Massachusetts Institute of Technology Guido Kuersteiner Department of Economics Time Series 14.384

Final Exam-Fall 2000

Instructions: This is a 180-minute open-book, open-notes exam.

1. Assume that ε_t and v_t are iid sequences of random variables, independent of one another, with $E\varepsilon_t^4$ < $\infty, Ev_t^4 < \infty, E\varepsilon_t = Ev_t = 0$ and $E\varepsilon_t^2 = Ev_t^2 = 1$. Let y_t be the stationary solution to the stochastic difference equation for all t

$$
y_t = \phi y_{t-1} + v_t - \theta v_{t-1} \text{ for } |\phi| < 1, |\theta| < 1
$$
 (1)

and let x_t be given as

$$
x_t = y_t + \alpha \cos(\lambda t) + \beta \sin(\lambda t) + \varepsilon_t \tag{2}
$$

where α and β are random variables independent of ε_t and v_s for all t and s. Also assume that α is independent of β and that $E\alpha = E\beta = 0$; $E\alpha^2 = E\beta^2 = 1$.

- a) Show that x_t is a weakly stationary process. Does this still hold if $E\alpha \neq 0$? Is x_t ergodic?
- b) Find the autocovariance function of x_t (Hint: note the attached page with trigonometric identities).
- c) Find the spectral distribution function of x_t . Does this distribution function have a density?
- d) Find the Wold decomposition for x_t .
- e) Find an estimator of the random variables α and β assuming that y_t is observable. In what sense, if at all, does your estimator converge to α and β . Now assume that y_t is unobservable. How could you proceed now. How would your estimator be affected by the unobservability of y_t .
- 2. Assume that $\varepsilon_t \in \mathbb{R}^2$ is iid $N(0, I)$ where I is the 2×2 identity matrix. Assume that $z'_t = (y_t, x_t)$ is generated by the model

$$
C_0 z_t = C(L)\varepsilon_t \tag{3}
$$

where $C(L) = I + \sum_{i=1}^{\infty} C^{j}L^{j}$ with the coefficient matrix C given by

$$
C = \left[\begin{array}{cc} \beta & \gamma \\ 0 & \phi \end{array} \right]
$$

and C_0 some 2×2 matrix.

a) Let $\theta = [\beta, \gamma, \phi] \in \mathbb{R}^3$. Find the subset $\Theta \subset \mathbb{R}^3$ such that $C(L)^{-1}$ exists. Find the reduced form (i.e. the VAR representation) of model (3), i.e. find the polynomial $\Pi(L) = I - \sum_{i=1}^{p} \Pi_i L^i$ such that

$$
\Pi(L)z_t=u_t.
$$

Show how $\Pi(L)$ depends on the matrices C_0 and C. How is u_t related to the structural innovations ε_t .

- b) Describe in detail how you would estimate the reduced form parameters Π. Derive the limiting distribution of your estimator.
- c) Using your reduced form parameters, can you identify the structural form parameters C_0 and C ? Do you need to impose additional restrictions on C_0 ?
- d) Assuming that you have identified the structural model, find the impulse response function of a shock ε_t onto z_t .

Assume that $x_t = x_{t-1} + \varepsilon_t$ and $\varepsilon_t \sim \text{iid}N(0, 1)$ and $x_0 = 0$. Consider a regression of x_t onto x_{t-2} , ie. an estimator

$$
\hat{\alpha} = \frac{\sum_{t=3}^{n} x_t x_{t-2}}{\sum_{t=3}^{n} x_{t-2}^2}.
$$

- a) Is $\hat{\alpha}$ consistent for the parameter value $\alpha = 1$? Prove your answer.
- b) Find the limiting distribution of a properly scaled and centered version of $\hat{\alpha}$. Could you use your result to test the hypothesis $H : x_t \sim I(1)$? If so, how would you construct the test?
- c) Now assume that

$$
y_t = \beta x_t + u_t + c \sum_{s=1}^{t-1} u_s
$$

where u_t is an iid(0,1) sequence indpendent of ε_t and c is a constant. You run a regression of y_t on x_t . The residuals of this regression are denoted by \hat{u}_t . Find the limiting distribution of the OLS estimator of regressing \hat{u}_t onto \hat{u}_{t-1} assuming that $c \neq 0$. How can you use this estimator to test $H : c \neq 0.$

d) Discuss the behavior of your test under the alternative when $c = 0$ (derive the limiting distribution of the estimator under the alternative).