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Lecture Note 2 - Stationary Processes 

In this lecture we are concerned with models for stationary (in the weak sense) processes. The 
focus here will be on linear processes. This is clearly restrictive given the stylized facts of financial 
time series. However linear time series models are often used as building blocks in nonlinear models. 
Moreover linear models are easier to handle empirically and have certain optimality properties that 
will be discussed. Linear time series models can be defined as linear difference equations with constant 
coefficients. 
We start by introducing some examples. The simplest case of a stochastic process is one with 

independent observations. From a second order point of view this transforms into uncorrelatedness. 

Example 2.1 (White Noise). The process {εt} is called white noise if it is weakly stationary with 
Eεt = 0  and autocovariance function ½ 

σ2 h = 0  
γεε(h) =  

0 h 6= 0  

and we write εt ∼ WN(0, σ2). A special case is {εt} with εt ∼ iid(0, σ2). 

The white noise process is important because it can be used as a building block for more general 
processes. Consider the following two examples. 

Example 2.2 (Moving Average). The process {xt} is called a moving average of order one or 
MA(1) if {xt} is stationary and 

xt = εt + θεt−1 

and εt is white noise. 

It follows immediately that γxx(0) = σ2(1 + θ2), γxx(1) = θσ2 and γxx(h) = 0  for |h| > 1. A 
slightly more complicated situation arises when we consider the following autoregressive process. 

Example 2.3 (Autoregression). The process {xt} is called autoregressive of order one or AR(1) 
if {xt} is stationary and satisfies the following stochastic first order difference equation 

xt = φxt−1 + εt (2.1) 

and εt−1 is white noise. 

By iterating on (2.1) we find 

xt = εt + φεt−1 + ...φk−1εt−k+1 + φk xt−k. 

By stationarity Ex2 
t−k is constant and if |φ| < 1 then E(xt − 

P 
j
k 
=0 φ

j εt−j )2 = φ2kEx2 
t−k tends to 

zero as k →∞. Therefore ∞X 
xt = φj εt−j (2.2) 

j=0 

in mean square and therefore in probability. It can also be shown that (2.2) holds almost surely. 
Equation (2.2) is the stationary solution to (2.1). It is called causal because it only depends on past 
innovations. 



Under the stationarity assumption we can see that 

Ext = φExt−1 + 0  ⇒ Ext = 0  

and 
Extxt−h = φExt−1xt−h + Eεtxt−h 

such that 
γxx(h) =  φγxx(h − 1). (2.3) 

By premultiplying equation (2.1) by xt on both sides and taking expectations we also have γxx(0) = 
φγxx(1) + σ2 such that together with γxx(1) = φγxx(0) we can solve for γxx(0) = σ2/(1 − φ2). This 
now leads to 

γxx(h) =  
σ2φh 

. 
(1 − φ2) 

This derivation of the form of γxx(h) is based on solving the Yule Walker equations (2.3). An 
alternative way to derive this result is to directly calculate the autocovariances based on the solution 
(2.2). 

2.1. Lag Operators 

For more general time series models it is less easy to find the solution by repeated substitution of the 
difference equation. It is therefore necessary to develop a few tools to analyze higher order difference 
equations. We introduce the lag operator L which maps a sequence {xt} into a sequence {yt} and is 
defined by its operation on each element in the sequence 

yt = Lxt = xt−1 ∀t. 
If we apply L repeatedly then we use the convention that 

Lp =L ◦ L ◦ ... ◦ L| {z } . 
p 

L has an inverse L−1 such that L−1Lxt = LL−1xt = xt. It is also immediate that L is linear 

Laxt = aLxt = axt−1. 

We can use the operator L to define more complex linear operators, the polynomial lag operators. 
Let φ(L) = 1 − φ1L − ... − φpL

p then φ(L) is a polynomial of order p in L. It follows that φ(L) is 
again a linear operator. For p = 1  we can write the AR(1) model in compact form 

φ(L)xt = εt. 

In the same way as before φ(L) has an inverse φ(L)−1 such that φ(L)−1φ(L)xt = φ(L)φ(L)−1xt = xt. 
For the case of p = 1  it is easy to find φ(L)−1 in terms of a polynomial expansion. Since L is a 
bounded operator and if |φ1| < 1 

kX 

j=1 

φj 1L
j ) = 1  − φk+1Lk+1 → 1 as k →∞1(1 − φ1L)(1 + 

such that ∞X 

j=1 

φj 1L
j ). (2.4)φ(L)−1 = (1 + 

One way to find the inverse of higher order polynomials is therefore to factorize them into first order 
polynomials and then use relation (2.4). This is also the idea behind the solution of a p-th order 
difference equation to which we turn now. 
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2.2. Linear Difference Equations 

We consider solutions {xt} of the p-th order linear difference equation 

xt + α1xt−1 + ... + αpxt−p = 0  (2.5) 

where α1, ...αp are real constants. In lag polynomial notation we write α(L)xt = 0. A solution then 

is a sequence {xt} such that (2.5) is satisfied for each t. A set of m ≤ p solutions {x(1) t , ..., x
( 
t
m)} are 

linearly independent if 

c1x
(1) 
t + ... + cmx

( 
t
m) 
= 0  for all t = 0, 1, ..., p − 1 

implies c1, ..., cm = 0. Given p independent solutions and p initial conditions x0, ..., xp−1 we can then 
solve  

x
(1) · · ·  x(p) 

    
0 c1 x0 . 

0 
.  .   .  . .   . .  ..  =  ..  

x
(1) 

p−1 
cp xp−1 p−1 · · ·  x(p) 

for the vector of coefficients (c1, ..., cp). The unique solution to (2.5) is then c1x
(1) 
t + ... + cmx

( 
t
m) 
= xt 

since this is the only solution xt that satisfies the initial conditions. All values for xt, t > p are then 
uniquely determined by recursively applying (2.5). 
From fundamental results in Algebra we know that the equation α(L) = 0 has p possibly complex 

roots such that we can write 
jY 

α(L) = 
 (1 − ξ− 
i 
1L)ri (2.6) 

i=1 

where ξi, i = 1, ..., j are the j distinct roots of α(L) and ri is the multiplicity of the i-th root. It is 
therefore enough to find solutions x( t

i) such that (1 − ξ− 
i 
1L)ri x

( 
t
i) 
= 0. It then follows from (2.6) that 

α(L)x
( 
t
i) 
= 0. We now show the following result. 

Lemma 2.4. The functions h( t
k) 
= tkξ−t, k  = 0, 1, ..., j − 1 are linearly independent solutions to the 

difference equation 
(1 − ξ−1L)j ht = 0  

Proof. For j = 1  we have 

(1 − ξ−1L)ξ−t = ξ−t − ξ−1Lξ−t 

= ξ−t − ξ−1ξ−t+1 = 0. 

For j = 2  we have (1 − ξ−1L)2ξ−t = 0  from before and 

(1 − ξ−1L)2tξ−t = (1 − ξ−1L)(tξ−t − (t − 1)ξ−t) 
= tξ−t − 2(t − 1)ξ−t + (t − 2)ξ−t = 0  

and similarly for j >  2. This follows from repeated application of Ã 
kX 

r=0 

!


(1 − mL)(a0 + a1t + ... + akt
k)m t = m t ar(t

r − (t − 1)r) 

= (b0 + b1t + ... + bk−1tk−1)m t 

where b1, ..., bk−1 are some constants. Finally we note that h( t
k) are linearly independent since if ¡

c0 + c1t + .... + ck−1tk−1
¢ 
ξ−t = 0  for t = 0, 1, ..., k − 1 
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then the polynomial 
¡
c0 + c1t + .... + ck−1tk−1 

¢ 
of degree k − 1 has k zeros. This is only possible if 

c1, ..., ck = 0. 
Lemma (2.4) shows that α(L)xt = 0  has p solutions tnξ− 

i
t , n  = 0, 1, ..., ri − 1, i  = 1, ..., j. The 

general solution to (2.5) then has the form 

j ri −1XX 
xt = cint

nξ− 
i
t . (2.7) 

i=1 n=0 

The p coefficients cin are again determined by p initial conditions. The coefficients are unique if the 
p solutions tnξ− 

i
t are linearly independent. This follows if 

j ri −1XX 
cint

nξ− 
i
t = 0  for t = 0, 1, 2, ... 

i=1 n=0 

implies cin = 0  ∀i, n. For a proof see Brockwell and Davis (1987), p.108. 

2.3. The Autocovariance function of the ARMA(p,q) Model 

In this section we use the previous results to analyze the properties of the ARMA(p, q) model. The 
ARMA(p, q) process is defined next. 

Definition 2.5. The process {xt} is called ARMA(p, q) if {xt} is stationary and for every t 

xt − φ1xt−1 − ... − φpxt−p = εt + θ1εt−1 + ... + θq εt−q . (2.8) 

A more compact formulation can be given by using lag polynomials. Define 

φ(L) = 1  − φ1L − ... − φpL
p 

and 
θ(L) = 1 + θ1L + ... + θqL

q . 

then (2.8) can be written as φ(L)xt = θ(L)εt. It is useful to find different representations of this 
model. For this purpose we introduce the following notions 

Definition 2.6. The ARMA(p,q) process (2.8) is said to be causal if there exists a sequence {ψi}∞ P i=0 
such that |ψi| < ∞ and 

∞X 
xt = ψiεt−i. 

i=0 

It can be shown, that an ARMA(p,q) process such that θ(L) and φ(L) have no common zeros is 
causal if and only if φ(z) 6= 0  for all z ∈ C such that |z| ≤ 1. Then the coefficients ψi are determined 
from ∞X 

ψ(z) =  ψiz 
i = θ(L)/φ(L) (2.9) 

i=0 

by equating coefficients in the two polynomials. We only discuss the if part. Assume φ(z) 6= 0  for 
|z| ≤ 1. Then there exists an ² >  0 such that 1/φ(z) has a  power series expansion 

∞X 
1/φ(z) =  ξj z

j for |z| ≤ 1 +  ². 
j=0 

This implies ξj (1 + ²/2)j → 0 as j̄ →∞  so that there exists a positive finite constant K such that
¯ ¯ ¯
¯ξj ̄  < K(1 + ²/2)−j . Thus 
P∞

j=0 

¯ξj ̄  < ∞ and ξ(z)φ(z) = 1. This now justifies writing 

xt = θ(L)/φ(L)εt. 

Another related property of the ARMA(p, q) process is invertibility. This notion is defined next. 
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Definition 2.7. The ARMA(p,q) process (2.8) is said to be invertible if there exists a sequence 
{πi}∞ P |πi| < ∞ andi=0 such that 

∞X 
εt = πixt−i. 

i=0 

It can again be shown that (2.8), such that θ(L) and φ(L) have no common zeros, is invertible 
if and only if θ(z) 6= 0  for all z ∈ C such that |z| ≤ 1. Invertibility means, that the process can 
be represented as an infinite order AR(p) process. This property has some importance in applied 
work since AR(p) models can be estimated by simple projection operators while models with moving 
average terms need nonlinear optimization. 
Causality can be used to compute the covariance function of the ARMA(p, q) process. Under 

causality we can write 
∞X 

xt = ψiεt−i 
i=0 

such that ∞X 
γxx(h) =  σ2 ψiψi+|h|. 

i=0 

This expression is however not very useful since it does not show the dependence on the underlying 
parameters of the process. Going back to (2.9) we write ψ(z)φ(z) =  θ(z) and equate the coefficients 
on zi . This leads to X 

ψj − φkψj−k = θj , 0 ≤ j <  max(p, q + 1) 
0<k≤j 

and in particular for j = 0, 1, 2, .. 

ψ0 = 1  

ψ1 = θ1 + φ1 

ψ2 = θ2 + φ2 + θ1φ1 + φ2 
1. 

. . . 

We can now obtain the covariance function of xt by premultiplying both sides of (2.8) by xt−hP∞ and using the representation xt = i=0 ψiεt−i. Taking expectations on both sides then gives X 
γxx(h) − φ1γxx(h − 1) − ... − φpγxx(h − p) =  σ2 θj ψj−h, (2.10) 

h≤j≤q 

for 0 ≤ h < max(p, q + 1) 

and 
γxx(h) − φ1γxx(h − 1) − ... − φpγxx(h − p) = 0 for h ≥ max(p, q + 1). (2.11) 

Note that if q + 1  > p  then there are more initial conditions than linearly independent solutions to 
the difference equation. In this case the first q − p + 1  autocorrelation coefficients are determined 
from the first q − p +1  initial conditions. The general solution to this system of difference equations 
is now given by (2.7) as 

j ri−1XX 
γxx(h) =  cinh

nξi 
−h for h ≥ max(p, q + 1) − p 

i=1 n=0 

where ξi are the distinct roots of the AR polynomial φ(z) and cin are p coefficients determined by 
the initial conditions (2.10). The covariances γxx(h), 0 ≤ h <  max(p, q + 1) − p are also determined 
from (2.10). 
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Example 2.8. We look at the autocovariance function of the causal AR(2) process 

(1 − ξ−1L)(1 − ξ−1L)xt = εt.1 2 

where |ξ1|,|ξ2| > 1 and ξ1 6= ξ2. Assume σ
2 = 1  w.l.g. The autoregressive parameters are given by 

φ1 = ξ−1 + ξ−1 and φ2 = −ξ−1ξ−1 . It now follows that ψ0 = 1  and ψ1 = ξ−1 + ξ−1 . Then the1 2 1 2 1 2 
boundary conditions are 

γ(0) − φ1γ(1) − φ2γ(2) = 1 

γ(1) − φ1γ(0) − φ2γ(1) = 0. 

Now, using the general solution γ(h) =  c1ξ
−h + c2ξ

−h for h ≥ 0 and substituting into the boundary1 2 
conditions gives £ 

c1 = ξ3 2 (ξ
2 

1ξ
2

1 − 1)(ξ2 − ξ1)(ξ1ξ2 − 1)
¤−1 £ 

c2 = ξ2 2 (ξ
2 

1ξ
3

2 − 1)(ξ2 − ξ1)(ξ1ξ2 − 1)
¤−1 

which fully describes the covariance function in terms of underlying parameters. Substituting into 
the general solution then gives 

2σ2ξ2

1 − 1)−1ξ1−h − (ξ2 1γ(h) =
(ξ2 − ξ1)( 

1 

ξ

ξ 

1

2 

ξ2 − 1)
[(ξ2 

1 1 − 1)−1ξ1−h]. 

Another interesting question is for what values of φ1, φ2 the roots lie outside the unit circle. Solving 
for ξ−1 , ξ−1 in terms of φ1, φ2 gives1 2 

φ1 ± 
q
φ2 
1 + 4φ2 

ξ−1 = 1,2 2 

1,2 = 1  if φ2 = 1  − φ1 and ξ−1 = −1 if φ2 = 1 + φ1. ξ
−1

1 + 4φ2 < 0. Thesuch that ξ−1 1,2 1,2 is complex if φ2 

modulus of the complex roots is larger than one if φ2 < −1. 

2.4. Linear Projections and Partial Autocorrelations 

We begin by reviewing some basic properties of linear vector spaces. A vector space V is a set 
(here we only consider subsets of Rn or Cn) with two binary operations, vector addition and scalar 
multiplication. A vector space is closed under linear transformations, i.e. αx + βy ∈ V for x, y ∈ V 
and α, β scalars. 
A norm is a function k.k : V → [0, ∞) such that kλxk = |λ| kxk , kx + yk ≤ kxk + kyk and 

kxk = 0  ⇒ x = 0. A function without the last property is called a seminorm. A normed vector 
space is a vector space equipped with a norm. We can then define the metric ρ(x, y) =  kx − yk on 
V. A vector space is called complete if every Cauchy sequence converges. A complete normed space 
is called a Banach space. We use the notation z̄  for the complex conjugate of z if z ∈ C. 
An inner product on a complex normed vector space is a function hx, yi : V 2 → C such that 

hx, yi = hy, xi, hαx + βy, zi = a hx, zi + b hy, zi for a, b ∈ C and hx, xi = kxk2 
. A complete inner 

product space is called a Hilbert space. 

Definition 2.9 (Basis of a Vector Space). A basis of a complex vector space V is any set of 
linearly independent vectors v1, ...vn that span V, i.e, for any v ∈ V there exist scalars αi ∈ C suchPnthat v = i=1 αivi. 

A basis is said to be orthonormal if hvi, vj i = 1  for i = j and hvi, vj i = 0  for i 6= j. 
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Definition 2.10. A subspace of a vector space is a subset M ⊂V such that M itself is a vector 
space. If V is an inner product space then we can define the orthogonal complement of M denoted 
by M⊥ as 

M⊥ = {x ∈ V : hx, yi = 0, ∀y ∈ M}. 
Proposition 2.11 (Vector Decomposition). Any element x ∈ V can be written as the sum of 
two vectors y1, y2 such that y1 ∈ M and y2 ∈ M⊥ for any subspace M ⊂V. 
Proof. Let v1, ...vp be an orthonormal basis of M. Let y1 = 

P 
i
p 
=1 hy, vii vi. Let y2 = y − y1. Clearly, 

y1 ∈ M. Also, for j = 1, ..., p, 

hy2, vj i = hy, vj i − hy1, vj i = hy, vj i − 

* 
pX 

i=1 

hy, vii vi, vj 
+ 

= hy, vj i − hvj , vj i hy, vj i = 0. 

So, y2 is orthogonal to vj , j  = 1, ..., p, thus y2 ∈ M⊥ . 
An alternative way to express this result is to write V = M ⊕ M⊥ . Let x ∈ V and M a linear 

subspace of V. A projection PM(x) of x onto M is an element of M such that 

kx − PM(x)k = inf kx − yk . 
y∈M 

Theorem 2.12 (Projection Theorem). (a) PM(x) exists, is unique and is a linear function of x. 
(b) PM(x) is the projection of x on M iff x − PM(x)⊥M. 

Proof. (a) By the proof that V = M ⊕ M⊥ , we can write x = x1 + x2 where x1 ∈ M and x2 ∈ M⊥ 

and x1 = 
Pp
i=1 hx, vii vi. Then for any y ∈ M we have 

kx − yk2	 = hx − x1 + x1 − y, x − x1 + x1 − yi 
= kx − x1k2 + kx1 − yk2 

≥ kx − x1k2 

where the inequality is strict unless kx − yk2 = 0  or y = x1. Hence x1 is the projection of x onto M 
and it is unique. 
(b) If PM(x) is a projection of x onto M then by part (a) PM(x) =  x1 and x−PM(x) =  x2 ∈ M⊥ . 

Conversely if PM(x) is some element of M for which x−PM(x) ∈ M⊥ , then x1 +x2 −PM(x) ∈ M⊥ , 
x1 − PM(x) ∈ M⊥ , since x2 ∈ M⊥ and x1 − PM(x) ∈ M since x1, PM(x) ∈ M. This implies 
x1 − PM(x) = 0. Therefore PM(x) is the projection of x onto M. 
In this section we need some properties of complex L2 spaces defined on the random variables 

X on (Ω, F , P  ). By definition E |X|2 
< ∞ for X ∈ L2(Ω, F , P  ). The space L2 is a complex Hilbert 

space with inner product 
hX,Y i = E(XY ). 

From the previous definition of a linear subspace M of a Hilbert space H we know that M is a 
subset M ⊂ H such that 0 ∈ M and for x1, x2 ∈ M it follows that y = a1x1 + a2x2 ∈ M for all 
a1, a2 ∈ C. A closed linear subspace is a subspace that contains all its limit points. 

Definition 2.13 (Closed Span). The closed span sp{xt, t  ∈ T }  of any subset {xt, t  ∈ T }  of the 
Hilbert space H is the smallest closed subspace of H which contains each element of {xt, t  ∈ T }. 
The closed span of a  finite set {x1, ..., xn} contains all linear combinations y = a1x1 + .... + anxn, 
a1, ..., an ∈ C. 

We defined the projection PM(x) of x ∈ H onto the subspace M as the element x ∈ M suchˆ 
x, x − ˆ ˆthat hx − ˆ xi = infy∈M hx − y, x − yi . The projection x is unique by the projection theorem. 

Moreover x − x̂ ∈ M⊥ where M⊥ is orthogonal to M. 
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It is now obvious from the definition of PM(x) that the projection onto sp{x1, ..., xn} has the 
form 

Psp{x1,...,xn }(x) =  a1x1 + .... + anxn 

since Psp{x1,...,xn}(x) ∈ sp{x1, ..., xn} and the coefficients have to satisfy X 
ai hxi, xj i = hx,xj i for j = 1, ...n. 

Using the concept of projection onto linear subspaces we can now introduce the partial auto-
correlation function. The partial autocorrelation function measures the correlation between two 
elements xt+k and xt of a time series after taking into account the correlation that is explained 
by xt+1, ...xt+k−1. In the following we assume stationarity of xt and normalize t = 1. Formally the 
partial autocorrelation function of a stationary time series is defined as 

α(1) = Corr(x2, x1) =  ρ(1) 

and 
α(k) =  Corr(xk+1 − Psp{x2 ,...,xk }(xk+1), x1 − Psp{x2,...,xk }(x1)). 

The partial autocorrelation is therefore the correlation between the residuals from a regression of xk+1 

on x2, ..., xk and the residuals from a regression of x1 onto x2, ..., xk. An alternative but equivalent 
definition can be given in terms of the last regression coefficient in a regression of xt onto the k 
lagged variables xt−1, ...xt−k. If 

kX 

i=1 

Psp{x1 ,...,xk }(xk+1) =  φikxk+1−i 

where       
ρ(0) ρ(1) · · ·  φ1kρ(k − 1) ρ(1)     

. . . 
. . . 
. . . 

    

    

. . . 

. . . 

    

. . . 

ρ(1) 

    

. . . 

. . . 

    

φkkρ(0) ρ(k) 

=
 (2.12)


then α(k) ≡ φkk. It can be shown that the two definitions are equivalent. We consider two examples 
next. 

Example 2.14. Let xt follow a causal AR(p) process such that 

xt − φ1xt−1 − ... − φpxt−p = εt with εt ∼ WN  (0, σ2). 

Then, for k ≥ p 

Psp{x1 ,...,xk }(xk+1) =  
pX 

j=1 

φj xk+1−j (2.13) 

which can be seen from looking at any y ∈ sp{x1, ..., xk}. By causality y ∈ sp{εj , j  ≤ k} such that 
< xk+1 − 

Pp
j=1 φj xk+1−j , y  >= 0. By the projection theorem this implies that (2.13) holds. It now 

follows that for k > p 

α(k) =  Corr(xk+1 − 
pX 
φj xk+1−j , x1 − Psp{x2,...,xk }(x1)) 

j=1 

= Corr(εk+1, x1 − Psp{x2 ,...,xk }(x1)) 
= 0. 
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We see that the partial autocorrelation for the AR(p) process is zero for lags higher than p. The 
next example considers the MA(1) process. For the invertible case this process can be represented as 
an AR(∞). We therefore expect the partial autocorrelations to die out slowly rather than collapsing 
at a finite lag. This is in fact the case. 

Exercise 2.1. Let xt be driven by a MA(1) process 

xt = εt − θεt−1 with |θ| < 1, εt ∼ WN  (0, σ2) 

then we know from before that α(1) = ρ(1) = −θ/(1 + θ2). Equations (2.12) now become  −θ 1 
(1+θ2) · · ·  0 

 
φ1k 

  −θ   .  .   
(1+θ2) −θ . . . 

. . . ..  ..   0  
   

 (1+θ2 )   =    ..  . . . 
. . . −θ  ..  . (1+θ2 )  . 
−θ 1 φkk 

00 
(1+θ2) 

Then φik is the solution to the difference equation 

−θφi−1k + (1 +  θ2)φik − θφi+1k = 0  

with initial condition 
(1 + θ2)φ1k − θφ2k = −θ 

and terminal condition 
(1 + θ2)φkk − θφk−1k = 0  

The difference equation can be written as (1 − (1 + θ2)/θL + L2)φi = 0  with roots θ and 1/θ. The 
general solution is then φi = c1θ

i +c2θ
−i . Substitution into the initial and terminal conditions allows 

to solve for the constants c1 and c2, in particular 

−1 θ2k+2 

c1 =
1 − θ2(k+1) 

and c2 =
1 − θ2(k+1) 

. 

The constants depend on k because of the terminal condition. The terminal value φkk is then found 
from substituting back into the general solution. This leads to 

θk(1 − θ2)
α(k) =  − 

1 − θ2(k+1) 
. 

We see from the two examples and the results on the autocovariance function that the highest 
order of AR polynomial can be determined from the point where the partial autocorrelations are zero 
and the highest order of the MA  polynomial can be determined from the autocovariance function in 
the same way. This has lead to method of identifying the correct specification for an ARMA(p, q) 
model by looking both at the autocorrelation and partial autocorrelation function of a process. It is 
clear that for a general model the decay patterns of these functions can be quite complicated. It is 
therefore usually difficult to reach a clear decision regarding the correct specification by looking at 
the empirical counterparts of autocorrelations and partial autocorrelations. 

Exercise 2.2. Find the partial autocorrelation function for xt where 

xt = εt − εt−1 

and εt is white noise. 
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