric term scaled by (a/r)2 . To confirm that the scaling did not

affect results, simulations were also run with U0 = 1 mm/s and f = 50 Hz, leading

to identical results (not shown).

2.3 Results

2.3.1 Oscillating cylinder next to a wall

The first goal of this chapter is to see if the boundary layer flow next to a wall from

a nearby oscillating cylinder can be predicted. The idea is that potential flow theory

can predict the general dipole flow field, including the wall-parallel flow outside the

boundary layer and the vertical velocity inside the boundary layer. Secondly, although

Stokes’ solution for an oscillating boundary layer flow is based on a flow of uniform

magnitude, U∞ , it may be that allowing for a local velocity, U∞(x) , will work where

the spatial changes of the velocity are gradual.

The second goal of this chapter is to see if a coarse grid representation of the flow

will adequately recreate the potential flow solution. The advantage is a huge cost in
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computational time and memory for 3D cases (considered later). Both goals will be

compared against a resolved boundary layer solution, which will be taken as the true

solution.

Figure 2-5 shows the instantaneous velocity (phase=0) and pressure (phase=π/2)

along the wall for a cylinder oscillating in directions parallel and perpendicular to the

wall. The locations for the velocity measurements from the coarse grid mesh are at

the wall adjacent cell centroids, approximately 0.5 mm above the wall. The locations

for the velocity measurements from both the potential flow calculations and from the

resolved boundary layer mesh are at 0.55 mm above the wall. The locations for the

pressure measurements for all results are located on the wall itself, since all methods

are able to make these calculations directly.

The results show that all three methods produce almost identical results. For

the wall-parallel velocity, U∞(x) , the coarse grid simulations give a slightly reduced

magnitude. This is not unexpected, since the coarse grid simulations are still viscous

simulations, and FLUENTTM interpolates the cell center value from the corner nodes

that form the cell. Secondly, the potential flow calculations also differ just slightly

from the resolved grid simulations. As mentioned earlier, there are some real effects

not accounted for using the potential flow approximation of a cylinder and its image,

without performing recursive calculations.

The pressure along the wall shows exact agreement between the coarse grid and

resolved grid boundary layer simulations. However, the discrepancy with potential

flow theory in the case of the cylinder oscillating parallel to the wall is due to boundary

effects. The simulations have boundaries at finite distances, and the results reveal

that the boundaries were not placed far enough away from the cylinder. The potential

flow theory has its side and top boundaries at infinity. As such, the potential flow

results were shifted so that the pressure at the side boundary was forced to be zero,

similar to the numerical simulation boundary conditions. If the boundaries in the

simulations were extended, there would be exact overlap of all solutions. The reason

that this effect does not show up for the velocity plots is that velocity decays much

faster at 1/r2 , whereas pressure decays at 1/r .
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Figure 2-5: Instantaneous velocity (phase=0) and pressure (phase=π/2) along the
wall due to cylinder oscillating in parallel and perpendicular directions. Three meth-
ods are compared: a resolved boundary layer numerical solution, a coarse grid (unre-
solved boundary layer) numerical solution, and a potential flow theory solution. The
wall-parallel velocity ( U∞(x) ) and the vertical velocity ( V∞(x) ) were measure at a
distance of 0.5 mm away from the wall, which should be outside the boundary layer
created by 50 Hz oscillations (see text). The pressure is measure at the wall. The
dimensional values are scaled by the cylinder parameters: U0 , the velocity amplitude;
a, the radius; ω, the radian frequency of oscillation. ρ is the density of water. The
velocity and pressure patterns reflect the location and orientation of the cylinder,
which is located at distance of d = 7a.
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Figures 2-6 and 2-7 show the velocity field around the cylinder and velocity profiles

within the boundary layer when the cylinder oscillates parallel and perpendicular to

the wall. The plots are colored by velocity magnitude, and vectors are of uniform

length to better reveal the flow patterns. The boundary layer profiles compare the

resolved boundary layer simulation results to those of the potential flow theory and

oscillating boundary layer flow approximation results. The coarse grid results are

not presented, as they were just shown to be in agreement with the potential flow

theory results. Also, the coarse grid simulations cannot predict the vertical velocity

in the boundary layer like the potential flow theory is able to do. The potential flow

calculations for U∞(x) were made at 1.5 mm ( 18δ ) above the wall, whereas the

calculations for the vertical velocity were made at the exact same locations as the

resolved boundary layer simulations.

The fluid velocity field in figure 2-6 shows the effect of the wall in forcing the flow

to move parallel to it. The uniform length vectors help the eye to trace streamlines,

and one such set of streamlines shows how the wall redirects the flow from its intended

path around the cylinder. Instead, the streamlines diverge along the wall, and at their

juncture, a stagnation point, or low velocity region exists. According to the boundary

layer velocity profiles presented (figure 2-6,C), this is the region that is most poorly

predicted by potential flow theory and boundary layer approximation. However, in

comparison to other regions of flow along the wall, the velocities at the stagnation

point are orders of magnitude less, and that is its significance to the fish lateral line.

The boundary layer velocity profiles of figure 2-6 show that potential flow the-

ory, used with the approximation to Stokes oscillating boundary layer, match the

numerical simulation results quite well. Discrepancies that appear, especially when

the phase is π/2 and the vertical velocity should be zero according to potential flow

theory and according to Stokes solution, show the real effects of a dipole induced

boundary layer. It should be noted that the vertical velocity, in comparison to the

wall-parallel velocity, is almost always an order of magnitude smaller, if not more.

Therefore, the dominant stimulus to the superficial neuromast is well predicted.

Figure 2-7 shows results when the cylinder is oscillating perpendicular to the wall.
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Figure 2-6: Velocity field (at phase=0) and boundary layer profiles for a cylinder
oscillating parallel to a wall. Vectors of uniform length represent the direction of the
flow, while colors indicate the velocity magnitude. Representative velocity profiles in
the boundary layer are shown at phase=0 and also at phase=π/2. The solid lines are
the predicted values using potential flow theory and Stokes’ oscillatory flow next to a
plate. The data points are from the resolved boundary layer numerical simulations.

53



0.100

0.095

0.090

0.085

0.080

0.075

0.070

0.065

0.060

0.055

0.050

0.045

0.040

0.035

0.030

0.025

0.020

0.015

0.010

0.005

0

A B

Phase = 0 Phase = 0

Phase = π/2 Phase = π/2

Instantaneous velocity field and boundary layer for a cylinder oscillating perpendicular to a wall

Phase = 0

Uo

|U| / Uo

Wall

-0.005 0 0.005
0

2

4

6

v/Uo

y 
/ δ

v boundary layer velocity

� -0.005 0 0.005
0

2

4

6

u/Uo

y 
/ δ

u boundary layer velocity

-0.0005 0 0.0005
0

2

4

6

v/Uo

y 
/ δ

v boundary layer velocity

� -0.002 0 0.002
0

2

4

6

u/Uo

y 
/ δ

u boundary layer velocity

-0.0005 0 0.0005
0

2

4

6

v/Uo

y 
/ δ

v boundary layer velocity

� -0.04 0 0.04
0

2

4

6

u/Uo

y 
/ δ

u boundary layer velocity

-0.0005 0 0.0005
0

2

4

6

v/Uo

y 
/ δ

v boundary layer velocity

� -0.01 0 0.01
0

2

4

6

u/Uo

y 
/ δ

u boundary layer velocity

Figure 2-7: Velocity field (at phase=0) and boundary layer profiles for a cylinder
oscillating parallel to a wall. Vectors of uniform length represent the direction of the
flow, while colors indicate the velocity magnitude. Representative velocity profiles in
the boundary layer are shown at phase=0 and also at phase=π/2. The solid lines are
the predicted values using potential flow theory and Stokes’ oscillatory flow next to a
plate. The data points are from the resolved boundary layer numerical simulations.
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Again the flow is forced parallel to the wall. There is one stagnation point, and the

wall-parallel flow is well predicted in its vicinity (unlike the previous case). Together,

these results show that for making predictions of boundary layer flow along a flat

surface, the theory and approximations work quite well over a large portion of the

surface.

2.3.2 Oscillating cylinder next to fish bodies

The second goal of this chapter is to compare the changes to the pressure and velocity

patterns that result when changing from a flat wall surface to that of fish body

shapes. The flat wall is effectively of infinite length, whereas the fish bodies are of

finite dimension, and the flow can move around the fish. Secondly, the wall is a flat

surface, with well predicted pressure and velocity patterns from an oscillating cylinder.

The fish bodies have more curvature, which should introduce uneven movement of

the water past the surface, creating localized uneven flow accelerations and pressure

changes.

Figure 2-8 shows instantaneous velocity (phase=0) and pressure (phase=π/2) pat-

terns from an oscillating sphere located to the side (see figure 2-3) of the NACA 0020

shaped fish body. Results using the coarse grid numerical simulation are compared

with results from the resolved boundary layer numerical simulations. Here, the coarse

grid solution represents a close approximation to the potential flow solution, though

this solution does include a no-slip boundary condition. The velocity is measured

outside the assumed boundary layer, at a mean height of 0.6 mm, while the pressure

is measured at the body surface. The velocity components are decomposed into U∞

and V∞ , which corresponds to the identical coordinate system of the flat wall case

(figure 2-5).

In comparing velocities around the NACA 0020 fish body with those along the

wall (figure 2-5), it should be noted that the stagnation point at the wall, which is

directly beneath the cylinder, is now at the 0.47 BL (body lengths) mark in figure

2-8. At that point, there is a similar peak for U∞ when the cylinder is oscillating

parallel to the surfaces, and a similar zero crossing point for U∞ when the cylinder is
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oscillating perpendicular to the surfaces. Note that the scale has changed to surface

body lengths, where 1 BL for a NACA profile is approximately 7 diameters, and ’0’

corresponds to the nose, ’1’ to the source side tail point, and ’-1’ to the away side tail

point. In comparison to the wall surface plots, these fish surface plots are ’zoomed’

in.

When the cylinder is oscillating parallel to the fish, figure 2-8 shows the zero

crossings for U∞ are at 0.17 and 0.83 BL, which is leads to uneven distances from

the peak location. The distance between zero crossings is 0.66 BL (4.6diameters),

with the cylinder 3.5 diameters away from the point on the fish directly beneath it.

In comparison, figure 2-5 shows that the zero crossings for U∞ are at 3.6 and -3.6

diameters for a cylinder located 3.5 diameters away. The zero crossing distance has

shortened for the side of the fish in comparison with the flat wall surface results, and

would falsely indicate the prey to be closer than actuality. The peak pressure is nearly

the same in both cases, but the velocity overshoot is much larger for the fish (0.01-

0.02Uo for the fish vs. 0.005Uo for the wall). The positive U∞ velocities at 1 BL, and

negative U∞ velocities at -1 BL, show that the flow is wrapping around the tail. At

the nose U∞ goes to zero while V∞ is positive, which shows that the flow wraps around

the nose. The distance between the pressure peaks matches the distance between zero

crossings, just as it does for the flat wall case, and the magnitude difference between

peaks is about 2/3 that of the wall pressure difference.

When the cylinder is oscillating perpendicular to the side of the fish, figure 2-8

shows that magnitude of the U∞ at the peaks is similar to that of a flat wall, with the

cylinder located 3.5 diameters away in each case. The distance between U∞ peaks

is 3.6 diameters for the fish, and 4 diameters in the case of the wall, again falsely

indicating a closer prey for the fish. At the tail and nose, the flow wraps around the

fish, but opposite in direction to the parallel oscillating cylinder case. The pressure

difference on either side of the fish at the peak is about 2/3 of the peak pressure

difference for the case of the wall.

Figure 2-9 shows that the cross section of a real sculpin body is a slight modifica-

tion of the basic NACA 0020 shape, and leads only to slight changes in the velocity
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and pressure patterns on the surface. When the pectoral fins are extended, figure 2-10

shows that velocities behind the fin insertion points goes to zero. The flow around the

pectoral fins has been omitted, which leaves discontinuities in velocity and pressure

at the surface where the fins meet the body. The discontinuities in pressure highlight

the locations of the insertion points, and show how the fins have the ability to ’dam’

up the pressure on either side of the fin with the direction of the flow. The V∞(ds) is

very similar to that of the NACA 0020 fish body (figure 2-8), as is the U∞(ds) for the

case when the cylinder is oscillating perpendicular to the side of the fish. The flow is

generally away from the body for the perpendicular oscillating cylinder, and as the

fins also point away from the body, there is not much disruption. However, when the

cylinder is oscillating parallel to the fish body, the U∞(ds) is altered significantly in

comparison to the NACA 0020 body (figure 2-8) and the sculpin with fins retracted

profile (figure 2-9). The magnitude of the flow around the fins is overall reduced, as

the fins work to block the direction of flow.

The flow patterns around the sculpin bodies are illustrated in figures 2-11, 2-

12, 2-14, and 2-15. In addition, surface tangential, u, and normal velocities, v, are

shown in the boundary layer next to the fish at selected locations. This is a change

in coordinate system from the previous plots, which had a fixed coordinate system

matching that of the flat wall set up ( U∞(ds) and V∞(ds) ). At any point of the fish

surface, the positive directions are clockwise for u and away for v. The prediction

for the u velocity profile is shown as the solid black lines, whereas all measurements

from the resolved boundary layer numerical simulation are plotted as data points.

The predicted u profile uses the coarse grid solution 0.6 mm away from the boundary

to get u∞ , and then Stokes’ solution for oscillating flow within the boundary layer.

There is no prediction for v within the boundary layer, since an analytical solution

using potential flow theory was not used, and would be largely inadequate even if it

was used.

Figure 2-11 shows the instantaneous velocity flow field around the sculpin body at

phase=0. The vectors are of uniform length to show the direction of the flow, while

the color indicates the magnitude. Visually, the impact of the body presence on the
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Figure 2-8: Instantaneous velocity (phase=0) and pressure (phase=π/2) along a
NACA 0020 shaped fish surface due to cylinder oscillating in parallel and perpen-
dicular directions. The cylinder is located 3.5 diameters away from the point of the
fish surface directly beneath it. A coarse grid numerical solution is compared with a
resolved boundary layer numerical solution. The coordinate system matches the flat
wall case for comparison purposes (see figure 2-5), with the exception that the U∞(ds)
and V∞(ds) velocity components are located along the fish body surface (with units
of surface body length, BL). The velocity measurements are made at 0.5 mm away
from the body, while the pressure measurements are made at the body surface.
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Figure 2-9: Instantaneous velocity (phase=0) and pressure (phase=π/2) along the
surface of a sculpin due to a cylinder oscillating in parallel and perpendicular di-
rections. The cylinder is located 3.7 diameters above the point on the fish surface
directly below it. Other parameters are as given in figure 2-8, which shows the NACA
0020 shaped fish body for comparison purposes.
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Figure 2-10: Instantaneous velocity (phase=0) and pressure (phase=π/2) along the
surface of a sculpin due to a cylinder oscillating in parallel and perpendicular direc-
tions. The cylinder is located 3.7 diameters above the point on the fish surface directly
below it. Parameters are as given in figures 2-8 and 2-9, which shows the NACA 0020
shaped fish body and sculpin with fins retracted for comparison purposes. The flow
around the pectoral fins has been omitted, leaving discontinuities on the surface of
the sculpin at the fin insertion point. These are most obvious in the pressure plots
(as vertical jumps), but can also be seen in the velocities at the same locations.
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flow can be seen as the otherwise concentric colors of decreasing velocity magnitude

is altered to form a region of increased velocity next to the source side of the fish.

Also apparent are the two stagnation points where the velocity magnitude decreases

to almost zero above the surface. At the stagnation point near the tail, the flow is

coming into the fish and is forced to split directions, and at the stagnation point on

the head, the flow is coming together from opposite directions and is ejecting from the

side of the fish. Within the boundary layer, v is around an order of magnitude less

than u (at least), and shows that the predictions of v for the flat wall case (see figure

2-6) would be largely in error in the majority of locations. This is not unexpected, as

body curvature should create additional accelerations to those predicted by potential

flow theory for flow near a flat wall. The predicted u profile matches the actual

results quite well at almost every location, except near the stagnation point where it

underestimates the magnitude. The phase=π/2 plots are shown in figure 2-13 (top set

of plots), and show even better agreement. The v profiles show a variety of responses.

Note: the scales change for every plot so that the velocity profiles are always ’zoomed

in’.

When the cylinder oscillates perpendicular to the side of the sculpin (figure 2-

12), the body presence also alters the flow field. The otherwise concentric circles of

declining velocity magnitude show increased regions of flow near the head and tail.

The stagnation point is located at the side of the fish at the point that is nearly

beneath the cylinder. It is slightly offset in order to bring the stagnation point a

little closer to the cylinder, and in line with the perpendicular bisector of the side of

the fish (rather than the longitudinal midline of the fish). There is also a stagnation

point on the opposite side of the fish (close to point E), where the flow splits and

circulates around the fish body to the source side stagnation point, where the fluid

is ejected. The shape of the u velocity profiles within the boundary layer is well

predicted, though the magnitudes are often slightly diminished. When phase =π/2,

as shown in figure 2-13 (bottom set of plots), the u velocity profiles are very well

predicted.

Figure 2-14 shows the instantaneous velocity flow field around the sculpin body
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Figure 2-11: Velocity field (at phase=0) and boundary layer profiles for a cylinder
oscillating parallel to a sculpin fish. Vectors of uniform length represent the direction
of the flow, while colors indicate the velocity magnitude. Representative velocity
profiles in the boundary layer are shown at phase=0 (see figure 2-13 for phase=π/2
plots). The solid lines are the predicted values using potential flow theory and Stokes’
oscillatory flow next to flat surface. The data points are from the resolved boundary
layer numerical simulations. The coarse grid solutions measure the velocity at mean
height of 0.6 mm above the surface, which should be outside of an induced boundary
layer for a cylinder oscillating at 50 Hz. The cylinder is 3.7 diameters away from
point on the fish surface directly beneath it.
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Figure 2-12: Velocity field (at phase=0) and boundary layer profiles for a cylinder
oscillating perpendicular to a sculpin fish. The set up and plot explanation is the
same as in figure 2-11.
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Instantaneous velocity profile in the boundary layer for a cylinder oscillating parallel to the fish

Instantaneous velocity profile in the boundary layer for a cylinder oscillating perpendicular to the fish
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Figure 2-13: Instantaneous (phase=π/2) velocity boundary layer profiles on a sculpin
surface for a cylinder oscillating parallel and perpendicular to the longitudinal midline
of a sculpin body. The points selected are those of figures 2-11 and 2-12. The solid
lines are the predicted values using potential flow theory and Stokes’ oscillatory flow
next to flat surface. The data points are from the resolved boundary layer numerical
simulations. The coarse grid solutions measure the velocity at mean height of 0.6
mm above the surface, which should be outside of an induced boundary layer for a
cylinder oscillating at 50 Hz. The cylinder is 3.7 diameters away from point on the
fish surface directly beneath it.
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Figure 2-14: Velocity field (at phase=0) and boundary layer profiles for a cylinder
oscillating parallel to a sculpin fish with pectoral fins extended. Vectors of uniform
length represent the direction of the flow, while colors indicate the velocity magnitude.
Representative velocity profiles in the boundary layer are shown at phase=0 (see figure
2-13 for phase=π/2 plots). The solid lines are the predicted values using potential
flow theory and Stokes’ oscillatory flow next to flat surface. The data points are from
the resolved boundary layer numerical simulations. The coarse grid solutions measure
the velocity at mean height of 0.6 mm above the surface, which should be outside
of an induced boundary layer for a cylinder oscillating at 50 Hz. The cylinder is 3.7
diameters away from point on the fish surface directly beneath it.
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Figure 2-15: Velocity field (at phase=0) and boundary layer profiles for a cylinder
oscillating perpendicular to a sculpin fish with fins extended. The set up and plot
explanation is the same as in figure 2-14.
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Instantaneous velocity profile in the boundary layer for a cylinder oscillating parallel to the fish
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Figure 2-16: Instantaneous (phase=π/2) velocity boundary layer profiles on a sculpin
surface for a cylinder oscillating parallel and perpendicular to the longitudinal midline
of a sculpin body. The points selected are those of figures 2-14 and 2-15. The solid
lines are the predicted values using potential flow theory and Stokes’ oscillatory flow
next to flat surface. The data points are from the resolved boundary layer numerical
simulations. The coarse grid solutions measure the velocity at mean height of 0.6
mm above the surface, which should be outside of an induced boundary layer for a
cylinder oscillating at 50 Hz. The cylinder is 3.7 diameters away from point on the
fish surface directly beneath it.
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with pectoral fins extended at phase=0 when the cylinder oscillates parallel to the

longitudinal midline of the fish. Where there was an increased region of flow near

the body with fins retracted (see figure 2-11), the fins block the flow in that region

and eliminate that effect. The velocity stagnation points have moved slightly closer

to the center of the fish, and there are additional regions of reduced flow in the

pockets formed between the pectoral fins and the side of the fish body. Again, within

the boundary layer, v is around an order of magnitude less than u (at least), and

predictions for v would be in error (as compared to the flat wall case, figure 2-6).

The predicted u profile matches the actual results quite well at almost every location,

except in the stagnation point where direction of flow is oppositely predicted. This is

of little consequence, owing to the fact that there has to be an exact point that the

flow changes directions, and the coarse mesh solution misses that exact point. The

predictions for the velocity on either adjacent cell in the coarse grid are back on track

(not shown). The same missed prediction shows up at point A in the phase=π/2

plots, shown in figure 2-16 (top set of plots), and all the rest of the selected points

show excellent agreement.

When the cylinder oscillates perpendicular to the side of the sculpin (figure 2-15),

the body presence also alters the flow field in a similar fashion to the fins-retracted

case (figure 2-12). This is expected, as the extended fins are largely in the direction of

flow in this particular fish-prey configuration, and have little impact. On the opposite

side of the fish, the stagnation point that was near point E has now located on the

pectoral fin itself, and the fin insertion point acts as the new stagnation point to the

fish. The shape of the u velocity profiles within the boundary layer is well predicted

at all points, though again the magnitudes are often slightly diminished. When phase

=π/2, as shown in figure 2-16 (bottom set of plots), the u velocity profiles are very

well predicted at all points.

Figure 2-17 shows how the presence of the sculpin body affects the pressure field

around a dipole source. The concentrations of pressure changes appear in the same

places as the regions of increased velocity magnitude (figures 2-11, 2-12, 2-14, and

2-15). When the cylinder oscillates perpendicular to the longitudinal midline of the
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fish, one side of the fish is shielded from the source almost entirely. This is likely an

exaggerated 2D effect, since the body acts like a wall of infinite height and forces flow

around rather than over it. However, when the prey is close enough, this may well

represent the midline of the fish.

2.3.3 Changing dipole locations

The final goal of this chapter is to use a series of 2D simulations to look at what

effect extended pectoral fins have on the received dipole signal. The signal to be

considered is the pressure gradient, which stimulates the canal lateral line. Figure

2-4 shows the basic pressure gradient patterns that appear on a flat surface when a

cylinder oscillates in a range from parallel to perpendicular relative to the wall. These

same patterns appear on the fish body, though differences should exist because the

body is of finite size in relation to the dipole source, because it has various grades

of curvature, and because it can have extended body parts. Figures 2-18 and 2-19

show what happens when the dipole source is placed at various distances, locations,

and orientations relative to the fish body. The patterns shown are of instantaneous

pressure (phase=π/2), similar to figure 2-17. The direction of pressure difference is

defined in figure 2-4.

For the sculpin with fins retracted, figure 2-18 shows that the same pressure

gradient patterns that would appear on a flat wall are evident over the body of the

fish. When the cylinder oscillates at an angle of 0 degrees relative to the longitudinal

body axis, the location of the peak matches the point where a line drawn from the

cylinder to the side of the fish is the perpendicular bisector of the side of the fish, at

the point on the side of the fish which is closest to the cylinder. This is the exact

same location for the central zero crossing that occurs when the cylinder oscillates

perpendicular to the side of the fish. When the cylinder oscillates at other orientations

(such as 30 and 60 degrees) the pressure gradient pattern is a weighted combination

of the two main patterns (Curcic-Blake and van Netten, 2005).

These patterns stay evident as the location of the cylinder is moved from the

front of the fish, to the side, and finally to the tail. If the dipole source where to
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Figure 2-17: Instantaneous pressure fields (phase=π/2 around sculpin bodies near a
dipole source. The directions of cylinder oscillation are parallel and perpendicular to
the longitudinal midline of the body. The cylinder is located 3.7 diameters from the
point on side of the fish directly beneath it.
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maintain a steady amplitude oscillation, then the magnitude of the peaks would be

an additional indicator of the source distance. As the cylinder nears the tail, the

information becomes more ambiguous, since the pressure gradient pattern is only

partially shown on the fish. The clearest information available are the zero crossings,

or stagnation points, of the parallel oscillating cylinder, since this unambiguously

encodes source distance information.

The presence of the fins alters the pressure difference trends by forcing a zero point

at the fin insertion points on the canal lateral lines. This is most significant when

the dipole source is near the nose of the fish, because the patterns are only partially

displayed. When the cylinder is near the side of the fish, the pressure gradient patterns

are present in their full form, and the fins have less of an effect.

Figure 2-19 shows the pressure gradient patterns on the side of the fish body when

the dipole source is moved a little less than one body length away. The most obvious

difference is that the magnitude is much reduced relative to a constant amplitude

stimulation. Note that the scale in the plots has been reduced in order to better

show the patterns. Secondly, the patterns are less defined and more spread out,

which allows for the fins to have a more significant effect since the pressure gradient

patterns are more likely to cross over the pectoral fins. What also becomes evident is

that near the tail, the pressure gradient pattern wraps around the fish body. Figure

2-20 shows how the signal shape is effectively preserved as it wraps around the body.
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Figure 2-18: Dipole pressure gradient patterns on a sculpin in close proximity to an
oscillating cylinder. The cylinder oscillates between 0 and 90 degrees relative to the
longitudinal axis of the fish. Node points on the surface of the fish represent pore
openings to the canal lateral line, and are spaced 2 mm apart. The lateral line is
divided into a source side trunk lateral line (blue), front lateral line (green), and
back side trunk lateral line (red). The plots represent the pressure difference along
the lateral line, as defined in figure 2-4. The pressure gradient patterns occur at
phase=π/2, similar to what is seen in figure 2-17.
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Figure 2-19: Dipole pressure gradient patterns on a sculpin a little less than a body
length away from an oscillating cylinder. The set up and explanation are given in
figure 2-18.
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Figure 2-20: Use of the entire lateral line for source localization. Instantaneous
(phase=π/2) iso-pressure contour lines are drawn for a cylinder oscillating alone in
an unbounded medium (colored lines), and next to a sculpin body (black lines). The
presence of the body causes the pressure to concentrate around curved surfaces and
points, effectively extending its lateral line surface and ’feeling’ more of the dipole
source. This can explain why the pressure gradient patterns of figures 2-18 and 2-19
capture much of the patterns seen along a flat wall (figure 2-4).
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2.4 Discussion

Validation of the course grid numerical simulations

A primary goal of this chapter was to see if the coarse grid (unresolved boundary

layer) simulations could accurately predict the velocity and pressure outside the os-

cillating boundary layer around a wall, and around various shaped fish bodies. The

purpose of this exercise was to lay the foundation for doing 3D coarse grid simula-

tions, where the computational restrictions prevent resolving the boundary layer flow

around the sculpin for time dependent flows. The signal to the canal lateral line is

the pressure gradient, and since canal pores are spaced approximately 2 mm apart, a

coarse grid resolution is able to provide this signal in its entirety. It was important

to verify that the dipole stimulus signal in still water is presented without distortion.

Figures 2-5, 2-8, 2-9, and 2-10 confirmed that the boundary layer around a wall

and around a fish body does not affect the pressure signal to the surface. Even

when there were body parts, such as extended pectoral fins, the coarse grid numerical

simulations gave the same pressure results as the resolved boundary layer simulations.

This gives confidence that the pressure signals, created by the dipole stimulus, will

be correctly predicted in all of the simulations performed.

As for predicting the velocity outside of the boundary layer, overall the results

were excellent, but not identical. The most noticeable deviations of and differences

between the coarse grid mesh predictions and the resolved boundary layer results

were at locations of peak velocity magnitude, where the values were less than actual.

Where there were sharp changes in velocity over short distances, such as near the

tail tip, the coarse grid mesh is not able to represent those aspects of flow, since it

averages the flow locally by nature of its individual cell sizes. Nonetheless, over much

of the region of the fish, the velocity is well predicted.

There is one study that shows deviation of the predicted velocity outside the

boundary layer using numerical simulations. Goulet et al. (2008) performed a 2D

simulation of a sphere next to a wall in order to see if potential flow theory would

match numerical results. Their results showed unphysical deviations of velocity, which
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they attribute to viscosity effects near the wall. Based on the results of this thesis, it is

unlikely that their numerical results were correct. Details of the numerical simulation

were omitted, so it is unclear how they arrived at their results. They conclude that

the boundary layer effects can be neglected, which is also incorrect. However, their

work is really based on the location of the stagnation points of velocity and pressure

gradient along the lateral line of fish, which is well predicted by the use potential flow

theory.

It is difficult to generalize results of predicting the velocity in still water conditions

to that of moving water conditions, because it is not clear at this point if the inter-

actions of the flow, stimulus signal, and boundary layer interact in a linear fashion.

If not, then the coarse grid mesh will likely be limited to representing the pressure

signals when there is more complex flow interaction.

Validation of predicting the boundary layer flow along a surface due to

an oscillatory dipole source

It is a little bit surprising how well the boundary layer flow could be predicted

by finding the velocity outside the boundary layer (using either potential flow theory

or a coarse grid simulation), and applying Stokes’ solution for flow in an oscillatory

boundary layer next to a flat plate. The main surprise is that although a dipole source

creates an uneven pressure gradient over the length of the wall (see figure 2-4), it does

very well in predicting the boundary layer flow (see figures 2-6, 2-7, and 2-11-2-16)

that is based upon a spatially uniform pressure gradient.

The errors that did occur were not in predicting the shape of the u profile, but

in predicting the magnitude. When the surface parallel velocity outside the bound-

ary layer, U∞, was wrongly predicted, then the associated scaling error propagated

through the rest of the boundary layer profile (see equation 2.1). These errors of-

ten occurred in locations where the coarse grid solution averaged the changes that

were occurring in velocity, such as in and around the stagnation points, rather than

resolving the changes.
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Predicting the surface normal velocity component, v, really only worked well in

the case of a flat surface (see figures 2-6 and 2-7). With a curved surface of finite

dimension, the flow field around the fish from the dipole stimulus is much less uniform,

and consequently the flow is being forced into or away from the sides of a fish more

often. This results in greater v magnitudes, and the flow itself is more complex than

would be predicted by potential flow theory. These deviations actually represent the

error to the u velocity profile predictions, and in general, are an order of magnitude

less than the u velocities.

The effect of body parts on dipole source localization

A dipole source will produce a signature spatial gradient (see figure 2-4) along

the lateral line, providing information about the location of the source relative to

the body. Figures 2-18 and 2-18 show that these basic signals are well preserved on

curved fish bodies, except in the tail region.

Studies that compared the neural responses along the lateral line with modeled

dipole pressure gradients showed that the excitation patterns were encoded (Coombs

et al, 1996). This includes the accurate encoding of pressure gradient zero crossing

for a dipole source at various distances from the lateral line (Curcic-Blake and van

Netten, 2006). Behavioral studies confirm that the lateral line canal system, and

their encoded excitation patterns, plays an important role in prey (dipole source)

localization (Coombs and Conley, 1997a,1997b). Of launched attacks with the source

at 3 cm away, 75% of them occurred with the source more laterally oriented to the

fish body axis, where there would be better encoding of the zero crossings (Coombs

and Conley, 1997b).

The extension of pectoral fins has the effect of ’pinching’ off the signal at the point

of fin insertion on the side of the fish, because in that region the flow velocity has

been reduced. The interaction of the fins with the dipole flow field also affects other

regions in close proximity. When the fins block the flow to any degree, the pressure

is increased on one side and decreased on the other. Secondly, the concentration of

isopressure lines (see figure 2-17) changes, so that there is an increase in the pressure
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gradient on the side that blocks the flow, and a decreased pressure gradient on the

side blocked from the flow. These affects are accentuated by the nature of 2D bodies,

and are expected to be less around 3D bodies were the flow has a third dimension to

move in and around the finite body.

The fins also have the ability to distort the received dipole signal, especially when

either a peak or stagnation point is interrupted by the presence of the fin. Likewise,

the finite size of the fish limits signal reception by cutting short a signal for a source

that is too far away. This has been pointed out by Curcic-Blake and van Netten

(2006), who determined the shortest and farthest distances an oscillating dipole sphere

can be from the side of a fish and still manage to contain the peaks and stagnation

points in the signal to one side of the lateral line.

Evidence suggests that information processing by the fish is unilateral (Coombs et

al, 2000). The approach strategies of the Mottled Sculpin show that it approaches in

steps, orienting one side at a time. In experiments where fish had one side denervated,

there was no effect in its ability to detect and attack prey on its good side. Finally,

poor frontal performance suggests that spatial information is not integrated from side

to side (Coombs et al, 2000).

Though dipole localization results were presented for the canal lateral line sys-

tem, the velocity at the edge of the boundary layer has similar peaks and stagnation

point locations because it also is the gradient of the potential field (compare equation

2.14 with 2.12 and 2.13). Goulet et al. (2008) confirm this, and show that both

velocity and pressure gradient signals yield the same information (though scaled dif-

ferently). Therefore, the superficial neuromasts could in theory have a significant role

in dipole localization, since they can more encode 3D information by virtue of the

hair orientations around the body.

It has been argued that the oscillating dipole stimulus is an unbiological signal

since actual prey and fish motions lead to more complex signals. For example, the

flapping of the pectoral fin for motion, or the feeding currents by smaller prey, will

produce the relevant hydrodynamic signals that are not of a dipole nature. In general,

the flow produced will be species specific (Jansen, 2004). With this in mind, it must
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be remembered that the results presented in this chapter are only of basic value, upon

which further investigations can build.
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Chapter 3

Thresholds of detection and

saturation in still water

In chapter 1, the basic problems to be addressed in this thesis were presented - namely

the signal-body interaction and the flow-signal-body interaction. These are the hy-

drodynamic interactions that this thesis can begin to address. However, in order to

understand how these signals impact the fish, or to understand how the fish are able

to extract the relevant signals and reject others, the mechanisms of the lateral line

system which encode and filter the signals must be addressed. In particular, one de-

sired result is an input-output function for the lateral line neuromast motions, so that

different scenarios can be assessed for their impact on the neuromast detection and

saturation thresholds. That requires a determination of the micromechanical proper-

ties of the neuromasts, and the micro-fluidic properties of their local hydrodynamic

environments.

Fortunately, there has been a substantial amount of research on the lateral line

of fish and amphibians over the last number of decades, and great strides have been

made in the understanding of its structure and function. The first part of this chapter

will summarize the basic morphology of the fish lateral line, and compare some of the

analytical models available which predict how the canal and superficial neuromasts

will interact with and respond to their local hydrodynamic environments. These

models capture the filtering properties of the neuromasts themselves, coupled with
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the filtering characteristics of the surface boundary layer and of the subdermal canal

channels that they reside in. These models have been verified experimentally for

certain fish, but are clearly meant to be applicable to a large number of species of

fish. This thesis has chosen the Mottled Sculpin for illustrative purposes, and will

discuss how these models might apply.

Beyond the mechanical aspects of signal encoding and filtering, there is also the

likelihood that the fish further process the signals in their brain. There are both

afferent nerves from the lateral line, sending signals to the brain, and efferent nerves

to the lateral line, receiving signals from the brain. Feedback loops can allow for

complex possibilities of signal processing. For instance, local hair cells are able to

adapt to signals by lessoning their sensitivity to the hair cell stimulus (Popper and

Fay, 1999; Eatock, 2000). This means that what the fish are able to detect, either at

some minimal threshold, or at some maximal threshold, may be dependent on what

the fish ’decides’ to listen for.

What is most important to the fish is encoding enough relevant information from

the local hydrodynamic environment in order to make decisions about what is near

by, and where it might be located relative to itself. Namely, does it need to stay

swimming in a school of fish, avoid some obstacle, avoid some predator, track some

prey, communicate with a potential mate, etc.? In each of these situations, there

is some minimal amount of information that uniquely distinguishes itself from some

other situation, and the fish must (and do) have the requisite equipment to accurately

encode and process this information. The source information will have amplitude,

temporal/spectral, and spatial content.

This thesis will be able to simulate the hydrodynamics of some typical flow envi-

ronments and of some typical prey signals. The temporal/spectral and spatial content

can be examined to see what is required in order to extract the desirable signals. This

chapter serves to further this discussion by hypothesizing how the signal might real-

istically be encoded by the mechanical and physical aspects of the lateral line system

for the Mottled Sculpin. Secondly, there is some evidence that there are limits to

hair cell signal adaptation, in particular to types of a.c. noise that are present in
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background flows (Chaugnaud et al., 2006). This thesis can begin to address what

types of flow environments lead to sources of a.c. noise, and what impact this might

have on detecting desirable signals.

The goal of this chapter is to present the basic morphology of the fish lateral line,

and to compare some of the prominent analytical models which predict how the canal

and superficial neuromasts interact with and respond to their local hydrodynamic

environments. These models are then adapted specifically for the Mottled Sculpin.

The mechanical filtering properties of the lateral line system, as modeled in this

chapter, will form the basis for assessing the effects of background flow environments

on signal recovery in chapter 5.

3.1 The lateral line system of fish

Fish have a number of systems for detecting vibrations in the water - the inner ear,

the swim bladder (which also stimulates the inner ear), and the lateral line system.

Each system ultimately causes the bending of local ciliary bundles, which in turn

causes the supporting hair cell to fire synaptic nerve signals. The ciliary bundles

have short individual hairs called stereocilia, which progress in size up to the tallest

hair, the kinocilium (Flock, 1967). The ciliary bundles are oriented to be excited

when bent in one direction (toward the kinocilium), and inhibited in when bent in

the opposite direction (see figure 3-1). Hair cells are often oriented with their ciliary

bundles facing opposite each other, so that bidirectional motions are encoded (Flock

and Wersall, 1962). This is clearly an important feature for assessing the frequency

content of signals.

In the inner ear system, the ciliary bundles have solid masses called otoliths above

them, and others have gelatinous coverings. In both cases, as the fish moves, these

masses lag behind due to their inertia, and in turn, cause the touching ciliary bundles

to bend with them (Popper and Fay, 1999). Thus, the inner ear acts as an inertial

guidance system, which detects the whole body accelerations of the fish. These ac-

celerations can be caused by self movement, or by an external gravity or pressure
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Figure 3-1: Diagrammatic illustration of the proposed theory of hair-cell function,
showing the relation between receptor potential and nerve impulse frequency when the
sensory hairs are inclined toward or away from the kinocilium. Diagram and caption
from Flock (1967), Figure. 14., found in Cahn, Phyllis. Lateral Line Detectors. p.
182. Reprinted with permission of Indiana University Press.

field. Traveling sound waves would cause the body of the fish to vibrate, alerting the

fish of some proximate disturbance. By virtue of responding to whole body motions,

it also means that the fish essentially integrates all spatial hydrodynamic informa-

tion over its body, thereby making it a poor detector of the spatial resolution of the

hydrodynamic field (Braun and Coombs, 2000).

For some fishes, its swim bladder can also act as a sound source and sound receiver.

As the density inside the swim bladder is much less than that of its body or the

surrounding water, incident sound waves can cause the bladder to reradiate the energy,

providing a stimulus for any otolith organs in close proximity (Popper and Fay, 1999),

and occasionally the lateral line (Coombs and Montgomery, 1999). The motions

caused by the oscillating air cavity might stimulate different motions in the inner ear

than would otherwise be caused by the whole body motions, thus providing additional

information for sound source identification and localization.

The lateral line has a number of neuromasts, or hair cells groups, located on the

surface of the fish and in subdermal canal systems. These hair cell groups are covered

by a protective, gelatinous cupula. As water moves past the cupula, viscous drag

forces cause shearing motions, and the hairs inside bend with the cupula. The lateral
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line system can often be recognized as a darkened thin line that proceeds from the

front of the fish towards its tail. Extensive information on the lateral line system can

be found in reviews by Bleckmann (1993), Coombs and Montgomery (1999), and van

Netten (2006). The most important feature of the lateral line, as compared to the

inner ear or swim bladder, is that it provides much more spatial information about

the hydrodynamic field by virtue of their arrangements over the whole body.

Since the actual placement and branching of the lateral line is species specific,

it is useful to select a particular species to get the general idea of the lateral line

morphology. The lateral line system of the Mottled Sculpin, as presented in the work

of Janssen et al. (1987), is shown in figure 3-2. The drawing shows the arrangement

and orientation of both canal and superficial neuromasts. Of particular importance is

that the superficial neuromasts are often situated orthogonally to each other. Along

the trunk lateral line these pairings are side by side, while at one end of the mandibular

canal there are two orthogonal arrays. This is significant because it allows for the

resolution of the two-dimensional vector flow field tangential to its skin surface. Canal

neuromasts are oriented to respond to water motions in alignment with each local

branch of the canal they are situated in. Only one component of the flow field can

be resolved.

3.1.1 Canal neuromasts

The canal neuromasts are located in a channel just under the surface of the skin with

open pores that allow the entrance of water. Each neuromast contains many ciliary

bundles (see figure 3-3). Janssen et al. (1987) found that the canal neuromasts of the

Mottled Sculpin have its sensory strip of hair cells surrounded by mantle cells, so that

the ciliary bundles rest within a trough. The cupula that covers the neuromast is keel

shaped, with its largest extension above the sensory strip and reaching to the top of

the canal. The individual stereocilia are between 2-3 µm long, while the kinocilium is

between 5-10 µm. The overall shape of the neuromast is elongated, with surface areas

between 0.01-0.06 mm2 , dependent on canal location and on fish size (maturity).

Other species have canal neuromasts of different shapes. For example, the supra-
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Figure 3-2: Lateral view of the distribution of canal (black dots) and superficial
(open circles) neuromasts found in the mottled sculpin. Size of neuromasts is indi-
cated by a line through the open circles. The position of canal neuromasts sampled
for growth analyses are indicated by numbers. Neuromasts in the supratemporal
canal and that portion of the main body canal extending from the orbital canals
to the trunk canal were not sampled. Atr = Trunk accessories; CFRio= caudal re-
placement of the infraorbital canal; DLso = dorsal line of the supraortial canal; DLtr
= dorsal trunk line; IO = infraorbital canal; Lm = mandibular line; Lo=opercular
line; MD=mandibular canal; PRO = preopercular canal; RFRio=Rostral replace-
ment of the infraorbital canal; RRso= Rostral replacement of the supraorbital canal;
SO= supraorbital canal; TR=trunk canal. Diagram and caption from Janssen et al.
(1987, Figure 2). Reprinted with permission of S. Karger AG, Basel.

orbital canal neuromast of the ruffe has a rounded base 0.6 mm in diameter, and

extends to a height of 0.7 mm in a 1 mm diameter canal (van Netten, 2006). How

each neuromast will respond to the passing fluid within the canal will be species and

canal specific. However, as will be seen, approximations can lead to useful models.

In a seminal work, Denton and Gray (1983) showed that the fluid displacements

within a canal relative to the fish body motion are linearly related to the fluid ve-

locities outside the canal relative to the fish body motion, which means the fluid

velocities in the canal are proportional to the fluid accelerations outside the canal.

This is equivalent to saying that water motion within the canal is determined by the

pressure gradient between pore openings (Kalmijn, 1988).

At the surface of the skin, the velocity of the water is exactly equal to the velocity

of the skin. This is called the no-slip condition, and it exists because at the surface

the molecular forces keep the water in contact with the skin. Between the skin and
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Figure 3-3: Scanning electron micrographs of apical ciliary bundles on the canal neu-
romast shown in figure 1A. A Low magnification showing the orientation of ciliary
bundles along the canl axis (arrows). B Higher magnification showing the opposite
polarity of bundles on adjacent hair cells. Scale bars: (A) 10 µm, (B) 1 µm. Photo-
graph and caption from Janssen et al. (1987, Figure 6). Reprinted with permission
of S. Karger AG, Basel.

the free-stream velocity, where inertial forces dominate, a transition zone called the

boundary layer exists to transition the velocities. In the boundary layer, viscous

forces dominate, and there is generally strong shear. For thin boundary layers, the

pressure field penetrates almost undisturbed to the skin surface. This means that the

pressure at the canal pore openings should be approximately equal to the pressure at

points normal to the surface just outside the boundary layer.

Kalmijn (1988) modeled the canal / canal neuromast system as a damped har-

monic oscillator, driven by fluid drag. He argued that it was the canal fluid velocity

which is the relevant stimulus to the canal neuromast, since the cupula would bend
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from the drag force, which is proportional to the relative velocity between the cupula

and oscillating fluid. Using Kalmijn’s notation, m the mass of the gelatinous cupula,

b the viscous force per unit velocity, k the restoring force per unit cupular displace-

ment, v′ cos ωt the velocity of the driving fluid within the canal, and x the cupular

displacement, he arrives at

m
d2x

dt
+ b

dx

dt
+ kx = bv′ cos ωt. (3.1)

The steady state solution, in terms of cupular displacement per canal fluid velocity,

and the corresponding phase lag, is

x (ω)

v′
=

γ

ω2
0

ω0/ω[
(ω0/ω − ω/ω0)

2 + (γ/ω0)
2]1/2

, θ = tan - 1
(

γ/ω0

ω0/ω − ω/ω0

)
, (3.2)

where γ = b/m and ω2
0 = k/m. This system is critically damped for γ = 2ω0,

and underdamped or overdamped for γ less than or greater than 2ω0, respectively

(Kalmijn, 1988). Figure 3-4 shows three cases: γ << ω0 (underdamped), γ = 2ω0

(critically damped), and γ >> ω0 (overdamped). The figure plots the range of

frequencies, from ω << ω0, through ω = ω0, to ω >> ω0. For ω << ω0, the beginning

amplitude x (ω) /v′ ≈ γ/ω2
0, while the phase approaches zero. When ω = ω0, the

amplitude x (ω) /v′ 1/ω scaled by γ/ω2
0, and the phase is -90 degrees for all cases.

When ω >> ω0, the amplitude decreases as x (ω) /v′ 1/ω2 scaled by γ/ω2
0, and the

phase approaches -180 degrees. For γ << ω0, the viscous damping/driving is much

less than the restoring force, and in essence this system typifies a mass-spring system,

showing resonance at ω0. At the other extreme, γ >> ω0, the system is dominated by

viscous forces which are competing to both drive and damp the system. For γ ≈ 2ω0,

inertia and viscous forces compete equally, and the displacement is still in phase for

ω << ω0.

Although values for m , k , and b where not provided, Kamijn assumes the rela-

tionship ω << ω0 holds for biologically relevant cases. He then arrives at a general

solution for the cupular displacement as related to the outside water volume fluid
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Figure 3-4: Three cases of a driven, damped harmonic oscillator, representing the
cupular displacement per canal fluid velocity (Kalmijn’s neuromast model, 1988).
The plot shows the transition from a mass-spring system (γ << ω0) to that of a
viscously driven and damped system (γ >> ω0). The phase is calculated based on
the neuromast displacement motion relative to canal velocity.

velocity,

x ∼= (b/k) v (ω/ω′)
s
cos ωt, (3.3)

where ω′ and s are properties inherent to the particular system under study, and v is

the fluid velocity of the outside water volume. Here ω0 and ω′ are different quantities,

with the previous relating to the neuromast system and the latter relating the canal

velocity to the outside water volume velocity. For the canal / canal neuromast system,

Kalmijn gives s ≈ 1, and f ′ = ω′/2π ≈ 100 Hz, which means the displacement of

the cupula is in phase with the acceleration of the fluid outside the canal relative to

the body/canal acceleration (as experimentally verified by Denton and Gray, 1983).

For this to hold true, ω < ω0 for an underdamped system, ω << ω0 for a critically

damped system, and ω must be orders of magnitude less than ω0 for an overdamped
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system. The larger ω0 is in absolute terms, the easier these conditions can be met for

the various systems.

This canal-neuromast system model was improved by van Netten (2006), who

took the additional steps of modeling a frequency dependent drag force and adding

a fluid buoyancy force. The pressure field needed to oscillate the fluid is what causes

this buoyancy force on the sphere. Using van Netten’s fluid displacement term, W ,

the model is

m
d2x

dt
= −kx + D

(
dx

dt
− dW

dt

)
+ m

d2W

dt
, (3.4)

where b = −D and v′ = iωW0 from Kalmijn’s terminology, and W (t) = W0 exp(iωt).

For his model, van Netten approximated the shape of the canal neuromast as a sphere

and assumed that the vibratory amplitude of the fluid is much much less than the

length of the body. Under these conditions, the flow around the boundary layer of

the sphere reduces to Stokes flow (i.e. the nonlinear term from the Navier-Stokes

equation is considered insignificant), and calculation of the drag integrated over the

surface can be determined from an analytical solution. A second assumption made

by this model is that the fluid flow within the canal has a uniform velocity profile.

Solving for the steady state solution, and writing the solution in terms of the ratio of

cupular displacement to excitatory fluid velocity amplitude, V0 = iωW0, the cupular

sensitivity is

S(f) =
1

2πft

1 + 1
2

√
2 (1 + i)

(
f
ft

) 1
2

+ 1
3
i f
ft

Nr + i f
ft
− 1

2

√
2 (1− i)

(
f
ft

) 3
2 − 1

3

(
f
ft

)2
. (3.5)

The two parameters are the transition frequency, ft, and the resonance number, Nr.

The transition frequency describes the transition from viscous dominating forces to

inertial dominating forces (a.c. Reynolds number, Rea.c. = f/ft), and is given as

ft = µ/(2πρa2), where µ is the viscosity of the canal fluid, ρ is the density of the

fluid, and a is the radius of the sphere. The resonance number determines whether

or not there will be resonance properties of the cupula in the canal fluid, and at what

frequencies. It has an additional term, K, the sliding stiffness which is proportional
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to the restoring force, and is given as Nr = Kaρ/ (6πµ2).

To see the effects of resonance displayed by the canal neuromast, it is useful to

compare van Netten’s model (equation 3.5 to that of Kalmijn’s equation 3.2). From

van Netten (2006), the canal neuromast of the ruffe has Nr = 64 and ft = 10.6

Hz, while corresponding values for the African knife fish are Nr = 20 and ft = 77

Hz. Trying to calculate a transition frequency and resonance number for the Mottled

sculpin would not be appropriate at this time. For the Mottled Sculpin, the keel-

shaped cupula has similar length and width portions as the sensory strip (see figure

3-3), and extends to roughly the top canal which has a cross-sectional area of about

9 mm2 (Janssen et al., 1987). Modeling the cupula of the sculpin is dealt with

specifically in section 3.1.3.

To use Kalmijn’s model, the restoring force and drag need to be determined.

The restoring force, obtained by using the formulas for the transition frequency and

resonance number, are 0.11 N/m for the ruffe and 0.09 N/m for the African knife

fish. The viscosity of the canal fluid was taken to be 0.005 kg/m-s (van Netten and

Kroese, 1987). The frequency dependent drag over a sphere (canal neuromast) is

given as (Stokes, 1851; van Netten 1991)

D(ω)
dX

dt
= −6πaµ

[(
1 +

a

δ (ω)

)
+ i

a

δ (ω)

(
1 +

2a

9δ (ω)

)]
dX

dt
, (3.6)

where δ (ω) =
√

2µ/ρω was previously defined (equation 2.2, with ν = µ/ρ) as the

height of the boundary layer to within an order of magnitude (Schlichting, 1979), and

dX/dt is the velocity of the sphere. Kalmijn’s model does not address a frequency

dependent drag, so the median value from figure 3-5 will be used. This is in fact an

arbitrary choice. For the range of values shown, there is only a slight scaling effect.

The models show significant differences in both amplitude and phase at low fre-

quencies (see figure 3-6), but are comparable at frequencies above about 300 Hz. The

figure shows that for the values of the biological parameters chosen, the amplitude

and the phase using Kalmijn’s model follows for an overdamped system ( γ >> ω0)

with ω within an order of magnitude of ω0. This means that the canal neuromast
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Figure 3-5: Canal neuromasts for the ruffe and African knife fish modeled as an
oscillating sphere (van Netten, 2006). For a sphere with small amplitude oscillations
relative to its radius, a frequency dependent boundary layer forms where viscous
forces dominate inertial forces. The drag coefficient is affected by the size of the
sphere, and is frequency dependent (Stokes, 1851).

displacement would not be in phase with the outside water volume acceleration. van

Netten’s model shows that there is a slight phase lead that increases up to the point

of resonance, and then falls away at higher frequencies, overall acting like an under-

damped system. van Netten’s (2006) data for the ruffe and African knife fish validate

his model for the frequency ranges presented (approx. 40-250 Hz, and approx. 90-800

Hz, respectively). For biological cases where Nr << 1, van Netten shows that his

model reduces to a purely velocity detecting system, which is Kamijn’s model.

Though both models assume a uniform velocity within the canal as an approxima-

tion, both also model its frequency dependency. The actual velocity in the subdermal

canal will not be uniform, but will have various velocity profiles. This is due to the

fact the boundary layer thickness against the wall changes based on frequency. At

low frequencies, the boundary layer thickness will extend from the wall all the way to
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Figure 3-6: A comparison between a velocity detecting canal neuromast system (K–
Kalmijn), and a system based on a resonance number (vN–van Netten), for the ruffe
and the African knife fish (data from van Netten, 2006). The plot shows the am-
plitude and phase of the canal neuromast displacement relative to the canal fluid
velocity moving past (similar to figure 3-4). Note the scaling differences in the units
of amplitude.

the channel center, and the velocity profile will be parabolic in shape with the fastest

velocity at the center. At higher velocities, the boundary layer shrinks closer to the

wall, so that the maximum channel velocity is no longer at the center but falls in a

region around the edge of the boundary layer (see figure 3-7).

Denton and Gray (1983) compared the properties of subdermal canal channels for

the sprat (in particular) to that of capillary tubes. Though the canal channels were

elliptical in shape, with heights of about 250 µm and width of 100 µm, the velocity

amplitude and phase characteristics matched those of a capillary tube of similar cross-

sectional area and oriented in the same direction. Flow inside a capillary (or pipe)
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Figure 3-7: Instantaneous velocity profiles inside a pipe for selected frequencies of an
oscillating pressure gradient (after Schlichting, 1979). Each of the velocity profiles
change in shape throughout their oscillation period (see figure, and has a different
phase from the acceleration signal (bottom plot) which drives it. The radius of the
pipe is 0.5 mm, and the viscosity is 0.005 kg/m-s.

has an analytical solution, given by Schlichting (1979)

u(r, t) = −i
A0

ω
eiωt

1−
J0

(
r
√

iω/ν
)

J0

(
R

√
iω/ν

)
 , (3.7)

where A0 is the amplitude of the acceleration, which is directly related to the pressure

gradient through the tube, (−1/ρ) ∂p/∂x = A0e
−iωt, r is the distance from the channel

center towards the pipe walls, R is the radius of the pipe, ν is the kinematic viscosity

of the fluid in the pipe, and J0 (x) is a Bessel function of the first kind, zeroth order.

Borrowing from Schlichting’s diagram, figure 3-8 presents what a velocity profile with

100 Hz oscillations would look like inside a pipe.

van Netten uses Schlichting’s solution for oscillating flow within a neuromast
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Figure 3-8: Velocity profile inside a capillary tube with an oscillating pressure gradi-
ent, after Schlichting (1979). The velocity profile (top plot) changes in shape through-
out it’s oscillation, and has a different phase from the acceleration signal (bottom plot)
which drives it. The capillary tube has a radius of 0.5 mm, and the viscosity is 0.005
kg/m-s. Note the scaling differences in the units of amplitude.

canal/pipe to determine the steady state transfer function from the inside canal veloc-

ity to the outside acceleration, Scan (r = 0, f) = u (0, f) /A0. By virtue of the physical

restrictions of the canal dimensions, the canal acts as a low pass filter of frequencies.

van Netten chooses the center of the subdermal canal for its filtering properties, and

as figure 3-9 shows, the effects of the canal on smaller canal neuromasts is not terribly

different (i.e. amplitude changes within an order of magnitude). However, changing

the size of the canal has a significant effect on the filtering properties of the canal. As

figure 3-10 shows, there is over two orders of magnitude difference for channel center

velocity of the canal when the canal changes size from 0.2 mm to 10 mm in diameter,

and the phase lag changes from 0 to 90 degrees, respectively. When the height of

the neuromast is held fixed (i.e. 0.1 mm) and the canal radius is changed, then the

result has an amplitude pattern like seen in figure 3-10, but scaled according to the
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Figure 3-9: The subdermal canal, represented by a capillary tube, has low pass
filtering characteristics. Canal neuromasts of varius height relative to the canal radius,
R, are compared in canal of radius 1 mm diameter. The viscosity of the canal fluid is
0.005 kg/m-s, based on van Netten and Kroese (1987). Note the scaling differences
in the units of amplitude.

amplitudes in 3-9. Likewise, the phase lag falls somewhere in between that of figure

3-10 and figure 3-9.

Barbier and Humphrey (2006) ran 2D and 3D numerical simulations of the flow

within a subdermal canal of diameter 250 µm. Like Denton and Gray (1983), they

found that the pressure within the canal depends only on the pressure gradient be-

tween the pore openings, and that each section of the canal (containing one neu-

romast) acts fairly independently of every other section. They simulated flow past

two sizes of neuromasts, 50x50x100 µm and 150x150x15 µm, which were immobile

and fixed to the substrate. They showed that the canal sensitivity is roughly 1.9

(µm/s) /
(
mm/s2

)
for the flow just above the small neuromast (frequency unknown),

and that the phase lag falls from 0 to just past 70 degrees over the frequency range

from about 1-200 Hz. This result matches very closely in amplitude and phase the
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Figure 3-10: The effect that changing the capillary tube radius, R, has on the channel
center velocity of an oscillating flow is compared. The viscosity of the canal fluid is
0.005 kg/m-s, based on van Netten and Kroese (1987). Note the scaling differences
in the units of amplitude.

center velocity in a canal of larger diameter, 400 µm (see figure 3-10). The conclusion

is that a neuromast which more completely blocks the canal does alter flow patterns

in the canal from what would be predicted by equation 3.7. The increased center ve-

locity can be explained by the Bernoulli effect. Flow speed increases in the region of

decreased canal area where the neuromast is located, which also leads to an increase

in the drag force on the neuromast. The effects could best be predicted by performing

a fluid-structure simulation, where the neuromast could bend with the passing fluid.

The cupular-canal sensitivity of the entire canal / canal neuromast system is

equal the two transfer functions multiplied together, S(f) ∗ Scan (0, f). Figure 3-

11 compares the cupular-canal sensitivity for the ruffe and African knife fish using

van Netten’s model and using Kalmijn’s model. Using the values for the drag force

and restoring force coefficients particular to the ruffe and African knife fish, Kalmijn’s

model behaves at system with γ >> ω0 and for ω << ω0, whereas van Netten’s model
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Figure 3-11: Cupular sensitivity of the canal neuromast system. The neuromast
displacement per outside water volume acceleration is compared for Kalmijn’s (K)
model and van Netten’s (vN) model for the ruffe and the African knifefish. Kalmijn’s
model is based on a velocity detecting system only, where the resonance number is
small Nr << 1, whereas van Netten’s model allows for all values of the resonance
number. The ruffe has Nr = 64, and the African knife fish has Nr = 20. The
subdermal canal is assigned a radius of 0.5 mm, and has a viscosity of 0.005 kg/m-s.
Note the scaling differences in the units of amplitude.

almost exactly matches Kalmijn’s model if γ ≈ ω0 and ω << ω0 (see figure 3-4). The

overall system behaves as Kalmijn predicted, but van Netten’s model captures the

process for a wider range of cupula-canal dynamics (van Netten, 2006).

The combined dynamics of the canal and canal neuromast have been shown to

respond to the acceleration of the fluid relative to the fish body, which is driven by the

pressure gradient (Denton and Gray, 1983). This is true for a wide range of frequen-

cies, up to about 100 Hz (van Netten, 2006). However, the specific responses of the

canal neuromast really depend on its size relative to the frequency dependent bound-

ary layers that form on the surfaces of the canal, and also on the size of the canals.

Amplitude and phase properties change significantly with canal size. Neuromasts of
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other shapes, such as the keel shape canal neuromasts of the Mottled sculpin, will

also have an effect on the fluid-structure interaction within the subdermal canal.

3.1.2 Superficial neuromasts

Janssen et al. (1987) found that the superficial neuromasts of the Mottled sculpin

where similar in shape to other clupeids, having a base less than 100 µm in diameter,

and with stereocilia (2-3 µm long) and kinocilium (5-10 µm long) like the hair cells

of the canal neuromasts. They consist of far fewer hair cells than found in the canal

neuromasts, and the epidermal tissue that surrounds it can get scarred and obscure

the cilia. The cupula can be less than 50 µm in height in larval stages (i.e. larval

Zebrafish, McHenry and van Netten, 2007), while a typical size in adults is double

that (Kalmijn, 1988). Even in adults there can be a range of neuromast sizes based

on their particular body location (Janssen et al., 1987).

When there is relative water motion between the body and the surrounding fluid,

a boundary layer develops where the motion of the fluid transitions from rest relative

to the body to its full velocity in the surrounding flow. When the boundary layer

thickness is a significant portion of the neuromast height, it is the dynamics within

the boundary layer that governs the motion of the neuromast. Complicating this is

the fact that the superficial neuromasts reside either partially or fully in the mucous

layer covering the skin, which is considered a non-Newtonian fluid.

Kalmin (1988) used the same basic model for the superficial neuromasts as he did

for the canal neuromasts (i.e. equation 3.1), but changed the relationship between

the fluid velocity driving the neuromast and the outside water volume. Inside the

boundary layer, the flow is reduced relative to the outside water volume according to

v (ω/ω′)1/2, where v is the outside water velocity, ω is the frequency, and f ′ = ω′/2π =

200 Hz is a scaling term for the superficial neuromast system of the particular fish

being studied. He points out that this is really equivalent to the geometric mean

of the velocity and acceleration, since v (ω/ω′)1/2 = (v2ω/ω′)
1/2

= (va)1/2 (ω′)−1/2,
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where the acceleration is a = vω. For ω << ω0, his final model is

x ≈ b

k
(ω′)

−1/2
(va)1/2 cos ωt, (3.8)

where b is the viscous force per unit velocity, and k is the restoring force per unit

cupular displacement.

Dinklo (2005) adapted van Netten’s model for the canal / canal neuromast system

for use with superficial neuromasts. He kept the same model for cupular sensitivity,

but instead of a frequency dependent canal velocity profile, he used a frequency

dependent boundary layer profile. This boundary layer model, which relates the fluid

velocity inside the boundary layer to the freestream velocity outside the boundary

layer, is given by Lamb (1932) as

u

U0

= −i
[
1− e−(1+i)y/δ(ω)

]
eiωt, (3.9)

where δ (ω) =
√

2µ/ρω was previously defined as an approximate measure of the

boundary layer thickness, y is the height above the surface, i =
√
−1 denotes complex

notation, and −iU0e
iωt is the uniformly oscillating fluid velocity well outside the

boundary layer. Equation 3.9 can be used without the −i , which changes the outside

fluid velocity to U0 cos ωt.

The nature of the boundary layer that develops is to have a high pass filtering

effect on the fluid velocity within the boundary layer, relative to the fluid outside of

it. Figure 3-12 shows that this effect is more prominent the smaller the neuromast

height is relative to the boundary layer height. For a neuromast of 100 µm, its tip

would experience about a 10 % reduction in velocity at 1 Hz, and further reductions

at lower frequencies.

Dinklo’s model is an oscillating sphere in a boundary layer, given by S (f) ∗

Sbl(y, f), where S (f) is van Netten’s model for cupular sensitivity, and Sbl(y, f) =

u (y, f) /U0 is the boundary layer sensitivity at some appropriate height y. When

examining the superficial neuromasts of larval zebrafish, Dinklo found that y ≈ 34µm

gave a best fit to the data, which was just above the tips of the cupula he measured

99



Figure 3-12: The oscillations of a uniform fluid over a flat plate have high pass
filtering characteristics for the fluid velocity within the boundary layer, u, relative to
the outside fluid velocity, U0. Heights of superficial neuromasts are listed in the key.
Superficial neuromasts whose heights are small relative to the height of the boundary
layer, δ (ω) =

√
2µ/ρω, experience a greater reduction in velocity.

(19-28 µm ). This model predicted a best sensitivity close to a frequency of 11 Hz,

soon after which the sensitivity falls off at -20 dB/dec. The amplitude of cupular

sensitivity to outside fluid velocity predicted by the model very closely matched the

mean of the measured results, but the phase only matched for frequencies greater

than about 30 Hz.

Applying van Netten’s canal neuromast model, which is based on a sliding dis-

placement, to the superficial neuromast, which pivots at its base, seems to captures

much of the relevant dynamics. This is likely because in each model, one point on

the cupula and one point in the flow is used to represent the entire dynamics. For

the superficial neuromast, the tip displacement behaves as if it slides back and forth.

However, the fact that the modeled phase does not match the actual phase hints at

more complicated dynamics. In particular, the model breaks down because the ve-
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locity profile within the boundary layer has phase dependencies based on the height

above the surface relative to the boundary layer height. A real cupula will integrate

the phase differences along its height. Secondly, a real cupula has material properties

that change along its height (McHenry and van Netten, 2007).

Humphrey et al. (1993) developed an analytical and numerical model for the

full motion response of a single cylindrical hair cell on a curved surface immersed in

an oscillating fluid flow. The model takes into account the variation in the velocity

profile along the length of the hair, and is given by Humphrey et al. (2001) as

Ieff θ̈ + Reff θ̇ + Sθ = 4πµG

L∫
0

VF ydy +

(
πρd2

4
− π2µG

gω

) L∫
0

V̇F ydy, (3.10)

where Ieff is the effective moment of inertia, Reff is the effective damping constant,

S is the torsional restoring constant, G and g are terms related to flow around a

cylinder, VF is the velocity of the fluid, y is the distance along a hair of length L from

its base, d is the diameter of the hair, µ and ρ are the viscosity and density of the

fluid, ω = 2πf is the angular frequency, θ is the angular deflection of the hair, and

derivatives are with respect to time. The terms g and G are obtained from Stokes’

(1851) solution for the drag around an oscillating cylinder in an unbounded medium,

and are valid for a/δ (ω) <<
√

2. This is a special case of the full drag solution for

all frequencies. (See Humphrey et al., 2000, for more details and for the complete

definitions of g and G. See Appendix A for Stokes’ general solution to the problem

of an oscillating fluid past a cylinder.)

Using a uniformly oscillating flow past a flat surface, the velocity within the bound-

ary layer is given by equation 3.9, and equation 3.10 admits an analytical solution

(see Humphrey et al., 2001). The frequency dependent solution depends on the deter-

mination of two physiological measurements, the hair torsional restoring constant, S,

and the damping constant, R (of Reff = R+Rµ ). This is because all other constants

are determined by the hair geometry or frequency, and are apriori calculable. The

model shows that surface hair cells possess resonance frequencies that decrease with

an increase in hair cell height, and that maximum deflection angle increases approx-
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imately linearly with hair cell height and increases linearly with the far field velocity

amplitude of the oscillating fluid (Humphrey et al., 2001).

The hair torsional restoring constant, S, and the damping constant, R, are not

easy to obtain for hairs in water. Humphrey et al. (1993) present one method of ob-

taining these parameters, whereby the phase difference between the driving freestream

velocity and the corresponding angular displacement is measured at two sets of fre-

quencies. They then provide an analytical equation for solving for the two unknowns

using two equations. Another method consists of using the known resonance fre-

quency of the system under study, and then at high enough frequencies, a series of S

- R pairs can be determined from an approximate solution (Humphrey et al., 2001).

Constructing a couple of series of these S - R pairs for hairs of different lengths should

lead to an overlap region where the values are similar, which is based on the assump-

tion that S and R are fundamental mechanical properties of the hairs, and should be

fairly uniform for the hairs under study.

Another method for determining the S - R values is to directly measure one.

McHenry and van Netten (2007) measured the flexural stiffness of the superficial

neuromasts of larval zebrafish. They found that the neuromast consists of stiff lower

region and a flexible upper region (see figure 3-13). In the lower region, the cupula

is supported by the tall kinocilum from the hair cells, whereas the in the upper

region, the cupula is does not have rigid structures. For an individual kinocilum,

they found the flexural stiffness (which is equal to Young’s modulus, E, times the

second moment of area, I ) to be 2.4x10−21 Nm2 (note: the article abstract reports

this number a factor of 10 less, but this is not the case throughout the article).

Using their formula relating the force required, F , to deflect of beam of length, L,

a distance of δ, F = 3(EI)δ/L3, the corresponding torque, FL, can be set equal to

the hair torsional restoring constant times the angle of deflection, Sθ. This yields

S = 3EI/L per kinocilium, since δ/L = θ.

To compare the three superficial neuromast models (Kalmijn, Dinklo, and Humphrey

et al.) for the superficial neuromast displacement per outside water volume veloc-

ity, specific parameters must be determined. Dinklo (2005) provides an empirically
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determined stiffness coupling of K = 6.4 µN/m for the larval zebrafish superficial neu-

romast, based on a model fit to the data using ft = 6336 Hz and Nr = 0.0017. The

transition frequency was calculated directly using a cupular diameter of 10 µm, and

the empirically determined model cupula height was y = 34 µm (for equation 3.9).

To use Kalmijn’s model, the stiffness coupling remains unchanged, but the restor-

ing force per unit velocity, B, needs to be calculated from the drag (equation 3.6).

Again, using the median value over the frequency range of 1-1000, B = 32.6 µNs/m.

Finally, to use Humphrey et al.’s model, the hair torsional restoring constant, S, and

the damping constant, R, need to be obtained. Using the flexural stiffness values

from McHenry and van Netten (2007) for the larval zebrafish (of the same diame-

ter and height of Dinklo, 2005), and assuming 10 hair cells per superficial neuromast,

S = 10
(
3 · 2.4x10−21 Nm2/34x10−6m

)
/rad = 2.1x10−15 Nm/rad. When the resonant

frequency that gives maximum angular deflection, ωres(θ), is known, the Humphrey

et al. (2001) show that R can be determined from S = Ieffω
2
res(θ) + R2

eff/ (2Ieff ).

Using ωres(θ) = 11 Hz determined by Dinklo (2005) for the larval zebrafish, and S

determined from McHenry and van Netten (2007), give R = 1x10−17 Nms/rad.

Figure 3-14 compares the three models (Kalmijn, Dinklo, Humphrey et al.) for

the superficial neuromast displacement per outside water volume velocity. Kalmijn’s

model is in the overdamped mode ( γ >> ω0, see figure 3-4), and seems to represent

an upper bound on the amplitude. However, its phase properties are a much closer

approximation to Dinklo’s (2005) data in the lower frequencies than Dinklo’s own

model. What is most surprising is that Dinklo’s spherical model matches very closely

Humphrey’s cylindrical model. Although both models use Stokes’ (1851) formulation

of drag around an oscillating sphere and cylinder, respectively, only Humphrey’s

model integrates the boundary layer velocity profile over the cupula’s surface. At

least at small cupula heights and somewhat similar cupula volumes/masses, the two

models appear interchangeable.

What these models show is that cupular displacement has a changing relationship

to the outside water volume hydrodynamics. According to Kalmijn’s model, with

the parameters given for the larval zebrafish, the neuromast displacement is most
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Figure 3-13: Proposed model for the mechanics of a superficial neuromast compared
with the mechanics of a canal neuromast. (A) The major morphological features
of a superficial neuromast each have a functional analog. (B) The proposed model
consists of a flexible two-part beam that is driven by a boundary layer of water flow
and coupled to a linear pivotal spring at its base. The presence of kinocilia causes
the proximal part of this beam to be substantially stiffer than the distal part, which
consists solely of matrix material. The morphology and mechanics of superficial neu-
romasts is contrasted with (C,D) the model for a canal neuromasts (van Netten and
Kroese, 1987). (C) the same major anatomical features of a superficial neuromasts
are present in the canal neuromast, but (D) kinocilia do not play a functional role
that is distinct from the hair bundles, which collectively function as a linear spring.
Furthermore, the cupula is modeled as a rigid hemispherical body that is coupled to
the hair bundles. The freestream flow within the canal is not greatly influenced by
boundary layer dynamics for the frequencies to which these neuromasts are sensitive
(van Netten, 2006) and may therefore be modeled as a uniform freestream. Diagram
and caption from McHenry and van Netten (2007), Figure. 7. Reproduced with
permision from the Journal of Experimental Biology.
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Figure 3-14: Cupular sensitivity of the superficial neuromast system. The neuromast
displacement per outside water volume velocity is compared for the models of K-
Kalmijn (1988), D-Dinklo (2005), and H-Humphrey et al. (2001), using parameters
specific to the larval zebrafish. The cupula radius and length are 5 µm and 34
µm, respectively. The density of the gelatinous cupula is taken to be equal to that
of the fluid around it, 1000 kg/m3, and the viscosity of the fluid is 0.001 kg/m-
s. The boundary layer velocity profile is for a uniformly oscillating flow above a
flat surface (see equation 3.9). For Kalmijn’s model (using spherical drag), K =
6.4 µN/m and B = 32.6 µNs/m. For Dinklo’s spherical model, ft = 6336 Hz and

Nr = 0.0017. For Humphrey et al.’s cylindrical model, S = 2.1x10 - 15 Nm/rad and
R = 1x10−17 Nms/rad. See text for details about parameter values. Note the scaling
differences in the units of amplitude.
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sensitive in the lowest frequencies, and lags the outside water velocity by 45 degrees

at low frequencies and closer to 90 degrees at higher frequencies. This indicates that

the neuromast is acting somewhere between a velocity detector and displacement

detector. Dinklo’s model and Humphrey et al.’s model show that the neuromast

is most sensitive to velocity around 11 Hz. This is also the cutoff frequency, after

which there is a decline of 10 dB/dec (Dinklo, 2005). The phase indicates that at low

frequencies, the cupular displacement leads the outside velocity by about 45 degrees,

or lags the outside acceleration by 45 degrees. This was Kalmijn’s (1988) assertion of

how the phase should behave for the superficial neuromasts, as the geometric mean of

the outside water velocity and acceleration. At higher frequencies, the phase indicates

that it detects a combination of the outside water velocity and displacement.

3.1.3 Models for the Mottled Sculpin

The canal neuromast models (Kalmijn and van Netten), and the superficial neuromast

models (Dinklo and Humphrey et al.), use slight variations on a driven and damped

harmonic oscillator model. The most complete model is Humphrey et al.’s model

(equation 3.10, who integrates the boundary layer velocity profile over the entire

neuromast, rather than using just one point in the boundary layer to represent the

velocity. However, as was seen in figure 3-14, even the models which just use one

point in the boundary layer have practically the same results. In addition, neuromast

shape does not seem to make a big difference when volumes are either similar or

conserved (i.e. the spherical vs. cylindrical superficial neuromast of figure 3-14). Size

of the neuromast does matter, as can be seen in the changes of resonance for canal

neuromasts of figure 3-6.

The generalized equation for the oscillating neuromast system in a moving fluid
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is

L∫
0

[
MNmast

d2x

dt2

]
dy =

L∫
0

[
−Kx−D

d(x− w)

dt
−Madd

d2(x− w)

dt2
−Mvis

d2(x− w)

dt2
+ ρ∀d2w

dt2

]
dy,

(3.11)

where all variables have a dependency on the height above the surface, y, and some

variables have a time dependency, x is the displacement of the neuromast, w is dis-

placement of the local fluid, K is the restoring force (i.e. sliding or coupling stiffness)

per unit displacement, D is the drag force per unit velocity that the fluid exerts on

the neuromast, MNmast is the mass of the neuromast, Madd is the added mass from po-

tential flow theory, which is due to accelerating fluid with the neuromast, Mvis is the

equivalent inertia due to rotational and nonlinear effects introduced by the boundary

layer around the neuromast, and ρ∀ is the mass of water of equivalent volume to

the neuromast (Brennan, 1982; Pan and Chew, 2002). That final term is a buoyancy

force, due to the pressure work that is needed to oscillate the entire fluid, and although

independent of the neuromast motion, still does work on it. Only Humphrey et al.’s

(1993) model comes closest to including all of these terms, seemingly neglecting only

the final buoyancy term.

Since the models that represented the velocity of the boundary layer at one point

compared well with those that integrated the boundary layer velocity profile along

the neuromast, adopting the former system simplifies matters considerably. Equation

3.11 can be recast in steady state transfer function form representing the cupular

sensitivity as
x(ω)

u
=

D + iω (MNmast + Madd + Mvis)

K + iωD − ω2 (ρ∀+ Madd + Mvis)
, (3.12)

where D and Mvis can be functions of ω .

To develop a model for the canal neuromast of the Mottled Sculpin, the frequency

dependent drag for a flattened elliptic cylinder would be needed. As the elliptic cylin-
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der is a less important topic than the cylinder for research, there are comparatively few

studies available. Experimental studies of the drag on an elliptical cylinder include

Richards (1934), Badr (1994b), Bahr and Kocabiyik (1997), Gos’kov et al.(1998),

Nair and Sengupta (1997), and others, but often the flow has shedding, indicating

amplitudes greater than what the neuromast would experience. An analytical solu-

tion for oscillating inviscid flow past an elliptical cylinder was given by Badr (1994a),

but for the neuromast, viscous forces will be to significant to ignore.

Since volume conserved shapes seem to give comparable results, a spherical, cylin-

drical, and finite sized plate model will be compared. Stokes (1851) calculated the

drag on an oscillating sphere (equation 3.6), on a cylinder (Appendix A), and on a

flat plate, which is given as (Lamb, 1932)

D = µ
U0A(1 + i)

δ (ω)
eiωt, (3.13)

where U0 is the velocity amplitude of the oscillating plate, A is the area of one side

of the plate, µ is the viscosity of the fluid, ω is the angular frequency of oscillation,

and where δ (ω) was previously defined as an approximate measure of the boundary

layer thickness (equation 2.2). For all models, the velocity profile for oscillating flow

in a pipe will be used (Schlichting, 1979), and its relation to the outside water volume

acceleration is given by equation 3.7.

Assuming that the cupula is of a similar density to water, the mass of the canal

neuromast, MNmast, and the mass of the water volume displaced, ρ∀, are equal. Ap-

proximating the cupula of the canal neuromast as an elliptical cylinder, the mass is

ρπabh = π(1000 kg/m3) (200 µm) (25 µm) (1 mm) = 1.6x10−8 kg. The added mass

for an ellipse is πab, for a sphere is (2/3)πr3, and for a cylinder is πr2, where a and b

are the radii of the major and minor axes of the ellipse, and r is the effective radius

which will allow the volume of the ellipse to be conserved for either the sphere or the

cylinder. Mvis is only known for the cylinder, having been expressly calculated by

Humphrey et al. (1993), and appearing in equation 3.10. The flat plate model will

use the added mass of the ellipse, but twice (two sides) the drag of a flat plat given
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in equation 3.13.

Figure 3-15 compares the results of modeling the canal neuromast as either a

sphere, cylinder, or a flat plate with the front being approximated as an elliptic

cylinder. The model parameters were determined by fitting the plate model results

to the empirical results of Coombs and Janssen (1990) in the frequency range of 10-

100 Hz. The cylinder model shows a much greater system sensitivity, being on the

order of 5 times greater neuromast displacement per same input acceleration than

the sphere or flat plate models. Though the cylinder model contains an additional

inertia term, Mvis, removing it from the model does not seem to alter the results

significantly in the low frequencies, but does allow for a resonance frequency to have

a sharper peak at the same frequency as the sphere and flat plate models (not shown).

More significant is changing the radius of the cylinder. When it is set equal to the

minor axis radius, the results match those of the sphere almost identically. Both

the cylinder and the plate models show that at low frequencies, the canal neuromast

system becomes less sensitive (see also figure 3-17). Coombs and Janssen address this

in their discussion, and think that this is a real effect. The phase of the spherical

and cylinder models at low frequencies is what is expected from experimental results

(Denton and Gray, 1983), but the plate model has a slightly more appropriate phase

in the 10-100 Hz range.

The superficial neuromast model for the Mottled Sculpin has a best fit to the data

of Coombs and Janssen (1990) when the parameters are the same as those for the

zebrafish (see figure 3-14). This is not terribly surprising, as superficial neuromasts

are often similar across species.

3.2 Thresholds of detection and saturation

With analytical models available to describe canal and superficial neuromast motion,

the next question to address is minimum input levels of fluid motion which result in

detection, or conversely maximum input levels of fluid motion which result in satu-

ration (and loss of information). This section will detail the process of determining
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Figure 3-15: Cupular sensitivity of the canal neuromast system for the Mottled
Sculpin, using a second order model. The neuromast displacement per outside water
volume acceleration is compared for a spherical, cylindrical, and flat plate model of
the canal neuromast. The dimensions of the keel shaped cupula of the canal neuro-
mast are assigned values of (400 µm) x (50 µm) x (1 mm), and represent the diameter
of the major, minor, and vertical axes of an elliptical cylinder. The sphere and cylin-
der their radius adjusted so as to have volumes equal to that of the elliptical cylinder.
The spherical model uses the model of van Netten (2006), and has a sliding stiffness
of K = 0.03 N/m , a transition frequency of ft = 33 Hz, and a resonance number
of Nr = 10 (see text). The cylinder model uses the drag and added mass model of
Humphrey et al. (2001), and has values determined in Appendix A. The flat plate
model uses the drag on its two dominant sides, and the front is modeled like an el-
liptical cylinder. The cupula is assigned a density equal to that of the surrounding
fluid, 1000 kg/m3, the subdermal canal is assigned a diameter of 1 mm, and the canal
fluid is assigned a viscosity of 0.005 kg/m-s. Note the scaling differences in the units
of amplitude.
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the threshold of detection to water motion incident upon the neuromasts. A distinc-

tion is made between still water and background flow environments, because there is

some evidence that the fish processes the information in a different manor for each

environment (Kanter and Coombs, 2003; Chagnaud et al., 2006).

3.2.1 Mechanical definition using neuromast displacement

There is a minimum displacement needed by the neuromast to overcome random

motions it may experience by being immersed in a fluid. The neuromast displace-

ment threshold is based on stochastic and mechanical properties of the hair cell and

overlying cupula. The hair cell transducer apparatus has a random noise component

based on the thermal noise energy and the molecular gating force, which translates

into an uncertainty of 6.5 nm (Dinklo, 2005; van Netten, 2006). Ensemble averaging

will reduce this number by the square root of the number of hair cells present in the

superficial neuromast, since each hair cell will act as an independent detector of the

cupular displacement. Secondly, the Brownian motion of the fluid around the cupula

leads to a displacement uncertainty inversely proportional to the square root of the

coupling stiffness, K. Dinklo (2005) and van Netten (2006) give this displacement

uncertainty equal to
√

kT/K, where k is Boltzmann’s constant, and T is the absolute

temperature.

To find a corresponding velocity detection threshold, van Netten (2006) divides

the neuromast displacement threshold by its cupular sensitivity at 0 Hz. The cupular

sensitivity is defined as displacement per fluid velocity input, and has units of ms. For

the ruffe, its canal neuromasts have on the order of 1000 hair cells each, and so the

transducer displacement noise is 6.5 nm/
√

1000 ≈ 0.2 nm. With a sliding stiffness of

K = 0.13 N/m, and with kT ≈ 4.1x10−21J, the displacement noise due to Brownian

motion is 0.2 nm. The neuromast displacement threshold is the root-mean-square

of the two, or about 0.3 nm. van Netten points out that behavioral results from

experiments by Kuiper (1956) indicate the displacement threshold to be about 2.5

nm. Dividing this number by a cupular sensitivity of 0.23 ms, the velocity detection

threshold for the supraorbital canal neuromast is in the range of 1-10 µm/s.
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The acceleration detection threshold is found by dividing the velocity detection

threshold by the canal sensitivity. van Netten (2006) determined that for the supraor-

bital canal neuromasts of the ruffe, a detection threshold to the outside water volume

acceleration was on the order of 0.1-1 mm/s2 . The values given for the acceleration

threshold of the canal neuromasts were obtained through the combination of nanome-

ter accuracy measurements of the cupular- and canal fluid dynamics (Curcic-Blake

and van Netten, 2005), along with analytical modeling. Although individual canal

neuromasts show increased sensitivity at certain frequencies, the combined effect of

the canal and boundary layer filtering effects results in an almost unform sensitivity

to acceleration from 1-100 Hz. (van Netten, 2006). The magnitude and uniformity

of the acceleration threshold in this frequency range has been validated in behavioral

experiments (Coombs and Janssen, 1990), though beyond this frequency range the

acceleration threshold worsens.

There has been some difficulty in defining the velocity detection threshold for

superficial neuromasts. Kroese et al. (1978) determined the superficial neuromasts

of the Xenopus Laevis to have a velocity detection threshold of 38 µm/s . They

used potential flow theory for an oscillating sphere next to a wall to calculate the

hair displacement, but did not take into account the effects of the boundary layer.

The hair cells were buried within the boundary layer, experiencing a reduction in

displacement compared to their calculations. Gorner (1963) determined a velocity

detection threshold of 25 µm/s for Xenopus Laevis. In their case, constant laminar

flow stimulation was used, which means the boundary layer profile is dependent on

the distance of the hair cell from the source of the flow on the body, and the length

of time elapsed between the start of the flow and the measured response.

The presence of a boundary layer has complicated the process of determining the

velocity threshold for superficial neuromasts. If there were a way to determine the

boundary layer velocity profile at detection, the velocity threshold could be defined

as the (modeled) minimum fluid velocity at the tip of the cupula needed to reach

the displacement threshold. Dinklo (2005) created an oscillating boundary layer over

the surface of a larval zebrafish using a mechanically controlled micropipette, thereby
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controlling the boundary layer. He then adapted van Netten’s theoretical work on

canal neuromasts for superficial neuromasts by using an oscillating surface boundary

layer model developed by Stokes (1851).

The model (see figure 3-14) essentially defined a tip-displacement to outside fluid

velocity sensitivity. The cupular sensitivity is a mechanical property, which Dinklo

determined by fitting an analytical model to experimental data. He did not go so far

as to determine a velocity detection threshold, but this can be determined using his

available data. Using van Netten’s (2006) definition of velocity detection threshold,

which equals the neuromast displacement detection threshold divided by cupular

sensitivity, the outside water volume velocity detection threshold for the zebrafish

superficial neuromast based on Dinklo’s research would be 25 nm / 1.2 ms = 21 µm/s

at 0 Hz.

Superficial neuromasts exposure to the outside water volume motion is mediated

by the boundary layer. When the boundary layer dynamics are undetermined, it is

valuable to look at the dynamics of the superficial neuromast to any water motion -

not just its response to fluid velocity. Secondly, it is valuable to extend the definition

of detection threshold to all frequencies. Therefore for superficial neuromasts, a

definition of detection threshold to general water motion, over all frequencies, could

be

detection threshold =
neuromast displacement detection threshold

(cupular or system sensitivity)ωn
, (3.14)

where n is [-1, -0.5, 0, 0.5, 1]. For local water motion, the cupular sensitivity would be

used, whereas when the outside water volume motion is desired, the system sensitivity

would be used (which is just the cupular sensitivity multiplied by the boundary layer

transfer function). Since the neuromast displacement detection threshold has units

of meters, the cupular and system sensitivity has units of seconds, and the angular

frequency, ω, has units of radians/Hz, combinations of all three can lead to many

detection motions. For example, when n is -1,0, and 1, acceleration, velocity, and

displacement motions are detected, respectively. When n = −0.5, the water motion
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is the geometric mean of velocity and acceleration. When n = 0.5, the water motion

detected is the geometric mean of velocity and displacement.

Figure 3-16 shows the results of the larval zebrafish detection threshold to various

types of water motion. In particular, the detection threshold becomes independent of

frequency for certain ranges and certain types of water motion. In the top plot, the

detection threshold is approximately constant for local water velocity motions up to

about 10 Hz (mean approx. 2 µm/s ), and then it transitions to detecting local water

displacements (mean approx 25 nm). In the bottom plot, the detection threshold

is approximately constant to the geometric mean of the outside water velocity and

acceleration up to about 6 Hz (mean approx. 2
√

(µm/s)(mm/s2) ), then is approx-

imately constant to the outside water velocity up to about 20 Hz (mean approx. 10

µm/s ), and then is approximately constant to the geometric mean of the outside wa-

ter velocity and displacement up to about 100 Hz (mean approx. 30
√

(µm/s)( nm)

). Beyond 200 Hz, the detection threshold transitions to detecting the outside water

volume displacement (mean approx. 27 nm). The introduction of boundary layer

dynamics significantly increases the complexity of the superficial neuromast motion

and what outside water motion it detects.

The problem with an empirical neuromast displacement detection threshold is that

the location of the measurement must be accounted for. This location is almost always

the tip of the cupula, but both Dinklo (2005) and McHenry and van Netten (2008)

found that the flexible tip of the cupula bends more than the stiffer base region, and

so displacement at the tip does not necessarily translate into displacement at the level

of the hair tips (cilia). Dinklo estimated a 20-30 % reduction for hair tip displacement

as compared with that measured half way up the cupula.

A way to standardize results across experiments would be to divide the neuromast

displacement detection threshold by the height at which the models fit the data. For

small displacements relative to the length of the cupula (i.e. nanometer displacements

for micrometer length cupula) so that arc length can be approximated by displace-

ment, a critical angle, or neuromast deflection threshold can be defined. Since the

models used to fit the data are linear, 2nd order systems, the results will average the
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Figure 3-16: Detection thresholds for the larval zebrafish superficial neuromasts. The
detection threshold is defined as the minimum motion of either the local or outside
water volume which will cause the superficial neuromast to rotate past a critical
angle (or equivalently, have the tip displaced a critical distance). The critical angle
(or critical displacement distance) is the motion of the superficial neuromast beyond
any random motions it may generally experience (see text). The top plot shows the
detection threshold to either local velocity or displacement motions. The bottom plot
shows the detection threshold to water motions outside of the boundary layer. Note
that over certain frequency ranges, the detection threshold will be approximately
constant to a type of water motion. The range of water motions include the typical
acceleration, velocity, and displacement motions, and also the geometric mean of
velocity and acceleration, and the geometric mean of velocity and displacement. The
results presented are for the larval zebrafish, and are based on extensions of the theory
and work of Dinklo (2005) and van Netten (2006).
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real motions of a flexible cupular, and the critical angle will represent those averaged

results.

Normalizing by the model fit cupula length also presents another way to interpret

the cupular sensitivity. When the tip displacement is separated into a pivot angle

times the cupula length ( x = θL ), the cupular sensitivity, Sv, can be rewritten as

an angle to strain rate sensitivity:

Sv =
tip displacement

fluid velocity at tip
=

x

u
=

θL

u
=

θ

S
. (3.15)

Here, S is an approximate strain rate threshold, defined as the tip-to-base velocity

difference ( u -0) divided by the cupula length, L. The physical meaning of this is that

the hair pivots through an angle in proportion to the approximate strain rate of the

fluid. The approximate strain rate detection threshold would be found by dividing the

velocity detection threshold values (see figure 3-16) by the length of the cupula. This

may prove useful in comparing detection thresholds across species or experiments,

especially when information about the neuromast displacement detection threshold

is absent. Examples that illustrate this will appear later in the thesis.

For the superficial neuromasts of the larval zebrafish, which have approximately

10 hair cells per neuromast, the combined displacement uncertainty is (25 nm +

6.5 nm/
√

10)0.5 ≈ 25 nm. An approximate deflection threshold for the larval zebrafish

would be equal to the displacement threshold divided by the cupula length, θ =

25 nm/34 µm = 7x10−4rad. Using the outer water volume velocity threshold in figure

3-16, and assuming a cupula length of 34 µm, the approximate strain rate detection

threshold would be S =[0.60, 0.27, 0.48, 0.73] s−1, at frequencies f =[1 10 50 100]

Hz. There is a minimum strain rate around 10 Hz, where the superficial neuromast

appears most sensitive.

As mentioned at the beginning of this section, determining the saturation thresh-

old is basically an identical process to determining the detection thresholds. Now,

instead of a neuromast displacement detection threshold, there is a general neuro-

mast displacement distance of about 100 nm (Kroese and van Netten, 1989), beyond

116



which the hair cells are saturated. The next section will utilize this information when

determining detection and saturation thresholds for the Mottled Sculpin, as used in

this thesis.

3.2.2 Thresholds of detection and saturation for the Mottled

Sculpin in still water enviroments

To determine the detection threshold levels for the Mottled Sculpin, the neuromast

displacement threshold is needed. For the canal neuromast of the ruffe, van Netten

(2006) showed that the neuromast displacement threshold is about 0.3 nm on empiri-

cal and theoretical grounds, and upwards of 2.5 nm based on behavioral results. The

lower bound value is based on the stochastic properties of the hair cell transducer

apparatus, and on the Brownian motion of cupula. The transducer displacement un-

certainty is 6.5 nm for each hair cell, but is reduced by the square root of the number

of hair cells in the neuromast due to ensemble averaging. The displacement uncer-

tainty due to the Brownian motion is inversely proportional to the square root of the

sliding stiffness. The stiffer the material, the less random motions have an effect, and

consequently the easier it is for the neuromast to detect movements greater than the

noise level.

Without direct measurement of the sliding stiffness for the canal neuromast of

the Mottled Sculpin, it is difficult to gage the accuracy of the models presented

for the Mottled Sculpin lateral line system. At best, they can serve as a starting

point for further investigation. Coombs and Janssen (1990) conducted behavioral

and neurophysiological studies on the threshold of detection for the Mottled Sculpin.

Figure 3-17 shows the results of fitting the flat plate model to their empirical results for

the canal lateral line system. In tuning the flat plate model to the data, increasing the

sliding stiffness, K, tended to lower the cutoff frequency, and increasing K increased

the cutoff frequency. There is a trade off, for decreasing K also increased sensitivity

(lowered the threshold). Therefore, there is a cupular sensitivity-frequency cutoff

balance, which van Netten (2006) gives as Sv · fc = (2π)−1. Secondly, the height
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of the canal (and therefore the approximate height of the canal neuromast) had a

significant effect on the lower frequency curve. Increasing the canal diameter greatly

increased sensitivity, and decreasing canal diameter. This is in keeping with earlier

results (see figure 3-10), which showed that increasing the canal diameter relative to

the boundary layer significantly increased the area of flow in the pipe that would

not experience any reduction in velocity. In determining the displacement noise, the

number of hairs cells had the effect of raising or lowering the detection threshold

level. To match the detection threshold determined by the behavioral results where

Coombs and Janssen placed the stimulus near the Sculpin head, K =0.03 N/m, the

canal diameter is 1 mm, and the neuromast has 20 hair cells. According to anatomical

studies by Janssen et al. (1987), all of the subdermal canals narrowed in the region

of the canal neuromast, and the infraorbital canal in particular had a diameter of

2.5-4 mm in that narrow region. The study also seems to indicate that there are a

small number of hair cells. There is nothing said about the coupling stiffness, but for

the amount of cupula that sits above the tiny sensory strip, it is conceivable that it

would be lower than what was measured in the ruffe (0.1 N/m, van Netten, 2006).

Finally, saturation threshold is calculated using equation 3.14, with the neuromast

displacement set to 100 nm (Mogdans et al., 2003).

Figure 3-17 also compares how the spherical and cylindrical neuromast models

compare when using the parameters determined by the flat plate neuromast model.

Both models use the empirically determined sliding stiffness, K =0.03 N/m, and have

their radius adjusted so as to have their volumes equal the elliptical volume of the

canal neuromast used in the flat plate model. Both models have lower detection

thresholds in the lower frequency range relative to the flat plate model. In the lowest

frequency range (1-10 Hz), the cylindrical model decreases in sensitivity like the flat

plate model, whereas the spherical model stays constant. Essentially, what this means

is different models provide different insights into the mechanics of what is happening

inside the canal filtering system, and that each model must be specifically tuned to

match the data.

There is one very significant difference between the models and the experimental
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Figure 3-17: Cupular sensitivity of the canal neuromast system for the Mottled
Sculpin, using a second order model. The neuromast displacement per outside water
volume acceleration is compared for a spherical, cylindrical, and flat plate model of
the canal neuromast. The dimensions of the keel shaped cupula of the canal neuro-
mast are assigned values of (400 µm) x (50 µm) x (1 mm) , and represent the diameter
of the major, minor, and vertical axes of an elliptical cylinder. The sphere and cylin-
der their radius adjusted so as to have volumes equal to that of the elliptical cylinder.
The spherical model uses the model of van Netten (2006), and has a sliding stiffness
of K = 0.03 N/m , a transition frequency of ft = 33 Hz , and a resonance number
of Nr = 10 (see text). The cylinder model uses the drag and added mass model of
Humphrey et al. (2001), and has values determined in Appendix A. The flat plate
model uses the drag on its two dominant sides, and the front is modeled like an ellip-
tical cylinder. The cupula is assigned a density equal to that of the surrounding fluid,
1000 kg/m3 , the subdermal canal is assigned a diameter of 1 mm, and the canal fluid
is assigned a viscosity of 0.005 kg/m-s.
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results. The behavioral results indicate that above 150 Hz, the sensitivity declines at

a very fast rate, upwards of 120 dB per decade. This is not uncommon, and has been

observed in the saccular hair cells of Opsanus and goldfish (Popper and Fay, 1999;

Lewis 1992). Essentially, this is equivalent to adding a sixth order component to the

model, −Mm(∂6x/∂t6) to the right hand side of equation 3.11, or +Mm (iω)6 to the

denominator of equation 3.12. Figure 3-18 shows the result when Mm = 3x20−20 kg·s4

for the head canal lateral line. The fact that this term needs to be added indicates that

a second order model does not capture well enough what happens at high frequency

for the canal lateral line system of the Mottled Sculpin. Either there are material

changes at high frequencies, or the shape of the canal serves to limit the overall

sensitivity. Further research is needed to determine the answer to this.

Figure 3-18 also shows the results for specifically tuning the spherical and cylin-

drical neuromast models to data of Coombs and Janssen (1990). Each model was

matched to a location on the sculpin based on shapes of the threshold curve models

of figure 3-17 matching the tuning curves of figure 3-18. There was a small allowable

range of the sliding stiffness, K =0.01-0.03 N/m that allowed for proper placement

of the cutoff frequency. Similarly, changing the canal diameter significantly affected

the shape of the curves in the low frequency range (< 10 Hz), so that the model

fits prescribed certain diameters for each model. The sixth order component had a

small range of values, Mm = (1 − 3)x20−20 kg · s4. Finally, the number of hair cells

in the neuromast affected the threshold levels. Once the other parameters were set,

the shapes of the curves were determined, and number of hair cells allowed the final

fitting of the models to the data. However, the values are clearly suspect for spherical

and cylindrical neuromast models, being 1 hair cell and 0.25 hair cells, respectively.

Obviously this indicates a problem with the models. However, this is another possible

explanation. Coombs and Janssen (1990) postulate that the differences in detection

threshold levels at the head, trunk, and tail, were due to differences in density, size,

and shape of neuromasts in each location. They rule out the possibility that only the

head was actually detecting the oscillating dipole signal, and that moving it towards

the tail would decrease the signal strength to the head. However, what they did not
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address was the fact that the direction that the spherical stimulus was vibrating, in

the vertical (dorsal-ventral) direction, was exactly tuned to maximally stimulate the

canal lateral line on the head. The trunk and tail lateral line canals lie perpendicular

to the axis of oscillation, and would only minimally be stimulated. The results of

this stimulation are shown in the first 3D chapter. If the sphere had been vibrating

parallel to the trunk and tail lateral line canals (as is the case for many subsequent

experiments), the threshold curves would likely be changed, showing themselves to

be more sensitive, in a manor similar to the head canal lateral line system. There

still could be differences based on the differences in neuromast morphology, but it is

likely they would be less major.

When using the definition of detection threshold (equation 3.14 to fit the super-

ficial neuromast models to the data of Coombs and Janssen (1990), it is found that

parameters of the zebrafish superficial neuromast models (figure 3-14) give the best

bit to the data. Figure 3-19 shows the results of applying a noise motion level of

25 nm and saturation motion level of 100 nm to the zerbrafish superficial neuromast

model. The data indicates a much larger range of variability than depicted by these

superficial neuromast models, and could indicate a number of things. One possibility

is that modeling the superficial neuromast as a solid cylinder or sphere is not able to

adequately capture the dynamic motions. McHenry and van Netten (2007) show that

the superficial neuromast has a stiff region near the base and flexible region near the

tip of the cupula (see figure 3-13). However, Dinklo’s (2005) data seems to suggest

that these models do at least well represent the amplitude of these motions, if not the

phase. Another possibility is that the local region around the superficial neuromasts

are different, such as in the case of skin cell growth or scarring (Janssen et al., 1988),

which would alter the local flow in a non-uniform way. Still other possibilities are

that the individual hair cells associated with the neuromasts are tuned for different

signals, and therefore interpret the neuromast motions in unique ways. This compo-

nent would suggest differences in hair cell chemistry (i.e. amount of reserves available

for replenishment), and possible feedback from the brain.
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Figure 3-18: The outside acceleration threshold for the canal neuromast system is
presented for modeled (colored lines) and measured (black lines) results. The data is
from the behavioral experiments of Coombs and Janssen (1990), and represents the
mean threshold sensitivity from 80 measurements per data point, using 4 fish. Error
bars indicate the standard deviation from the mean. The neuromast is modeled as an
elliptical cylinder. The height is matched to the diameter of the canal at each location.
The cupula is assigned a density equal to that of the surrounding fluid, 1000 kg/m3

, and the canal fluid is assigned a viscosity of 0.005 kg/m-s. The model is based on
equation 3.11, and pipe flow in a canal (equation 3.7), but with a sixth order compo-
nent added for high frequencies (> 150 Hz). The frequency dependent drag is specific
to each type of model (see text). The values are as follows: (Head: plate model) K
=0.03 N/m, canal diameter=1 mm, base= (400 µm) x (50 µm), Mm = 3x10−20 kg · s4,
20 hair cells; (Trunk: sphere model) ) K =0.015 N/m, canal diameter=0.8 mm, base=
(200 µm) x (50 µm), ft = 61 Hz, Nr = 3.6, Mm = 3x10−20 kg · s4, 1 hair cell; (Tail:
cylinder model) ) K =0.01 N/m, canal diameter=0.6 mm, base= (150 µm) x (50 µm),
Mm = 1x10−20 kg·s4, 0.25 hair cells. Experimental data reproduced with kind permis-
sion from Springer Science and Business Media: Journal of Comparative Physiology
A: Sensory, Neural, and Behavioral Physiology, Behavioral and neurophysiological
assessement of lateral line sensitivity in the mottled sculpin, Cottus bairdi, volume
167, 1990, page 560, Coombs, S., Hastings, M., and Finneran, J., figure 3A.
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Figure 3-19: Detection and saturation thresholds for the superficial neuromasts of
the Mottled Sculpin. The detection threshold is defined as the minimum motion of
either the local or outside water volume which will cause the superficial neuromast to
rotate past a critical angle (or equivalently, have the tip displaced a critical distance).
The critical angle (or critical displacement distance) is the motion of the superficial
neuromast beyond any random motions it may generally experience (see text). The
saturation threshold is defined as the maximum displacement, beyond which the
neuromast cannot represent the changes in motion. Actual neurophysiological data for
the Mottled Sculpin shows a much wider range of slopes for the threshold of detection
(Coombs and Janssen, 1990), indicating that this model may not adequately capture
the real neuromast motions. However, it serves as a lower bound to the detection
limits, since the experimental threshold tuning curves fall at or above this.

123



Chapter 4

Using CFD to calculate the stimuli

to the lateral line system of fish in

still water

4.1 Introduction

The lateral line system of fish and some amphibians has been shown to be useful

for extracting hydrodynamic information from its environment (Coombs and Mont-

gomery, 1999). There is some evidence that the superficial lateral line system can

be used for prey detection (Abdel-Latif et al., 1990), while other evidence suggests

that it is the canal lateral line system which mediates detection and orienting re-

sponses (Coombs et al., 2001). To address this issue, the physics of the source signal

and medium, the anatomy of the receptor organs, the neural encoding process, and

the observed behaviors, must be analyzed in kind (for reviews see Dijkgraaf, 1963;

Bleckmann, 1993; Coombs and Montgomery, 1999; van Netten, 2006).

The previous chapter developed the mechanical transduction process for superfi-

cial and canal lateral line system of the sculpin. The purpose of this chapter is to

understand how the presence of the body and extended pectoral fins might affect the

hydrodynamic information available to the lateral line. In particular, the ubiquitous
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dipole source (for example, Denton and Gray, 1982; Coombs et al., 1996; Coombs and

Conley, 1997a, b; Kanter and Coombs, 2003; Curcic-Blake and van Netten, 2006; van

Netten, 2005; Yang et al., 2006) will be the chosen hydrodynamic signal. Still water

conditions will be used in this chapter, while the next chapter will consider dipole

and body-wake signal distortions occurring in relative water motion.

Hassan (1993) was the first to examine the effect of the presence of the fish body

on the pressure and velocity field of a vibrating sphere. The vibrating sphere was

modeled as a potential source doublet, which creates a dipole field. He used slender

body theory to represent axisymmetric fish shapes. The body presence is modeled

using a combination of point sources, whose strength and location along the body

axis are adjusted so as to have the velocity induced by the source dipole vanish at

the surface. He showed that the body presence causes the pressure and velocity

amplitudes to double at some locations along the fish body. In addition, the specific

perturbations to the flow field are dependent on the exact location and orientation of

the dipole source relative to the fish body.

In addition to any effects the presence of the body may have on altering the

hydrodynamic flow, the anatomy and location of the receptor organs act to further this

process. When there is relative water motion between the body and the surrounding

fluid, a boundary layer develops where the motion of the fluid transitions from rest

relative to the body to its full velocity in the surround flow. When the boundary layer

thickness is a significant portion of the neuromast height, it is the dynamics within

the boundary layer that governs the motion of the neuromast. In modeling the flow

around superficial neuromasts, Kamijn (1988) has postulated that the neuromasts

actually respond to the geometric mean of the velocity and acceleration of the fluid

outside the boundary layer.

The canal neuromasts are further removed from the local hydrodynamic flow by

residing in a subsurface canal. Water motion within the canal is forced to be aligned

with the canal. Modeling the system as a damped harmonic oscillator being forced

by the drag from the oscillating canal fluid, Kalmijn (1988) showed that canal neu-

romasts respond to the canal fluid velocity. This fluid velocity is proportional to
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the acceleration of the ambient water volume relative to the fish (Denton and Gray,

1983). Further work by van Netten (2005) has shown this model to be an inadequate

explanation of the mechanics involved. It turns out that the physical structure of the

canal and the effects of viscosity allow for a variety of flow profiles, which causes the

canal to act as a first order filter for the accelerated fluid outside the boundary layer.

Its low cutoff frequency of 20 Hz seems to contradict the fact that some fish have

known responses to signals at frequencies as high as several hundred Hz (van Netten,

2005). However, the canal neuromasts also display resonance at certain frequencies,

serving to boost the amplitude just as the physical nature of the canal diminishes it,

allowing for an almost uniform response to a whole range of frequencies (van Netten,

2006).

Behavioral studies show that the lateral line canal system, and their encoded ex-

citation patterns, plays an important role in dipole source localization (Coombs and

Conley, 1997a, 1997b). Of attacks with the source at least 3 cm away, 75% of them

occurred with the source axis off centered by at least 20 degrees in relation to the

orientation of the fish body axis (Coombs and Conley, 1997b). Neurological studies

have shown that the firing rate of nerves associated with individual canal neuromasts

correspond to the modeled and measured pressure differences upon them (Coombs et

al., 1996; Curcic-Blake and van Netten, 2006). Both the modeled and measured pres-

sure differences in these studies were done subsequently to the neural measurements,

and were made without the body present, though at the spatial locations where the

body was previously placed.

This chapter develops a three-dimensional model of the sculpin, which includes a

dorsal fin, pectoral fins, and a tail. The locations of the lateral line sensory organs

on this model are based on the actual lateral line locations (see figure 3-2). Using

CFD, the Navier-Stokes equations are solved to yield the full viscous, time-dependent

solutions for the case of the vibrating sphere next to a sculpin body. Various con-

figurations are considered, including duplicating (unpublished) results of an actual

sculpin strike on an oscillating sphere. The series of calculations show explicitly how

the fish body perturbs the lines of constant pressure of the dipole field, and how full
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use of the canal lateral line system (both sides of the fish) can work together to aid

in prey localization. Another set of simulations that place the oscillating dipole in

locations and orientations common to many studies is used to explicitly compare the

effects of body parts on the received dipole signal to the lateral line system. The 3D

results are compared with 2D results, in order to determine the effectiveness of 2D

simulations (which provide considerable computational savings).

In addition, this chapter considers a method for modeling the boundary layer flow

next to a wall created by a nearby dipole source. In some instances, where surface

curvature is not extreme, the side of a fish may act similar to a localized portion of

the wall. It utilizes Stokes’ (1961) solution for a plate of infinite dimension oscillating

in an unbounded fluid. In the case of an oscillating sphere, the dipole field creates

a fluid of uneven velocity and pressure distributions, violating the assumptions of

Stokes’ solution. Nonetheless, this approximation is validated for points of maximum

tangential velocity along the wall, using a variety of sphere sizes, locations, veloc-

ity amplitudes, and oscillation frequencies. From the approximation, a strain rate

threshold for superficial neuromasts is defined which can easily be applied for cross

study comparisons.

4.2 Methods

For the first case considered, a blinded sculpin rests on the bottom of a holding

tank, with a chemically inert plastic sphere of 6 mm diameter close by. The sphere

is attached to a thin steel shaft which extends into the water from a mini shaker

(see Coombs and Conley (1997) for exact details). The sphere performs sinusoidal

motions at 50 Hz along an axis that runs through the center of the mini shaker, for a

series of bursts of 500 ms on and 500 ms off. The camera was placed under the tank,

and circles of radius 3 cm, 6 cm, and 9 cm were drawn around the centrally located

sphere. The video stills chosen reflect the stopped locations in the sculpin’s step-like

approach to the target sphere.

To best see the effect that the fish body and fins have on the received dipole signal,
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three cases are compared: a body with fins extended, a body with fins retracted,

and a virtual body with fins retracted. The virtual body is just the hydrodynamic

information for a dipole source in an unbounded medium without any body present,

calculated at locations identical to the real body cases.

4.2.1 Computational domain: 2D strike case set up

Numerical simulations were carried out using the commercial software packages,

GAMBITTM , the mesh generator, and FLUENTTM the solver (as explained in chapter

2). A 6 mm diameter cylinder was used in place of a sphere. For mesh construction,

20 nodes were equally spaced around the circumference, and the cylinder was centered

in a deforming region, 3 cm x 2 cm for the first 2 strike locations, and 1 cm x 1 cm for

the final location. Nodes were placed 2 mm along the border, and the inner region

meshed with triangular cells. The cylinder velocity was set to U0 cos (ωt) along the

axis of vibration, with U0 = 1 mm/s, and the frequency of oscillation ( ω = 2πf ) set

to f = 50 Hz. By the no slip boundary condition, the fluid velocity at the cylinder

surface is equal to the cylinder velocity. The amplitude of the cylinder motion is

defined as U0/ω , which means the maximum displaced was 300+ times less than 1

mm. Therefore, the node displacement was minimal within the deforming zone.

The dimensions for the fish body were obtained from the cross-section of a Lake

Michigan Mottled Sculpin. This gave a length of 7.6 cm and width of 2 cm. A cross-

section of the pectoral fins gave a thin slice of approximately 1 1/2 cm in length at

roughly 45 degrees angle away from the body. Points around the body, 2 mm apart,

were mapped to a grid. From these points, three sections of points were selected

to represent idealized pore openings on a source side, back side, and front canal

lateral line (see figure 4-1). The velocity normal to the body surface was forced to be

zero. The body (both with fins and without) and cylinder were orientated to match

experiment.

An outer rectangular boundary region, 375 cm x 100 cm, was created to be large

relative to the cylinder to minimize any boundary influences. Nodes were spaced 10

cm apart around the circumference. For boundary conditions, three sides had the
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velocity set to 0 m/s, and the fourth side had the pressure set to 0 Pa. Triangular

cells filled in the region containing the sculpin and the deforming zone (containing

the cylinder).

The time step was 1/100th of an oscillation period, and 1000 time steps were used

to initialize the fluid field. This was to allow transients to die out, although only 15

time steps were all that was needed in the 2D simulations for the transients to decay.

Finally, measurements were obtained at each of the nodes along the fish when the

pressure field was at a maximum point in the oscillation cycle.

It is the pressure difference between pore openings to the canal lateral line that

determines the fluid flow within the canal, and hence the effective stimulus being

sought in this study. The pressure difference was calculated between pore openings,

according to (p2 − p1)/2 mm. With the goal of highlighting differences between the

source side and back side lateral lines in particular, it was thought important to have

the order of differencing be in a symmetrical direction, in this case with the p2 pore in

any pair being closer to the tail. This was to reflect the possibility that the fish might

be using an internal reference to compare the neural information it generates between

the two sides of the fish. For the front lateral line, continuity in the plot was desired,

and in the absence of knowing how the fish actually processes the information, a back

side (p2 pore) to source side (p1 pore) direction was chosen for the whole section

(figure 4-1).

4.2.2 Computational domain: 3D strike case set up

A sphere 3 mm in diameter was created in GAMBITTM . The sphere was fit with

triangular faces, with each edge approximately 1 mm in length. This sphere was

enclosed by a spherical deforming region of 15 mm radius, fit with triangular faces

approximated 2 mm in length. The deforming volume was filled in with 13800 cells.

The sphere velocity was set to U0 cos (ωt) along the axis of vibration, with U0 = 7

mm/s, and the frequency of oscillation ( ω = 2πf ) set to f = 50 Hz. By the no

slip boundary condition, the fluid velocity at the sphere surface is equal to the sphere

velocity. The node displacement was minimal within the deforming volume.
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Portion of 2D grid of cylinder and sculpin

deforming zone

static zone

2D pressure differencing defined 

source s ide lateral line nodessource s ide lateral line nodes
back s ide lateral line nodesback s ide lateral line nodes
front s ide lateral line nodesfront s ide lateral line nodes
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2D computational domain and meshing

zoom

A

Figure 4-1: (A) The computational domain for the 2D cylinder and sculpin. (B) A
zoomed in view shows the region of mesh around the cylinder which is allowed to
deform as the cylinder oscillates, whereas the remainder of the region is static. (C)
Node locations around the sculpin body, where the pressure is measured. The con-
ventions for calculating the pressure difference are identified by the arrow direction.
The pressure at the arrow tip pore opening is subtracted from the pressure at the
arrow tail pore opening. The distance between all pore openings is approximately 2
mm.
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A sculpin was constructed using GAMBITTM , to approximately match the dimen-

sions of the real fish. The length of the main body of the fish is 8 cm, with a portion

of the tail extending another 1 cm. The body is 2 cm in diameter at its widest point,

just in front of the pectoral fins. The dorsal fin extends about a 1/2 cm above the fish

in its front, and about 1 cm above in its rear. The pectoral fins and tail fin are 0.5 mm

thick, while the dorsal fin is 1 mm thick. The fish was meshed with triangular faces,

each edge 2 mm in length (except for fin edges, which kept their thinner dimensions).

The sculpin was placed 1 mm above the floor. This was so that the sculpin body had

its own mesh, independent of the box boundaries (see figure 4-2).

On the wall beneath the sculpin, a rectangle of 15 cm x 10 cm was selected for

meshing to match the spacing found on the body of the fish. Nodes were spaced 2

mm apart, and triangular cells filled this region. This was done to keep most the

cells around the fish and sphere approximately equal in size. This region was oriented

with the sculpin, and became part of the overall floor boundary.

A box of dimension 60 cm x 40 cm x 10 cm was formed to represent the exper-

imental tank boundaries. The edges were given nodes spaced 1 cm apart. The side

that was the floor was filled in with triangular cells (in order to mesh smoothing with

the region under the sculpin), while the other five sides were filled in with squares 1

cm x 1 cm. The inside of the box was filled in with quadrilateral cells.

The sphere and wall where given solid boundary conditions, one side of the box

was made to have zero pressure, and the other four sides given conditions of symmetry.

These boundary conditions were selected to maximize the presence of the wall, while

minimizing the effects of all other sides. This was also accomplished by choosing such

large dimensions for the box, relative to the sphere size. The sphere was placed 1.6

cm above the floor, slightly above the height of the actual lateral line. The body

(both with fins and without) and sphere were orientated to match experiment.

FLUENTTM was used to solve the Navier-Stokes equations. The time step was

set to 1/100th of the oscillation period, and 1000 time steps were used to initialize

the fluid field. Measurements were obtained at each of the nodes over the entire fish

body.
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For the 3D case, the pressure gradient can be calculated over the entire body.

However, the lateral line on fish is not spread over the whole body, but follows a

distinct pattern (figure 4-2). Therefore, two cases were considered: the actual lateral

location, as seen on the mottled sculpin (see figure 3-2), and an imaginary lateral line

located at the midplane of the fish, for more direct comparison with the 2D case. In

both cases, the pressure difference was calculated according to (p2 − p1)/2 mm. For

the midplane case, the direction of differencing was identically matched to the 2D

case. For the actual lateral line location, the goal of seeing how the pressure gradient

changes continuously from one side of the fish to the other, the order of differing was

from the back side tail, around the front, and towards the source side tail.

To obtain the pressure at points along the midline, nodes within 0.8 mm on either

side of the line were selected. These nodes were not evenly spaced around the midline,

and sometimes two nodes on opposite sides of the midline would be very close to each

other, skewing any pressure difference calculations. Therefore, a spline curve was fit

to the pressure values along each section of the lateral line (back, front, and source

sides), sampled every 3 mm, and low pass filtered (by averaging adjacent values).

Finally, pressure points were sampled every 2 mm, and then used in the previously

described pressure differencing formulas.

To obtain the pressure at points along the actual lateral line, node locations were

selected by hand. These locations approximately followed what might be considered

the true lateral line, and all strike cases used 3 nearby pressure values to interpolate

to these selected locations. Since the locations were not evenly spaced, a spline curve

for the pressure values was fit to each of the lateral line sections (back side, back

infraorbital, source infraorbital, and source side), sampled every 1 mm, and low pass

filtered (by averaging 2 adjacent values). Finally, pressure points were sampled every

2 mm, and then used in the previously described pressure differencing formulas.
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3D computational domain and meshing

40 cm

60 cm
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zoom view

3D sphere and sculpin body meshing
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A

Full lateral line nodes

Pressure differencing
dp/ds=(P2 - P1) / (2mm)
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Figure 4-2: (A) The computational domain for the sphere and sculpin. (B) A zoomed
in view shows the meshing on the surface of the sphere and sculpin, with edge lengths
approximately 1 mm apart on the sphere and 2 mm apart on the sculpin. The area
immediately around the sphere is allowed to deform (not shown), while the rest of the
mesh remains static. (C) Node locations around the sculpin body, where the pressure
is measured, including those points which fall directly on the sculpin’s lateral line. The
conventions for calculating the pressure gradient are identified by the arrow direction.
The pressure at the arrow tip pore opening is subtracted from the pressure at the
arrow tail pore opening. The distance between all pore openings is approximately
2 mm. Full lateral line designation: Trunk (red), Occipital (yellow), Infra-orbital
(green), Supra-orbital (black), Mandibular (magenta).
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4.2.3 Computational domain: 3D canonical dipole localiza-

tion case set up

A few cases were selected to match what is seen in the literature (e.g. Denton and

Gray, 1982; Coombs and Conley, 1996; Coombs et al., 2001; Curcic-Blake and van

Netten, 2006) - that of an oscillating sphere with its axis parallel and perpendicular to

the long axis of the fish. These cases are instructive in recognizing the standard pres-

sure gradient patterns seen near a wall, and also for comparing canal and superficial

lateral line signals.

The sphere was placed at approximately 3 diameters equidistant above the side

lateral lines, located posterior to the pectoral fins. The sphere was also placed 4

and 7.5 diameters lateral to the fish, at one location in front of the pectoral fin (and

next to the infraorbital/front canal lateral lines), and at another location behind the

pectoral fin (and next to the trunk canal lateral lines). The sphere diameter is less

than 1/10 BL (body lengths), and the deforming region radius was shortened to 4

radii to allow for closer placement of the sphere to the body.

FLUENTTM was used to solve the matrix of equations. The time step was 1/100th

of an oscillation period, and 200 time steps were used to initialize the fluid field.

Measurements were obtained at each of the nodes over the entire fish surface, and the

pressure difference was calculated for the actual lateral line location. Unlike the strike

cases, no pressure interpolation or smoothing was performed because node locations

matched the hand selected locations.

4.2.4 Analytical models for the velocity profile and strain

rate at a wall due to a dipole source

Potential flow theory is valid in an incompressible, inviscid, and irrotational medium.

For a sphere of radius a , oscillating at angular frequency ω = 2πf , there is a small

region next to the sphere surface where viscous forces dominate or balance inertial

forces. The height of this boundary layer is on the order δ
√

2ν/ω (Schlichting, 1979),

where ν is the kinematic viscosity of the fluid. For example, a sphere oscillating at
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f = 50 Hz has strong viscous effects for a distance of at least δ 80 µm , though

the effects do extend further. In this region and beyond, the fluid is rotational,

being mitigated in amplitude in proportion to exp(−(r− a)/δ) , where r is the radial

distance from the center of the sphere (van Netten, 2006). Already after 6δ with

the example given (which would be 0.5mm past the sphere surface), the rotational

effects are diminished over 400 times. Beyond this region, the medium is effectively

inviscid and irrotational. However, the transition from the viscid, rotational region to

the inviscid, irrotational region results in amplitude and phase changes relative to the

oscillating sphere. These will appear as correction terms to what would otherwise be

an analytical solution for an oscillating sphere in a completely inviscid, irrotational

fluid medium.

In the outer inviscid, irrotational region of interest, the velocity potential equation

for an oscillating sphere in an unbounded medium is (van Netten, 2007; eg. Stokes,

1851; Lamb, 1931)

φsph = −C
a3

2r2
U0 cos θ cos (ωt− ζ) , (4.1)

The C and ζ terms are amplitude and phase correction terms, respectively, given as

(van Netten, 2007)

C =
√

C2
1 + C2

2 ; ζ = arctan (C2/C1) , (4.2)

where

C1 = 1 +

(
3δ

2a

)
, C2 =

(
3δ

2a

) [
1 +

(
δ

a

)]
. (4.3)

The amplitude correction term (C) approaches unity when the boundary layer thick-

ness ( δ ) is small compared to the radius (a). This more readily occurs with increase

in frequency, since δ 1/
√

ω. Likewise, the phase correction term ( ζ) approaches zero

with increase in frequency and radius. For typical experimental values, such as a

sphere of radius 3 mm oscillating at 50 Hz, the correction terms are small (C 1.04

and ζ 0.04 radians).

φ is called the velocity potential because the velocity components are found by

taking the gradient, −→v = ∇φ. The pressure is given by the Bernoulli equation for

potential flow, which reduces to p ≈ −ρ∂φ/∂t when the gradient squared term is

135



small in comparison to the time changing terms (and with gravity ignored).

These equations for pressure and velocity are valid in an unbounded medium, but

they will certainly change with the presence of a fish body. For an oscillating sphere

next to the side of a fish, the fish’s surface might appear to be a wall to the immediate

hydrodynamic field. Clearly, there will be a weakness in this approximation at regions

of strong curvature or blocked flow (such as at fin insertion points). However, over

much of the side surface of the fish, this approximation will likely be valid, and this

is a simplification worth exploring.

When the flow is potential in nature, the method of images may be employed to

represent an oscillating dipole sphere near a wall by superposing a second, mirrored

oscillating dipole sphere an equidistant across an imaginary plane where the wall

would reside. Essentially, this results in doubling the magnitude for φ|wall , and by

extension ~v , p , and ∇p (see chapter 2).

The strain rate depends on the velocity gradient, and it is at the body surface that

the gradient will be most significant. In Cartesian coordinates, the velocity vector

tangent to any point on the surface will have x, y, and z components. The definition

of strain rate used by FLUENTTM is given as

S2 = 2

[(
∂u

∂x

)2

+

(
∂v

∂y

)2

+

(
∂w

∂z

)2

+

1

2

(
∂u

∂y
+

∂v

∂x

)2

+
1

2

(
∂u

∂z
+

∂w

∂x

)2

+
1

2

(
∂v

∂z
+

∂w

∂y

)2
]

. (4.4)

To determine the strain rate, the local boundary layer velocity profile is needed. This

is very difficult to measure experimentally, and difficult to obtain computationally.

However, it may be possible to obtain an approximate boundary layer velocity profile

by using Stokes (1851) solution for a uniform fluid oscillating over a stationary wall.

The idea is that the wall (fish body) will help align the flow from the dipole field

tangentially. By using the approximation of a locally uniform fluid flow, the maximum

component of the strain rate will be in the direction of this flow, dominating other
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components. Then an approximate strain rate threshold can be defined as

Sapprox ≈
∇U

∇L
=

tip velocity - base velocity

length of cupula
. (4.5)

It is important to note that the tip velocity assumes that the flow is in the direction

of hair cell polarization, and that the base velocity is zero by the no-slip condition.

Stokes solution is actually for an oscillating plate in stationary fluid, but by changing

the frame of reference to the plate, the desired result is achieved. The velocity profile

is given as

u = U∞

[
e−y
√

ω
2ν cos

(
ωt− y

√
ω

2ν

)
− cos(ωt)

]
, (4.6)

where U∞ is the fluid velocity just outside the boundary layer, and y is the distance

from the wall. The strain rate at the wall may be approximated as the magnitude of

the principal strain rate component,

Smax|wall ≈ |du/dy||wall =
(√

2
)

U∞

√
ω

2ν
, (4.7)

where the
√

2 factor is the maximum value found at t = 3π
4

s, from the time dependent

terms. Allowing the boundary edge velocity ( U∞ ) to equal the magnitude of the

tangential velocity at the wall as determined from potential flow theory ( 2 ‖~v|wall‖ ),

the velocity profile becomes

u = U0

(a

r

)3
[
e−y
√

ω
2ν cos

(
ωt− y

√
ω

2ν

)
− cos(ωt)

]
∗ C (a, ω) ∗ f (α) , (4.8)

where f (α) is an amplitude term that results when the sphere oscillates in a direction

that makes an angle of α with the wall-axis. f (α) varies between 1 ( α = 0 radians)

and 0.86 ( α = π/2 radians), and is determined by taking the maximum value of

the normalized potential flow solution for the flow next to wall, induced by a sphere

oscillating at an angle of α to the wall. Finally, an analytic expression for the strain
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rate at the wall is given as

Smax|wall

U0

√
ω/ν ∗ C (a, ω)

≈ a3

r3
∗ f (α) . (4.9)

4.2.5 Numerical determination of the strain rate at a wall

due to an oscillating sphere

Using the mesh generator program, GAMBITTM , and the solver, FLUENTTM , a

series of trials were carried out to verify the approximate velocity profile and strain

rate at the wall. Each trial used a different set of values for the parameters (as in

the literature), under the assumption that regardless of the values chosen, all results

would fall onto the curves predicted by the analytical models. The parameters had

ranges of 7 mm/s ≤ U0 ≤ 314 mm/s, 2.5 mm ≤ a ≤ 18 mm, 25 Hz ≤ f ≤ 75 Hz, and

1.1 cm ≤ r ≤ 20 cm.

A grid was created for each trial separately, with spatial resolution increased

until grid convergence was achieved. At convergence, box dimensions ranged from

16.67x16.67x8.33 sphere diameters for the sphere located 1.14 diameters from the

wall, to 120x120x180 sphere diameters for the sphere located 40 diameters from the

wall. At the floor of each grid, a boundary layer was created with fine vertical

resolution (i.e. gridpoints at 0, 5, 13, 24, 39, 61,... microns), and with horizontal

resolution most resolved in the center of the floor (i.e. as low as 0.7 mm at the center

vs. at most 15.4 mm near the edges). The floor was meshed with quadrilateral cells.

The sides of the box had resolution that matched that of the floor at one end, with

increasing intervals up to 1 cm spacings at the top. The sides, top, and interior of

the box was meshed with tetrahedral cells.

The sphere surface is meshed with triangular cells, with sides of approximate

length 0.7-1 mm. A deforming region adjacent to the sphere was filled with tetrahedral

cells, whose side lengths grow from 1 mm at the sphere surface to 2 mm at the edge of

the region located up to a distance of 2-8 radii away. The cell centroids adjoining the

sphere surface are located at heights of 0.2-0.5 mm above the surface. This is outside
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of the boundary layer that forms over the surface as the sphere oscillates, and therefore

does not correctly resolve the flow beneath. Essentially, this is equivalent to setting

the amplitude correction term to C=1 and the phase correction term to ζ = 0. For

the numerical simulations, it was thought worthwhile to allow for this approximation

in order to save on computation complexity. However, in actual experiments, the

correction factors should be considered.

The time step was at least 1/100th of an oscillation period, and 200 time steps were

used to initialize the fluid field. This was to allow transients to die out, although only

a few time steps were all that was needed. Measurements were obtained at different

points within the oscillation period for different trials, to allow for more general

validation. The maximum strain rate along the wall was measured, regardless of

where that point actually occurred. According to potential flow theory, when the

sphere is oscillating parallel to the wall, the point of maximum tangential velocity is

centrally located at the point where a line normal to the wall intersects the center of

the sphere. When the axis of sphere oscillation makes and angle of α with the wall,

this point of maximum tangential velocity migrates away from the central point.

4.2.6 Numerical determination of the pressure gradient at a

wall due to an oscillating sphere

At the wall (fish body) itself, a boundary layer will be generated by the oscillating

fluid, and that will greatly affect the velocity near the surface, and therefore the strain

rate. However, when the boundary layer is small relative to the body (wall) thickness,

the pressure is uniform throughout the boundary layer. If the pressure were all that

was desired, the boundary layer would not need to be modeled, which would be a large

savings in computation. The velocity calculated outside the boundary layer would be

essentially that determined from a purely potential calculation (no viscosity). This

is satisfactory for showing the general pattern of flow over the fish body, and for

determining what effect body parts have on the flow. Once the simulation of a sphere

oscillating next to a wall with grid resolution matching that for the fish body is
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validated against potential flow theory, it will be assumed to produce the correct flow

field when the fish body is added.

A sphere 3 mm in diameter was created in GAMBITTM , at distances 11 mm, 21

mm, and 51 mm from a wall. The sphere was fit with 260, 260, and 266 triangular

faces, with each edge approximately 1 mm in length. This sphere was enclosed by

a spherical deforming region of 9 mm, 18 mm, and 18 mm radius, filled with 3863,

22229, and 20761 cell volumes. Its surface contained 598, 2338, and 2336 triangular

faces, with each edge approximate 2 mm in length.

On the wall beneath the oscillating sphere, a square with sides 20 cm in length

and nodes space 2 mm apart was filled in with 22490 triangular faces, each with

edge approximately 2 mm in length. This square was centered on a wall with overall

dimensions of 60 cm X 60 cm, with nodes spaced 1 cm apart, and then filled in with

additional 48098 triangular faces. The projection of the sphere center onto the wall

plane shows it to be 5 cm off center (to allow for center placement of a sculpin body

in the next experiment).

Five other sides with dimensions 60 cm X 60 cm were added to form a box (repre-

senting an experimental tank), with nodes spaced 1 cm apart, and filled in with 3600

square faces each. The entire rest of the volume (outside the deforming region and

within the box walls) was filled in with 1261158, 1270133, and 1273711 cell volumes.

The sphere and wall where given solid boundary conditions, one side of the box

was made to have zero pressure, and the other four sides given conditions of symmetry.

These boundary conditions were selected to maximize the presence of the wall, while

minimizing the effects of all other sides. This was also accomplished by choosing such

large dimensions for the box, relative to the sphere size.

The time step was set to 1/100th of the oscillation period. The sphere motion

was set to U0 cos (ωt), with U0 = 7 mm s−1, the radius of the sphere set to a = 3 mm,

and the frequency of oscillation f = 50 Hz.

In running numerical simulations, all units are given their actual dimensional val-

ues. Therefore, the dimensions of the fish, sphere, cylinder, and boundaries are meant

to reflect what is found in the general literature. However, for broader generalization,
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the results are presented in their non-dimensional form. Dividing each equation by

its normalizing constant leaves a normalized geometric expression, which is specific to

each case, body shape, and orientation. The surface strain rate equation was already

given. The equation for pressure gradient at the wall is

∇pwall

ρωU0 ∗ C (a, ω)
=

a3

r3
∗ f (α) , (4.10)

where f (α) was previously given.

4.3 Results

4.3.1 Numerical validation for the pressure and pressure gra-

dient signals at a wall due to an oscillating sphere

The numerical results for the pressure and pressure gradient fields show excellent

agreement with the predicted calculations of a sphere next to a wall using potential

flow theory (figure 4-3). For the pressure gradient calculations, the pressure curves

were re-sampled for even spacing using a spline function, and low pass filtered, before

being differenced. This was done to remove numerical noise, and had the result of

reducing the amplitude of the pressure gradient only slightly.

A dipole source will produce a signature spatial pressure gradient (figure 4-3C)

along the lateral line, providing information about the location of the source relative

to the body. For a spherical dipole source oscillating parallel to the lateral line,

the perpendicular bisection of its location with the long axis of the fish matches the

location of the pressure gradient peak. Its distance away from the body axis is equal to

(1/
√

2 ) times the distance between the zero crossings (Curcic-Blake and van Netten,

2006). In a similar manner, when the spherical dipole oscillates perpendicular to the

lateral line, the pressure gradient zero-crossing marks the perpendicular bisection of

the sphere location and the long axis of the fish. The distance between the pressure

gradient peaks is equal to the source distance (Curcic-Blake and van Netten, 2006).

In this manner, direct information is encoded about the location of the dipole source
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when it is on a plane level with that of the lateral line.

4.3.2 Numerical validation for the boundary layer velocity

profile and strain rate at a wall due to an oscillating

sphere

Figure 4-4 presents a sampling of trials whose parameters differ significantly from

each other. A range of distances, oscillation frequencies, and velocity amplitudes are

shown so that authors of experimental studies may have some confidence that the

results presented might be applied to their own work. For the cases presented, the

sphere axis of oscillation is parallel to the wall.

The velocity magnitude within the boundary layer has been normalized by U∞, the

velocity calculated from potential flow theory, and assumed to be the actual velocity

just out of range of viscous effects. Data points of the u velocity, as determined from

numerical simulation, are plotted against the predicted velocity profile (equation 4.8).

The prediction is that the component of the flow aligned with the projected axis of

oscillation should dominate over the velocity components. The plots show excellent

agreement between the predicted and numerically determined velocities within the

boundary layer.

The strain rate data points, as calculated from numerical simulation and through

the use of the complete strain rate formula (equation 4.4), are plotted against the

analytical approximation of the strain rate ( S ≈ |du/dy| ). Remember that the

strain rate is by definition a positive value, representing deformation of the fluid

particles. The data shows excellent agreement with the theory, though it is not

absolutely certain that the boundary layer grid was fine enough to resolve all cross

components of the actual strain rate (equation 4.4).

To verify that the boundary layer velocity profile is valid under changes in direction

of oscillation of the sphere, figure 4-5 presents the wall strain rate as determined

from all numerical trials plotted against the analytically determined wall strain rate

(equation 4.9). If the velocity profile is different from that predicted, the numerically
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Figure 4-3: Instantaneous snapshots of the pressure field and calculated pressure
gradient for a sphere oscillating (A) parallel, and (B) perpendicular to a wall. The
sphere is located at heights of 1.8, 3.5, and 8.5 diameters from the wall. Numerical
results are in agreement with potential flow theory, though slight differences become
more apparent the closer the sphere is to the wall. The pressure gradient patterns
shown are canonical for dipole source localization, with one shaped like a ’Mexican
hat’ (Coombs and Connelly, 1997b), and the other like a ”heartbeat.”
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determined wall strain rate cannot possible match either. However, the normalized

results again show excellent agreement.

These results should allow for the theory to be applied under a number of different

situations, for cross study comparisons. In addition to any experimentally determined

velocity thresholds, the approximate strain rate threshold may be used when the

height of the superficial neuromasts is also known, or the wall strain rate threshold

may be used when there is only source information. This theoretical treatment of the

velocity boundary layer might expect to be valid on surfaces that most approximate

a wall, namely the boundary layer height is small relative to the curvature of the

surface. Where there is strong curvature, the flow will most certainly be accelerated,

and the assumptions for this theory are violated. But the results can be generalized

beyond those due an oscillating sphere, since any oscillations in a fluid next to a flat

surface will likely have similarities with Stokes flow within the boundary layer.

4.3.3 Sculpin strike cases

Figures 4-6 and 4-7 present the results of the presence of the fish body (pectoral fins

extended and retracted) and absence of a fish body (virtual body) on the hydrody-

namic field of an oscillating cylinder and sphere respectively. In the fish’s starting

location (strike position 1, figure 4-6A, 4-7A), the sphere is just under a body length

away, with the relative angle between the axis of oscillation and the longitudinal body

axis of about 30 degrees. In the second strike position (figure 4-6B, 4-7B), the sphere

is also under a body length away, but not located laterally to the pectoral fin insertion

point and oscillating in a direction perpendicular to the long axis of the fish body. In

the third strike position (figure 4-6C, 4-7C), the source is closer to front of the fish

body, with the relative angle between the axis of oscillation and the long axis of the

body about 150 degrees.

With the body present, the lines of iso-pressure terminate on the body, and are

concentrated around curved regions and pointed parts of the body. These local con-

centrations of pressure cannot be predicted without the body present, and so the

results using potential flow theory without the body present do not show them. The

144



S / [ U   / δ ]

y 
/ δ

u/U

f=30 hz dist=10 radii Uo=0.04 m/s U   =40 µm/s 0.04 sec8

f=50 hz dist=3.67 radii Uo=0.007 m/s U   =141.9 µm/s 0.04 sec8

8

f=45 hz dist=20 radii Uo=0.1 m/s U   =12.5 µm/s 0.04 sec8

f=75 hz dist=40 radii Uo=0.03 m/s U   =0.5 µm/s 0.04 sec8

A B

C D

Numerical validation of the boundary layer velocity profile at the wall due to an oscillating sphere

8

velocity approx. strain rate

y 
/ δ

y 
/ δ

y 
/ δ

-1 0.5 00

1

2

3

4

5

6

7

0 0.5 10

1

2

3

4

5

6

7

S / [ U   / δ ]u/U 8 8

velocity approx. strain rate

S / [ U   / δ ]u/U 8 8

velocity approx. strain rate

S / [ U   / δ ]u/U 8 8

velocity approx. strain rate

-1 0.5 00

1

2

3

4

5

6

7

0 0.5 10

1

2

3

4

5

6

7

-1 0.5 00

1

2

3

4

5

6

7

0 0.5 10

1

2

3

4

5

6

7

-1 0.5 00

1

2

3

4

5

6

7

0 0.5 10

1

2

3

4

5

6

7

Figure 4-4: The boundary layer velocity profile at the wall, and calculated strain
rate, due to a parallel oscillating sphere, is validated through numerical simulation.
A variety of distances, source amplitudes, frequencies, and sphere diameters are used
to highlight the range of its application. The profiles are presented at different times
within their natural periods: (A) 2π/5, (B) 8π/5, (C) 2π, and (D) 2π.
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presence of the body also slightly shields a region of water from the oscillating source.

This creates a region of more constant pressure along the side opposite the source,

which results in a pressure difference closer to zero. The iso-pressure contour lines of

the hydrodynamic field without a body present are of course undisturbed, and cannot

predict where the shielded regions will occur.

When fins are extended, there is a small, localized pocket between the fins and

the side of the body where the magnitude of the flow field is reduced. The effect is to

calm the flow, and this causes the pressure differences seen by the midplane lateral

line on both the source side and back side to be reduced near the fin insertion point.

This is in contrast to the case with a streamlined body present, where only the body

curvature itself determines how the pressure field is affected. This effect is expected

to be more significant for the fish in a moving flow. The overall effect of this shadow

zone is weaker (but still noticeable) in the 3D midplane case, because the flow field

extends over and under the fins, as well as around them.

Magnitude differences around the body are directly related to the location of

the dipole source. These differences show up strikingly between the side of the fish

directly exposed to the source, and the shielded side. However, equally noticeable

are the differences in magnitude seen between the head and tail of the fish. In the

starting strike position, the magnitude for the pressure gradient is larger for the tail

than for the front of the fish, and stronger for side closest to the source, indicating the

sources location behind and to the side of the fish. In the second strike position, the

order of magnitude for the pressure gradient is similar for the front and tail, though

either side of the fish still shows a clear difference, indicating that the source is lateral

to the fish. In the third strike position, the head of the body has moved much closer

to the source, while the tail tip is yet further away. The pressure difference more than

quadruples for the front lateral line, while there is only a slight decrease near the tail

tip. This is unambiguous information for the fish that it is heading in the direction

of the source.

The fin extension and retraction results are different for the 2D and 3D cases.

Whereas there are clear differences between results for fins extended and retracted

147



in the 2D case (figure 4-6) based on the relative orientation of the fish and dipole,

there is not this detectable difference for the 3D cases (figure 4-7). This difference

occurs because the flow is less perturbed in the 3D cases were the body occupies as

smaller percentage of the overall flow field domain. However, when a background flow

is introduced, there will likely be significant differences.

Figure 4-8 shows the results of having the actual lateral line be located above the

midplane, and around (rather than through) the pectoral fins. In this third strike

position, the back and source side trunk lateral lines, along with the mandibular

lateral lines, capture much of the same information that an imaginary midplane lateral

line would. The orientation of the back side supraorbital lateral line locations distorts

the received signal, providing new information that is likely valuable to the fish for

dipole source localization.

4.3.4 Canonical cases: the signal to the canal lateral line

system

The results for a sphere oscillating parallel and perpendicular to the side of a sculpin

are presented in figure 4-9. It is of one instant in time, when the pressure is at its

maximum around the body. The coordinate system has its origin located at the nose

of the sculpin, located 0.12 BL (body lengths) above the floor. When looking down

on the fish, the nose points North, the tail points South, the right lateral side points

East, and the left lateral side points West. The x-axis is aligned with the rostrocaudal

axis of the fish, with positive in the direction of the tail. The y-axis is aligned with

the lateral axis of the fish, with positive toward the right side of the fish. The z-axis

is aligned with the dorsoventral axis of the fish, with positive toward the dorsal side

of the fish. The floor plane is parallel to the xy-plane.

In cases A and D, the sphere is located at (0.56, 0, 0.33) BL. For cases B and E,

the sphere is located at (0.56, 0.33, 0.11) BL. In cases C and F, the sphere is located

at (0.22, 0.56, 0.11) BL. In cases A, B, and C the sphere is oscillating parallel to

the x-axis, and in cases D, E, and F, the sphere is oscillating parallel to the y-axis.
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Figure 4-6: Experimental set up and video stills from a strike sequence (see text).
The video camera was placed below the holding tank, aiming up through to see
the bottom of the sculpin. Circles are of radius 3 cm, 6 cm, and 9 cm, with the
sphere located at the center and oscillating in a direction parallel to axis that extends
through the center of the mini shaker (the x-axis of the tank in this picture). (A-
C) The normalized pressure fields (top row) and corresponding pressure differences
along the lateral line (bottom row) are shown for three strike positions. (2nd & 3rd
columns.) Numerical results with body present, without/with fins respectively. (4th
column) Calculated results without body present.
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Figure 4-7: A two-dimensional slice through the three-dimensional mid-plane of the
sculpin. Compare the 3D signal and body effects with the 2D results presented in
figure 5. Descriptions and set up are given in figure 4-6. Experimental set up and
video stills from a strike sequence (see text).
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Pressure contours around the surface of the 3D sculpin are presented for the body

with fins extended, and with fins retracted cases.

The most obvious result by inspection of the pressure contour plots is that the

presence of extended fins does not cause a significant interruption to the hydrody-

namic field for the oscillating sphere in these locations. This is confirmed in the pres-

sure gradient plots, where there is little distinction between the extended/retracted

fin cases (see overlap of magenta & cyan lines in figure 4-9). The placement of the

lateral line above the pectoral fins seems to allow for clear dipole signal reception in

these cases.

In these canonical cases, the spatial gradient patterns seen in figure 4-3C can be

readily identified. When the dipole source is oscillating parallel to the longitudinal

axis of the fish, the pressure difference pattern formed on the source side lateral line

matches the predicted shape (figure 4-3, 1st col). The peak amplitude of the typical

”hat” pressure gradient profile occurs at the same position on the lateral line, in line

with the actual lateral location of the source. For cases A and B, the zero crossings

fall neatly within the confines of the tail portion of the lateral line. The zero crossings

predict distances of 0.20 BL and 0.31 BL, respectively, which is close to the actual

distances of 0.19 BL, and 0.29 BL, respectively. For case C, the sphere is far enough

away from the fish that the zero crossings begin on the source side and wrap part

way around the front side. This distorts the natural signal, and predicts a distance

of 0.37 BL, when the actual distance is 0.49 BL.

When the sphere oscillates in a direction perpendicular to the long axis of the

fish, the pressure gradient pattern has the predicted anti-symmetric pattern (figure

4-3, 2nd col). The location of the zero crossing correctly predicts the perpendicular

bisector formed with the sphere in cases D and E, but in case F the received dipole

signal is distorted as it hits the contours of the nose of the fish, giving 3 zero crossings

within a short span of the right lateral line. When the sphere is overhead (case D),

the presence of the dorsal fin reduces the peak pressure difference. The predicted

distance in this case is 0.26 BL, which is still close to the actual value of 0.29 BL.

When the sphere is close to the side of the fish (case E), the predicted distance is
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0.30 BL, which is very close to the actual value of 0.29 BL. When the sphere is in

the furthest location (case F), the fish could choose to use the undistorted half of the

signal since a zero crossing and one peak still provides useful information when the

sphere oscillates perpendicular to the lateral line. The predicted distance is 0.44 BL,

which is not too far from the actual distance of 0.5 BL.

Consistent with conclusions drawn earlier, the flow around fin insertion points,

pectoral, dorsal affects the proximate area, but not the received dipole signal to the

lateral line system. However, it is also clear that as the source moves farther from

the body, not only does the amplitude of the received dipole signal decrease, but it

also becomes distorted as the length of any available lateral line section runs short.

4.3.5 Canonical cases: the signal to the superficial lateral

line system

Figure 4-10 presents an instantaneous snapshot of the normalized velocity vectors at

the cell centroids adjacent to the fish body. The location of the sphere is (0.56, 0.33,

0.11) BL (body lengths), identical to cases B and E of figure 4-9, though the time

has advanced 1/4 of an oscillation period. The coordinate system has its origin at

the nose of the sculpin, located 0.12 BL above the floor. When looking down on the

fish, the nose points North, the tail points South, the right lateral side points East,

and the left lateral side points West. The x-axis is aligned with the rostrocaudal axis

of the fish, with positive in the direction of the tail. The y-axis is aligned with the

lateral axis of the fish, with positive toward the right side of the fish. The z-axis is

aligned with the dorsoventral axis of the fish, with positive toward the dorsal side of

the fish. The floor plane is parallel to the xy-plane.

With the coarser grid resolution (i.e. 2 mm edges), the tetrahedral cell centroids

are found at a heights of about 0.5-0.8 mm above the fish body. As mentioned earlier,

this has almost no effect on the pressure or pressure gradient resolution at the body

surface, but it does prevent resolution of the boundary layer flow. The velocity values

calculated at this resolution are essentially potential in nature, and can be considered
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Figure 4-9: An instantaneous snapshot of the pressure field on the body surface, and
the resulting pressure gradient to the canal lateral line, are shown for the cases of
a sphere oscillating parallel and perpendicular to a sculpin. In cases A and D, the
sphere is located at (0.56, 0, 0.33) BL (body lengths). For cases B and E, the sphere
is located at (0.56, 0.33, 0.11) BL. In cases C and F, the sphere is located at (0.22,
0.56, 0.11) BL. The coordinate system has origin is on the nose, the first coordinate
is toward the tail along the rostrocaudal axis, the second is to the right along the
lateral axis, and the third is up along the dorsoventral axis. Lateral line nodes (canal
pore openings) are approximately spaced 2 mm apart.
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the U∞ values influencing the boundary layer velocity profiles at the fish surface.

Since the superficial neuromasts have a best sensitivity in one oscillation direction,

which is unique to each neuromast and unknown apriori, two arbitrary directions were

chosen. One direction is positive when deflected towards the tail, and one direction is

positive when defected toward the top of the fish. The magnitude of the flow velocity

component in the direction of sensitivity is shown in figures 4-10C,D,G,H, with a

negative value indicating the flow component is opposite the direction given by the

black arrows.

The flow patterns around the fish show clearly reveal whether the sphere is oscil-

lating parallel or perpendicular to its side. When oscillating parallel to its side, the

flow has two nodes where the flow either leaves in all directions or returns from all

directions. In figure 4-10A,B, one of the those nodes is located at the pectoral fin

insertion point, and the other near the tail. When the sphere is oscillating perpendic-

ular to the side of the fish (figure 4-10E,F), there is one node, from which flow spreads

out in all directions. Qualitatively, it appears that only the flow located directly at

fin insertion points is significantly altered.

Quantitative results at superficial neuromasts located along the canal lateral line

system confirm there is no discernable effect of the fins presence in altering the re-

ceived dipole signal (figure 4-10C,D,G,H). Dipole signals to the superficial lateral line

are quite different depending on their preferred direction of sensitivity. When the

directional sensitivity is in line with the axis of oscillation, the patterns to the su-

perficial lateral line are of the ”Mexican hat” shape (figure 4-10C,H), whereas when

the directional sensitivity is opposite the axis of oscillation, the patterns are of the

”heartbeat” shape (figure 4-10D,G). Therefore the peak locations of approximately

0.53 BL in figure 4-10C and 0.48 BL in figure 4-10H are close to the actual location

of 0.5 BL. Likewise, zero crossings of approximately 0.55 BL in figure 4-10D and 0.5

BL in figure 4-10G are also close (or exact). The peaks and zero crossings on the

back side of the body are further shifted away from the actual location of the sphere.
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Figure 4-10: An instantaneous snapshot of the normalized velocity vectors at the
cell centroids adjacent to the fish body. The location of the sphere is (0.56, 0.33,
0.11) BL, identical to cases B and E of figure 8, though the time has advanced 1/4
of an oscillation period. The sphere is oscillating parallel to the fish (A) with fins
extended, and (B) retracted, and it is oscillating perpendicular to the fish (E) with
fins extended, and (F) retracted. The black arrows show the positive direction of
neuromast polarization. 156



4.3.6 The signal to the lateral line system for a sphere oscil-

lating in the dorsoventral direction

Other cases involve a sphere oscillating in the dorsoventral direction to the side of a

sculpin, and results are presented in figures 4-11-4-13. The signal to the canal lateral

line system is the pressure gradient. Plots A and B show the normalized pressure

contours around the body surface and plot C compares the normalized pressure gra-

dient for the fins extended/retracted cases. The signal to the superficial lateral line is

velocity in the direction of neuromast polarization. Plots D and E show the normal-

ized velocity field outside the boundary layer over the body surface, and plots F and

G show the stimulus to the neuromast when the direction of polarization is toward

the nose and top of the fish respectively. All plots are at the instant of time that the

pressure and velocity are at a maximum. In this case, the time is delayed by 1/4 of

a period for the velocity.

When the sphere oscillates in the dorsoventral direction, there is almost no stim-

ulation to either the canal or superficial lateral line on the back side of the fish. On

the source side of the body, superficial neuromasts which have their axis of polarity

in alignment with the sphere oscillation axis are maximally stimulated, and likewise

for portions of the canal lateral line which are in alignment (such as portions of the

infraorbital, supraorbital, and mandibular lateral line). This is especially the case

when the sphere is near the front of the fish.

Sometimes there can be ambiguity about the location of the dipole source. Figures

4-12 and 4-13 show that when the sphere moves further away from the side of the

fish, the magnitude decreases but the overall pressure gradient patterns and velocity

gradient patterns remain very similar. This is the case because the lateral line system

is not sampling the spatial field in a direction of maximal change (in alignment with

the axis of oscillation), but instead spatially samples the dipole field in the direction of

least change (in the plane perpendicular to the oscillation axis, and running through

the center point of the sphere).
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159



-1

0

1

-1

0

1

-1

0

1

2

-1

0

1

2

D

E

Normalized velocity field outside the boundary layer for fins extended (   ) vs. retracted (   ) cases

0 1 2 x10 -4

U   /Uo

0.10.20.30.40.50.6
(U

   
/U

o)
 x

 1
0

0.10.20.30.40.50.6

lateral line
    nodes

0.10.20.30.40.50.6
location (BL)

8

-4
no

rm
al

iz
ed

 v
el

oc
ity

0.10.20.30.40.50.6

(U
   

/U
o)

 x
 1

0

0.10.20.30.40.50.6

0.10.20.30.40.50.6
location (BL)

8

-4
no

rm
al

iz
ed

 v
el

oc
ity

F

G

8

surface stimuli toward top

no
rm

al
iz

ed
 p

re
ss

ur
e 

gr
ad

ie
nt

-4

back side
lateral line
    nodes

source side
back side

0.10.20.30.40.50.6

0.10.20.30.40.50.6

lateral line
    nodes

0.10.20.30.40.50.6
location (BL)

C

canal stimuli toward nose

source side
back side

 d
p/

ds
 /(
ρω

U
o

) x
 1

0

A

B

Pressure and pressure gradient comparison for pectoral fins extended (     ) vs. retracted (     ) cases 
normalized pressure field
           p/(ρωaUo)

0 0.9-0.9 x10 -3

-1

0

1

2

-1

0

1

2

surface stimuli toward nose

Sphere (10 diam away) from fish rostrocaudal
centerline oscillating in dorsoventral direction

Sphere (10 diam away) from fish rostrocaudal
centerline oscillating in dorsoventral direction

Angled View

Top View

Figure 4-13: Description as given in figure 4-11. The sphere is located at (0.22, 0.67,
0.11) BL. Note that the scales have changed from figure 4-12, being approximately
an order of magnitude less.

160



4.3.7 Predictions of surface flow on a virtual body using po-

tential flow theory

Previously (chapter 2) it was shown that for a dipole potential next to a wall, the

pressure at the wall doubles relative to the pressure at the same location in an un-

bounded medium. In many cases, the results have shown that using potential flow

theory to predict pressures at some locations on a virtual fish body also works as

a first approximation when the pressure is doubled. It may also be asked whether

potential flow theory can be used to approximately predict the tangential flow over

the surface of a virtual body, when the value is doubled relative to the same location

in an unbounded medium. The normal velocity is of course zero at the fish surface.

The process is not as simple as predicting the pressure, because velocity at any

particular location is a vector, whereas pressure is a scalar. The velocity vector is

determined by taking the gradient of the velocity potential, and then doubling the

value to approximate the presence of the body at that location. The surface tangent

vector can be determined by projecting the velocity vector onto a plane perpendicular

to the surface normal vector. This can also be determined by taking the cross product

of the normal and velocity vectors, with the cross product of the normal vector a

second time. To approximate the presence of the wall, the magnitude is doubled.

−→v
∣∣∣∣
wall

= 2

(
−→
t · −→v sph

)
= 2

(
−→n ×−→v sph

)
×−→n (4.11)

The 3D results for a sphere oscillating parallel and perpendicular to the side of a

sculpin are presented in figure 4-14. The case is identical to that found in figure 4-10,

but now potential flow results are presented in addition to the numerical results. Since

it is hard to visually inspect differences in vector angle, the difference in angle and

magnitude between numerical simulation and potential flow theory predicted vectors

are quantized and displayed graphically using surface contour plots.

In comparing the streamlined with pectoral fins extended numerical simulation

cases, there is visual agreement over almost the entire body surface. At the pectoral

fin insertion point, there is a difference in the flow with the streamlined case because
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the flow is impeded by the presence of the fin. When the sphere is oscillating in such

a way that a node appears at the pectoral fin insertion point (figure 4-14 A,B), there

is very little interference to the flow by the extended fin. However, in what will be the

majority of cases, where the sphere is oscillating in such a way that there should be a

directed flow at the pectoral fin insertion point, the flow must be altered to go around

the fin (figure 4-14 C,D). The flow region affected by the fins, due to the dipole field

of an oscillating sphere, is small. This can be confirmed by looking for differences

between the streamlined and fin extended cases in the angle and magnitude error

contour plots. Using the potential flow theory approximation, every point on the

body is treated independently of all others, and so the presence or absence of fins

should make no difference in the calculations. Therefore, major differences are due

to differences with the numerical simulation cases, highlighting the region of altered

flow.

Using the potential flow theory approximation to predict the flow around the

body surface seems to work remarkably well over much of the surface. There are

significant errors at corners and insertion points as to be expected. However, there is

also significant error when the flow is directed directly into the body. These are nodes

in the flow field, where in the numerical simulations the flow can be effectively halted

and affected by the surrounding fluid. In the potential flow theory approximation,

these node locations do not show the effects of halted tangential flow (of course the

normal flow is forced to be zero by definition), and are significantly wrong both in

direction and magnitude. It should be noted that the flow is already much reduced

at these points, so in absolute terms, the error is likely of little significance compared

to absolute errors seen around the rest of the body.

The potential flow theory approximation would not be expected to be able to

predict flow around the back side of the body, since the body should block the flow.

What little it might predict, it would be expected to do better when the source is

further away since the finite size of the body will a much smaller portion of the ex-

panding dipole flow field volume. However, the flow direction along the back side is

surprisingly well predicted (excluding node locations of course) when the axis of the
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oscillating sphere is parallel with long axis of the body, and less well when perpendic-

ular. In the first case, the flow is naturally more aligned with the body surface, while

in the second case the flow is trying to push through the body, which has already

been shown to be difficult to predict well. In all cases, the magnitude along the back

side is not well predicted.

4.3.8 Validation of the strain rate predictions on the fish

surface

The approximations used to determine the strain rate at the wall due to flow induced

by a nearby oscillating sphere were validated at points of maximal tangential veloc-

ity along the wall. However, the value of this approximation extends over a more

significant region than just a few points.

Figure 4-15 shows the results using the velocity outside of the boundary layer,

along with equation 4.7, for predicting the surface strain rate. For one case, all fins

on the sculpin were removed, allowing for the geometric generation of a resolved

boundary layer around the surface of the fish. A 3 mm sphere was located at a

distance of 5.5 cm from the midline of the fish, and roughly at what would normally

be the pectoral fin insertion point. The sphere was oscillated perpendicular to the

side of the fish, at 50 Hz, with a velocity amplitude of 7 mm/s.

Plots A-C used the resolved boundary layer mesh when solving for the induced

flow around the fish surface. Plot D uses the coarse meshing used on all other 3D fish

bodies, with nodes spaced approximately 2 mm apart. Plot A shows the strain rate

at the surface of the fish, as calculated using equation 4.4. This is the benchmark

strain rate. Plots B and C use the velocity at 1 mm and 2 mm above the surface to

predict the strain rate below equation 4.4. Finally, plot D shows the same prediction

from 2 mm away, but for using velocities obtained from a coarse grid solution to the

flow.

The main result is that when the flow is accurately calculated, equation 4.4 does

an excellent job of predicting the surface strain rate. For experiments that use Digitial
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Particle Image Velocimetry (DPIV) to resolve an oscillating flow around a fish, this

equation will allow for the determination of the shear stress, which is just µSwall.

Likewise, figure 4-15 shows that an accurate ”potential flow” solution still provides

an adequate prediction of the surface strain rate over much of the body of the fish.

4.3.9 Applying results to experiments

In one study, Blind Mexian Cave Fish whose canal neuromasts had been destroyed

where still able to detect the presence of an oscillating sphere at a distance of 20 cm

away (Abdel-Latif et al., 1990). In the results presented, the sphere had a diameter

of 5 mm, used displacement amplitudes of 0.2-1.4 mm, and oscillated at 50 Hz and

70 Hz. The conclusion drawn was that the superficial neuromasts are all that is

needed for this task of prey detection and localization. However, this would indicate

an extremely sensitive detection threshold, as will be demonstrated, indicating there

are likely other mechanisms at work.

In another study, blinded Lake Michigan Mottled Sculpin whose superficial neu-

romasts had been damaged by skin abrasion where able to detect the presence of a

nearby (3-6 cm) oscillating sphere (Coombs et al., 2001). However, when the canal

neuromasts where damaged (by treating with a solution of gentimicin), the fish re-

sponse rates decreased to spontaneous levels. The sphere had a diameter of 6 mm,

was oscillated at frequencies of 10 Hz and 50 Hz, and had source peak-to-peak veloc-

ities of 0.11-0.18 m/s. The study concluded that it was the canal neuromasts which

mediated the fish’s response to the stimulus.

At issue in both of these studies is the specific interaction the individual neuro-

masts have with the local hydrodynamic field, and the relative intensity of stimulation

achieved. The differences in shape, size, and location of hair cells will lead to differ-

ent interactions with the local fluid flow, and potentially to differences in detection

threshold sensitivity. What is needed first is a series of studies which provide a basis

for determining detection threshold levels.

From the experiments of Coombs and Janssen (1990), a wall strain threshold can

be determined for the Mottled Sculpin trunk lateral line superficial neuromast. They
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present velocity thresholds for the superficial neuromasts determined neurophsyiolog-

ically, as measured at the location of the fish (without the body present), due to a

nearby (15 mm) oscillating sphere. They measured peak-to-peak amplitudes, which

is equivalent to including the presence of a wall. From their figure 7 data, the velocity

outside the boundary layer falls in a range of 9-32 µm/s at 10 Hz, 25-79 µm/s at 50

Hz, up to a range of 28-158 µm/s at 100 Hz. They didn’t present the heights of the

neuromasts, so neither a velocity threshold nor approximate strain rate threshold can

be determined. However, knowing the frequencies used, a wall strain rate threshold

range of Swall = 0.07 − 0.25 s−1 at 10 Hz, Swall = 0.44 − 1.4 s−1 at 50 Hz, up to a

range of Swall = 0.7− 4.0 s−1 at 100 Hz, can be determined using equation 7.

Kroese et al. (1978) used a sphere of radius a=1.55 mm, oscillating at f=20 Hz

parallel to the fish surface, with a displacement amplitude of A=4 µm, and placed at a

distance of r =3.75 mm from the surface. They assumed a hair cell height of 100 µm,

which is fully immersed in the boundary layer flow. Figure 4-16 shows that the hair

cell experiences a range of velocities from 0 µm/s at the base to about 3/4 of their

predicted value of 38 µm/s at the tip. The approximate strain rate threshold would

be Sapprox ≈ (30 µm/s)/(100 µm) = 0.30 s−1. By using the wall strain rate threshold,

neither the hair cell height nor the specific velocities along its surface are required.

Using their parameters, and noting that U0 = Aω = 502.7 µm/s, f (α = 0) = 1, and

C (a, ω) = 1.13, the wall strain rate threshold would be Swall = 0.45 s−1.

From Dinklo’s (2005) data and from his superficial neuromast models (based on

the work of van Netten, 2006), an approximate strain rate threshold can be determined

for the zebrafish superficial neuromasts. The height of the neuromast, based on

a fit of the model to the data, was 34 µm. For velocity thresholds of 12.3 µm/s

at 0 Hz, 10 µm/s at 10 Hz, and 27 µm/s at 100 Hz, this would give Sapprox ≈

(12.3 µm/s)/(34 µm) = 0.36 s−1 at 0 Hz, Sapprox ≈ 0.34 s−1 at 10 Hz, and Sapprox ≈

0.79 s−1 at 100 Hz. For the superficial neuromast, the best sensitivity is in a range of

0-10 Hz. There was not enough information to calculate the wall strain rate threshold.

With a range of strain rate detection thresholds now determined, we may reex-

amine the cases of the blind cavefish and that of the Mottled Sculpin, to see what
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threshold sensitivity levels are implied by the behavioral responses of the fish. For the

behavioral experiments with the Mottled Sculpin (Coombs et al., 2001), the oscillat-

ing source strength and frequency are provided, enabling the calculation of wall strain

rate thresholds. From the experimental set up, peak-peak velocity amplitudes of 0.11

m/s or 0.18 m/s were used for the 10 Hz and 50 Hz signals, respectively. Using these

values for the 3 mm sphere at a distance of 6 cm away, with C=1.09 for 10 Hz and

1.04 for 50 Hz, equation 4.9 predicts Swall = 0.06 s−1 for 10 Hz, and Swall = 0.21 s−1

for 50 Hz. These values are slightly below the low values of the threshold ranges

already presented. For the sphere a distance of 3 cm away, these same calculations

predict Swall = 0.48 s−1 for 10 Hz, and Swall = 1.66 s−1 for 50 Hz, which are well

above threshold.

In the case of the blind cavefish (Abdel-Latif, 1990), a range of displacement

amplitudes for the oscillating sphere caused a positive behavioral response, at least

at 50 Hz and 75 Hz. Using equation 4.9, that gives a strain rate threshold range of

Swall = 0.0023−0.016 s−1 at 50 Hz, andSwall = 0.0038−0.026 s−1 at 75 Hz. If the blind

cavefish has a superficial neuromast height of 200 µm (Teyke, 1988), then the velocity

threshold would range from 0.14-0.96 µm/s at 50 Hz to a maximum of 0.19-1.3 µm/s

at 75 Hz, and the approximate strain rate would be Sapprox ≈ (0.7− 5) · 10−3 s−1 at

50 Hz, up to Sapprox ≈ (0.9− 7) · 10−3 s−1 at 75 Hz. These are extremely sensitive

thresholds, even acknowledging the possibility of signal startup transients, which from

numerical simulation briefly increased the wall strain rate up to 4 times it steady value.

4.4 Discussion

One goal of this paper was to devise a simple method of obtaining information about

the threshold detection abilities of superficial neuromasts. The method is meant

to be broad enough to allow for cross-experiment comparisons, even when data is

incomplete or missing. To some extent, this is made possible when more information

is known about the boundary layer velocity profile. From this information, velocities

at the tip of the superficial neuromast can be obtained.
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There needs to be some thought as to how detection thresholds are to be defined.

The main reason is that most neuromasts are partially or fully immersed within a

boundary layer flow that is frequency dependent. To date, only the work of van Netten

(2006) has attempted a detection threshold definition that includes the effects of the

boundary layer, and that definition is for canal neuromasts detecting fluid acceleration

at the body surface. Dinklo (2005) and Humphrey et al. (1993) have included the

effects of boundary layer flow for superficial neuromasts and hair cells, respectively,

but neither defined detection thresholds as their purposes were of a different nature.

Using the approximate strain rate threshold definition, cross species results can

be compared. Differences in the height of the superficial neuromasts factor in to the

detection threshold measurements, providing a more meaningful comparison. When

only the oscillation frequency is known (i.e. the velocity and the neuromast height are

unknown), the surface strain rate threshold definition can be utilized for cross species

detection threshold comparisions. This can be very useful in the case of behavioral

experiments, where information is often known about the stimulus source, but not

about the hydrodynamic flow within the surface boundary layer and at the location

of lateral line organs.

One caveat to this method is that its use relies on the assumption that the velocity

profile within the boundary layer can be described using Stokes (1851) solution for an

oscillating plate (or fluid). This is an assumption that needs to be validated under a

wider range of conditions, but at least numerically it is valid when the surface can be

approximated as a wall. And it is validated numerically for the case of an oscillating

sphere, which is used quite extensively in lateral line experiments.

4.4.1 Quantitative determination of canal vs. superficial lat-

eral line sensitivity

Returning to the original dilemma of whether the superficial or canal lateral line

is used for prey detection purposes (i.e. an oscillating sphere stimulus), the use

of these threshold definitions can help to resolve it. From the data presented in
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three neurophysiological experiments, either the velocity threshold and approximate

strain rate threshold (Dinklo, 2005), or the wall strain rate threshold (Coombs and

Janssen, 1990), or both (Kroese et al., 1978), could be extracted and used as limited

benchmarks for further comparisons.

The Blind Mexican Cave Fish of the Abdel-Latif et al. (1990) experiment showed

behavioral results that would indicate extremely sensitive superficial neuromast de-

tection thresholds. From the oscillation strength and distance of the sphere presented,

the velocities at the surface of the fish, and at the tips of the cupulae, are at least an

order of magnitude smaller that what seems to be required for detection. In addition,

the strain rate threshold metrics are in some cases two orders of magnitude smaller

than what seems to be required. Although there can be strong transient surges in

signal strength in the start up of the source stimulus (Kroese et al., 1978), it is un-

likely that they are strong enough to account for this difference (numerical simulation

showed gains of 4 times).

These quantitative results seem to indicate that there is some other mechanism at

work helping the Blind Mexican Cave Fish to detect the oscillating stimulus. Coombs

et al. (2001) suggest that the inner ear of the fish might aid in the process of detection.

By the way they were conditioned to respond, they may have only needed to be

alerted to the presence of the stimulus, and then they could find it without spatial

information.

For the Mottled Sculpin of the Coombs et al. (2001) experiment, the wall strain

rate thresholds calculated at the furthest source distance described fall just below

acceptable ranges for the 10 Hz and 50 Hz signals. At the closest location of the

oscillating sphere, the wall strain rates far exceed threshold. It appears that the

superficial neuromasts were adequately stimulated, and yet not utilized for prey de-

tection, according to the experiment. This raises the question of why? To answer

this question, it will be useful to compare relative levels of stimulation between the

canal and superficial lateral line organs, to see if there are significant differences. If

so, one hypothesis is that the fish learn to use their primary detection mechanism,

their canal lateral line system, to detect and localize the prey. When that is removed,
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the signals to their superficial lateral line system may be too weak in comparison,

and so ignore them.

Figures 4-12 and 4-13 show the oscillating sphere located to the side of the trunk

lateral line. This is very similar to the Coombs et al. (2001) experiment, with the

sphere located 3 cm and 6 cm away from the longitudinal midline of the sculpin fish.

The maximum (normalized) stimulation for the superficial neuromasts is roughly

2 · 10−3 when the sphere is 3 cm, and 2 · 10−4 when the sphere is 6 cm away. That

corresponds to surface strain rate values of 0.48 s−1 and 0.05 s−1 at 10 Hz, and 1.66

s−1 and 0.17 s−1 at 50 Hz. The maximum (normalized) stimulation for the canal

neuromasts is roughly 1.5 · 10−3 when the sphere is 3 cm away, and 1.5 · 10−4 when

its 6 cm away. Using equation 4.10, that corresponds to accelerations of 30 mm/s2

and 3 mm/s2 at 10 Hz, and 522 mm/s2 and 52 mm/s2 at 50 Hz.

For the superficial neuromasts, minimum strain rate thresholds for the sculpin are

approximately 0.07 s−1 at 10 Hz and 0.44 s−1 at 50 Hz. That means that when the

sphere was 3 cm away from the fish, the relative stimulation was approximately 7

times threshold at 10 Hz, and approximately 4 times threshold at 50 Hz. However at

6 cm, it was below threshold, as already determined.

For the canal neuromasts, van Netten (2006) determined that detection threshold

range is approximately 0.1-1 mm/s2 . Even using the less sensitive value, the canal

neuromasts were stimulated 30 times threshold at 10 Hz, and 522 times threshold at

50 Hz when the sphere was 3 cm away. When the sphere was 6 cm away, the canal

neuromast stimulation was only 3 times threshold at 10 Hz, and 52 times threshold

at 50 Hz.

These are large differences in stimulation relative to the canal and superficial

lateral line system, and it strongly supports the hypothesis that the canal lateral line

is the more sensitive organ when it comes to detecting vibrating signals. Secondly,

since the acceleration detection threshold stays fairly constant over the whole range of

frequencies, an increase in source frequency without change source amplitude causes

huge increases in the received signal amplitude. This does not appear to be the case

for the superficial neuromasts, whose relative levels of stimulation stay fairly constant
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over larger ranges of frequencies. This again highlights the need to better understand

superficial neuromast stimulation within the boundary layer.

4.4.2 The effect of body parts on the dipole signal to the

lateral line system

Another goal of this chapter was to examine how the hydrodynamic field of an oscil-

lating sphere becomes altered around fish bodies with shapes more realistic than the

typical axisymmetric approximations. In particular, the effect that extended pectoral

fins has on the received dipole signal on the lateral line was investigated. From the

computational fluid dynamics simulations, it appears that the extended fins have rel-

atively little effect on the pressure gradient distribution over the body surface, and

only a small localized effect on the flow over the body surface. The reason for this

is that in this still water case, and for an oscillating sphere with its displacement

amplitude much smaller than its radius, the flow field remains potential in nature.

Viscous and non-linear effects that might have been significant near the body and

around fins are in fact negligible. This also explains why the virtual body predictions

so closely match the numerical simulation results.

The fact that the lateral line system of the Mottled Sculpin goes around the pec-

toral fins is likely of morphological significance, since it appears to avoid any distortion

in the received signal. In addition, the lateral line has locations and orientations that

specifically sample the pressure and velocity fields in a unique ways. For example,

when the prey is swimming vertically past the fish, in the dorsal/ventral plane, the

pressure gradient would be flat around the trunk lateral line, whereas the infraorbital

lateral line locations would more readily detect these motions. Hassan (1993) has

pointed that the combinations of orientations of the lateral line sections theoretically

allow for unique encoding of any orientation and location of the dipole source.

Figure 4-8 showed that if the fish could integrate the signal among the different

sections of its full lateral line system (i.e. trunk, mandibular, etc.), the length of the

lateral line would in effect be doubled. This would allow the fish to localize objects
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at farther distances. Just using the distance between zero crossings as an example, it

could accurately localize a dipole source 1.4 BL (i.e. 2/
√

2) away.

There is some evidence against this hypothesis, which suggests that information

processing by the fish is unilateral (Coombs et al., 2000). The approach strategies of

the Mottled Sculpin show that it approaches in steps, orienting one side at a time.

In experiments where fish had one side denervated, there was no effect in its ability

to detect and attack prey on its good side. Poor frontal performance suggests that

spatial information is not integrated from side to side (Coombs et al., 2000). However,

the numerical simulations at least show that the integrity of the signal is upheld in

using the full lateral line system.

4.4.3 Canal and superficial lateral line use in prey detection

and localization

Based on the previous analysis of sphere source strength and thresholds of detection,

the results showed that the canal neuromasts are more sensitive to prey detection than

the superficial neuromasts over a larger range of frequencies. This should prove quite

valuable for a fish on the hunt, since a moving fish will have its superficial neuromasts

saturated by the constant flow over its surface, while the canal neuromasts should

remain sensitive to velocity perturbations (accelerations) in the water.

When the source is strong enough for the superficial neuromasts to be activated,

a great deal more information is available to the fish. Superficial neuromasts have

the potential to respond to the full directionality of the local hydrodynamic flow,

bending in directions determined by the flow. As a simple demonstration, figure 4-

11 shows that superficial neuromasts placed at locations similar to the canal lateral

line give localization information in a similar manor as the canal lateral line system

does. Having superficial neuromasts polarized in orthogonal directions allows two

independent methods of source localization.

In cases where the superficial neuromasts cover more of the body surface, more flow

information is available for dipole localization. Hassan (1993) showed that complete
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excitation vectors (averaged angle and magnitude) on either side of the body, and

the front sides, uniquely encode the location and orientation of the source dipole.

Working together, the information from canal and superficial lateral line neuromasts

can provide a more accurate rendering of the actual hydrodynamic vector field. Canals

are permanently oriented on the fish, and therefore respond only to the pressure

gradient components aligned with the canals. As the flow moves increasingly to

the perpendicular of the canal alignment, stimulation for the canal neuromasts and

superficial neuromasts in alignment with the canal will die down while stimulation to

superficial neuromasts aligned to the perpendicular will increase (Hassan, 1993).

This chapter focused on spatial signals to the lateral line system, though it is likely

that temporal information will be as useful for the fish in detection and localization

of prey. For example, a passing dipole source should induce a signal whose peaks and

zeros move along the lateral line in accord with the prey’s changing location. The

change in location of peaks and zeros encode velocity vector information. As more

realistic signals are considered, the combination of spatial and temporal information

might enable the fish to identify and localize the prey. This should be an area of

future investigation.
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Figure 4-16: The boundary layer flow (solid line) due to an oscillating sphere next to
fish surface is calculated using equation 4.8. Potential flow theory (such as used by
Kroese et al. (1978) does not account for reduced velocities that affect the superficial
neuromast when it lies within the boundary layer.
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Chapter 5

Thresholds of detection and

saturation in moving water

5.1 Introduction

The core question of this thesis is how fish are able to detect small amplitude signals

against large amplitude noise signals. In terms of signal detection theory, the signal

must distinguish itself from the noise. If it is a monotone signal, then the signal-to-

noise ratio (SNR) at that frequency must be larger than surrounding frequencies. To

what extent it must be larger is unknown a priori, and can only be determined by

matching hydrodynamic conditions and signals to behavioral and neural responses.

Secondly, the encoding process of the hydrodynamic information involves mechanical

filtering (boundary layer and canal structure), mechanical motions of the neuromast,

hair cell transduction into neural impulses, and modulation of those signals by feed-

back from the brain. The previous chapters of this thesis form the foundation with

which to address this question.

The input-output mechanical motions of the superficial and canal neuromasts have

been modeled for the Mottled Sculpin. The lateral line response to an oscillating

dipole stimulus has been quantified in still water conditions, with evidence that the

canal lateral line will be the more sensitive detector. Finally, the study of Kanter

and Coombs (2003) provides the behavioral response of the Mottled Sculpin to an
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oscillating dipole source in a background flow. They quantify the detection threshold

using the peak-peak velocity of the oscillating sphere at the moment of fish response.

Coombs et al. (2007) further quantify the basic conditions of the background flow

in the Kanter and Coombs (2003) experiment. Average velocity and vorticity flow

conditions around the sculpin show a region of decreased flow, and they conjecture

that it might lead to increased SNR for the lateral line in the immediate vicinity.

Secondly, there are regions of recirculation by the pectoral fins, and vortical shedding.

What remains unknown from both studies is the level of turbulence at the time of

signal detection in the first experiment.

In this chapter, the Kanter and Coombs (2003) experiment is simulated numer-

ically. The 3D fish body is approximated, and the locations of the lateral line are

placed on the body to match locations of the real fish. A sphere of the same size (6

mm diameter), same location (5 cm away from the side of the fish at the point of pec-

toral fin insertion), and same oscillation frequency (50 Hz), is used in this simulation.

Since the levels of turbulence are unknown, a number of simulations with varying

levels of turbulence are used to try and bound the results of Kanter and Coombs.

The difficulty lies in trying to ’decide’ what constitutes detection in these sim-

ulations. In the Kanter and Coombs experiment, the fish would respond at the

appropriate stimulus level. In this simulation, threshold of detection must be defined

in a way that is realistic and plausible. The previous chapters were able to do this for

still water conditions, but evidence suggests that detection mechanisms change when

in moving water conditions.

5.1.1 In moving water, saturation for superficial, but not for

canal neuromasts

Studies showed that there were two main types of neural responses when fish are

placed in background flow environments. Type I fibers responded to an increase in

the flow rate, and often reached saturation with increasing flow speed. Type II fibers

remain unchanged in their basic spontaneous neural activity when background flow
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was added. The speculation is that type I fibers lead to superficial neuromasts, while

type II fibers lead to canal neuromasts. Not all fibers fall into the type I or type

II category - collectively, neuromasts exhibit a range of responses to the flow. Some

type II fibers could be mis-categorized as type I fibers due to damming pressure

which builds up in front of the fish, and therefore showed a response to flow increase

(Engelmann et al., 2003). Secondly, all fibers show responses when the flow speed is

increased high enough (Chagnaud et al., 2008).

The explanation given as to why type I fibers show a response to background flow

and type II fibers do not is largely based on the locations of the neuromasts being

enervated. Superficial neuromasts reside on the surface of the fish, and although they

lie within a protective boundary layer, they still experience a strong shear force as

the flow moves past. This forces the neuromast to bend with the flow. Changes in

the flow due to movements by the fish, or from shedding and recirculation from body

generated self-flow, cause the response of the type I fibers to be non-uniform. In

addition, Engelmann et al. (2003) postulate that the observed burst-like responses

for flow sensitive fibers to unidirectional flow were likely caused by local pockets of

turbulence around the trunk lateral line.

Type II fibers are part of the canal neuromast system, which respond to the

pressure gradients at the surface of the fish. If the flow is fairly uniform, flat areas

on the fish should produce very low pressure gradients. In areas of body curvature,

a larger pressure gradient will exist, causing a deflection of the canal neuromasts in

a manor similar to the superficial neuromasts. This is especially likely near the front

of the fish (Engelmann et al., 2003).

5.1.2 Background flow and signal masking

There is evidence that background flow decreases the fish’s signal detection ability

for type I fibers, but not for type II fibers. One effect is called signal masking, where

there is decrease in the evoked spike rate to a signal in flowing water, as compared

to the evoked spike rate to that same signal in still water. Engelmann et al. (2002)

found that flow sensitive fibers (type I) to the posterior lateral line showed masking to
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an oscillating dipole signal with increase of flow rate, whereas flow insensitive fibers

(type II) did not show signal masking. Chaugnaud et al. (2006) found similar results

to Englemann et al. (2002) for fibers enervating the anterior lateral line. Kanter and

Coombs (2003) and Bassett et al. (2006) found that fish can detect oscillating signals

which are orders of magnitude smaller than surrounding flow, and in a previous work,

Coombs and Janssen (1990) were able to link behavioral responses to signal detection

to canal neuromast (type II) stimulation.

Reduced detectability for superficial neuromasts might be expected in flowing

water, since their exposure to the flow is only tempered by the surface boundary

layer they reside in. Voight et al. (2000) found that flow sensitive fibers had a

non-adapting, linear response to flow increase. Overall, the spike rate increased in

a linear fashion with increasing flow rates. An increase in mean spike rate is likely

due to an increase in the root mean square deflection of the neuromast responding to

a.c. flow fluctuations. An additional stimulus, such as an oscillating dipole, should

be superposed onto the flow signal. If the stimulus signal is small compared to the

flow signal, then the additional increase in hair deflection may be too small to detect

well.

There is evidence that hair cells can adapt to repetitive patterns and mean flow

signals by reducing the spike rate (Eatock, 2000). This could explain the decrease in

the evoked spike rate of an oscillating dipole signal as compared to the same signal

in still water conditions (Engelmann et al., 2002; Chaugnaud et al., 2006). The hair

cell would likely adapt to the flowing water by trying to decrease the overall signal,

which includes both the background flow signal and the stimulus signal.

In the studies of Englemann et al (2002) and Chaugnaud et al. (2006), the type II

fibers exhibited only minor signal masking of an oscillating dipole signal in background

flow. This is consistent with the fact that the mean spike rate did not increase, or

increased only a minor amount relative to its mean spike rate in still water conditions.

However, there is some evidence for adaptation, for some fibers showed a decrease

signal masking, which can only result from a lowering of the mean spike rate overall.

In contrast to the neurophysiological studies, some behavioral studies show ev-
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idence of signal masking for canal neuromasts. Kanter and Coombs (2003) found

through behavioral experiments that there is approximately a threefold increase in

the threshold of detection for an oscillating dipole signal from 0 cm/s to 2 cm/s

flow, and then a twofold increase in threshold of detection from 2 cm/s to 8 cm/s

flow. If the hair cells can adapt to low frequency signals, why should there be any

increase in the mean spike when there is flowing water? Evidence suggests that un-

steady, a.c. flow fluctuations prevent the hair cell from adapting (Chaugnaud et al.,

2006). Perhaps the presence of turbulence, which increases the amplitude of a.c. flow

fluctuations over a range of frequencies, could be factor in explaining differences in

detection ability between the experiments.

5.1.3 Biological basis for signal encoding, adaptation, and

filtering

The fish can use a variety of methods to encode, adapt to, and filter the synaptic

signals sent by the afferent nerves to the brain (Popper and Fay, 1999). Encoding can

be in the form of synchronizing the spontaneous nerve activity of the hair cell to the

envelope of an amplitude modulated signal, increasing the mean spike rate in response

to increases of stimulus amplitude and stimulus frequency, or phase-locking the nerve

responses to the signal frequency. Adaptation can be in the form of reducing the mean

spike rate, or canceling out a repetitive signal. Filtering can occur through frequency

selection (phase-locking), or through preferential sensitivity to specific frequencies.

For example, some neuromasts resonate at particular frequencies based on their size

and stiffness. The neuromast motion will have larger deflections than for signals of

similar amplitude at other frequencies.

Each hair cell has a particular level of spontaneous activity, falling into categories

of having random interspike-intervals, having a bimodal distribution of interspike-

intervals, having highly regular activity, or having none at all (Popper and Fay, 1999).

Those with higher spontanteous rates tend to synchronize spikes to the phase of the

stimulus signal, whereas those with low or no spontanteous activity only activate once
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threshold is reached along the stimulus waveform. As the amplitude of the stimulus

wave increases, spikes are triggered at earlier points along the waveform, until at some

point spikes are triggered at all points along the waveform. Therefore, these afferents

encode excitation level in terms of a time delay.

Furukawa et al. (1986) provides evidence that the hair cell synapse of the saccu-

lar afferents of goldfish functions as a multiple-release-site model. Summarizing the

key results of Furukawa et al. and other researchers, Popper and Fay (1999) explain

that the hair cell has many presynaptic release sites, each of which have a different

threshold which is only activated if the stimulus reaches threshold. There is a single

synaptic vesicle at each release site, which remains empty after a release until re-

filled from a larger reserve. In addition, vacant sites are replenished in order of high

threshold to low threshold, and the low threshold sites remain vacant as long as the

stimulus is above its threshold. The main effects of the multiple-release-site model

for the hair cell are that the excitatory postsynaptic potentials reach multiple levels

in amplitude, and lessen over the duration of a stimulus tone.

One form of adaptation by the hair cells is single-tone and two-tone rate sup-

pression. Some hair cells will suppress the firing of synapses when frequencies pass

a critical level, often call the characteristic frequency (Pooper and Fay, 1999). Two-

tone rate suppression occurs when a second tone at a higher or lower frequency is

introduced, and the hair cell lessons the evoked spike rate of the first tone (which is

near threshold level to begin with). Furthermore, signals generated by the fish’s own

motions, such as breathing, can be canceled out by the brain (Bodznick et al., 2003).

Eatock (2000) describes another type of hair cell adaptation to sustained deflec-

tions. The tiny links which connect the stereocilia together shift their locations along

the stereocilia in order to relieve stress. In other hair cells, Ca2+ binds directly to the

transduction channels. In both cases, the result is to lessen the transduction current

at low frequencies. This means that that canal and superficial neuromasts have the

ability to adapt to d.c. and low frequency a.c. stimulus signals. This is a type of

filtering which may prove very useful to the fish while swimming or holding station

in background flows.
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In summary, fish employ a number of different strategies to both encode and filter

stimulus signals to the hair cell. When the stimulus is of large amplitude, the hair cell

can lower the spike rate generated by the large deflection by adjusting the location

of stereocilia links, by binding transducer channels with Ca2+, or by raising the hair

cell threshold (i.e. leaving low threshold sites vacant). They have the ability to lower

the synaptic firing rate for d.c. and low frequency a.c. signals, and suppress signals

generated from their own motions or breathing. They have the ability to phase lock

to particular frequencies (spectral filtering), or to follow amplitude modulated signals

(temporal filtering). The mean spike can encode both amplitude and frequency of

the stimulus signals.

5.1.4 Towards a modified definition of threshold of detection

and saturation

In still water, the threshold of detection and saturation was previously defined us-

ing neuromast displacement. In particular, van Netten’s (2006) theoretical basis for

detection threshold was applied to the Mottled Sculpin by matching the threshold

tuning curves of Coombs and Janssen (1990). However, the displacement of the neu-

romast is only part of the encoding process. The bending of the hair cell signals the

cell to release neurotransmitters. The rate of synaptic signaling is part of a com-

plex process involving the hair cell, the type of signal, and a feed-forward / feedback

process with the brain.

The nonlinearity of the stimulus encoding process by the hair cell has made it

difficult to characterize. Most experiments use a combination of phase-locking and

mean spike rate to generate frequency threshold tuning curves (Coombs and Janssen,

1990; Engelmann et al., 2002; Chaugnaud et al. 2006). Other experiments have

used reverse correlation (Fay, 1997), where the hair cell responds to a white (flat,

broadband) spectrum. From the temporal perspective, this is the hair cell response to

an impulse signal (Curcic-Blake and van Netten, 2005). In another characterization,

the sound pressure level is held constant while the frequency is varied, and the mean
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spike rate is measured (Fay, 1990). Each of these methods can produce different tuning

curves, and sometimes with apparently contradictory results (Popper and Fay, 1999).

However, at stimulus amplitudes near the detection threshold level, the hair cell

behaves in a linear fashion (Kroese et al., 1978). Therefore, a detection threshold

definition based on mean spike rate, phase-locking, or even neuromast displacement

should be in agreement. Coombs and Janssen (1990) were able to define signal de-

tection threshold in way which resulted in agreement between neurophysiological and

behavioral responses for the Mottled Sculpin in still water conditions. In one method,

the detection threshold was defined as the stimulus level at which the evoked spike rate

rose above the mean spontaneous firing rate. In another method, the threshold was

defined as the stimulus level at which the phase-locking synchronization coefficient

reached 0.4. Finally, both these neurophysiological thresholds matched a behavioral

response threshold, defined as the stimulus level that the fish made a turn towards

the oscillating source.

The frequency threshold tuning curves of Coombs and Janssen (1990), in combina-

tion with the canal and superficial neuromast motion models, allow for the prediction

of behavioral responses based on the type of stimulus input in still water conditions. In

situations where the fish is swimming, or holding station against moving background

flows, the hair cell responses can behave in a nonlinear fashion, and the definitions

for detection and saturation threshold become more difficult.

Perhaps the safest way to proceed is to use detection threshold definitions that

reflect the biology of the encoding and filtering process. The neuromast models

developed for the still water response can be used to show the physical motions of

the neuromast to the hydrodynamic signals present. Though neuromast deflections

might otherwise indicate saturation, it will be assumed that the neural responses of

the hair cells will find a way to adapt to the mean signal, automatically recalibrating

the detection and saturation threshold levels. Secondly, it will be assumed that the

hair cells cannot adapt to broadband a.c. flow fluctuations (Chaugnaud et al., 2006).

The root mean square of the flow fluctuations will be the baseline noise with which the

stimulus signal must compete to be detected. Finally, phase-locking has the ability
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to isolate particular frequencies. Therefore, when the spectral peak of the stimulus

signal is significantly larger than surrounding peaks, detection of the signal should

occur.

5.2 Methods

5.2.1 Numerical set up

The domain of the numerical set up was given in the previous chapter. The shape

of the fish was created to approximately match that of the Mottled Sculpin, and the

lateral line locations placed spatially on the fish to match the locations of the real

fish. The sphere is 6 mm in diameter, oscillates at 50 Hz parallel to the long axis of

the fish, and is placed 5 cm away from the point of pectoral fin insertion on the side

of the fish (5.5 cm from the longitudinal midline of the fish), and is located at about

the same height as the trunk lateral line.

Large eddy simulations were performed in order to capture the time-dependent

flow conditions. This method essentially models the energy of the flow within each

grid cell, which is the smallest spatial scale resolution possible, and allows it to interact

with larger spatial scales of the flow which are directly simulated. This allows for a

coarse grid meshing, while accounting for highly resolved flow interactions.

Further justification for a coarse grid mesh, which uses a node separation of 2 mm

around the body, is that the canal lateral line has pore openings of that approximate

separation. The spatial averaging of the real fish is then matched in these numeri-

cal simulations. Additionally, it enables reasonable computational requirements on

memory, whereas a fully resolved 3D grid mesh is well beyond any resources available.

Levels of turbulence were simulated using a spectral method (Smirnov et al.,

2001) at the flow inlet, and allowed to propagate downstream. Basically, fluctuations

are added to the mean flow vectors, whose spatial and temporal statistics match

predetermined turbulence spectrums. By allowing the flow to evolve downstream, the

flow can develop naturally occurring anisotropic structures. Turbulence is actually
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measured near the fish, so regardless of initial conditions, the results presented here

will have a basis for broader comparison.

Even when there is no turbulence specified at the inlet, there is still turbulence that

develops along the floor of the channel. Since the sculpin is placed on the floor, and

is only 2 cm in height, it will feel some of the effects of the floor turbulence, which is

present in the Large Eddy Simulation (LES) modeling. Turbulence will be measured

as the root mean square of the velocity fluctuations, and reported in units of velocity

rather than in percent turbulence intensity. This follows the standard convention

seen in the experiments under study (e.g. Chagnaud et al., 2008). Secondly, it is

the absolute levels of velocity fluctuation, and not the percent intensity, which is the

stimulus to the lateral line.

5.2.2 Thresholds of detection and saturation for the Mottled

Sculpin in moving water enviroments

To make sense of the experimental observations, it will be helpful to suggest a num-

ber of definitions for the threshold of detection and saturation. There will be two

elements to consider. The first element is the physical response of the neuromasts

to hydrodynamic stimuli. The flat-plate, spherical, and cylindrical models for the

canal neuromast (see figure 3-15 and subsequent modifications), and the cylindrical

model for the superficial neuromast (see figure 3-14), quantify the physical motions

of the neuromasts in response to water motions adjacent the body of the fish. For

example, a strong, steady shear force to either neuromast should result in a large,

steady deflection of the neuromast and cilia inside. The second element is the hair

cell adaptation to the neuromast deflections. The mean spike rate, and phase-locking

properties do not necessarily match the neuromast deflection. Therefore, defining

detection and saturation thresholds in moving water environments does not depend

solely on the neuromast motions.

The first definition to consider is that of the base noise level. This is defined as the

random noise inherent to the neuromast motions, caused by Brownian motion of the
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surrounding fluid, and caused by noise in the hair-cell gating apparatus (Dinklo, 2005;

van Netten, 2006). Equivalently, each neuromast has its own level of spontaneous

neural activity. In still water conditions, this will be called base-noisestill.

In moving water conditions, most hair cells will experience some form of adapta-

tion. It is unclear how this affects the base-noisestill , although it is likely altered.

Therefore, in moving water, it will be called base-noisemoving.

The second definition is that a.c. fluctuations of flow are equivalent to noise. This

definition is supported by Chaugnaud et al. (2006), who postulate that if the ampli-

tude of the flow fluctuations exceeds the amplitude of the dipole signal fluctuations,

then masking of the signal results. The root mean square of the a.c. fluctuations will

be called flow-noisea.c..

Finally, detection threshold will be defined as the point that the root mean square

of the desired signal (in this case the oscillating dipole signal) is greater than a

defined noise level, either base-noisestill, base-noisemoving, flow-noisea.c. , or some

combination. This leads to three hypotheses about the detection threshold level based

on mean spike rate.

Hypothesis I: base-noise (still/moving) and flow-noisea.c. do not interact. If

flow-noisea.c. < base-noise, then threshold = base-noise. If flow-noisea.c. >

base-noise., then threshold = flow-noisea.c..

Hypothesis II: base-noise (still/moving) and flow-noisea.c. combine in a linear

fashion. Threshold = base-noise + flow-noisea.c..

Hypothesis III: base-noise (still/moving) and flow-noisea.c. combine in a non-

linear fashion. Threshold = f(base-noise, flow-noisea.c. ).

Determining which hypothesis is correct is partly the work of this thesis, but it

depends on the internal mechanisms of the hair cell and needs biological verification.

With any amount of turbulence, flow-noisea.c. should become much larger than the

base-noise (still/moving). Hypothesis I, based on its ability to be calculated from
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hydrodynamic information from the simulations of this thesis and from experimental

data available, is what is considered in this thesis.

The previous definitions and hypotheses were based on mean spike rate leading

to signal detection. However, all studies mentioned also consider synchronization, or

phase-locking by the hair cells. This will be most evident in the spectral domain.

Hypothesis IV: The spectral peak of the desired signal must be greater than the

lower frequency spectral peaks.

Hypothesis V: The spectral peak of the desired signal must be greater than the

spectral peaks of frequencies within proximate range of itself.

Each of these definitions must be applied to each neuromast, since they each reside

at a different location. Hydrodynamic signals to the head of the fish are different

than signals at the trunk or tail, and so at one instant of time there may be some

neuromasts which are saturated (complete masking), some which are able to detect

signals (partial masking), and others which cannot detect the signal at all (below

threshold).

Saturation threshold depends on hair cell mechanics. It is not the absolute po-

sition of the cilia that determines the hair cell response, but the relative positions

of the stereocilia and the kinocilium which causes a tensioning of the gating appara-

tus (Howard and Hudspeth, 1987). There are additional mechanisms which are not

mechanical, but are related to hair cell chemistry, such as Ca+ regulation (Eatock

et al., 1987; Eatock, 2000). Saturation threshold is therefore defined in relation to

a hair cell equilibrium point, which is constantly changing and adapting to the cilia

motions. Tinevez et al. (2007) developed analytical models which can accurately du-

plicate many experimental observations. Nam et al. (2007) create a 3D virtual hair,

containing individual stereocilia attached to a large kinocilium by spring gates. Their

model keeps track of the states of the individual gates, and collectively responds in

ways seen in experiments.

These models still indicate that the hair cell is not able to adapt well to a.c.

fluctuations. Therefore the definition of saturation threshold in moving water, based
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on a simple approximation, is when the a.c. neuromast motions exceed a value of

about 100 nm (Kroese and van Netten, 1989). That will be dependent upon the high

pass filtering nature of the individual hair cells.

For this chapter, three situations are presented. First, the time dependent dis-

placement of the neuromast is presented, in response to the pressure gradient signals

upon it as determined by the flow field conditions. Second, the hair cell filtered sig-

nal, and the displacement of the neuromast which represents this signal, is considered.

The characteristics of this high pass filter can be determined more generally from the

experimental work of Eatock et al. (1987), or more specifically from the analytical

or numerical models developed. Lastly, a high frequency (>10 Hz) filtering of the

pressure gradient signal will be performed, so that the high frequency motions of the

neuromast can be more easily visualized. This is not meant to represent biological

reality, since fish are unlikely to have the mechanical capability to achieve this. How-

ever, is does represent reality in that these are the fluctuating motions superposed on

the low frequency signals.

5.3 Results

5.3.1 Determination of the base-noise level

Since the base-noisemoving is also not easily determined, for this thesis it will be

made equivalent to the base-noisestill. The base-noise can be determined from the

threshold of detection in still water conditions, as given in the Kanter and Coombs

(2003) experiment. In still water conditions, the sphere with 50 Hz oscillations needed

a velocity amplitude of approximately 1.2 mm/s in order to elicit a response from

the sculpin. Using the methods developed in 3D still water chapter, this condition is

simulated in order to look at the stimulation at all lateral line locations. Then the

points which give the maximum root mean square fluctuation will be equal to the

base-noise level.

Figure 5-1 presents the results of this still water simulation. The maximum root
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mean square (rms) pressure gradient signal (dp/ds) is about 0.08 Pa/m, and is located

at the point on the lateral line which is closest to the oscillating sphere. There next

closest neuromast has a rms dp/ds of about 0.075 Pa/m, and there is also one point

on the mandibular lateral line (not shown) which has a rms dp/ds that falls inbetween

these two values. Therefore, since this 3D model only approximates the actual sculpin,

the base-noise threshold will be set to 0.075 Pa/m, which likely stimulates three

canal neuromasts.
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Figure 5-1: The threshold of detection in still water determines the base-noise level.
(A) The root mean square (rms) pressure gradient signals along the trunk and in-
fraorbital canal lateral lines due to an oscillating sphere. (B) The sphere is located
5.5 cm away from the longitudinal midline of the fish, and oscillating in a direction
parallel to the midline axis of the fish. The sphere has a radius of 3 mm, oscillates at
50 Hz, and has a velocity amplitude of U0 =1.2 mm/s at the threshold of detection, as
determined by Kanter and Coombs (2003). Note: in their work they use peak-peak
values for amplitudes, while all amplitudes in this thesis are defined relative to peak
values (=1/2 peak-peak values).

All other canal neuromasts have stimulations which fall below this threshold. It

does not mean that that the other canal neuromasts are not moving, but that their

motions are small enough to be indistinguishable from the base-noise level inherent
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in the hair cells. For detection to occur these at locations, the velocity amplitude of

the sphere would need to be increased from its base level of 1.2 mm/s. From the 3D

still water chapter, we know that at a fixed frequency, the pressure gradient signal

scales linearly with the sphere velocity amplitude, U0 . For each canal neuromast to

individually meet the detection threshold level, the velocity amplitude would have to

be increased according to

Velocity amplitude threshold = 1.2 mm/s ∗
(

detection threshold level

rms dp/ds still water level

)
, (5.1)

where detection threshold level is defined by Hypothesis I, and the rms dp/ds still

water level is defined individually for each neuromast in figure 5-1.

In still water conditions, the canal neuromasts closest to the sphere are the ones

that meet the detection threshold level. However, in moving water conditions, the

detection threshold level for each neuromast will change, and it could be that some

locations become much noisier than others. The relative increase in velocity amplitude

might be less at a location further away, because the detection threshold level is much

lower. This will be dependent on the fish-prey orientation and flow conditions.

5.3.2 Mean flow characteristics

The average velocity and vorticity for the sculpin with fins extended and retracted in

laminar flow is presented in figures 5-2 and5-3. The free stream velocities are set at

2,4, and 8 cm/s, though at the level of the measurements (1.1 cm above the floor),

the boundary layer can interact to reduce these speeds. The sphere is located 1.6 cm

above the floor and to the side of the fish (see figure 5-1B), and so does not appear

in these figures. That affects of the sphere presence, in alterations of the flow around

it, can be seen more easily in the vorticity plots. These plots are averaged at 200 Hz

over a time interval of 2 s.

Figure 5-2 shows that a boundary layer of reduced flow develops around the side

of the fish, and grows pronounced after rounding the sides of the head. This is similar

to what was observed for the blind Mexican cave fish while in its gliding maneuvers
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(Windsor, 2008). This type of boundary layer is not expected in swimming fish, who

are able to keep the boundary layer attached to its surface (Anderson et al., 2001).

Figures 5-3 and 5-3 shows the flow around the sculpin body when it has its fins

extended. These results show qualitative agreement with the Coombs et al. (2007)

results, especially figure 5-3 where turbulence is introduced. There is a significant

reduction in flow in the region behind the extended pectoral fins. The fins are tilted,

which acts to help keep their bodies pushed to the floor in increasing rates of back-

ground flow. There are regions of recirculation behind the fins in both the laminar

flow and turbulent flow cases, and shedding also occurs for the turbulent flow case.

The flow moving past the body will stimulate both the superficial and the canal

neuromasts. For this chapter only the canal neuromasts are considered. As the flow

moves past the body, it will accelerate as it is forced around the sides of the head,

and decelerate on the other side. Flow accelerations indicate the presence of pressure

gradients, which are the signal to the canal lateral line system. Figure 5-5 shows a

comparison of how this signal changes as flow is increased for both the body with

fins retracted and extended. The plots present the instantaneous pressure gradient

signal to the trunk and infraorbital lateral lines, sampled over 2 s at 10 Hz. Plots are

presented in normalized units, and the direction of the positive pressure difference

between canal pore openings is in the direction of the arrows on the side of the fish.

The arrow direction is arbitrary, and it means that a positive value indicates that

the flow in the lateral line canal is in the direction of the arrow, and a negative value

indicates that flow in the canal is in a direction opposite the arrow.

The signal that appears towards the nose of the fish is a combination of the two

classic pressure gradient patterns that appear for a dipole source oscillating parallel

and perpendicular to a wall (see figure 2-4). The reason is that at the nose of the fish

the flow is forced to a stop, creating a high pressure point. As the flow moves away

from the nose it accelerates, reaching its fastest speeds rounding the side of the head

and creating a pressure low on both sides of the fish. The canal lateral line samples

this pressure field, which appears as a parallel dipole source from the nose towards

the side of the head, but then appears as a dipole source oscillating perpendicular to
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Figure 5-2: Average laminar flow characteristics for sculpin with retracted fins. The
free stream velocities are 2, 4, and 8 cm/s. Measurements of velocity and vorticity
were sampled at 200 Hz for 2 s, at locations 1.1 cm above the floor. There is a region
of reduced flow in the boundary layer that grows along the sides of the fish.
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Figure 5-3: Average laminar flow characteristics for sculpin with extended fins. The
free stream velocities are 2, 4, and 8 cm/s. Measurements of velocity and vorticity
were sampled at 200 Hz for 2 s, at locations 1.1 cm above the floor. There are regions
of reduced flow and recirculation behind the pectoral fins.
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Figure 5-4: Average turbulent flow characteristics for sculpin with extended fins. The
free stream velocities are 2, 4, and 8 cm/s. Measurements of velocity and vorticity
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the fish as it rounds the head. This is the prominent signal.

Hassan (1992a) used potential flow theory to compute the normalized pressure

differences along axisymmetric bodies gliding through the water, and having various

shapes and widths. The signal is measured around the edge of a 2D slice through the

body, and shows a similar range of maximum values up to 0.30. The signals do not

capture the classic dipole pressure gradient patterns seen here for two reasons. The

first reason is that the lateral line of the sculpin curves up and around the pectoral

fins, and samples the pressure field in a different manner. The second reason is due

to the real effect the viscous boundary layer around the fish which changes the nature

of the pressure field around the surface of the fish. This effect was attributed by

Windsor (2008) as a low Reynolds number effect, where the boundary layer is more

prominent than in high Reynolds number flows. Potential flow theory is often used to

approximate high Reynolds number flows, where inertial effects dominate, and viscous

effects are kept to a very small boundary layer relative to the size of the object in the

flow.

Another important difference between these results and those of Hassan and Wind-

sor is that the maximum values of the normalized pressure gradient signals grow with

increasing flow velocity. Potential flow theory, used by Hassan, precludes this possi-

bility. Including the effects of viscosity could affect this result, since the boundary

layer on the fish changes with flow velocity. However, Windsor’s results show that

for fish bodies of axisymmetric shape, the normalized signals overlap at the Reynolds

numbers used in the study (1000-8000).

For sculpin, which is a benthic fish, the effects of the floor boundary layer are

more significant at lower flow velocities. The pressure gradient signals are normalized

by the free stream velocities of 2, 4, and 8 cm/s. However, as figures 5-2 and 5-3

show, the flow is reduced from these values around the fish. The height of the sculpin

in these simulations is 2 cm, and interacts more directly with the bottom boundary

layer at the lower velocities. Normalizing by the velocities present around the sculpin

would increase the values seen in the plots for the 2 and 4 cm/s flows.

There are also slight changes in the shape of the signals as the flow increases in
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speed, and that suggests that the shape of the body matters. The sculpin body is not

axisymmetric. Additionaly, the 3D model of the sculpin includes a dorsal fin, a tail,

and pectoral fins (when extended). There are regions of isolated noise that appear at

different places along the lateral line at different flow speeds, depending on how the

body and flow are interacting over this observed period of time.

The pressure gradient patterns differ very little for the situation with pectoral fins

extended or retracted. It seems like the placement of the lateral line, up and around

the pectoral fins, negates some of the effects of the fins presence. One effect that can

be seen is a decrease in the maximum values obtained for the signals at each flow

speed, and on each side of the body. The fins redirect the flow in a manner that

mildly evens out the pressure changes.

When turbulence is introduced, figure 5-6 shows that signal excursions grow in

magnitude, but the overall shape remains the same. The extension of pectoral fins

does make a difference now. The region along the trunk lateral line behind the

pectoral fins shows much more activity than when the fins are retracted. It appears

that the recirculation and shedding events add more noise.

5.3.3 Neuromast impulse and step responses

The previous section described the mean flow characteristics to the canal lateral line

system. Although the mean component of the signal is often dismissed because of

the high pass filtering characteristics of the hair cell system, its importance cannot

be underestimated. The neuromasts respond to the hydrodynamic signals impressed

upon them, and a mean component will cause a sustained deflection of the neuromast

and hair cells contained within. In fact, as the hair cell adapts, it relaxes its stiffness,

and bends even further (Howard and Hudspeth, 1987). The neuromast models of

van Netten (2006) and Humphrey et al. (2001) adequately describe the canal and

superficial neuromast responses to local fluid velocities, respectively. This section

explores the responses of the canal neuromast in more detail, in particular, to impulse,

step, and oscillatory signals.

Curcic-Blake and van Netten (2005) have measured and modeled the responses of
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Figure 5-5: Instantaneous normalized pressure gradient signals along the infraorbital
and trunk lateral lines. The flow is laminar, and increasing in speed from 2-8 cm/s.
Data is sampled at 10 Hz over 2 s. The fish bodies are placed in the middle of each
plot, and indicate the locations of the canal lateral line pore openings. The presence
of the dorsal fin is visible as the darkened strip down the central portion of the fish,
and the extended pectoral fins are also evident. The arrows indicate the pressure
difference convention used. Positive values indicate that flow within the canals is in
the direction of the arrows. The canal pore spacing, ∆s, is 2 mm.
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Figure 5-6: Instantaneous normalized pressure gradient signals along the infraorbital
and trunk lateral lines. The flow is set at 8 cm/s, and the level of turbulence is
increased from laminar flow to flow with rms velocity values of 4 mm/s (mean ve-
locities subtracted), as measured at 1.1 cm above the floor around the fish. Data is
sampled at 10 Hz over 2 s. The arrows indicate the pressure difference convention
used. Positive values indicate that flow within the canals is in the direction of the
arrows. The canal pore spacing, ∆s, is 2 mm.
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the supraorbital canal neuromasts of the ruffe fish to impulse responses. Equations

3.4, 3.5, and 3.6 model their results for the canal neuromast response to local fluid

motions. Figure 5-7 (top) shows the neuromast response to an impulse and step

response. The impulse signal is actually a constant velocity signal of 1 ms duration, to

match the displacement motion of Curcic-Blake and van Netten’s impulse signal. The

two parameters are the resonance number, Nr = 69, and the transition frequency,

ft=16 Hz. Canal neuromasts for any given fish have a range of values for these

two parameters, each modeling changes in the neuromast response. The shape of

the impulse response displays the mechanical filtering properties of the neuromast

itself, and subtle changes result in different filtering properties. This characterization

process is the time analog to the white spectrum, reverse correlation method described

by Fay (1987).

The measured results of Curcic-Blake and van Netten differ slightly from the

modeled results. They attribute this to the nonlinear gating compliance effects, which

are most prominent at the moment of the impulse. As time increases, the stiffness

properties of the hair cells change, causing slightly faster cycles than predicted by the

linear model. Nonetheless, the differences are very slight, showing that the hair cell

mechanics only mildly affect the overall neuromast motion. This strengthens the idea

that motion of the neuromast can be modeled separately from the hair cell synaptic

responses, though the motion influences significantly the hair cell responses.

The shape of the impulse response determines not only the mechanical filtering

properties, but determines how it will respond to other types of signals, such as the

step response. This is most clearly observed in figure 5-8 (top), which shows the

impulse and step responses of the sculpin canal neuromast models (see also figure 3-

15 and subsequent modifications for model parameters). Variations in the maximum

excursions, as well as the time between zero crossings, will affect the final steady

state step response. The steady state step response indicates neuromast displacement

(deflection) to the mean part of the signal.

The local fluid velocity within the subdermal canal has a frequency dependent

solution based on the boundary layer height that develops (see figures 3-7 and 3-8).
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It is the pressure difference between canal pore openings that drives the fluid within

the canal, and so the overall response of the canal neuromast to outside water motion

has to be taken into account. Figures 5-7 and 5-8 (bottom) show the canal neuromast

impulse and step responses to outside acceleration.

Figure 5-9 shows the sculpin canal neuromast response to sinusoidal signals. Two

different frequencies are used (20 Hz and 50 Hz) to demonstrate that although the

neuromast is more sensitive to particular frequencies of local fluid motion (top), the

overall system response to outside acceleration signals is fairly constant (bottom).

This was main point of van Netten (2006) in describing how sensitivity to particular

frequencies, due to inertial resonance properties of the neuromast, often balances the

filtering effects of the canal channel, yielding an overall flat system response. For the

sculpin models presented, the spherical and flat plate models respond very similarly

to the sinusoidal signals (unlike the step responses), while the cylindrical model is

overall more sensitive.

The fact that fish neuromasts have a variety of impulse responses suggests that

each may be tuned to respond to environmental signals in a particular way. Each

neuromast on the fish body will encounter different hydrodynamic signals based on its

location on the body and the type of signal present. To illustrate this concept, figure 5-

10 shows the resulting neuromast motions to oncoming flow for three locations on the

sculpin body. The flow is laminar upstream, moving at 8 cm/s, and 2 seconds worth

of the pressure gradient signal is given for a point by the nose (on the infraorbital

lateral line), a point by the pectoral fin insertion location (trunk lateral line), and

a point by the tail (trunk lateral line). The neuromast displacement for the three

types of neuromast models for the sculpin are compared with the displacements of

the canal lateral line of the Ruffe, whose parameters are given in Curcic-Blake and

van Netten (2005). On each plot the pressure gradient signal is identified by an arrow

to the side of the plot. The oscillations seen in the neuromast motions are mostly

from turbulence that develops along the floor of the channel, sides of the fish, and

behind the fins. The 50 Hz oscillations from the sphere cannot be identified (by eye)

in these plots.
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Figure 5-7: Impulse and step responses of the Ruffe canal neuromast. The top plots
show the neuromast displacements to impulse and step inputs of 1 µm/s velocity
amplitude of the fluid within the canal. The bottom plots show the neuromast dis-
placements to impulse and step inputs of 1 mm/s2 acceleration amplitude of the fluid
outside of the canal. The neuromast model is based on the work of van Netten (2006),
and has a resonance number of Nr = 69, and a transition frequency of ft = 16 Hz.
For measured impulse responses, see Curcic-Blake and van Netten (2005).
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Figure 5-8: Impulse and step responses of the Sculpin canal neuromast. The top
plots show the neuromast displacements to impulse and step inputs of 1 µm/s veloc-
ity amplitude of the fluid within the canal. The bottom plots show the neuromast
displacements to impulse and step inputs of 1 mm/s2 acceleration amplitude of the
fluid outside of the canal. Three neuromast models for the sculpin are compared (see
text for details).
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Figure 5-9: Sinusoidal responses of the Sculpin canal neuromast. The top plots show
the neuromast displacements to sinusoidal inputs of 1 µm/s velocity amplitude of
the fluid within the canal. The bottom plots show the neuromast displacements to
sinusoidal inputs of 1 mm/s2 acceleration amplitude of the fluid outside of the canal.
Three neuromast models for the sculpin are compared (see text for details).
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Figure 5-10: Neuromast model comparison in 8 cm/s laminar flow . Three neuromast
models for the sculpin (see text), and one model for the Ruffe (van Netten, 2006),
are compared at three separate locations on the sculpin body (labeled A, B, and C).
The resonance number, Nr, and transition frequency, ft (in Hz), for the spherical
neuromast models are listed next to each response. The pressure gradient signal in
each plot is identified by the arrow to its side. The units on the ordinate represent
displacement motions of the neuromast (nm), and Pa/m for the pressure gradient
signal only. The location of the sphere is shown relative to the fish body. The
oscillations seen in the neuromast motions are mostly from turbulence that develops
along the floor of the channel, sides of the fish, and behind the fins. The 50 Hz
oscillations from the sphere cannot be identified (by eye) in these plots.
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There are three main observations from these plots. First, the neuromast dis-

placement in response to the mean pressure gradient signal varies greatly by impulse

response. This indicates that some neuromasts will be more sensitive to changes in

bulk flow conditions than others. Second, the magnitude of displacement depends

on specific location of the neuromast on the fish body. Near the nose and tail the

pressure gradient is less than above the pectoral fin insertion point. This may be of

less consequence than how much noise there is at each location, which is the final

observation. The nose being near the floor experiences turbulence from the bottom

boundary layer, and the tail experiences turbulence from the flow developed along the

body and as a result of flow around the fins. Of the three points chosen, the location

of least noise appears to be above the pectoral fin, where any surface boundary would

be negligible, and yet is either sheltered from or is above floor induced turbulence.

It should be noted that the neuromast displacements are predicted by linear mod-

els. It is unclear to what range of displacement these models are valid. A displacement

of 1000 nm (1 micron) is still small compared to the average size of canal neuromasts

(hundreds of micrometers), and so it is likely that the models are valid. However, the

material stiffness of individual hair cells do change and in a time dependent nature,

and so it would not be surprising to see actual neuromast displacements which differ

from those predicted by these models.

It was mentioned earlier that it is the time dependent, oscillatory motion of the

hair cells that results in the tensioning and relaxing of the gating apparatus. This

would seem to indicate that the mean displacement is irrelevant, because after the

initial displacement, the gating apparatus adapts to the hair cells new location. But

there is evidence that the hair cells have limits to their ability to adapt. Eactock et al.

(1987) show that hair cells adapt almost completely for small amplitude signals (up

to 200 nm), but increasing less for larger displacements (66% for an 800 nm step).

Therefore, increasing levels of flow will eventually force all types of neuromasts to

respond, as seen in the experiments of Chagnaud et al. (2008).
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5.3.4 Determination of the high pass characteristics

Though the material properties of the neuromast, its mass, stiffness, shape, and size,

determine how it responds to hydrodynamic stimuli, it is the hair cell itself which

determines what signals it will send to the brain. Eatock (2000) reviews this process

in detail, explaining how Ca2+ works to help reposition elastic links between the

stereocilia to relieve tension, and lower the transducer current. There are additional

mechanisms at work within the hair cell, resulting in a process that is not linear.

Analytical models which describe the various facets of the hair cell were put forth by

Tinevex et al. (2007), and a virtual (numerical) 3D hair model was created by Nam

et al. (2007) to duplicate more realistically the multiple degrees of freedom present

in real hair cells.

Roberts and Rutherford (2008) give an explanation of the overall purpose and

operation state of the hair cell. Basically, they suggest that the hair cell works to

actively navigate away from saturation regions (negative and positive), and reach

an operating point were responses to small signals are linear. In addition, there are

active force generators and electrical amplifications which keep the hair cell near the

point of instability, keeping it sensitive to small signals. The combination of these

mechanisms provides both range and sensitivity.

For this thesis, there is a more simplified approach to take. An input-output

transfer function can serve the purpose of representing the hair cell internal workings.

Eatock et al. (1987) provide such a possibility in their experiments on the otolith

of a bullfrog’s sacculus. In one experiment, they manually displace the otolith using

a step function generator, and record the microphonic currents that result. The

displacement is not due to fluid passing by, but is a result of actual displacement,

and so the output transducer current is a result of the hair cell adaptation to this

displacement. The result is an exponentially decaying function with a time constant

of 30 ms.

When individual hair cells were manually displaced according to a step function

stimulus, the resulting transducer currents had exponentially decaying functions with
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time steps ranging from 10-200 ms, and reaching steady state levels that were 5-80%

of the peak values. Eatock et al. point out that their in vitro experiments are invasive

and potentially damaging, and so the results are not definite.

In signal processing terms, the input is a step function, µ (t), and the output is

an exponential decay function, e−t/τµ (t), given as

µ (t) → h (t) → e−t/τµ (t) , (5.2)

where h (t) is the time domain transfer function, t is time, and τ is the time constant.

In the time domain, the transfer function is convolved with the step function, but in

the frequency domain, it is multiplied. The frequency domain solution, attained by

taking Fourier transforms of all functions, is given as

H(ω) =
jω

1/τ + jω
, (5.3)

where ω is the radian frequency. There could also be a nonlinear scaling component

based on neuromast displacement, which would appear in the numerator of the trans-

fer function. Secondly, Eatock et al. (1987) have suggested that the response can also

be fit by a weighted combination of two exponentials, one with a fast time constant

and one with a slow time constant. In the frequency domain, the effects would sum

together as A1H (ω, τ1) + A2H (ω, τ2) , where A1 and A2 are the weights.

Figure 5-11 shows some possible output step functions based on the time constant,

and the resulting filtering effects. Decreasing time constants result in an increasing

range of low frequencies that get filtered, whereas increasing time constants pass more

frequencies. In term of scaling, this particular transfer function is not particularly

effective in reducing frequencies. Since the plot is in dB (20 log10 (|H (ω)|) ), a 20 dB

decrease results in a tenfold reduction of the signal at that frequency, whereas a 6

dB decrease results in a twofold reduction. At the tenfold reduction mark (-20 dB),

the 10 ms time constant has reduced frequencies from 0-1.6 Hz, and for the higher

time constants, the range lessens to under 1 Hz. It should be emphasized that these

filtering effects do not affect the neuromast or hair cell displacement, but do affect
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the synaptic signals that the hair cell sends to the fish brain.
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Figure 5-11: Hair cell adaptation and filtering effects. (A) The experimental results
of Eatock et al. (1987) suggest that hair cells have an exponential decaying response
to a step displacement. Curves are based on a range of time constants, τ , that
reflect measured responses. (B) In the frequency domain, the exponential decay step
response has filtering properties. Note: this filtering does not apply to the hair cell
motion, but to the synaptic signals that it sends to the brain.

For this thesis, the pressure gradient signal generated by the laminar and turbulent

are the input to the neuromast models, and the output is neuromast displacement

in both the time and frequency domain. For the turbulent flows, a second series of

plots show high pass filtered (>10 Hz) results. In essence, this looks at the higher

frequency motions of the neuromast. The corner frequency of 10 Hz would be at

the far extreme of the fish filtering abilities, and should not be considered realistic.

Experimental evidence of Chagnaud et al. (2008) suggests that the corner frequency

might be around 3-5 Hz, which is still much higher than suggested by equation 5.3.

5.3.5 Laminar flow results

Figures 5-12 - 5-14 present the results for laminar flow past a sculpin body sitting on

the floor. In plot (A) of each figure, the rms velocity fluctuations are shown around

the sculpin. The data is sampled at 200 Hz for 2 s, at locations 1.1 cm above the

floor, which is at the level of the mid plane of the sculpin. Data points are shown for
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an area 20x12 cm, with 9 points every square cm. For 2 cm/s flow, the mean rms

velocity fluctuations over the area shown is about 8 µm/s , increasing to 80 µm/s

for 4 cm/s flow, and 200 µm/s for 8 cm/s flow. Localized fluctuations behind the

pectoral fins increase from less than 0.5 mm/s to over 1.5 mm/s as the flow speed

increases. The location of the sphere is not seen in the plot because it is located 1.6

cm above the floor, the flow alterations from its presence can be seen. It’s location

relative to the fish is identified in plot (D) of each figure.

In plot (B) of each figure, the pressure gradient signal at each location on the

source side lateral line is shown. This includes the infraorbital, supraorbital, mandibu-

lar, and trunk canal lateral line locations. Fluctuations due to turbulence are evident

at many locations. These fluctuations result from the turbulence that develops in the

floor boundary layer, and also along the boundary layer that develops along the side

of the fish. At locations where the turbulence is reduced, 50 Hz signal oscillations

are visible at repeating intervals of 500 ms on, 500 ms off patterns. The velocity

amplitude is 1.2 mm/s, as in the still water case, for flow speeds of 2-4 cm/s. At 8

cm/s flow, the velocity amplitude was increased to 6.0 mm/s.

The signal 50 Hz oscillations are not easily seen as flow speeds increase for two

reasons. The first is that they are tiny in comparison with large increases in the

range of mean pressure gradient. At 2 cm/s flow the values range from -10 to 15

Pa/m, for 4 cm/s flow the values range from -50 to 100 Pa/m, and for 8 cm/s flow

the values range from -300 to 500 Pa/m. Even at closest neuromast location, the

maximum pressure gradient induced by the dipole oscillations is about 0.1 Pa/m

for the 1.2 mm/s velocity amplitude signal, and about 0.5 Pa/m for the 6.0 mm/s

velocity amplitude signal. The second reason is the turbulent fluctuations are much

larger than this at most neuromast locations.

Plot (C) of each figure shows the neuromast displacement at one lateral line lo-

cation, which is identified in plot (D) of each figure. It turns out that this particular

neuromast location, positioned above the pectoral fin insertion point, has relatively

low noise attributes at many flow speeds. This allows the filtering properties of the

canal neuromast system to make the 50 Hz signal visible both in the temporal domain

209



and also in the spectral domain, as shown in plot (E) of each figure. The displacement

for the three types of neuromast model - spherical, flat plate, and cylindrical - are

compared in plots (C) and (E). Their responses to mean signals show that the flat

plate model has an almost 1:1 scaling, while the cylindrical model is always lessoned

and the spherical model is greatly increased (about 6:1 scaling). This is in contrast to

the spectral results, which shows an overlap of the spherical and cylindrical models at

the low frequencies (<10 Hz), an overlap of the spherical and flat plate models from

about 20-60 Hz, and overlap of all three above 100 Hz.

Figure 5-15 shows the emergence of a dominant spectral peak at 50 Hz over four

laminar flow simulations at 8 cm/s. Whereas the 1.2 mm/s velocity amplitude of the

oscillating sphere was sufficient to be seen above the noise at the neuromast location

above the pectoral fin, this was not the case for the 8 cm/s flow. In fact, it only

becomes visible around the 4 mm/s velocity amplitude range, which can be seen in

the spectral plot where the velocity amplitude was set to 4.3 mm/s. At this amplitude,

the signal is greater than the noise for that one selected neuromast. There were a

number of locations needing less stimulation than this (2-3 mm/s), but most needed

this and much more.

An open question is how a fish might handle neuromast locations which have good

signal-to-noise ratios, but for which the signal stimulus is relatively small next to other

noisy neighboring neuromast locations. This is avenue for future research. At least

for the laminar flow situations, the 50 Hz signals that appear in the spectral domain

are also visible in the time domain, allowing for the possibility of phase-locking to

take place.

5.3.6 Turbulent flow results

Most naturally occurring flows have turbulence associated with them. The ocean

has turbulent motions in the bottom boundary layers and in the near surface mixing

region (Grant and Madsen, 1986), and small creeks can have velocity fluctuations as

high as 70 mm/s for 10-25 cm/s flow speeds (Hanke, 2001). In the lab experiments

of Chagnaud et al. (2008), a flow which had an upstream and downstream collimator
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Figure 5-12: 2 cm/s laminar flow characteristics. (A) rms velocity fluctuations, sam-
pled at 200 Hz for 2 s, at locations 1.1 cm above the floor. Data points are shown for
an area 20x12 cm, with 9 points every square cm. (B) Pressure gradient signal at each
location along the source side lateral line (infraorbital, supraorbital, mandibular, and
trunk). Two types of fluctuations can be seen: turbulence generated fluctuations,
and also 50 Hz vibrations for 500 ms on, 500 ms off patterns. The velocity amplitude
of the 3 mm radius sphere is 1.2 mm/s. (C) Spherical, flat plat, and cylindrical model
neuromast displacement at one lateral line location, as shown in (D). (E) The power
spectral density of the neuromast displacement at that one location. At this location,
the 50 Hz signal is evident both in the temporal domain and in the spectral domain
as the dominant peak.
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Figure 5-13: 4 cm/s laminar flow characteristics. (A) rms velocity fluctuations, sam-
pled at 200 Hz for 2 s, at locations 1.1 cm above the floor. Data points are shown
for an area 20x12 cm, with 9 points every square cm. Turbulence generated by the
pectoral fins extension into the oncoming flow is visible. (B) Pressure gradient signal
at each location along the source side lateral line (infraorbital, supraorbital, mandibu-
lar, and trunk). Turbulent fluctuations can be seen, but the 50 Hz vibrations for 500
ms on, 500 ms off patterns are not easily distinguished. The velocity amplitude of
the 3 mm radius sphere is 1.2 mm/s. (C) Spherical, flat plat, and cylindrical model
neuromast displacement at one lateral line location, as shown in (D). (E) The power
spectral density of the neuromast displacement at that one location. At this loca-
tion, the noise is small enough that the 50 Hz signal is evident both in the temporal
domain and in the spectral domain as the dominant peak. There is more energy in
lower frequencies than for the 2 cm/s laminar flow.
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Figure 5-14: 8 cm/s laminar flow characteristics. (A) rms velocity fluctuations, sam-
pled at 200 Hz for 2 s, at locations 1.1 cm above the floor. Data points are shown
for an area 20x12 cm, with 9 points every square cm. Turbulence generated by the
pectoral fins extension into the oncoming flow is visible on both sides of the fish. (B)
Pressure gradient signal at each location along the source side lateral line (infraor-
bital, supraorbital, mandibular, and trunk). Turbulent fluctuations can be seen, but
the 50 Hz vibrations for 500 ms on, 500 ms off patterns are not visible. The velocity
amplitude of the 3 mm radius sphere is 6.0 mm/s. (C) Spherical, flat plat, and cylin-
drical model neuromast displacement at one lateral line location, as shown in (D).
(E) The power spectral density of the neuromast displacement at that one location.
The velocity amplitude was raised to 6.0 mm/s so that the 50 Hz peak would rise
above the low frequency noise, which is significantly more than that found at 2 and
4 cm/s flows.
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Figure 5-15: Emergence of the dominant, prey induced, spectral peak in 8 cm/s
laminar flow. Four separate flow simulations were run, each with increasing velocity
amplitude. The sphere location and neuromast location is the same as shown in the
previous figures.
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produced velocity fluctuations which increased linearly with flow speed. The turbu-

lence intensity, expressed as the ratio of the root mean square velocity fluctuations to

the mean velocity, can be estimated to be about 10% for their data, leading to rms

velocity fluctuions as high as 13 mm/s for 13 cm/s flow speeds.

For the turbulent simulations shown in figures 5-16 - 5-27, the rms velocity fluc-

tuations ranged from 0.7-4 mm/s. As described previously, 9 points per square cm,

located 1.1 cm above the bottom, where used to sample velocity at 200 Hz for 2 s.

The mean turbulent value was calculated for the whole region, the 20x12 cm area (ex-

cluding the fish location), and that value used to characterize the level of turbulence.

As individual plots show, local velocity fluctuations varied significantly, have much

higher values than the mean, while other areas had smaller fluctuations. Pockets of

turbulence would conduct downstream with the flow, so that the 2 s window is just

a brief snapshot of local conditions. Note also the color scale for the 2 cm/s and 4

cm/s flow with rms velocity ∼ 0.7-1 mm/s (figures 5-16 and 5-20) ranges from 0-1.5

mm/s, like the laminar flow plots, but ranges from 0-5 mm/s for all other turbulence

plots.

The figures are arranged in pairs, with the first showing the turbulent flow field,

the pressure gradient signal to the lateral line, the resulting neuromast motions, and

the spectrum of these motions. The second figure in each pair shows how the hair

cell would filter those motions (with a time constant of 10 ms). The units are labeled

as neural equivalent displacements, meaning that these are the motions that would

correspond to internal currents and potentials produced by the hair cell. Likewise,

the filtered spectrum corresponds to what would produced by the hair cell.

The second figure in each pair of figures also presents the high pass (>10 Hz)

filtered motions. Neither the neuromast motions nor hair cell filtering can produce

results like this, only being able to filter low frequencies motions up to possibly 5

Hz. However, they are real oscillations and motions in the sense that these are the

tiny fluctuations present in the signal, superposed on the lower frequency signals.

They are instructive in providing temporal results of what can be seen in the spectral

results, namely the dominance or masking of the 50 Hz source signal in relation to
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other high frequency signals.

In the 2 cm/s flow with rms velocity fluctuations of 0.7 mm/s, the pressure gradient

signal to the lateral line has doubled from that of laminar flow (compare figures 5-16B

and 5-16B). This is due to the nature of the turbulence generation in these simulations,

which essentially randomly injects particles upstream, causing pressure oscillations

which result in flow field fluctuations. Plot (C) shows the canal neuromast motions

resulting from it pressure gradient signal, with the three types of neuromast models

compared. Two of the models show that some of the excursions would reach saturation

if not further filtered by the hair cell. Tiny fluctuations are visible, corresponding to

the dominant spectral peak at 50 Hz seen in plot (E).

The second figure in this pair (figure 5-17) shows the work of the hair cell to reduce

the large neuromast excursions previously seen, to motions equivalent to having 20 nm

excursions. This is a result of the gating apparatus and hair cell chemistry adapting

to the neuromast motions. Plot (B) shows the equivalent spectral representation

has reduced the low frequency components, and lowered the noise level overall. The

oscillations which were hardly visible in figure 5-16C are now comparably larger to

the reduced low frequency signal components. Plots (C) and (E) show how the

oscillations due to the source dipole signal are much larger than the noise present.

Even though there are noise excursions which are larger, they are infrequent in time

and density, unlike the source signal. In the temporal sense, the constancy of the

source oscillation amplitude and the density of energy expressed are like a ringing

bell against the relatively static background.

The situation changes with an increased level of turbulence. The 3.5 mm/s velocity

amplitude of the source signal now becomes swamped by equally loud noise. This

is evident in the neuromast motion response spectrum see in figure 5-18E, where

the 50 Hz peak is no larger than any of the nearby peaks, and orders of magnitude

smaller than the low frequency peaks. The neuromast motions are have 300 nm

excursions, following the dominant low frequency signal. The hair cell filtering (figure

5-19A) brings these excursions well within the saturation limit, but static noise is not

reduced enough for the source signal to be seen (plot B). This is confirmed in the high
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frequency neuromast motions (plots C and E), which shows that the noise works to

distort the 50 Hz oscillations in a way that makes them unrecognizable.

The 4 cm/s flow with ∼ 1 mm/s rms velocity fluctuations (figure 5-20) shows

patchy regions of turbulence. The neuromast motions (plot C) are similar to those

seen in the 2 cm/s flow with ∼ 0.7 mm/s rms velocity fluctuations (figure 5-16),

as are the spectral results. In fact, hair cell filtering and high pass filtering show

almost identical results with source oscillations that stand out against pockets of

lesser background noise (compare figures 5-21 and 5-17).

Increasing the turbulence fluctuations to 3 mm/s results in increased neuromast

excursions and spectral masking, similar to what was seen in the 2 cm/s flow with

2 mm/s turbulent fluctuations (compare figures 5-22 and 5-18). However, the noisy

fluctuations are intermittent enough that although the 50 Hz source signal is distorted

by the noise, the high pass filtered signal shows traces of signal in its constancy and

density (see figure 5-23E).

This constancy of amplitude and density of signal energy in time are more clearly

evident for the 8 cm/s flow that has turbulent fluctuations of ∼ 2 mm/s, in between

the 2 cm/s and 4 cm/s flow with 1 mm/s and 3 mm/s turbulent fluctuations (figure

5-25C,E). It should be noted that the source amplitude has increased its velocity am-

plitude to 6.0 mm/s, as compared to 3.5 mm/s for the 2 cm/s turbulent flows and 4.3

mm/s for the 4 cm/s turbulent flows. The source oscillations are made distinguish-

able against the background noise because of the hair cell filtering, which lowers the

low frequency energy enough for a spectral peak to emerge (compare figures 5-24E

and 5-25B). The remarkable design of the hair cell in using the gating apparatus ten-

sion to dictate the signal rather than the neuromast position is seen in the reduction

of neuromast motions, from the deflections of 1000-3500 nm (figure 5-24C), to the

equivalently tensioned motions of 50 nm excursions (figure 5-25A).

Increasing the turbulent fluctuations to 4 mm/s is too much for the 6.0 mm/s

source signal to be detected, and figures 5-26 and 5-27 show similar masking and

disappearance of the signal for the 8 cm/s flow as seen in the 2 cm/s with lesser

turbulence and a lesser source amplitude (compare with figures 5-18 and 5-19).
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Figure 5-16: 2 cm/s turbulent flow. (A) Root mean square velocity fluctuations,
sampled at 200 Hz for 2 s, at locations 1.1 cm above the floor. Data points are
shown for an area 20x12 cm, with 9 points every square cm. The mean rms velocity
fluctuation for the region is 0.7 mm/s. (B) Pressure gradient signal at each location
along the source side lateral line (infraorbital, supraorbital, mandibular, and trunk),
over 1.8 s of the 2 s window. (C) Spherical, flat plat, and cylindrical model neuromast
displacement at one lateral line location, responding to its pressure gradient signal.
(D) The location of the selected canal neuromast, relative to the sphere. The sphere
oscillates at 50 Hz, for 500 ms on and 500 ms off repeating patterns. The velocity
amplitude is 3.5 mm/s, and the sphere radius is 3 mm. (E) The power spectral
density of the neuromast displacement, sampled at 500 Hz, and calculated using
Welch’s method (1967).
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Figure 5-17: Hair cell filtering and high pass (>10 Hz) response to the 2 cm/s flow
with 0.7 mm/s turbulent fluctuations. (A) The hair cell filters the neuromast dis-
placement through its gating apparatus and internal chemistry. The neural equivalent
displacements are those motions which correlate to the currents and potentials of the
hair cell. (B) The power spectral density of the hair cell output, in relation to the
neural equivalent motions. (C) The high frequency neuromast motions associated
with its pressure gradient signal. This is not the fish’s filtering, but it is what the fish
is experiencing within the filtered frequency range. (D) Canal neuromast location
relative to the fish body and vibrating sphere. (E) A zoomed in view of part of the
signal in (C). Sampling of signals and sphere parameters given in figure 5-16.
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Figure 5-18: 2 cm/s flow with 2 mm/s mean rms velocity fluctuations. Explanation
and description as in figure 5-16. Parameters that differ: color scale is from 0-5 mm/s.
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Figure 5-19: Hair cell filtering of the 2 cm/s flow with 2 mm/s mean rms velocity
fluctuations. Explanation and description as in figure 5-17.
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Figure 5-20: 4 cm/s flow with 1 mm/s mean rms velocity fluctuations. Explanation
and description as in figure 5-16. Parameters that differ: sphere velocity amplitude
is 4.3 mm/s.
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Figure 5-21: Hair cell filtering of the 4 cm/s flow with 1 mm/s mean rms velocity
fluctuations. Explanation and description as in figure 5-17. Parameters that differ:
sphere velocity amplitude is 4.3 mm/s.
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Figure 5-22: 4 cm/s flow with 3 mm/s mean rms velocity fluctuations. Explanation
and description as in figure 5-16. Parameters that differ: color bar range is from 0-5
mm/s; sphere velocity amplitude is 4.3 mm/s.
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Figure 5-23: Hair cell filtering of the 4 cm/s flow with 3 mm/s mean rms velocity
fluctuations. Explanation and description as in figure 5-17. Parameters that differ:
sphere velocity amplitude is 4.3 mm/s.
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Figure 5-24: 8 cm/s flow with 2 mm/s mean rms velocity fluctuations. Explanation
and description as in figure 5-16. Parameters that differ: color bar range is from 0-5
mm/s; sphere velocity amplitude is 6.0 mm/s.
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Figure 5-25: Hair cell filtering of the 8 cm/s flow with 2 mm/s mean rms velocity
fluctuations. Explanation and description as in figure 5-17. Parameters that differ:
sphere velocity amplitude is 6.0 mm/s.
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Figure 5-26: 8 cm/s flow with 4 mm/s mean rms velocity fluctuations. Explanation
and description as in figure 5-16. Parameters that differ: color bar range is from 0-5
mm/s; sphere velocity amplitude is 6.0 mm/s.
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Figure 5-27: Hair cell filtering of the 8 cm/s flow with 4 mm/s mean rms velocity
fluctuations. Explanation and description as in figure 5-17. Parameters that differ:
sphere velocity amplitude is 6.0 mm/s.
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5.3.7 Effect of extended fins on signal detection

One question to address is the possibility that the reduced region of flow behind the

fins leads to improved signal detection. Figure 5-28 shows the sculpin fish with fins

retracted. The 8 cm/s background flows have similar levels of turbulence to the flows

being compared with the sculpin having fins extended (see figures 5-24 and 5-26).

Figure 5-2 showed that a boundary layer of reduced flow speed develops down

the side of a sculpin shaped body in oncoming flow. When turbulence is introduced,

figure 5-24 shows at a certain point down the side of the body the surface boundary

layer flow becomes turbulent. In figure 5-26, an increased level of turbulence in the

flow triggers the turbulence in the surface boundary layer at a point farther upstream

on the fish body. For the sculpin canal lateral line, the physical separation of canal

pore openings, at an approximate distance of 2 mm, act as natural spatial filters. The

high frequency fluctuations that develop because of turbulence in the boundary layer

are essentially low pass filtered by the spatial integration from pore to pore.

To quantitatively compare differences, figure 5-29 presents the rms detrended pres-

sure gradient fluctuations for all canal lateral line locations in the 8 cm/s turbulent

flows. In two of the flows the fins are retracted, and in two of the flows the fins are

extended. The most notable difference is that the noise to the canal lateral line when

fins are retracted is more even than when fins are extended. There is more noise near

the tail of the sculpin when the fins are extended, as seen in neuromast numbers 50-60

which represent the trunk lateral line on the side of the fish opposite the oscillating

sphere.

There does not appear to be a signal benefit to the lateral line in the region

behind the pectoral fins. The recirculation and shedding around the pectoral fins and

tail lead to increasing levels of noise. Since the lateral line goes up and around the

pectoral fins, any signal detection benefits that might have been realized behind the

fins, such as along the mid plane of the body, seem to be forfeited.

In all four flows, the level of noise to the canal lateral line fluctuates around the10

Pa/m level. The fact that there is not a significant increase in noise, even when
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turbulence level increases, can be attributed to the way it was calculated. The step of

detrending the pressure gradient signal, over the short time intervals of 400-500 ms,

can have the effect of acting like a high pass filter, similar to what the hair cell filtering

system might do. In the case of these particular flows, the increase in energy mostly

occurs in the low frequencies (<3 Hz). The step of detrending has the possibility of

reducing some of that energy.
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Figure 5-28: Two different turbulent flows are presented, with increasing levels of
turbulence. Note that part way down the fish, the surface boundary layer becomes
turbulent. See figure 5-2 to see the surface boundary layer.
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Figure 5-29: A quantitative comparison of the rms detrended pressure gradient signal
to the canal lateral line for the situations when the fins are retracted vs. extended.
Values are calculated over a period of 400-500 ms for each canal lateral line location on
the body. The canal neuromast numbers correspond to the following locations with
the following symbols: tr-trunk, io=infraorbital, so=supraorbital, mn=mandibular,
oc-occiptal. Source side lateral line, fins retracted: tr ∼ 1-22; io ∼ 23-29; so ∼ 30-37;
mn ∼ 38-47; Back side, fins retracted: tr ∼ 48-68; io ∼ 69-75; so ∼ 76-83; mn ∼
84-92; oc ∼ 93-96; Source side lateral line, fins extended: tr ∼ 1-23; io ∼ 24-31; so ∼
32-39; mn ∼ 40-49; Back side, fins extended: tr ∼ 50-70; io ∼ 71-77; so ∼ 78-85; mn
∼ 86-94; oc ∼ 95-98
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5.3.8 Threshold of detection in moving water

The goal of this chapter is to understand how turbulent flows affect the signal detec-

tion abilities of fish, and of the sculpin in particular. The previous sections presented

the building blocks that will enable this question to be addressed.

First, flows are characterized by their level of turbulence, based on the average of

root mean square velocity fluctuations at many points around the fish. The sampling

of points occurred at the mid plane level of the fish, so that sampling might reflect

what the fish lateral line is being exposed to. Flow speed will be monitored, though

from the start the premises of this chapter has been that it is the a.c. fluctuations

that matter most.

Second, the hydrodynamic signal to the canal lateral line is characterized by the

root mean square of the detrended pressure gradient fluctuations. Detrending repre-

sents a basic level of filtering, removing the mean and best linear fit from the selected

segment. Since the oscillating sphere vibrates in recurring segments of 500 ms on,

500 ms off, the noise is measured during a 400-500 ms segment of the off cycle. That

means two measurements are made during each characterization of the 2 s flow win-

dow. The measurements are not expected to be identical, since the flow can changed

based on how the flow is evolving in response to turbulent structures present, and

based on its interaction with the fish body. Error bars in the plots will represent this

variability.

Signal detection thresholds can be calculated from these two parameters alone.

The main theory being tested is the idea that detection occurs when the root mean

square source signal fluctuations are greater than the background noise fluctua-

tions. Using Hypothesis I, the noise is said to be set at a minimum threshold level,

base-noise (still/moving), until it is surpassed by a.c. flow noise, which becomes

the new threshold level. The minimum threshold level was determined from the ex-

perimental results of Kanter and Coombs (2003), using a vibrating sphere in still

water. Figure 5-1 shows the root mean square pressure gradient signal to the canal

lateral line (trunk and infraorbital), from a 3 mm sphere, oscillating at 50 Hz, with
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a velocity amplitude of 1.2 mm/s, and located 5.5 cm from the longitudinal midline

of the fish. It is an assumption of this thesis, that when the signal to at least three

canal neuromasts is strong enough to overcome the inherent base-level noise, the fish

responds with a strike. Deciding that three neuromasts need to be stimulated is not

based on experimental evidence, and this will lead to some flexibility of the results

presented. By choosing at least three neuromasts to be stimulated, some level of

tolerance is built into this model to account for the fact that the 3D model is not the

exact shape of the fish in the experiments. Using the results shown, and in consid-

eration of other lateral line neuromasts (not shown), the base-noise in still water is

set to 0.075 Pa/m.

Kanter and Coombs (2003) defined signal detection threshold as that level of

sphere velocity amplitude which elicited a strike (or a motion to strike) from the

sculpin. Note: their velocity amplitude is measured from peak to peak (crest to

trough), whereas to be consistent with the notion of this thesis, the velocity amplitude

is defined as half that value (base to crest or base to trough). Having used the

same fish-sphere configuration, comparisons can be made with their results. Using

equation 5.1, the sphere velocity amplitude which will elicit a response from the fish

(hypothetically) can be calculated. Basically, the signal to the fish in still water

is raised high enough to match the pressure gradient noise from the flow, and the

velocity amplitude in still water (1.2 mm/s) is multiplied by that amplification. The

amount of amplification needed is neuromast specific, since each location will have a

unique amount of noise, and also the level of the source signal strength is location

specific.

Figure 5-30 presents the signal detection results for the same neuromast high-

lighted throughout the results (see plot E), the neuromast used to define the limit

of detectability in still water stimulation. Plot (A) shows the velocity amplitudes

needed to create the rms pressure gradient signal equal to the noise level charac-

terized in the various flow simulations for that neuromast. There is the expected

trend at each flow speed that as turbulence increases, the detection threshold level

rises. Another expected trend is that the variability of detection threshold level also
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Figure 5-30: Detection thresholds based on pressure gradient signals to the canal line in
0-8 cm/s background flows. The level of noise is determined by taking the root mean square
of the detrended pressure gradient signal over two 400-500 ms intervals, and then averaging.
The standard deviation of these two measurements is represented by the error bars. The
turbulence is defined as the average of the root mean square velocity fluctuations at points
1.1 cm above the floor around the fish, over a 2 s interval. Threshold is calculated according
to equation 5.1. (A) Detection threshold level vs. turbulence. Dotted lines connect data
points. Solid lines are a best fit for each flow speed. (B) Detection threshold vs. flow
speed. Isoturbulence contours are drawn using interpolated values from the best fit lines
of (A). Baseline values of turbulence correspond to values obtained in the laminar flows.
The data of Kanter and Coombs (2003) is plotted using the definition of velocity amplitude
consistent with this thesis, defined as base-crest rather than peak-peak (crest to trough).
The levels of turbulence depicted are hypothetical, and do not reflect the actual levels of
turbulence present in their experiments (see text). (C) and (D) use the high pass filtered
(>10 Hz) pressure gradient signal, rather than the detrended signal. All else is the same as
in (A) and (B). (E) The location of the 3 mm sphere, relative to the fish and selected canal
neuromast. base-noise is based on detection in still water, from 50 Hz oscillations and a
velocity amplitude of 1.2 mm/s.
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increases with levels of turbulence, since more energetic flows have the possibility of

being locally uneven and patchy. This characteristic will be flow dependent, since it

matters greatly how the flow is generated. As shown in the previous section, these

simulations have local and temporal variations in flow fluctuations.

There is the unexpected trend that at higher flow speeds, the threshold detection

level decreases. Most likely this is a result of these patchy flows, where increasing flow

speed enables the neuromast to sample more of the spatial flow field as it moves by.

Patches of reduced turbulent energy will result in a lower mean value. This illustrates

an important point: how the fish chooses to process the signals in its brain will make

a difference as to what information it can extract. This point will be emphasized in

plots (C) and (D).

Figure 5-30B is a re-plot of the data in (A), but now threshold of detection is

plotted against background flow speed in a manner similar to Kanter and Coombs

(2003). Contours of isoturbulence are plotted using linear least squares fit to the data

in (A) for each flow speed. The behaviorally determined responses of the sculpin are

also plotted, but the level of turbulence for these data points is unknown. The plot

shows that the Kanter and Coombs results are bounded flows containing a minimal

amount of turbulence (< 0.3 mm/s). However, the fact that detection thresholds

needed for small increases of turbulence are orders of magnitude higher than exper-

imental results suggests that the threshold of detection as defined in this chapter is

incorrect. This would also be contradicted by the experimental results of Engelmann

et al. (2002) and Chagnaud et al. (2006) who found that increasing levels of flow

speed resulted in minimal to no masking of the source signal for canal neuromasts.

Instead of defining the a.c. flow noise as the root mean square of the pressure

gradient signal over all frequencies, the experimental evidence suggests an alternative.

Define the a.c. flow noise over a high pass filtered range of frequencies. Since the

integral of the power spectrum density (PSD) of the pressure gradient noise signal

is equivalent to it’s variance in the time domain, an integral over a band limited

range of the PSD is equivalent to the variance of the signal in time containing those

selected frequencies. Determining the correct range takes experimental verification,
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but choosing frequencies greater than 10 Hz should be a limit that fish will not be

able to reach, setting a lower bound of sorts. It is not truly a lower bound, because

this definition is still based on the hydrodynamic signals to the lateral line, and not

on additional processing that occurs with the neuromast motions and the hair cell

filtering. That will be considered in figure 5-31.

Figure 5-30C, D show the results of signal detection threshold based on a high

pass filtered noise (>10 Hz) to the fish lateral line. The first thing to observe is that

the differences in signal detection based on flow speed are gone, since higher frequency

fluctuations are more homogeneous across flow types. This is a naturally whitening

of turbulent motions since larger structures become increasing smaller as energy is

removed through dissipation at the higher frequencies. Now the detection threshold

increases linearly with an increase in turbulent fluctuations. Recall that the slope of

this line is set by the base-noise level inherent for each neuromast. Variations in

neuromasts can lead to differences in slope.

Finally, figure 5-31 plots detection threshold based on neuromast motion and hair

cell filtering of the hydrodynamic signal. In essence, it is the hypothetical high pass

filtering that was just presented in figure 5-30C,D, except that its range starts at

1.5 Hz (for a time constant of 10 ms) rather than at 10 Hz. The base noise level is

the root mean square neuromast displacement caused by the oscillating sphere at the

stimulus threshold in still water, cited previously. For similar levels of turbulence,

the levels of the threshold of detection are now higher than for the >10 Hz filtered

signal, since there is additional energy from the lower frequencies. This is seen as an

increase in the slope of plot (A), and a change in shape and level of the threshold plot

in (B). Introducing lower frequencies can reintroduce more variability in fluctuation

level.

The signal detection vs. turbulence results (figure 5-30A,C) can be used to evalu-

ate the data from Engelmann et al. (2002) and Chagnaud et al. (2006), who look at

the signal masking effects of background flow on the goldfish and trout lateral line.

The best fit line of all the data in each plot, (A) and (C), will be used to identify

velocity amplitude levels needed to create stimulus signals which equal their levels of
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Figure 5-31: Detection thresholds based on the neuromast motions of pressure gra-
dient signals to the canal line, and upon further hair cell filtering. Explanations are
as in figure 5-30A,B, except that the noise is based on the root mean square neuro-
mast displacements using the flat plate neuromast model. Likewise, the base-noise
is defined as the rms neuromast displacements resulting from the source stimulus in
still water at threshold. The sphere had 50 Hz oscillations and a velocity amplitude
of 1.2 mm/s, and its location relative to the fish and neuromast are shown in (C).

turbulence. Chagnaud et al. (2008) report that their flow set up creates turbulent

velocity fluctuations which increase linearly with flow speed.

There are two issues with using the data from this thesis to make inferences about

their signal detection results. The first is that their fish were goldfish and trout,

whose body shapes are similar to the fins retracted cases presented in this thesis.

Since figure 5-29 shows that the fins retracted cases has approximately equal noise

levels to the fins extended cases, the same flows used to evaluate noise for the sculpin

will be used to evaluate noise for the goldfish and trout. Their lateral lines have a

different configuration, so at this point, threshold curves are for illustration purposes

only. The second issue is that turbulence generated by the simulations in this thesis

will likely have some differences from the turbulence in their experiments. Already

one notable difference is that for these simulations, there are patches of turbulence

which have an intensity of 10%, but the average turbulence intensity for these more

dynamic flows is less than that around the fish.
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The differences that do exist will likely be confined to the low frequency com-

ponents of the flows. Turbulent fluctuations in natural settings can develop from a

flow interaction with the bottom surface, flow around inanimate structures, and flow

interacting with aquatic animals. The macro structure of each type of flow will be

determined by the specific environmental and boundary conditions. As energy cas-

cades from the larger eddies to the smaller motions, where viscous dissipation occurs,

turbulent flows will have more in common. Macro structures will have low frequency

pressure and velocity fluctuations which will be unique to each flow, whereas micro

turbulence will have a broad high frequency spectrum more in common.

The final step needed is to estimate the base-noise (still/moving) threshold lev-

els for the trout and goldfish. The data of Chagnaud et al. (2006) show that a 7

mm diameter sphere, placed 5-8 mm from the side of the fish directly next to the

neuromast being stimulated, at 50 Hz oscillations, and having peak-peak displace-

ment amplitudes of 2 µm, were at or above the threshold level of mean spontaneous

spike rate in still and moving water for some anterior canal neuromasts. Other less

sensitive canal neuromast required peak-peak displacement amplitudes of at least

30 µm to achieve an increase in mean spike rate have a synchronization coefficient

of >0.4 (phase-locking definition used by Coombs and Janssen, 1990). Assuming

maximal sensitivity, this corresponds to a pressure gradient threshold of 2.8 Pa/m

(ρAω2 (a/r)3 = 1000 ∗ (0.5 ∗ 2 · 10−6) ∗ (2π ∗ 50)2 (3.5/(3.5 + 8))3 ). This threshold

level is 28 times larger than the sculpin (0.1 Pa/m), indicating the velocity amplitude

of the vibrating sphere in these thesis simulations (see figure 5-1) would have to be

3.4 cm/s (28*1.2 mm/s) in order to illicit detection for the goldfish anterior lateral

line. The less sensitive canal neuromasts would have a pressure gradient 15 times

that, or 42 Pa/m, leading to a stimulus velocity amplitude of 51 cm/s.

The data of Engelmann et al. (2002) show that a 10 mm diameter sphere, placed

6-8 mm from the side of fish directly next to the neuromast being stimulated, at 50

Hz oscillations, and having peak-peak displacement amplitudes of 10µm/, were at or

above the threshold level of mean spontaneous spike rate in still and moving water

for the posterior canal neuromasts. Assuming maximal neuromast stimulation, this
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corresponds to a pressure gradient threshold of 28 Pa/m (ρAω2 (a/r)3 = 1000 ∗ (0.5 ∗

10 · 10−6) ∗ (2π ∗ 50)2 (5/(5 + 8))3 ). This threshold level is 280 times larger than the

sculpin (0.1 Pa/m), indicating the velocity amplitude of the vibrating sphere in these

thesis simulations (see figure 5-1) would have to be 34 cm/s (280*1.2 mm/s) in order

to illicit detection for the goldfish and trout posterior lateral line. Since Engelmann

et al. did not test stimulus displacement amplitudes less than 10µm/, it is not clear

that this is the absolute base-noise level. However, it is in keeping with the fact

that posterior lateral line canal neuromasts are in general, less sensitive than the most

sensitive anterior lateral line canal neuromasts (Coombs and Janssen, 1990).

Figure 5-32 shows the results for the case when the signal threshold is based on

the root mean square detrended pressure gradient fluctuations (plot A), and also for

the case when the signal threshold is based on the root mean square of the high pass

(>10 Hz) filtered pressure gradient fluctuations. The detrending provides the most

basic level of high pass filtering, not unlike what the fish possess. This also serves to

make the turbulent flow simulations more similar to the experimental flows, in that

it shifts the comparable range a little higher. The high pass filtered (>10 Hz) set

filtering ability lower bounds, perhaps unattainable by the fish. The flows should be

even more comparable in this filtered range.

In figure 5-32A, the results show that the less sensitive anterior canal neuromast

in the goldfish, and the posterior canal neuromasts of the goldfish and trout, have

base-noise threshold levels which are well above the noise of the background turbu-

lence until the flow reaches 12 cm/s. This indicates there would be no signal masking

of the stimulus signal by these canal neuromasts, in agreement with the experimental

results of both Engelmann et al. and Chagnaud et al. However, the more sensitive

anterior canal neuromast of the goldfish would show signal masking of the stimulus

at even the slowest of background flows, in contradiction to the experimental results

of Chagnaud et al. Therefore, there is some additional filtering.

Figure 5-32B shows that the filtered pressure gradient signal, representing the

higher frequency spectral components of the turbulent flows, serves to reduce the

effects of turbulence on signal detection. Now the more sensitive anterior canal neu-
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romast of the goldfish would not show signal masking until about 8 cm/s. The raster

plots for this sensitive neuromast (Chagnaud et al., 2006, figure 2) do show a slight de-

gree of signal masking of the 10 cm/s flow at a stimulus level slightly above threshold

(as defined earlier), so these results are plausible.
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Figure 5-32: Extrapolating the results of figure 5-30A,C for use with data from En-
gelmann et al. (2002) and Chagnaud et al. (2006). The level of signal threshold, as
determined by the level of background turbulence, was determined for the sculpin,
and is used for illustrative purposes for the trout and goldfish (see text for expla-
nation). The levels of turbulence are taken from Chagnaud et al. (2008), and then
interpolated using the best fit lines of the data in plots (A) and (C) of figure 5-30.
The base-noise level is calculated using experimental data for the goldfish and trout
(see text), and calibrated to match the stimulus velocity amplitudes of a sphere in
the location used in this thesis. Key: colored dots indicate turbulence level; black
squares and black dots - the base-noise level for two different anterior lateral line
canal neuromasts of the goldfish (Chagnaud et al, 2006); black triangles - base-noise
level of the posterior lateral line canal neuromasts of the goldfish and trout (Engel-
mann et al, 2002); (A) Threshold determined by the root mean square detrended
pressure gradient signal to the sculpin lateral line; (B) Threshold determined by the
root mean square high pass filtered (>10 Hz) pressure gradient signal to the sculpin
lateral line. Location of sphere, and parameters used for calibration with sculpin fish
are given in figure 5-30.
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5.4 Discussion

The core question of this thesis is how fish are able to detect the oscillations of a

dipole signal whose flow induced signal to the lateral line system of fish can be orders

of magnitude less than the motions of the background flow. The actual behavioral

evidence of this comes from the sculpin strikes on a 50 Hz vibrating sphere in flow

speeds ranging from 0-8 cm/s (Kanter and Coombs, 2003). The 3 mm sphere, placed

an average distance of 56 ± 9 mm from the longitudinal midline of the fish, was

increased in 5 dB increments until the fish made a strike on it or movement towards

it.

The hydrodynamic motions induced by the vibrating sphere stimulate both the

superficial neuromasts and the canal neuromasts. The previous chapter examined how

the superficial neuromasts respond to the boundary layer flow induced by the dipole

stimulus in still water. These stimulus velocities are orders of magnitude smaller

than the background flow speeds. The pressure gradients to the canal lateral line,

introduced by the oscillating sphere at the detection threshold level, are about 0.1

Pa/m for the sculpin. This thesis showed that in even in laminar background flows,

the mean pressure gradients to these sensitive neuromasts begin at about 8 Pa/m

and increase to over 100 Pa/m.

This apparent disparity in signal strengths just lends support to what is already

well known, that the lateral line system is able to remove the mean components of

the hydrodynamic signals. One point that must be emphasized is that there is a dif-

ference between filtering the mean hydrodynamic components and being unaffected

by the mean hydrodynamic components. Both the superficial and canal neuromasts

physically respond to these mean components by being deflected or displaced. The

small amplitude oscillations from the dipole stimulus are superposed onto these mean

hydrodynamic signals (along with whatever noise exists), and so the corresponding

neuromast displacements can indeed be orders of magnitude smaller than the over-

whelming displacements resulting from the mean components.

The first act of filtering is physical, in the boundary layers that develop on the
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surface of the fish or inside the subdermal canals. For the superficial neuromast, the

effect is high pass filtering and for the canal neuromast, it is low pass filtering (see

figures 3-12 and 3-9). The second act of filtering is through the physical responses

of the neuromasts to these boundary layer and subdermal canal filtered velocities.

The material properties of the neuromast, and the density and viscosity of the fluid,

determine how the hydrodynamic signals will be filtered. The overall system effect

of surface boundary layer, subdermal canals, and neuromast motion dynamics, leads

to high pass filtering for superficial neuromasts and all pass filtering for the canal

neuromasts, up to their respective cut off frequencies (see figures 3-14 and 3-11).

For superficial neuromasts, the surface boundary layer and neuromast mechanics

work to reduce the mean free stream velocities, but as figure 3-14 shows, the veloci-

ties at all frequencies are also reduced. There is a best sensitivity around 10 Hz, but

not enough to compensate for the orders of magnitude difference between stimulus in-

duced velocities and background flow velocities. For canal neuromasts, the subdermal

canal and neuromast mechanics also reduce the effects of the mean pressure gradient

signal created by the free stream flow, but equally reduce signals at all frequencies.

This also cannot account for the detection abilities of the fish.

A second argument that the physical filtering process cannot account for the

signal detection abilities of the fish has to do with saturation effects that should

prevent detection, but do not. The neuromast models developed in this thesis make

predictions as to how the neuromast will physically respond to its hydrodynamic

environment. For the higher speed flows, the resulting displacements can be well past

the saturation mark of approximately 100 nm. The fact that the fish does respond

to the small amplitude stimulus even in this range is the best evidence that the

mechanism for handling the mean component is internal, in the hair cells, and not

external through the boundary layer, canal, and neuromast motion filtering effects.

The hair cell has been shown to possess the mechanism that deals with the mean

deflection of the hair cells. The gating apparatus, which has links between stereocilia,

is tensioned to open and close gates which allow for the exchange of ions which controls

the current through transduction channels (Eatock, 2000). Sustained deflections, such

243



as would be caused by the mean components of the hydrodynamic signals, can be

adapted to through the repositioning of hair cell links to ease the tension. The fact

that it is not the absolute defection of hair cells that controls signal transduction,

but rather the relative tension of the links between stereocilia, would seem to allow

the effect of the mean signal component to be completely removed since this is a

differencing mechanism. However, there are physical limits to adaptation, and in

severe deflections there is incomplete adaptation (Eatock et al., 1987). Therefore, the

mean hydrodynamic components cannot be completely discounted. At high enough

flow speeds, all neuromasts should eventually saturate. This may not occur within

normal swimming regimes, but perhaps it might occur during attack and evasive

maneuvers for fast swimmers.

The fact that bulk flow stimulates superficial neuromasts almost equally, regard-

less of flow direction (Chagnaud et al., 2008), further supports the notion that it is

not the absolute deflection of hair cells which is the transduction mechanism of the

hydrodynamic signal. Superficial neuromasts have preferred directions of stimulation

(Flock and Wersall, 1962), and changing the direction of the flow should cause the

neuromasts to switch from stimulation to inhibition, or vice versa. Instead, the hair

cells adapt to the bulk flow, but not to the a.c. fluctuations of the flow (Chagnaud

et al., 2006).

Based on the experimental work of Eatock et al. (1987), the low pass filtering

effects of the hair cell transduction process can be crudely quantified. Hair cells

were manually forced to move according to a step function input, and the hair cell

currents and potentials were measured to have exponential function outputs. Figure

5-11 shows the filtering effects that would produce exponentially decaying outputs,

based on the biological range of time constants measured. What it shows is that the

hair cell transduction process has a significant high pass filtering effect on the lowest

frequencies (¡1.5 Hz). This has been observed in neurological studies, where the bulk

flow (and therefore neuromast motions) had spectral peaks below 5 Hz, whereas the

spectra of firing rates had peak frequencies in the range of 3-8 Hz (Chagnaud et al.,

2008).
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The next question to address is whether or not the hair cell transduction process

is the final step of filtering required in order for the small amplitude stimuli to be

detected against larger background noise. In other words, based on the boundary

layer, canal, neuromast motions, and hair cell transduction process, can the small

amplitude stimulus signals be detected in background flow noise? If not, it suggests

that further processing of the signals must occur in the brain of the fish.

What would constitute an answer to that question? There are two methods de-

scribed in this thesis for signal detection: an increase in the mean spike rate, and

phase-locking. If after filtering, it can be shown that the presence of the signal could

increase the root mean square pressure gradient fluctuations a significant amount

above the noise level, or it can be shown that phase-locking to the stimulus spectral

peak is possible, then no further filtering is required.

The increase in mean spike rate, and phase-locking, must occur at the levels of

the source stimulus identified experimentally. In studies involving background flows

and a vibrating sphere, Engelmann et al. (2002) present neurological results for the

posterior lateral line, Chagnaud et al. (2006) present neurological results for the

anterior lateral line, and Kanter and Coombs (2003) present behavioral results. It

is difficult to know the actual flow conditions in which the experiments occurred.

Further experimental studies by these authors, without the presence of the vibrating

sphere but in otherwise similar flow conditions, provide valuable insight. Chagnaud

et al. (2008) found a linear increase in rms velocity fluctuations with increase in flow

rate, yielding a fairly constant turbulence intensity of about 10%. They used one

upstream and one downstream collimator, with the tank supported on a vibration-

isolated table, and the flow was driven by propeller coupled to a DC motor. Coombs

et al. (2007) placed a flow tank of equal size to the Kanter and Coombs (2003)

experiment inside a larger recirculating, oval-shaped flume, driven by conveyor belt

and rotating paddles. They used two collimators placed upstream of the fish, and a

mesh screen placed downstream, as in the Kanter and Coombs experiment. The level

of turbulence is unknown, but the mean flow measurements of velocity and vorticity

are provided, and can be qualitatively compared directly with the laminar (figure 5-3)
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and turbulent (figure 5-4) flow results of the simulations in this thesis.

In the laminar flow simulations of this thesis, the mean pressure gradient compo-

nent at each neuromast location remains constant in time (see figures 5-12 - 5-14).

This component is almost certainly removed in all of the flow cases presented, since

the resulting neuromast motions show displacements under 150 nm for all neuro-

mast models except the spherical neuromast model responding to 8 cm/s flow. With

displacements that are not too excessive, adaptation is more complete.

The power spectral density plots for those figures show the dominant spectral peak

is at 50 Hz, indicating that phase-locking would correlate with detection. For the 2

and 4 cm/s flows, the stimulus source velocity amplitude was 1.2 mm/s, identical to

the still water stimulus level. In 8 cm/s flow, the stimulus level shown is 6.0 mm/s,

but as figure 5-15 shows, only a stimulus velocity amplitude of 4.3 mm/s is needed

to make the 50 Hz signal the dominant spectral peak. Figure 5-31 presents detection

threshold levels needed to increase the spike rate above the background flow noise.

The baseline results, which represent the noise in the laminar flow simulations, lie

below the stimulus threshold levels as calculated by Kanter and Coombs (2003).

The experimental results of Kanter and Coombs (2003), on the other hand, show

signal masking even at the 2 cm/s flow speeds. If their flows conditions were laminar,

there should not have been any signal masking until the 8 cm/s flow speed (see

baseline results, figures 5-30B and 5-31B). The experimental conditions of Coombs

et al. (2007), which were meant to match those of the previous experiment, do show

evidences of turbulence found in the presence of alternating streaks of vorticity that

move past the sculpin at each of the flow speeds (2, 4, and 8 cm/s). Even if we did

know the turbulence of this latter experiment, the previous experiment had the flow

generated in a different manner, through the use of a motor-driven impellor. The

turbulence levels would be different than under the paddle driven flow.

For the turbulent flow simulations in this thesis, the hair filtered responses to the

neuromast motions were not able to fully remove the low frequency hydrodynamic

signals (see figures 5-17A, 5-19A, 5-21A, 5-23A, 5-25A, and 5-27A ). Chagnaud et

al. (2008) indicate that phase-locking would occur for these dominant, low frequency
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oscillations. They also indicate that phase-locking occurs well before an increase in

the mean spike rate. Therefore, under these flow conditions, the sculpin should not

be able to detect the vibrating source stimulus at the velocity amplitudes used (3.5

mm/s for 2 cm/s flow, 4.3 mm/s for 4 cm/s flow, and 6.0 mm/s for 8 cm/s flow).

At each of the flow speeds, and with each of the velocity amplitudes used in

these turbulent simulations, there does exist the possibility for detection if the brain

were to further process the signals. For each of the flow speeds, there were two

levels of turbulence reported. For the lower levels of turbulence at each flow speed,

the spectral peak at 50 Hz does rise above any peaks in frequency proximity. The

results of the >10 Hz high pass filtering demonstrate that at these lower turbulence

levels, the 50 Hz stimulus amplitude is recoverable (see plots C and E for each of

the figures mentioned above). At the higher levels of turbulence, these stimulus

source oscillations are indistinguishable from the turbulent fluctuations, and are not

recoverable. This is confirmed in the spectral plots, where the noise level at nearby

frequencies is equal to or above the spectral energy level at 50 Hz (see plot B of each

figure of the higher turbulent flows).

Since the spectral plots of turbulence for the Kanter and Coombs (2003) experi-

ment is unknown, it is not possible to determine if these turbulent flow simulations are

representative of their flows. The laminar flow results of this thesis show that further

processing by the brain would not be needed at the stimulus amplitudes used in their

experiments. Therefore if their turbulence levels were very low, or if their flows had

low amplitude low frequency oscillations, then the results of this thesis suggest that

no further processing is need by the sculpin. The hair cell filtering is sufficient. On

the other hand, if there flows have similar levels of turbulence to these simulations,

then the results suggest that further processing by the brain is needed.

If the flows of Kanter and Coombs (2003) are similar to the flows of Chagnaud et

al. (2008), since both were generated by motor driven propellers, then the turbulence

levels should have similar spectral characteristics. This means that the dominant

flow energy is in the low frequency range (below 5 Hz). For the goldfish, the neural

responses showed evidence of high pass filtering, with peaks occurring in the 3-8 Hz

247



spectral range. These neural responses occurred even without an increase in mean

spike rate, which lead Chagnaud et al. to postulate that it is not the spike rate codes

that are most relevant to the fish, but the temporally modulated information. This

would also suggest that the purpose of the hair cell is to pass on the most relevant

information to the brain - the hydrodynamic activity within a selected frequency

range.

Using the data of Engelmann et al. (2002) and Chagnuad et al. (2006), it is

inconclusive as to whether or not further filtering is required by the brain. It appears

that for some neuromasts, filtering is not needed, while other more sensitive neuro-

masts might require it. When the source stimulus which is above their base-noise

level of the less sensitive neuromasts, detection would occur, since the stimulus signal

will be well above the background noise levels tested. Therefore, both mean spike

rate and phase-locking would occur on the prey stimulus, indicating that the hair

cell filtering is all that is required for those fish, under those conditions. When the

source stimulus signal is only at the base-noise level of the sensitive neuromasts, the

background flow noise would mask the signal unless additional filtering occurs.

Since the canal neuromasts for the trout and goldfish were not modeled in this

thesis, the filtering effects of the neuromast motions and hair cell transduction process

can only be surmised to produce results that fall between what was plotted in figure

5-32A and 5-32B. Secondly, the velocity thresholds calculated were based on the

turbulence in these particular flow simulations. Different flows, and different filtering

capabilities, will alter the threshold vs. turbulence slopes plotted in figures 5-30A,C.

However, trout swimming in streams can experience turbulence levels much higher

than in the flows generated in the experiments (up to 70 mm/s; Hanke, 2001). At

these levels of turbulence, there might very well be significant masking for all types

of neuromasts. Therefore, these flows are not conclusive in determining if further

processing is required.

For the trout and the goldfish, it appears that having a high base-noise threshold

level can be advantageous for them. Since the trout and goldfish swim in waters that

can have higher levels of turbulence, their base-noise levels for their canal neuromasts
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need to be high enough not to be affected by the background noise. The consequence

is that they cannot be sensitive to small amplitude stimulus vibrations, unlike the

sculpin. The types of prey that would attract them would be larger than the types

of prey eaten by the sculpin.
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Chapter 6

Conclusion

6.1 Summary of results

What began this thesis was the observation that fish have a remarkable ability to

detect small desirable signals in the midst of much larger background noise. They

of course have at their disposal the senses of sight, hearing, and smell, but perhaps

one of their most useful senses is touch. For the fish, it is their lateral line system,

consisting of tiny hairs either on the surface or in subdermal canals, which provides

for their sense of touch by directly linking the outside world of fluid motion and

vibration to what will become a corresponding signal representation of that world in

their brains.

The fish lateral line has been studied for over 150 years, but there is always room

for greater understanding. In the last 30 years, many advances in the study of the

lateral line have occurred, in particular because of the great advances in technology

which firstly enable more precise measurements of the lateral line, and secondly enable

better modeling and computation. The import of this thesis is that it enables cause

and effect to be examined in component form when addressing the signal detection

ability of fish.

This thesis directly utilizes our modern day ability to resolve simple fluid dynamic

problems by fully solving the Navier-Stokes equation with moderate boundary condi-

tions. To the authors knowledge, this is the first time that complete time-dependent,
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viscous solution for a vibrating sphere next to a fish, has been solved. This is im-

portant for a number of reasons. The vibrating sphere creates an oscillating dipole

flow field, which is thought to represent some of the more important signals that a

fish would try and detect. Disturbances created by swimming prey will locally cre-

ate a complex signal, but further away this signal will decay to simpler quadrapole

and dipole representations as higher multi-pole components die out. When there is

an oscillatory nature to these signals, a corresponding oscillatory boundary layer of

reduced velocity and of a distinct profile will develop on the surface of the fish. The

superficial neuromasts are often either mostly or fully submersed inside this signal

induced boundary layer.

This thesis develops an approximation to what the dipole induced, oscillatory

boundary layer velocity profile, will look like. An analytic solution is developed

which is accurate at points of maximal surface tangential velocity for the case when

the surface is flat. This was accomplished by noting that next to a surface, flow is

forced to alter course to move in a direction which is tangential to the wall. For a

dipole-wall signal interaction, the flow field is not uniform, and does contain localized

regions which violate this assumption as flow is forced to either stagnate or eject in

those regions. However, for much of the rest of the flow along the wall, the flow is

forced tangential and the approximation holds. Knowledge of the flow within the

oscillating dipole induced boundary layer allows for direct determination of the strain

rate, a relative measure of the signal strength to the superficial neuromast, and of

the shear stress at the surface.

One key finding is that an oscillatory dipole induced flow field retains much of

its potential nature outside of the induced surface boundary layer. Potential flow

theory has been used to model the oscillating dipole signal in an unbounded medium,

and in some cases, with axisymmetric bodies present. This thesis extends previous

work by using realistic fish body shapes, which have body parts such as a dorsal fin,

a tail, and pectoral fins. In still water conditions, the presence of body parts had

a relatively small effect on the received dipole signal, with distortions confined to

regions of fin insertion points. The fact that viscous effects are contained within a
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surface boundary layer, whose depth is inversely proportional to the square of the

signal frequency, means that most of the flow field around the fish remains of a

potential nature.

Experiments have suggested that the two lateral line systems, the surface superfi-

cial neuromast system and the subdermal canal neuromast system, do not have equal

importance for prey detection and localization. This thesis was able to quantify these

differences in detection ability in the case of an oscillating dipole stimulus. In par-

ticular, the detection threshold for superficial and canal neuromasts are determined

for the Mottled Sculpin, using the data obtained from neurological and behavioral

studies. For a nearby vibrating sphere, the induced signal strength relative to the

measured threshold levels revealed that the canal lateral line is much more sensitive

than the superficial lateral line system. At some frequencies, the canal lateral line

system was over 100 times more sensitive than the superficial lateral line system.

This thesis also developed superficial and canal neuromast models specific to the

Mottled Sculpin. It built upon generic models (van Netten, 2006; Humphrey et

al., 2001) by including additional hydrodynamic terms and material/structural terms

which better matched measured neurological results. This enables the mechanical

transduction component of the signal encoding process to be examined in isolation

for its contribution to signal detection and filtering. In a similar manor, the physical

filtering process which occurs from the induced boundary layer flow, and from the in-

duced flow within the subdermal canal, can be studied in isolation and in combination

with the mechanical filtering properties of the neuromasts.

This thesis highlights the importance of the physical response of the superficial

and canal neuromasts to oncoming flow. Experiments have shown that superficial

neuromasts become saturated in oncoming flow, but that the canal lateral line sys-

tems display high pass characteristics which keep it from becoming saturated. These

observations have been obtained from neurological studies, and they have not isolated

which components of the signal encoding process cause these results.

Both the superficial and canal neuromasts have the potential to be deflected to

the point of saturation when oncoming currents increase to high enough flow rates
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(10+ cm/s). The mean flow past the surface of the fish creates a boundary layer

which grows in height along the fish, originating at the point of contact on the nose.

For swimming fish, this boundary layer is largely kept intact and possibly controlled

(Anderson et al., 2001), but for gliding fish or benthic fish such as the sculpin, the

boundary layer grows to the point of separation and can become turbulent in nature.

The superficial neuromasts will exhibit oscillations around a mean point of deflection,

determined by the strength of the mean flow and the a.c. fluctuations present. Like-

wise, changes in the speed of flow around the fish body, due to its curvature, cause

accelerations which signal the canal lateral line system. Depending on the location

of the canal neuromasts on the body, this can result in deflections that should satu-

rate the neuromasts (whereas other neuromasts can be located in regions of minimal

stimulation).

The fact that the physical deflection of superficial neuromasts, and the physical

displacement of canal neuromasts, does not lead to saturation, shows that the phys-

ical and mechanical filtering of the boundary layer flow, subdermal canal flow, and

neuromast motions, are not ultimately responsible for signal detection. Instead, they

point to internal filtering mechanisms of hair cells and of signal processing in the

brain.

This thesis is able to show that, based on the known hydrodynamic signals to

the lateral line system, signal adaptation at least occurs at the level of the hair

cell. Material links between stereocilia in the hair cells tension the opening and

closing of gates, controlling the flow of ions in and out of the hair cell. Essentially

this acts as a physical differencing mechanism, which for short response times of

10-200 milliseconds acts as a high pass filter (effectively removing frequencies below

1.5Hz). Between the physical filtering of the boundary layer flow, subdermal canal

flow, neuromast motions, and hair cell gating, the lateral line system is tuned to

detect a.c. fluctuations present in the flow.

The motions of the neuromasts also highlight the importance of a.c. fluctuations.

Results obtained in this thesis show that the neuromasts respond most sensitively to

quick changes in the temporal flow field by having overshoots of motion. The question
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is how the fish can determine what overshoots are most important.

To understand how fish distinguish important a.c. fluctuations, this thesis used

increasing levels of turbulent flow to examine signal masking of known levels of stim-

ulus evoking responses from the sculpin. Analysis in the spectral domain revealed

that the stimulus signal must have spectral peaks which are above all other peaks in

order for phase locking to occur. However, evidence suggests that phase locking will

occur on the dominant low frequency flow signals, and not on the higher frequency

stimulus signals.

If fish can detect these high frequency stimulus signals, while concurrently phase

locking onto low frequency flow noise signals, then the best explanation of results is

that further signal processing occurs beyond the hair cell, and possibly in the brain

itself. This was not determined conclusively in this thesis because there was not a

way to absolutely link levels of turbulence in this thesis with the levels of turbulence

existing in experiments which provide the neurological and behavioral signal detection

results.

6.2 Future research

The methodology of this thesis was to analyze component features of the stimulus

signal, of the physical and mechanical transduction process, and of the hair cell trans-

duction process in order to understand how signal encoding takes place. This thesis

has laid the foundation for future research on the signal detection and signal process-

ing abilities of fish using their lateral line system. New experiments which link signal

detection results with spectral decomposition of turbulent flows will allow for positive

determination of where signal detection ultimately occurs.

The importance of transient signals needs to be studied in more depth. The possi-

bility for the fish to utilize spatial and temporal information from multiple neuromasts

could enable the fish to track signals as the peak amplitudes change location on their

body. The ability for fish to school together could be explained and quantified, and

prey detection and wake tracking would be best exploited in a spatial and temporal
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integration of information.

Another important area of research would be to understand how the superficial

and canal neuromasts respond to the swimming, moving, and breathing motions of

the fish itself. This becomes noise, which the fish would likely want to filter. On the

hand, it has been suggested that superficial neuromasts might have their importance

in helping to monitor and regulate the surface boundary layer that develops as the

fish swims (Anderson et al., 2001; Windsor, 2008).
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Appendix A

An oscillating cylinder in still

water: THEORY

For an incompressible Newtonian fluid of uniform temperature and constant viscosity,

in a non-rotating frame, the Naiver-Stokes equation is

∂u

∂t
+ u · ∇u = −1

ρ
∇p + ν∇2u +

1

ρ
F, (A.1)

where u = (u, v, w) is the vector velocity quantity, p is the pressure, ρ is the density

of water, ν is the kinematic viscosity, and F is the vector body force per unit volume.

When the fluid is assumed continuous to the smallest scale, and mass is conserved,

there results what is called the equation of continuity,

Dρ

Dt
+ ρ∇ · u = 0, (A.2)

where D/Dt is the total derivative. These two equations are sufficient to capture

all of the relevant fluid dynamics for the case of a circular cylinder performing peri-

odic oscillations. However, it will be possible to make further simplifications when

considering the motion chosen to be replicated in the numerical simulations.

The first simplification will be to assume that the cylinder is of infinite vertical

height in the z-direction, and that the oscillations will take place perfectly in the x-y
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plane. As long as the flow remains laminar, the flow in the z-direction will be zero,

and the problem is two-dimensional. As such, the body force (F), which in general

is the gravitational force acting in the z-direction, can be discounted.

There are two parameters which effectively determine whether or not the flow will

remain laminar over the oscillating cylinder, the Keulegan-Carpenter number, KC,

and the Stokes number, β. These number are defined for flows which oscillate past

a stationary cylinder, but as Lighthill (1978) has explained, this is equivalent to a

stationary flow with the cylinder undergoing oscillations. The Keulegan-Carpenter

number is KC = 2πA/d, with A the amplitude of motion and d the diameter of the

cylinder. Stokes number is β = fd2/ν, with f being the frequency of oscillation and

ν being the kinematic viscosity of the fluid. Tatsuno and Bearman (1990) show that

these two parameters effectively capture the dynamics of vortical shedding patterns,

which seem to fall into 8 regimes. For each β regime, the lowest KC values lead to

laminar flow, ie. no vortical shedding. For example, KC can be as high as about 6

when β < 10, whereas KC can only be as high as about 3 when β > 50.

When the flow past an oscillating cylinder remains laminar, there is a steady

(mean, non-oscillating) secondary flow that results, called acoustic streaming. Lighthill

(1978) has explained that two types of attenuation, attenuation of acoustic energy and

attenuation due to friction, allows for excess momentum flux to force steady stream-

ing. For the cylinder, the steady streaming occurs outside of the Stokes boundary

layer, which approximately extends a distance of 5(ν/ω), with ω = 2πf being the

angular frequency. In general, the Stokes boundary layer is much smaller than the

diameter of the cylinder, and so the steady streaming at the edge of the Stokes

boundary layer can be thought of as a steady velocity fluid slipping past the surface

of the cylinder. Lighthill (1978) says this mean ’slip velocity’ is calculated through

Rayleigh’s Law, given as

us = −3

4
ω−1Uc(X)U ′

c(X), (A.3)

where X, Y denote a new coordinate system with X tangential and Y perpendicular

to the surface of the cylinder, and Uc(X) is the tangential velocity of the undisturbed
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flow relative to the location X on the surface of the cylinder. This law is valid as

long as ∂uc/∂X + ∂vc/∂Y is independent of Y , where uc and vc are the tangential

and perpendicular velocities in the new coordinate system relative to the surface of

the cylinder.

There are two regimes of acoustic streaming: slow creeping flow spread over a

large region, and high speed flow in a region close to the cylinder body that collide

and are emitted as jets along the axis of oscillation . The two parameters previously

described, the Keulegan-Carpenter number and Stokes number, place the flow into the

acoustic streaming regimes. Within these regimes, the Reynolds streaming number,

Rs = U2
o /ων, determines whether the streaming will result in creeping flow or high

speed jets. This number is very similar to Stokes number, as will be seen after defining

Uo. If the center of the cylinder has its position given by

Xc(t) = A sin(ωt), (A.4)

with A its amplitude of motion and t the time, then the velocity of the cylinder is

given by

Vc(t) = Uo cos(ωt), (A.5)

where Uo = Aω is the maximum velocity of the fluid at the surface of the cylinder.

Then the Reynold’s streaming number can be rewritten as Rs = 2πfA2/ν, showing

the differences from Stokes number to be a factor of 2π, and the characteristic length

scale being the amplitude of motion, A, rather than the diameter, d. When Rs � 1,

creeping flow results, and when Rs � 1, high speed jets are emitted (Riley, 1965).

Revisiting the assumption that the fluid is incompressible, it needs to be shown

that the characteristic velocities of the fluid are much smaller than the speed of sound

(or equivalently the propagation of density changes) in the medium. For incompress-

ibility to be a valid approximation, Uo � c, or A � c/ω, where c is the speed of

sound in water. For oscillations of maximum frequency f = 100 Hz and the speed

of sound in water c = 1500 m/s, the amplitude of oscillation must be much smaller

than 2.4 m. This will be easily met for the cases of study, where the amplitude of
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oscillation is generally much less than the radius of the cylinder, a, of approximately

1 cm diameter.

In the numerical simulations, incompressibility will be forced, which is equivalent

to saying that the speed of sound in the medium is increased to infinity, or to say-

ing the the density throughout the fluid will remain constant, making Dρ/Dt = 0.

Therefore, in numerical simulations, assuming incompressibility results in using an

exact equation,

∇ · u = 0. (A.6)

Finally, for the cases of study the amplitude of motion will be very small, resulting in a

velocity that is very small. It needs to be shown that the velocity squared term u ·∇u

will be much smaller than the remaining terms and therefore able to be neglected.

When substituting each term of the Navier-Stokes equation with its characteristic

velocity, time, length, or pressure value multiplied by a non-dimensional term, the

Navier-Stokes equation can be rewritten as a series of special coefficients multiplying

non-dimensionalized (ND) units of O(1).

S ·
(

∂u

∂t

)
ND

+ (u · ∇u)ND = −2Eu · (∇p)ND +
1

Re
·
(
∇2u

)
ND

, (A.7)

where the Strouhal number S = L/UoT , the Euler number Eu = Po/
1
2
ρU2

o , and

the Reynolds Re = UoL/ν. A characteristic length L would be the diameter of the

cylinder, 2a, so that the Strouhal number would be O(2aω/2πUo) ≈ O(a/A) � 1.

Without yet proving that the pressure in the vicinity of the cylinder is O(ρaωUo), the

Euler number is much larger than 1. Finally, the Reynolds number must be much

smaller than 1, so that means 2aAω � ν, limiting the amplitude of oscillation to

A � ν/2aω. The simplified momentum and continuity equations for which Stokes

(1851) solved this problem analytically are

∂u

∂t
= −1

ρ

∂p

∂x
+ ν

(
∂2u

∂x2
+

∂2u

∂y2

)
,
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∂v

∂t
= −1

ρ

∂p

∂y
+ ν

(
∂2v

∂x2
+

∂2v

∂y2

)
,

and
∂u

∂x
+

∂v

∂y
= 0. (A.8)

When the boundary conditions are that the fluid at the surface of the oscillating

cylinder move with the cylinder, and be at rest at infinite distance from the cylinder,

there results a system of equations for which certain integrations do not exist with

a finite number of terms. Though the solution for an oscillating sphere is quite

straight forward, the solution for an oscillating cylinder is not, and it eluded Stokes

for ’some time.’ It was not until he was working on the solution to a definite integral

for a different problem that he realized it would apply to the case of an oscillating

cylinder.

Stokes main reason for solving these cases (oscillating sphere and cylinder) was

to account for puzzling discrepancies between theory and experiment found for the

period of a pendulum undergoing small oscillations (as worked on by Dubuat, Bessel,

Poison, Baily, and others). He was looking to theoretically explain what corrections

to the period should be expected for pendulums made from different materials, shapes

and sizes, placed in mediums other than a vacuum (such as air or water). His expla-

nation is the theoretical development of viscosity, which he calls ’the internal friction

of a fluid.’

Stokes gives the framework of equations, and accounts for the most difficult of

constants, but does not solve for the velocity or pressure fields. Even Lamb does not

offer a solution for the case of an oscillating cylinder, but defers to Stokes’ work. For

numerical validation, both the velocity and pressure fields are needed analytically,

and fortunately they are easily obtained from where Stokes left off. Putting the

governing equations into polar coordinates, Stokes obtained (with symbols changed

for this thesis)

vrrdθ − vθdr = dχ,(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2

)
χ1 = 0,
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(
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂θ2
− 1

ν

∂

∂t

)
χ2 = 0,

and dp = ρ
∂

∂t

(
∂χ1

∂r
rdθ +

1

r

∂χ1

∂θ
dr

)
, (A.9)

where vr is the radial velocity, vtheta is the tangential velocity, and χ = χ1 + χ2 is the

stream function. Given the cylinder’s motion, Vc (equation A.5), Stokes solution for

χ is

χ1 = eiωt sin θF1(r), χ2 = eiωt sin θF2(r), (A.10)

where the governing equations with boundary conditions become

F ′′
1 (r) +

1

r
F ′

1(r)−
1

r2
F1(r) = 0,

F ′′
2 (r) +

1

r
F ′

2(r)−
1

r2
F2(r)−m2F2(r) = 0,

F1(a) + F2(a) = aUo and F ′
1(a) + F ′

2(a) = Uo, (A.11)

where m2 = iω/ν. Stokes was finally able to solve these differential equations when

he let F2(r) = F ′
3(r), giving

F ′′
3 (r) +

1

r
F ′

3(r)−m2F3(r) = 0, (A.12)

and applied the solution he had found for that from pursuing another problem. Skip-

ping a great many of his steps and continuing to develop the solution that will enable

calculation of the pressure and velocity fields,

F1(r) =
Λ

r
, Λ = a2Uo

(
1− 2F ′

3(a)

am2F3(a)

)
. (A.13)

For a solution for F3(r) which converges for all values of r,

F3(r) = (C+D log r)

(
1 +

m2r2

22
+

m4r4

22 · 42
+ . . .

)
−D

(
1

1
.
m2r2

22
+

1

2
.
m4r4

22 · 42
+

1

3
.

m6r6

22 · 42 · 62
+ . . .

)
,

(A.14)
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where C and D are related according to

C =

(
log

m

8
− 1√

π
Γ′(

1

2
)

)
D. (A.15)

Each of C or D and can be determined from the governing equations with boundary

conditions applied (from equations A.11),

Λ

a
+ F ′

3(a) = aUo. (A.16)

Letting F ′
3(a) = Cσ, then

C =
1

σ
(aUo − Λ/a), (A.17)

and with ζ = D/C (determined by equation A.15), then

σ =
ζ

a

(
1 +

m2a2

22
+

m4a4

22 · 42
+ . . .

)
+ (1 + ζ log a)

(
2
m2a1

22
+ 4

m4a3

22 · 42
+ . . .

)
(A.18)

−ζ

(
2

1
.
m2a

22
+

4

2
.
m4a3

22 · 42
+

6

3
.

m6a5

22 · 42 · 62
+ . . .

)
.

When the modulus mr is large, F3(r) can be integrated by exponentials combined

with a descending series, which with the condition that the velocity must vanish at

infinity gives

F3(r) = Υ
e−mr

√
r

(
1− 12

2 · (4mr)
+

12 · 32

2 · 4 · (4mr)2
− 12 · 32 · 52

2 · 4 · 6 · (4mr)3
+ . . .

)
. (A.19)

Letting F ′
3(a) = Υϕ, and duplicating the previous steps,

Υ =
1

ϕ
(aUo − Λ/a), (A.20)

with

ϕ =
e−ma

√
a

(
1

a
.

12

2 · (4ma)
− 2

a
.

12 · 32

2 · 4 · (4ma)2
+

3

a
.

12 · 32 · 52

2 · 4 · 6 · (4ma)3
+ . . .

)
(A.21)
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+

(
−m

e−ma

√
a
− 1

2a

e−ma

√
a

) (
1− 12

2 · (4ma)
+

12 · 32

2 · 4 · (4ma)2
− 12 · 32 · 52

2 · 4 · 6 · (4ma)3
+ . . .

)
.

Having now determined Λ(a, ω), χ1 is solved, and the total pressure differential can

be integrated to give

p(r, θ, t) = iρωeiωtΛ
cos θ

r
. (A.22)

Having also determined C and Υ, χ2 is effectively solved for when the modulus mr

is small and large respectively. The radial and tangential velocity fields can no be

determined.

vr(r, θ, t) =
1

r

∂χ

∂θ
= cos θ

(
Λ

r2
+

F ′
3(r)

r

)
eiωt, (A.23)

which can be expressed as the potential flow solution multiplied by a correction term

(in brackets)

vr(r, θ, t) = Uo

(a

r

)2

cos θ

[
1− 2F ′

3(a)

m2aF3(a)
+

rF ′
3(r)

a2Uo

]
eiωt. (A.24)

Likewise,

vθ = −∂χ

∂r
= sin θ

(
Λ

r2
− F ′′

3 (r)

)
eiωt, (A.25)

which can also be expressed as the potential flow solution multiplied by a correction

term (in brackets)

vθ(r, θ, t) = Uo

(a

r

)2

sin θ

[
1− 2F ′

3(a)

m2aF3(a)
− r2F ′′

3 (r)

a2Uo

]
eiωt. (A.26)

Finally, Stokes gives the following formula for the drag:

F = −iωρπa2Uo

[
1− 4F ′

3(a)

m2aF3(a)

]
eiωt. (A.27)
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