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Lecture 7: Unit Root Asymptotics and Unit Root Tests 

In this lecture we relax the stationarity assumption in the sense that we allow for processes of the form 

xt = xt−1 + ut, (7.1) P 1 

where ut = 
P∞ 

j=0 cj εt−j such that |j| 2 |cj | < ∞ and εt i.i.d.(0, 1). Under these conditions ut is weaklyP∞stationary. If the polynomial C(L) =  j=0 cj L
j is invertible then we can also view xt as being generated by 

an infinite order AR model. Thus 
C(L)−1(1 − L)xt = εt 

where the AR-polynomial C(L)−1(1 − L) now has one root on the unit circle. In other words we are considering 
a generalization of the model 

xt = π1xt−1 + ... + πpxt−p + εt 

with (1 − π1 − ... − πp) = 0. In particular we are interested in estimation and testing of the unit root. It turns 
out, that this can be done without fully specifying the short run dynamics of the model. We can show that 
parameter estimates are consistent even if the model is misspecified and that they converge at a faster rate than√ 
the usual T asymptotics suggest. This property is often referred to as superconsistency. These facts open 
the way to some novel statistical procedures based on semiparametric approximations to the true underlying 
model. 
In order to develop the necessary asymptotic theory we return to the model in equation (7.1). Expanding 

xn in terms of past innovations it follows that xn = 
P 

t
n 
=1 ut + x0. We can use the BN decomposition to analyze 

∞X 
ut = cj εt−j . 

j=0 

The goal is to express ut as the sum of an independent innovation plus the difference between two stationary 
processes. We first obtain a new representation of the lag polynomial C(L). 

X 
C(L) =  ciL 

i=0 Ã ! Ã ! ∞ ∞ ∞ ∞ ∞ ∞

∞

X X X X X X 
= ci − ci + ci − ci L + ci − ci L2 + ... 

i=0 i=1 i=1 i=2 i=2 i=3 
∞ ∞ ∞X X ¢X 

= 
i=0 

ci + (L − 1) 
i=1 

ci + 
¡
L2 − L 

i=2 

ci + ... 

P∞We now define the coefficients c̃  j = k=j+1 ck such that C(L) =  C(1)+(L − 1) ˜ ˜ P∞ 
C(L) where C(L) =  j=0 c̃  j L

j . 
˜ ˜It follows immediately that ut = C(1)εt + (L − 1) C(L)εt where we also commonly write ε̃t = C(L)εt. The 

process ut can now be written as 
ut = C(1)εt + ε̃t−1 − ̃εt. 

If we sum up the ut terms then the differences ε̃t−1 − ̃εt cancel in the summation except for the first and last 
term. Such a sum is sometimes referred to as a telescoping sum. We have therefore 



nX 
xn = C(1) εt + ε̃0 − ̃εn. 

t=1 

Note that Eε̃t = 0  and that var(ε̃t) < ∞. This follows from X X
1 2j 2 |cj | < ∞⇒  c̃  j < ∞ 

since  2    
∞ ∞ ∞ ∞ ∞ ∞X X X X X X 
˜ = ˜2 co +   ≤ c̃  o +  

j=0 

cj
j=1 k=j+1 

|ck| 
j=1 k=j+1 

k1/2 |ck | 

k=j+1 

|ck| /k1/2 

∞ ∞ ∞X X X 
≤ c̃  o + j1/2 |cj | 

k=j+1 

|ck| /k1/2 

j=1 j=1 

∞ ∞X X 
= c̃o + j1/2 |cj | 

k=1 

|ck | k1/2 < ∞ 
j=1 

where the first inequality follows from the Cauchy-Schwartz inequality and the last equality follows from 
counting the number of times each element |ck| /k1/2 appears in the double sum. 
We now define a stochastic process on [0, 1] as 

[nr]
1 X 1 

Xn(r) =  √ uj + √ x0 r ∈ [0, 1] 
n n 

j=1 

[nr] 

= 
C √(1) 

X 
εj + √ 

1 
n 

£ 
ε̃0 − ̃ε[nr]

¤ 
+ √ 

1 
n
x0 

n 
j=1 

where [nr] denotes the largest integer number less than nr. The process Xn(r) is right continuous and has left 
limits. Functions with this property are usually called CADLAG. 
The problem with the function space of right continuous functions with left limits is that it is not separable 

under the uniform metric. Lack of separability can lead to nonmeasurability such that the standard theory of 
weak convergence does not apply. For the processes we consider here this is however not a serious concern. 
There are several ways to proceed. One can use a continuous approximation to xn(r) or one can use a different 
metric, the so called Skorokhod metric to make the space of CADLAG functions complete and separable.. 
We will not go into these technical details in this lecture but just point out a few elements of the proofs 

needed to establish that Xn(r) converges weakly to a limit process. This result is known as Donsker’s Theorem 
in the probability literature and the interested reader is referred to Billingsley (1968). 
We have seen that ε̃t is stationary with finite variance. It can be shown that ¯ ¯ ¯ 1 ¯ 

sup ̄̄  √ (ε̃0 − ̃ε[nr])¯̄ → 0, 
r n p 

p
and it also is innocuous to assume √1 x0 → 0. We therefore are left with 

n 

[nr]
C(1) X 

Xn(r) =  √ εj + op(1). 
n 

j=1 

It is an immediate consequence of the CLT that for r fixed 

2




[nr] 

Xn(r) =  C(1) 

p
√[nr] 

X 

n 
p
[

1 

nr] 
j 

εj → N 
¡
0, C(1)2 r 

¢ 
, 

√ 
where √[nr] →√ 

r. Note that C(1)2 = 2πfu(0). Moreover, for r1 < r2 < r3 ... < rm fixed, we have n 

d £ 
[Xn(r1),Xn(r2) − Xn(r1), ...,Xn(rm) − X(rm−1)] → N 

¡
0, C(1)2R

¢¤ 
, 

where R = diag(r1, r2 − r1, ..., rm − rm−1). It should be pointed out that the increments Xn(ri) − Xn(ri−1) 
are independent. We have therefore established that the finite dimensional distributions of Xn(r) converges to 
the finite dimensional distributions of Brownian Motion denoted as B(r) where B(r) is a process defined from 
standard Brownian Motion W (r). Standard Brownian motion has the following properties. 

1. W (0) = 0 

2.	 W (t) has stationary and independent increments and for all t and s such that t > s  we have W (t) − 
W (s) ∼ N (0, (t − s)) 

3. W (t) ∼ N (0, t) ∀ t 
4. W (t) is sample path continuous 

We can now define B(r) as σW (r). We have shown that our limit process has the same finite dimensional 
distributions as Brownian Motion. To show convergence of Xn(r) in the function space we need to establish in 
addition that for all ε, η > 0 there exists a δ >  0 such that Ã ! 

supP 
|r−s|<δ 

|Xn(r) − Xn(s)| > ε  < η  

as n goes to infinity. A proof of this statement is omitted but can be found in Billingsley. 
We can now use the continuous mapping theorem to analyze the behavior of certain statistics of interest. 

The first result is an asymptotic representation of the sample mean. Note that unlike in the stationary case 
the sample mean does not converge to a constant but rather to a random variable. In particular we have 

n Z 11 X 

n3/2 
xt ⇒ 

0 
B(s)ds 

R 1where 
0 B(s)ds is a standard Riemann integral and ⇒ denotes weak convergence in the function space. We R 1 R 

will often write 
0 B(s)ds = B to simplify the notation. The integral is a random variable because it has a 

stochastic process as its argument. We now turn to the proof of this result. 
We have from before 

t−1X 
xt = uj + ut + x0 

j=1 Pn
j=1 uj . Thensuch that t=1 xt = 

P 
t
n 
=1 (St−1 + ut + x0) with St−1 = 

Pt−1 

n P 
1 X 1 X St−1 ut x0 

xt = √ + + √ 
n3/2 n n n3/2 n 

t=1 
nXZ t/n 

= Xn(r)dr + op(1) 
t−1 

t=1 n 
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P 
X0 √ 

S 
t−1since ut = Op(n

−1/2) and √ = Op(n
−1/2). Also Xn(r) =  

S[nr] + op(1) = √ + op(1) for t−1 ≤ r <  t and 
n3/2 n n n n nR t/n 1 

t−1 dr = n , such that 
n 

n Z 11 X 

n3/2 
t=1 

xt = 
0 
Xn(r)dr + op(1). 

Since the integral is continuous it now follows that Z 1 Z 1 

Xn(r)dr ⇒ B(r)dr 
0 0 R 1by the continuous mapping theorem. By linearity of the integral 

0 B(r)dr is Gaussian N (0, ν) where ν = 
C(1)2 

. This can be seen from noting that E 
R 
0

1 
B(r)dr = 0  by linearity of the integral and E( 

R 
0

1 
B(r)dr)2 = R 

0

1
3R 
0

1 
E[B(r)B(s)]drds. Now E[B(r)B(s)] = C(1)2 min(r, s) such that ν = 2C(1)2 

R 
0

1 R 
0 
s 
rdrds = C(1)2/3. 

We next turn to the analysis of the sample variance of xt. In particular we have 

n
1 X 

2 xt = 
n2 

t=1 

= 

= 

= 

1 
n2 

1 
n2 

XZ t/n S[
2 
nr] 2x0C(1) XZ t/n S[nr] x2 

C(1)2 

t−1 nC(1)2 
dr + √ 

n t−1 
√ 
nC(1) 

+ 
n 
0 

t=1 n t=1 n Z 1 X2 
n(r) 0C(1)2

0 C(1)2 
dr +

2x0√ 
C

n 
(1) 

Z 1 Xn(r) 
dr + 

x

n 

2 

+ op(1) 
0 C(1) Z 1 

d → C(1)2 W (r)2dr 
0 

nX 
(St + x0)

2 

t=1 
nX ¢

2 

t=1 

¡
St 
2 + 2x0St + x0 

n n 

which follows again by the continuous mapping theorem and the previous results, in particular the fact thatR 1 Xn(r) 
0 C(1) dr = Op(1). 
We are also interested in the behavior of score functions of the form 

1 X 
xt−1ut 

n 

We use partial summation. Note that 

nX 
∆S2 = t 

t=1 

= 

= 

n
1 X 

= (St−1 + x0) ut 
n 

t=1 
n

1 X 
= St−1ut + op(1). 

n 
t=1 

nXh 
(St−1 + ut)

2 − St 
2 
−1 

t=1 
nX ¢

2 

t=1 

¡
ut + 2utSt−1 

n nX X 
2 ut + 2  utSt−1, 

t=1 t=1 

i 
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¡

such that Ã ! 
n n n

1 X 1 1 X 1 X 
2St−1ut = ∆St 

2 − ut n 2 n n 
t=1t=1 

2 

µ 
1 

t=1 

1 X 
t 

¶
1 2 = S2 

n − u 
n n " µ 
Sn 

n 

¶2 
1 X 

2 

# 
1 

= √ − ut2 n 

d 1 → 
2 

¡
B(1)2 − σ2

¢ 
P 

where σ2 = cj 
2 . Then 

1 
2 

¡
B(1)2 − σ2

¢ 
= 

C(1)2 ¡
W (1)2 − 1 

¢ 
+
1 

C(1)2 − σ2
¢ 

2 2 | 
λ

{z }
It can be shown that C(1)

2 ¡
W (1)2 − 1 

¢ 
has a representation as a stochastic (Ito) integral 

R 
0

1 
BdB. Also note2 

that W (1)2 ∼ χ2 
1. It now follows immediately that 

n−1 P R 1 
xt−1ut BdB + λ 

n(α̂ − 1) = 
n−2 

P 
x2 ⇒ 0 R 1 

B2t 0 

where P 
xtxt−1

α̂ = P 
x2 
t 

and xt = xt−1 + ut. Several things are worth noting at this point. First of all, the estimator converges at rate 
Op(n

−1) to the true parameter value, regardless of whether the short run dynamics of the model are correctly 
specified or not. This sharply contrasts with the stationary case where misspecification of the model leads to 
inconsistency. However, in the case of misspeciRfication, i.e. if the innovations ut are serially correlated, the limit 
distribution has an asymptotic bias term λ/ B2 . It is the presence of this bias term, which makes inference 
hard, since it is no longer possible to use tables to obtain critical values. Note that if λ = 0, i.e., ut ∼ iid then R 

WdW 
n(α̂ − 1) ⇒ R 1 , 

W 2 
0 

such that the limit distribution is nuisance parameter free. In other words, there is no need to use a t-test in 
this case because the limit distribution of α̂ does not depend on an unknown parameter. 
In this simple situation a unit root test would compare n (ρ̂ − 1) against the critical value of a statistic with 

distribution ¢ 
1

2 

¡R W (1)2 − 1 
.


W (r)2dr 

This is possible since under H0 : ρ = 1  we have shown that 

1 

ρ − 1) ⇒ 2 

¡R W (1)2 − 1 
¢ 

n (ˆ 
W (r)2dr 

Critical values are tabulated in Hamilton, Table B5, case 1. For example, if n = 100, then one can reject H0 

at 5% if n(ρ̂ − 1) < −7.9 for a one-sided test. We can also look at the t-statistic, assuming again that ut iid 

5




ˆ ˆ

ˆ

ˆ

ˆ

ˆ

ˆ

¡
0, σ2 

¢ 
ρn − 1 ρ − 1 

t = 
σρ 

= 
σ 
¡P 

x2 
t−1 

¢−1/2ˆ ˆ 

where 

1 X 1 X 
ˆ ρxt−1)

2 = (ut + (ρ − ρ) xt−1)
2σ = (xt − ˆ

n n 
1 X 

2 1 X 
= ut + (ρ − ρ) xt−1ut 

n n 
1 X 

2 p
+	 (ρ − ρ)2 

xt−1 → σ2 
u n 

and ¢ 
n (ˆ 2 

2 σ2 ¡
W (1)2 − 1 ´ 1ρ − 1) 

µ 

n 
1 
2 

X 
xt−1

¶ 1 

⇒ ³ 
2 R 1 2 
σ2

0 W (r)2dr 

so ¢ 
1 

t ⇒ ³ 
2 R
¡
1 

W (1)2 − 1 ´ 1 
2 

0 W (r)2dr 

which is tabulated in table B6, case 1. We will now see that the limit distribution of ρ depends on the fitted 
model, even if the true underlying model remains unchanged. In particular we consider fitting a constant while 
the true process is still assumed to be xt = xt−1 + ut with ut = C(L)εt. The estimator for the autoregressive 
parameter can now be written as 

Pn Pn x) (xt−1 − ¯ x) (xt−1 − ¯ 
ρ = t=2 (xt − ¯ x−1) 

= 1 + t=2 (ut − ¯ x−1)Pn 
t=2 (xt−1 − ¯ x−1)

2 
x−1)

2 Pn
t=2 (xt−1 − ¯ Pn Pn Pn 

x−1) Pn 
xt=2 ut (xt−1 − ¯

= 1 + Pn x)2 = t=2 utxt−1 − ¯ t=2 ut 

t=2 (xt−1 − ¯ t=2 xt 
2 
−1 − nx̄2 

x = n−1 P 
t
n 
=2 xt and ¯where ¯ x−1 = n−1 P 

t
n 
=2 xt−1 so 

n t=2 utxt−1 − ¯ n 
1 Pn 

x 1 Pn
t=2 ut n (ρ̂ − 1) = 

n 
1 
2 

P 
t
n 
=2 xt 

2 −1 − 1 x2 
+ op(1). 

¯ n 

Now, using the previous arguments we can establish the following results. 

n Z 
1 X 

2 

n2 
xt−1 ⇒ C(1)2 W (r)2dr 

t=2 Ã !2n
1 2 1 X 
x 

n 
¯ = 

n3/2 
xt ⇒ 

µZ 

0

1 

W (r)dr

¶2 

C(1)2 

t=2 

n
1 X 

utxt−1 ⇒ 
¡
W (1)2 − 1 

¢ C(1)2 

+ λ

n 2


t=2


n
x̄ 1 X 
√ √ ut ⇒ 

µZ 
W (r)drW (1)

¶ 

C(1)2 . 
n n 

t=2 
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ˆ

ˆ

ˆ

This leads to the following asymptotic representation of the estimator 

ρ − 1) ⇒ 
C(1)2 ¡

W (1)2 − 1 
¢ 
+ λ − W (1) 

R 
0

1 
W (r)drC(1)2 

2 n (ˆ
C(1)2 

hR 
W (r)2dr − 

¡R 
W (r)dr 

¢2 
i 

1

2 

¡
W (1)2 − 1 

¢ − W (1) 
R 1 

W λ

= hR 

W 2 − 
¡R 

W 
¢2 
i 0 + 

C(1)2 
hR 

W 2 − 
¡R 

W 
¢2 
i 

If λ = 0  then the asymptotic distribution is free of nuisance parameters and critical values can be taken from 
Table B6, case 2. There are basically two possible ways to avoid the misspecification problem. One is to fit 
the correct parametric model to the short run dynamics. This approach is the basis of augmented Dickey-
Fuller tests (ADF tests). The second approach, the Phillips Zα test, uses a nonparametric correction to the 
test statistic to account for omitted serial dependence.. The advantage of this second approach is, that the 
unit root hypothesis can be tested without making specific assumptions about the parametric form of the 
dependence in ut. 
The Phillips Zα test uses a non parametric correction to obtain a nuisance-parameter-free limit distribution. 

It is formulated in this way 
λ̂ 

n (ρ̂ − 1) + 1 P 
x2 

n2 t−1 

with ρ being the demeaned estimator for the unit root and ³ ´ 1
λ̂ = 2πfb(0) − σ̂n

2 

where 
1 X 1 X 

ˆ ut α − ˆσn = ˆ2 = (xt − ˆ ρxt−1)
2 

n n 
and 

MX 
2πfb(0) = 

j=−M 

µ
1 − 

|j|
M 

¶ 

γ(j) 

ˆ ˆ λ − λ → 0 for M = O(n1/4) and n 
1 
2 x2 

t−1 ⇒ 
0 W (r)2drC(1)2 such thatwith γ(j) =  n−1 P 

utut−j . Then ˆ 
p P R 1 

ˆ 1 

ρ − 1) + 1 P 
λ

x2 ⇒ 2 

¡
W (1)2 − 1 

¢ − W (1) 
R 
0

1 
W (r)dr 

n (ˆ 
n2 t−1 

R 
W (r)2dr − 

¡R 
W (r)dr 

¢2 

We can use standard tables even though we have not fully specified the dynamics of the model. In particular 
the null is rejected at a certain significance level if 

λ̂ 
ρ − 1) + 1 P 

x2 < c1 n (ˆ α 
n2 t−1 

or 
λ̂ 

ρ − 1) + 1 P 
x2 > c2 n (ˆ α 

n2 t−1 

where c1 
α are critical values for the level alpha for a one sided test from table B6, case two. There is aα and c2 

similar test based on the t-statistic. Note that Monte Carlo studies indicate that the Zα test has size distortions 
for certain models such as ∆xt = εt − 0.8εt−1. Here xt is nonstationary but the Zα test rejects H0 too often. 
As mentioned before a parametric way to remove the nuisance parameters from the limit distribution is to 

fully specify the short run dynamics. Assume that φ(L)xt = εt; εt ∼ iid(0, σ2) and φ(L) such that φ(1) = 0. 
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Then we can write 

φ(L) = 1 − φ1L − φ2L
2 . . . − φpL

p ¢ ¢ 
= 1  − 

¡
φ1 + φ2... + φp L + 

¡
φ2 + ... + φp L 

−φ2L2 − . . . φpL
p 

= 1  − 
¡
φ1 + φ2 + ... + φρ 

¢ 
L + 

¡
φ2 + ... + φρ 

¢ 
L(1 − L) 

+ 
¡
φ3 + ... + φρ 

¢ 
L2(1 − L) +  ... + φpL

p−1(1 − L) 

so ∆xt = Πxt−1 + Π1∆xt−1 + ... + Πρ−1∆xt−ρ+1 + εt where Πi = − 
¡
φi + ... + φρ 

¢ 
and Π = 

¡
φ1 + ... + φp 

¢ − 1. 
So under the null hypothesis 

H0 : φ(L) has one unit root 

we have Π = 0  and ∆xt = ut = εt/(1 − Π1L − ...Πp−1Lp−1) is stationary. Stack the variables zt 
1 = 

(∆xt−1, ..., ∆xt−p, 1, xt−1) and compute ³X ´ −1 X0
β̂ = ztzt ztxt 

then ³ ´ ³ X ´ −1 X 
ˆDn β − β = D−1 ztzt 

1D−1 D−1 ztεtn n n 

with   
n1/2  . . . 

  
Dn =   .  n1/2  

n 

Note that   X Γρ 0 R 0 
D−1 ztzt 

1D−1 ⇒  0 R 1 R B  ;n 
0 B B2 

[Γρ]ij = cov (ui, uj ) 

since n−1 P 
∆xt → 0 and n−3/2 P 

∆xtxt → 0. Thus 
p ρ   

Γ−1 0³ 
D−1 

X 
ztzt 

1D−1 ́
 −1 
⇒  

ρ · R 1 RR B 
¸−1  .n n 0 

B B2 

Also,  P  
√1 ut−1εtn . . X    

n D−1 ztεt =  √1 
n 

P. 
ut−pεt   P   √1 εt  

nP
1 
n xt−1εt 

The first p − 1 elements converge to N 
¡
0, σ2Γρ 

¢ 
. This is an important result in itself since it shows that the 

stationary part of the model can be estimated and tested for by standard inferential methods. The reason for 
this is that the parameters of the nonstationary part converge at a faster rate and can thus be considered as 
constant in the asymptotic theory for the parameters of the stationary part of the model. 
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b

The nonstationary part of the model behaves according to µ 
√	
1 X 

εt, 
1 X 

xt−1εt

¶ 

⇒ 

µ
σW (1),

C(1)σ2 

(W (1) − 1)

¶
n n 2 P P 

with C(1) = (1 − Π1... − Πp)−1 from 1 xt−1εt = 1 St−1εt + op(1). Now by the BN decomposition we n n 
have 

t−1X 
St−1 = C(1) εj + (ε̃0 − ̃εt−1) 

j=1 

such that 

n t−1
1 X 1 XX 1 X 1 X 

xt−1εt = C(1) εj εt + ε̃0 εt + εt ̃εt−1 
n n n n 

t=1 j=1 

⇒	
C(1)σ2 ¡

W (1)2 − 1 
¢ 
. 

2 

These results show that 
1 

n(ˆ 
d 2 

¡
W (1)2 − 1 

¢ − W (1) 
R 
0

1 
W (r) ´ 

dr 
ρ − 1) → 

C(1) 

µR 
0

1 
W (r)dr − 

³R 
0

1 
W (r)dr 

2
¶ 

This can be seen by considering " R 1 
#−1 

1 
" R 1 

B2 
R 1 

# 
1 B − B

0 R 0R 1 
B 

R 1 
B2 = R 

B2 − ( B)2 − 
0R 1 

B 1
0 0 0 

and Z Z 
B = C(1)σ W (r)dr Z Z 1 

B2 = C(1)2σ2 W (r)2dr 
0 

such that it follows that Z 
n (ρ̂ − 1) = R C(1) ¢2 

µ
−σ2W (1) W + 

σ 
2 

2 ¡
W (1)2 − 1 

¢¶ 

1 1 
= 

B2 

h 
− 

R
¡R 

B 

¢2 
i · 

2 

¡
W (1)2 − 1 

¢ − W (1) 
Z 

W ̧
C(1) W 2 − 

¡R 
W 

We see that the limit distribution is free of a bias term but still depends on nuisance parameters. The bias 
term vanished because we correctly modeled the short run dynamics. Unfortunately the limit distribution still 
depends on the unknown long run variance of the process. This problem can be overcome by considering a 
t-test rather than a Z test on the parameter directly. We consider a t-test of H0 : ρ = 1  

ρ − 1) n (ˆn (ˆ ρ − 1) 
= 
ˆseρ σ 
¡
D−1 P 

ztzt 
1D−1

¢−1/2 
n n p+1 

where 
¡
D−1 P 

ztzt 
1D−1 

¢−1/2 
stands for the p + 1  diagonal element of 

¡
D−1 P 

ztzt 
1D−1 

¢−1/2 
. We have shownn n p+1 n n 
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before that ³ X ´ −1/2 1 
D−1 ztzt 

1D−1 ⇒ n n 
p+1 

C(1)σ 
hR 

W 2 − 
¡R 

W 
¢2 
i1/2 

. 

It now follows that 

1ρ − 1) µ2 R
¡
1 

W (1)2 − 1 
¢ − W (1) 

R 
0

1 
W ´ 
(r)drn (ˆ ⇒ 

ˆ n n p+1
σ 
¡
D−1 P 

ztzt 
1D−1

¢−1/2
0 W 2(r)dr − 

³R 
0

1 
W (r)dr 

2
¶1/2 

which is free of nuisance parameters. Critical values can be obtained from Table B6, section 2. It should be 
pointed out that the limit distribution is independent of the number of estimated parameters for lagged ∆xt−i. 
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