Massachusetts Institute of Technology Department of Economics Time Series 14.384

Final Exam-Fall 2001

Instructions: This is a 180-minute open-book, open-notes exam.

1. Assume that ε_t and η_t are sequences of *iid* N(0,1) random variables with $E\varepsilon_t\eta_s = 0$ for all t and s. Let

$$x_t = \sum_{j=0}^{\infty} c_j \varepsilon_{t-j}$$

where $\sum_{j} |c_j| |j| < \infty$ and

$$u_t = \sum_{j=0}^{\infty} \gamma_j \eta_{t-j}$$

with $\sum_{j} |\gamma_{j}| |j| < \infty$. Assume that y_{t} is generated by

$$y_t = \beta x_t + u_t$$

and that we observe a sample of size *n* of observations $\{y_t, x_t\}_{t=1}^n$.

a) Consider the OLS estimator

$$\hat{\beta} = \frac{\sum_{t=1}^{n} x_t y_t}{\sum_{t=1}^{n} x_t^2}$$

Is $\hat{\beta}$ consistent? Find a limiting distribution of an appropriately centered and scaled version of $\hat{\beta}$. What is the variance of the limiting distribution of $\hat{\beta}$?

- b) Consider the random variable $z_t = x_t u_t$. Find the autocovariance function of z_t as a function of the parameters c_j and γ_j . Find the spectral density of z_t .
- c) Express the asymptotic variance of $\hat{\beta}$ found in a) in terms of the spectral densities of z_t and x_t (Hint: use the fact that $f_x(\lambda) = (2\pi)^{-1} |C(e^{-i\lambda})|^2$ where $C(L) = \sum_{j=0}^{\infty} c_j e^{-i\lambda j}$).
- d) How does your result in c) simplify if $\gamma_j = 0$ for $j \neq 0$?
- e) Derive a test of the hypothesis that u_t is an iid sequence against the alternative that $\gamma_j \neq 0$ for at least one $j \leq q$ where q is a fixed and known positive integer?
- 2. Let x_t be a weakly stationary process with $Ex_t = 0$. Consider the filtered process y_t where

$$y_t = \frac{1}{3} \left(x_t + x_{t-1} + x_{t-2} \right).$$

- a) Find the spectral density of y_t in terms of the spectral density $f_x(\lambda)$ of x_t and the power transfer function of the filter.
- b) Describe the properties of the filter by finding the gain function and the phase shift of the filter.
- c) Now consider the extracted 'cyclical' component y_t^c of x_t defined as

$$y_t^c = x_t - y_t.$$

Find the filter that transforms x_t into y_t^c . Assume that x_t is a unit root process of the form $x_t = x_{t-1} + u_t$ where u_t is iid N(0, 1) and $x_0 = 0$. Is y_t^c stationary? Prove your answer.

Guido Kuersteiner

d) Consider the filtered series y_t^c . Discuss the optimality properties (or lack thereof) of y_t^c if the goal was to extract the components of x_t that generate the spectrum in a band [a, b]. How does your answer depend on a and b. (Hint: you can answer this part informally. You may find it useful to compare y_t^c to the approximately optimal filter according to Christiano and Fitzgerald when x_t is generated by

$$x_t = x_{t-1} + u_t - u_{t-1}.$$

Only spend time on this last point if you have time at the end of the exam.)

3. Assume that $x_t = \alpha x_{t-1} + \varepsilon_t - \theta \varepsilon_{t-1}$ where $\varepsilon_t \sim \text{iid}N(0,1)$, $|\theta| < 1$ and $x_0 = 0$. Consider a regression of x_t onto x_{t-1} , i.e. an estimator

$$\hat{\alpha} = \frac{\sum_{t=2}^{n} x_t x_{t-1}}{\sum_{t=2}^{n} x_{t-1}^2}.$$

- a) Assume that $|\alpha| < 1$. Is $\hat{\alpha}$ consistent for the parameter value α ? Prove your answer. Find a limiting distribution for $\hat{\alpha}$. Is $\hat{\alpha}$ asymptotically efficient?
- b) Now assume that $\alpha = 1$. Is $\hat{\alpha}$ consistent in this case. Find the limiting distribution of $\hat{\alpha}$.
- c) How could you use your distributional result in b) to approximate the finite sample bias of $\hat{\alpha}$. (Hint: no exact calculation is expected here. A rough outline of the procedure is sufficient).
- d) Propose a test of H_1 : $|\alpha| < 1$ against the null hypothesis H_0 : $\alpha = 1$? Derive the limiting distribution of your test statistic under the null. How can you make the distribution of your test statistic nuisance parameter free?