Final Exam-Fall 1999

Instruction: This is a 180-minute open-book, open-notes exam.

1. Assume that ε_t and v_t are iid sequences of random variables, independent of one another, with $E\varepsilon_t^4 < \infty$, $Ev_t^4 < \infty$, $E\varepsilon_t = Ev_t = 0$ and $E\varepsilon_t^2 = Ev_t^2 = 1$. Let x_t be the stationary solution to the stochastic difference equation for all t

$$x_t = \phi x_{t-1} + v_t \text{ for } |\phi| < 1 \tag{1}$$

and let y_t be given as

$$y_t = x_t + \varepsilon_t. \tag{2}$$

- a) Show that y_t is a stationary process. What is the univariate representation of y_t in terms of v_t and ε_t ?
- b) Find the spectral density of y_t .
- c) Suppose you observe a sample of $\{x_t, y_t\}_{t=1}^n$ generated by (1) and (2). Consider the OLS estimator

$$\hat{\beta} = \frac{\sum_{t=2}^{n} y_t x_t}{\sum_{t=2}^{n} x_t^2}.$$

Find the probability limit of $\hat{\beta}$. Make suitable assumptions about initial conditions of (1) if necessary. Find the limit distribution of $\hat{\beta}$ after appropriate centering and rescaling. Is the OLS estimator efficient?

- d) Now assume that ε_t and v_t are correlated. Find a consistent estimator of β and determine the limit distribution of your estimator.
- 2. Assume that $\varepsilon_t \in \mathbb{R}^2$ is $iidN(0,\Omega)$ where Ω is a positive definite, symmetric 2×2 covariance matrix. Assume that $z'_t = (y_t, x_t)$ is the stationary solution to the structural model

$$A_0 z_t = A_1 z_{t-1} + \varepsilon_t \text{ with } z_0 = 0.$$
(3)

The coefficient matrices A_0 and A_1 are given by

$$A_0 = \left[egin{array}{cc} 1 & 0 \\ lpha & 1 \end{array}
ight], \ A_1 = \left[egin{array}{cc} \phi & eta \\ 0 & heta \end{array}
ight].$$

- a) Find the reduced form for z_t . Express the variance Σ of the reduced form innovations in terms of Ω , A_0 and A_1 and find the reduced form coefficients Π in terms of A_0 and A_1 .
- b) Write down the likelihood function of the reduced form parameters.
- c) Find the maximum likelihood estimators of the reduced form parameters.
- d) How would you test the hypothesis that $\beta = 0$.
- e) Find the ML estimator for the restricted reduced form when $\beta = 0$.
- f) Assume that the reduced form parameters Π and Σ are indentified. Let the parameter space for $(\alpha, \beta, \phi, \theta)$ be \mathbb{R}^4 . For which subsets of \mathbb{R}^4 are the structural parameters Ω , A_0 and A_1 identified? Do you need to impose restrictions on Ω ? How would you estimate the structural parameters?

- 3. Let $x_t = \sum_{s=1}^t \varepsilon_s$ and $\varepsilon_s \sim \mathrm{iid}N(0,1)$ and $y_t = \sum_{s=1}^t v_s$ with $v_s \sim \mathrm{iid}N(0,1)$. Assume that $E\varepsilon_s v_t = 0$ for all t and s.
 - a) Are x_t and y_t stationary?
 - b) Consider a regression of y_t on x_t . Let $\hat{\beta}$ be the OLS estimator of that regression defined by

$$\hat{\beta} = \frac{\sum_{t=1}^{n} y_t x_t}{\sum_{t=1}^{n} x_t^2}.$$

Show that

$$\hat{\beta} \Rightarrow \frac{\int W_1(r)W_2(r)dr}{\int W_2(r)^2 dr}$$

where $W_1(r)$ and $W_2(r)$ are two independent standard Brownian motions on C[0,1]. How do you interpret this result.

c) Let the R^2 of the regression be given as

$$R^{2} = \frac{\hat{\beta}^{2} \sum_{t=1}^{n} (x_{t} - \bar{x})^{2}}{\sum_{t=1}^{n} (y_{t} - \bar{y})^{2}}$$

with $\bar{x} = n^{-1} \sum_{t=1}^{n} x_t$ and $\bar{y} = n^{-1} \sum_{t=1}^{n} y_t$. Find an expression for R^2 as $n \to \infty$.

- d) Discuss the implications of your result for a standard F test of the hypothesis $\beta = 0$.
- e) Now assume that $x_t = \sum_{s=1}^t \varepsilon_s$ and $\varepsilon_s \sim \mathrm{iid} N(0,1)$ and that

$$y_t = x_t + v_t$$

where $v_s \sim \text{iid}N(0,1)$ and $E\varepsilon_s v_t = 0$ for all t and s. Consider the OLS estimator $\hat{\beta}$ from the regression of y_t on x_t where $\hat{\beta} = \sum_{t=1}^n y_t x_t / \sum_{t=1}^n x_t^2$. Is $\hat{\beta}$ consistent? Can you find a limit distribution for β after appropriate scaling and centering?

f) Continue to maintain the assumptions under e). How would you test the hypothesis that $\beta = 1$? Construct a test and indicate how you would obtain critical values under $H_0: \beta = 1$