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Lecture 5: Estimation and Specification of ARMA Models 

We first consider estimators for AR(p) models. Assume that xt is generated by 

xt = φ1xt−1 + ... + φpxt−p + εt 

where εt is a martingale difference sequence, i.e. (or white noise plus mixing plus moment restrictions) 
EMt−1 εt = 0  where Mt contains all measurable functions of {xs, s  ≤ t}. This assumption is stronger 
than the WN assumption previously made. Stack zt 

0 = (xt−1, ..., xt−p) then the OLS estimator for φ 
is given by Ã !−1 X X 

φ̂ = 0 ztzt ztxt 
t=p+1 t=p+1 Ã 

TX 
!−1 TX 

T T 

0 = φ + ztzt ztεt 
t=p+1 t=p+1 

Then by assuming that a WLLN holds, it follows that 

1 X 0 p 
ztzt → Γ 

T 

where   
γx(0) . . . γx(p − 1)  . 

Γ =  . . . .  . . 
γx(0) 

0
The WLLN holds for example if zt is strictly stationary, Eztzt = Γ and an additional technical 
condition, called ergodicity holds. 
We turn to the asymptotic distribution next. First note that ztεt is a martingale difference 

1 P p
sequence as well. Then, if supt E kztεtk2+δ 

< ∞ and T (ztzt 
0 εt 2 − Eztzt 

0 εt 2) → 0 then we can apply 
a martingale difference CLT to show that Ã ! 

T T 

ztεt → N 0, lim√ 
1 X 

d 1 X 
E(ztzt 

0 ε2 
t )

T T T 
t=1+p t=1 

ˆIf in addition EMt−1 ε
2 
t = σ2 then Eztzt 

0 ε2 
t = σ2Γ. Therefore the asymptotic distribution for φ is³ ´ √ 

ˆ dgiven by T φ − φ → N 
¡
0, σ2Γ−1 

¢ 
5.1. ML-Estimation 

The maximum likelihood estimator is defined as the value maximizing 

f (x1, ..., xT ; ψ) 



0 
over ψ, where f (. |ψ ) is the joint distribution of {x1, ..., xT }. If XT = (x1, ..., xT ) is a Gaussian time 
series then the likelihood function is given by 

1 1 0 
f (x1, ..., xT ; ψ) =  

(2π)T/2 
det(ΓT (ψ))

−1/2 exp(− 
2 
XT Γ

−1(ψ)XT ) (5.1)T 

0
where ΓT (ψ) =  EXT XT is the T × T covariance matrix of XT . The covariance matrix is a nonlinear 
function of the underlying parameters. Maximizing (5.1) directly is therefore a highly nonlinear 
optimization problem. The problem can be simplified by considering the conditional densities of xt. 
We can then write the joint density as a product of conditional densities 

f (x1, ..., xT ; ψ) =  f (x1) · f (x2 |x1 ) · f (x3 |x2, x1 )... 

...f (xT |x1...xT −1 ) 

If xt is a Gaussian process the conditional densities are all normal with conditional mean of xt = ° ° 2° ° 
PMc xt and conditional variance of xt equal to σ2 

t = °xt − PMc xt ° . We have seen in Lecture 
t−1 t−1 

5, how these expressions can be computed recursively. It therefore follows that the exact likelihood, 
assuming Gaussianity, can be computed in a recursive way for each set of parameter values ψ. In 
particular we can avoid numerical inversion of the T × T matrix ΓT (ψ). 
In particular cases the situation simplifies even further. If we specify for example that εt ∼ 

N (0, σ2) and 

xt = φ1xt−1 + εt 

then 

1 1 1 
f (xt |xt−1 ) =  √ 

2π σ 
exp 

µ
− 
2σ2 

(xt − φxt−1)
2

¶ 

such that Ã ! 
T

1 1 1 X 
f (x1, .., xT ; ψ) =  

(2π)T/2 σT 
exp − 

2σ2 
(xt − φxt−1)

2 

t=2 

× exp 

µ
− 
1 x2 

2 σ2(1 − 
1 

φ2)−1 

¶ 

. 

Taking the log of the likelihood function we have 

T
1 X 1 x2 

log f (x1, .., xT ; ψ) =  −T log σ − 
2σ2 

(xt − φxt−1)
2 − 

2 σ2(1 − 
1 

φ2)−1 
. (5.2) 

t=2 

If we ignore the last term and maximize log f (x1, .., xT ; ψ) with respect to φ, we see that the ML  
estimator is asymptotically equivalent to OLS. This result was derived under the assumption that 
εt is Gaussian. If Gaussianity does not hold we can still use (5.2) as the criterion function. In this 
case the estimator is called a Quasi Maximum Likelihood estimator. It can be shown that under 
certain conditions, including that EMt−1 ε

2 
t = σ2 , the resulting estimator has the same asymptotic 

distribution as if the errors were indeed normal. 
In other cases it is useful to approximate the exact innovations updating formulas. In particular, 

we have seen that the ARMA(1,1) case can be handled by looking at the limiting behavior of the 
projection coefficients. For the ARMA(1,1) case parametrized by the polynomials φ(L) =  (1 − φL) 
and θ(L) = (1 − θL) we use therefore the following approximate formulation for the likelihood 
function 

1 1 1 
f (xt |xt−1, ... ) ≈ √ 

2π σ 
exp 

µ
− 
2σ2 

(xt − φxt−1 + θεt−1)
2

¶ 
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the full likelihood is obtained by setting ε0 = 0. We have now Ã ! 
T

1 1 1 X 
f (x1, ..., xT ; ψ) ≈ 

(2π)T/2 σT 
exp − 

2σ2 
(xt − φxt−1 + θεt−1)

2 

t=2 

σ2
1 

c 

¶
× exp 

µ
− 
1 x2 

2 

where c = (1 + 2θφ + θ2)/(1 − φ2). 
Maximizing f (x1, ..., xT , ψ) with respect to φ and θ is equivalent to minimizing the sum 

TX x2 

ST (θ, φ) =  (xt − φxt−1 + θεt−1)
2 + 1 

c2 
t=2 

The last term is typically left away since it has no effect asymptotically. The sum S(φ, θ) can be 
evaluated for all values φ and θ by computing the residuals εt recursively, i.e., 

ε1 = x1 

ε2 = x2 − φx1 + θx1 = x2 + (θ − φ)x1 

εt = xt − φxt−1 + θεt−1 

We can therefore use numerical algorithms to evaluate ST (φ, θ) at different values of φ, θ. 
More generally the ML estimator for the ARMA(p,q) class parametrized by φ(L) = (1 − φ1L − 

... − φpL
p) and θ(L) =  (1 − θ1L − ... − θq L

q)of models can be written as Ã ! 
T

1 0 
f (x1, ..., xT ; ψ) ≈ 

(2π 
1

)T/2 σ 
1 
T 
exp − 

2 

X 
ε2 
t exp 

µ
− 
1 
XmΓ

−1Xm

¶
m2 

t=m+1 

0 0
where m = max(p, q), Xm = (x1, ...., xm) and Γm = EXmXm. The errors can be approximated again 
by 

ε1 = x1 

ε2 = x2 − φ1x1 + θ1ε1 

εt = xt − φ1xt−1 − ... − φpxt−p + θ1εt−1 + .... + θq εt−q 

A further approximation step then uses Ã ! 
T

1 1 1 X 
f (x1, ..., xT ; ψ) ≈ 

(2π)T/2 σT 
exp − 

2 
ε2 
t 

t=m+1 

to estimate the parameters. 

5.2. Asymptotic Distribution of ML-estimators 

It can be shown that estimators minimizing the criterion function ST (φ, θ) are consistent and as-
ymptotically normal. More generally, let QT (β) =  log f (x1, ..., xT ; ψ). Then consistency follows if 
for some set C, 

sup 
ψ∈C 

|QT (ψ) − Q(ψ)| → 0 (5.3) 

3




in probability, where Q(ψ) is a nonstochastic function. Moreover, we also need that for any δ > 0
and a neighborhood N(ψ0, δ)

sup
ψ∈C\N(ψ0,δ)

Q(ψ) < Q(ψ0) (5.4)

For the case of an ARMA model we have ψ = (β, σ) where β =
¡
φ1, ..., φpθ1, ..., θq

¢
. It can be shown

that for the ARMA class the set C that satisfies (5.4) when QT (ψ) is the Gaussian likelihood is

C =
©
β ∈ Rp+q | φ(z)θ(z) 6= 0 for |z| ≤ 1, φp 6= 0, θq 6= 0, φ(z) and θ(z) have no common zeros

ª
Note that σ is identified once β ∈ C.
In words this condition means, that the AR and MA polynomials should have no common zeros,

should both have roots outside the unit circle and should be of order p and q respectively in a non-
trivial way. In particular this means that the coefficient on the highest order lag in both polynomials
should be nonzero. We give an example of an MA model that has the same autocovariance function
for two different parameter values for θ. You should check that only one of the models is contained
in C.

Example 5.1. The MA(1) models

xt = εt + θεt−1

and

xt = εt +
1

θ
εt−1

are observationally equivalent in the sense that they imply the same autocovariance function.

If conditions (5.3) and (5.4) are satisfied and if

ψ̂T = argmin
ψ∈C

QT (ψ) + op(1)

then it follows that ψ̂ → ψ0 in probability. Conditions (5.3) and (5.4) can be shown to hold for the
ARMA model with Gaussian criterion function. The proofs are somewhat complicated because C
is not a compact set. We will omit them here.
A consistency result is usually the first step in deriving the asymptotic distribution of an esti-

mator. A second step consists in showing that ψ̂T is contained in a 1/
√
T neighborhood of the true

parameter with high probability. A Taylor expansion in the neighborhood of the true parameter ψ0
is then used to obtain the asymptotic distribution of the estimator. It can be shown that

√
T
³
β̂T − β

´
d→ N (0, V (β))

where

V (β) = σ2E

·
UtU

0
t UtV

0
t

VtU
0
t VtV

0
t

¸−1
with ut = φ(L)−1εt and vt = θ(L)−1εt. The limiting covariance matrix V (β) can then be expressed
in terms of Ut = [ut, ut−1, ..., ut−p+1]and Vt = [vt, vt−1, ..., vt−q+1] . Note that the limiting covariance
matrix does not depend on σ2.

Example 5.2 (ARMA(1, 1)).

xt = φ1xt−1 + εt + θεt−1

so ut =
P∞

j=0 φ
j
1εt−j and vt =

P∞
j=0 θ

j
1εt−j . From this it follows that Ev2t = σ2 1

1−φ21 , Ev
2
t =

σ2 1
1−θ21 and Eutvt = σ2 1

1−φ1θ1 .
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5.3. Order Selection

Before an ARMA(p,q) model can be estimated we need to select the order p and q of the AR
and MA-polynomial. We have seen in Lecture 2 that in principle the autocorrelation and partial
autocorrelation function characterize pure AR(p) and MA(q) models.
For a pure MA(q) process the variance of the jth autocorrelation coefficient is given by

var (ρ̂T (j)) =
1

T

Ã
1 + 2

qX
i=1

ρ2(i)

!

which can be estimated by

σ̂ (ρ̂(j)) =
1√
T

Ã
1 + 2

qX
i=1

ρ̂(i)2

!1/2
where

ρ(i) =
cov(xt1xt+|j|)p

var(xt)
p
var(xt−|j|)

.

In order to identify the degree of the MA polynomial we can check for which value of h the
estimated autocorrelation coefficient ρ̂(h) stays within

±1.96√
T
(1 + 2 (bρ(1) + ...+ bρ(h− 1)))

In the same way we can identify a pure AR(p) model from its partial autocorrelation function. It
can be shown that for a pure AR(p) model the partial autocorrelations φ̂(n) for n > p have variance
1
T . We can thus check for which value of j the estimated coefficient φ̂(j) lies within ±1.96√

T
.

If the model is likely to be a mixed ARMA(p, q) model then the above identification procedure
runs into difficulties. We can still look at autocorrelation and partial autocorrelation functions of the
data to gain some insight into the maximal degree of the two lag polynomials. There is however a
more formal procedure, based on information criteria, that can be used to determine the best model
in an automated way.

If the process {xt}Tt=1 has a true density f(x, ψ0) and the ARMA-class has densities f(x, θ) then
the Kullback-Leibler distance is

d (ψ0 |θ ) =

Z
RT

−2 ln
µ
f(x, ψ0)

f(x, θ)

¶
f(x, θ)dx

≥ −2 ln
Z

f(x, ψ0)

f(x, θ)
f(x, θ)dx

= −2 ln
Z

f(x, ψ0)dx = 0,

where d(ψ0 |θ ) = 0 if and only if f(x,ψ0) = f(x, θ) a.e. The distance measure d(ψ0 |θ ) can be
approximated by

AIC(p, q) = ln σ̂2 + 2(p+ q)/T,

where σ̂2 = 1
T

P
ε̂2t is the maximum likelihood estimator of σ2. The best model specification is that

found by calculating AIC(p, q) for different values of p and q and picking the combination (p∗, q∗)
such that AIC(p, q) is minimized.
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Increasing the number p, q reduces the value of σ̂2. This comes at a cost of overparametrizing
the model which is captured in the term 2(p + q)/T. It can be shown that AIC is inconsistent in
the sense that it asymptotically picks p and q too large.
A modified criterion, called BIC, does not suffer from this problem. It is defined as

BIC(p, q) = ln bσ2 + (p+ q) ln T/T.

5.4. Diagnostic Checking

Once we have determined the values for p and q the model can be estimated with the methods of
the previous section. It is a sensible strategy to start with low-order models and then test against
increasing the order of an AR or MA polynomial by one. Note that one should never increase the
AR and MA polynomial at the same time.
Assume we have already estimated an ARMA(1,1) model, and we want to test whether an

ARMA(2,1) or ARMA(1,2) is more appropriate. One way to proceed is to estimate both the
ARMA(2,1) and ARMA(1,2) model and then test whether the additional coefficient is significantly
different from zero. In particular, we choose the ARMA(1,1) if¯̄̄

φ̂2

¯̄̄
q
var(φ̂2)

< 1.96 and
|θ2|q
var(θ̂2)

< 1.96.

Note that the variances of the parameter estimates should be determined from the null distribution,
i.e. under the assumption that the true parameter value is zero.
An alternative procedure is to test if the residuals are white noise. If the estimated model is

correctly specified then the time dependence in the data should be captured by the model and the
residuals should be uncorrelated. If we obtain residuals from

ε̂t = xt − φ̂1xt−1 − ...− φ̂pxt−p + θ1ε̂t−1 + ...+ θq ε̂t−q

and calculate

γ̂εε(j) =
1

T

T−jX
t=1

ε̂tε̂t+|j|

then ρε(j) = γ̂ε(j)/γ̂ε(0) should be close to zero for all j. A popular test of this hypothesis is the
Portmanteau or Box-Pierce test. It is based on

Q = T
KX
j=1

bρ2ε(j).
It can be shown that under H0 = ρ(j) = 0 ∀ j the limit distribution of Q is Q ∼ χ2K−(p+q). The
reduction in degrees of freedom by p+ q in the asymptotic distribution is determined by the number
of parameters used in the estimation of the model. In practical applications K should be chosen
at least 15 to 20. There is however a trade off between low power of the test for K too large and
inconsistency of the test for K too small. In practice it is therefore advisable to look at a plot ofbρε(j) before applying the test. Box and Ljung show that the statistic

Q̃ = T (T + 2)
KX
j=1

ρ̂ε(j)
2

T − j
d→ χ2K−p−q

has less bias than Q relative to the asymptotic χ2 distribution in small samples.
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