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Lecture Note 4: Prediction and Wold Decomposition 

We consider a weakly stationary time series xt and are interested in obtaining a forecast of xt+1 based on 
past observed values of xt. It is common to consider forecasts x̂t+1 that minimize the mean squared forecast 
error. 

xt+1)
2 = inf E (xt+1 − y)2E (xt+1 − ˆ

y∈Mt 

where Mt is the set of all measurable functions of {xt, ..., x1} such that y ∈ Mt iff Ey2 and includes the 
constant functions1. By the projection theorem 

x̂t+1 = PMt (xt+1) =  EMt xt+1 

where EMt xt+1 is the conditional expectation defined by 

EWEMt X = EWX ∀W ∈ Mt 

where X is any random variable defined on the same sample space as xt. 
It follows at once that xt+1 − EMt xt+1 ∈ M⊥ 

t since for all y ∈ Mt it has to hold from the definition of 
the conditional expectations that E (y (xt+1 − EMt xt+1)) = Eyxt+1 − EyEMt xt+1 = 0. By the projection 
theorem this establishes that the conditional expectation is a projection. This result is not very useful in 
practice because the conditional expectation cannot in general be computed. It is therefore useful to restrict 
attention to the class of best linear predictors. We denote the closed linear span of {1, xt, . . . , x1} by Mt

c . 
Then the best linear predictor satisfies 

xt+1)
2 = inf E (xt+1 − y)2E(xt+1 − ˆ

y∈Mc 
t Pt−1and by the projection theorem we have again that ˆ 

t 
(xt+1) =  µ + j=0 φj,txt−j such thatxt+1 = PMc 

t−1X 
φj,t cov (xt−j , xt−i) =  cov (xt+1, xt−i) i = 0, . . . , t  − 1 

j=0 

since sp{1, xt, . . . , x1} ⊂ Mt it follows immediately that in general ³ ´ 2 
E (xt − EMt (xt+1))

2 ≤ E xt+1 − PMc 
t 
(xt+1) 

The only exception is the case where xt is a Gaussian process. Then it is the case that 

EMt (xt+1) =  PMc 
t 
(xt+1). 

In particular we write for the best linear predictor 

x̂t+1 = PMc xt+1 for t ≥ 1. 
t 

Note that Mc
t = sp {xt, ..., x1} = sp {xt − ˆ x1} . Therefore xt+1 can be found by projecting onto thext, ..., x1 − ˆ 

past forecast errors {xt − ˆ x1}. We can define ˆxt, ..., x1 − ˆ xt+1 recursively by setting 

x̂1 = 0  
1 More formally, Mt is the σ-field generated by {xt, ...., x1}, i.e. Mt is the smallest sigma field of the sample space Ω such that 

xt, ...., x1 are measurable functions. 



such that 
t−1X 

ˆ xt−j ) t >  1xt+1 = θj,t (xt−j − ˆ 
j=0 

where 
t−1X 

xt−j , xt−i − ˆ xt−ii .θj,t hxt−j − ˆ xt−ii = hxt+1, xt−i − ˆ
j=0 

Since xt−j − ˆ t−j−1 by the projection theorem, the left-hand side reduces toxt−j ∈ Mc⊥ 

θi,t kxt−i − ˆ xt−ii (4.1)xt−ik2 = hxt+1, xt−i − ˆ

xt−ik2 
= σt 

2 
−i and substituting for ˆ 

Pt−2−i 
xt−i−j−1) leads toDenoting kxt−i − ˆ xt−i = j=0 θj,t−i−1 (xt−i−j−1 − ˆ   

t−2−iX 
θi,t = σ− 

t− 
2 
i 
γx(i + 1) − θj,t−i−1 hxt+1, xt−i−j−1 − x̂t−i−j−1i (4.2) 

j=0 

xt−i−j−1i , which is equal towhere cov(xt, xt+|h|) =  γx(h). Now, the last term in the sum, hxt+1, xt−i−j−1 − ˆ
σ2 
t−i−j−1θj+i+1,t form (4.1), can be substituted in (4.2) to give   

t−2−iX 
θi,t = σ− 

t− 
2 
i 
γx(i + 1) − θj,t−i−1θj+i+1,tσt 

2 
−i−j−1 

 . 
j=0 

xtk2 
= kxtk2 − kˆ j=0 θ

2
1Also, σ2 

t = kxt − ˆ xtk2 
= γx(0) − 

Pt−1 
j,t−1σt 

2 
−j−1 and σ2 = γx(0). Note that θt−1,t = 

σ−2γx(1) assuming that γx(h) is known or estimated. These equations show that all the coefficients can be 
calculated recursively. 

h-step ahead prediction 

We now want to predict xt+h based on xt, ..., x1. The linear predictor is 

ˆ 
t 
(xt+h)xt+h = PMc 

t−1X 
= θj,t+h−1 (xt−j − x̂t−j ) . 

j=0 

We want to apply these general results to forecast xt+h if xt is assumed to follow an ARMA(p, q) process 
of the form 

φ(L)xt = θ(L)εt εt ∼ WN  (0, σ2) 

where φ(L) = 1 − φ1L... − φpL
p and θ(L) = 1 + θ1L + ... + θq L

q . Define 

wt = σ−1φ(L)xt t >  max(p, q) 

and let 
wt = σ−1 xt for t ≤ max(p, q). 

ˆNote that sp {xt, ..., x1} = sp {wt, ..., w1}. We determine wt recursively as before, i.e. 

ŵ1 = 0  
t−1X 

ˆ ˆwt+1 = θj,t (wt−j − wt−j ) . 
j=0 

2 

1 






b

ˆDenoting σ2 
t = kwt − wtk2 we can now determine the coefficients θj,t as 

θj,tσt 
2 
−j = hwt+1, wt−j − wt−j i . (4.3)ˆ 

wt−j ∈ Mc
t−j and wt+1 ∈ Mc⊥Now for t >  max(p, q) and j > q it follows that wt−j − ˆ t−j . Therefore θj,t = 0  

for t >  max(p, q) and j > q. From (4.3) we have now for t >  max(p, q) and j < q " # 
q−j−1X 

θj,t = σt 
−
− 
2 
j hwt+1, wt−j i − θk,t−j−1θk+j+1,tσt 

2 
−k−j−1 

k=0 

and θq,t = σ− 
t− 
2 
q hwt+1, wt−qi . Also, 

q−1X 
σt 
2 
−j = kwt−j k2 − θ2 

k,t−j−1σ
2 
t−j−1−k 

k=0 

and noting that Ewiwj = γw(i − j) with  
σ−2γx(i − j) 1 ≤ i, j ≤ m  
σ−2 [γx(i − j) − 

Pp 

γw(i − j) =  Pq
r=1 φr γx(r − |i − j|)] min(i, j) ≤ m <  max(i, j) ≤ 2m  r=0 θr θr+|i−j| min(i, j) > m  

0 otherwise. 

ˆ ˆThese relationships allow for recursive estimation of θj,t, σ2 
t and wt. For large t and θ(L) invertible wt can 

be approximately determined by using the parameters θj of the lag polynomial θ(L) instead of the optimal 
projection parameters. The predictions for xt are now obtained from 

ŵt = σ−1PMc xt 
t−1 

σ−1 ˆ= xt t <  max(p, q) 

and 

ŵt = σ−1PMc φ(L)xt 
t−1 

= σ−1(x̂t − φ1xt−1 − ... − φpxt−p) t ≥ max(p, q). 

It follows that σ(wt − wt) =  xt − ˆˆ xt. Therefore 

tX 
ˆ xt−j ) t <  max(p, q)xt+1 = θj,t (xt−j − ˆ 

j=0 

qX 
xt+1 = φ1xt + ... + φpxt−p+1 + θj,t (xt−j − ˆˆ xt−j ) 

j=0 

It follows immediately that for xt ∼ARMA(p, 0) 
x̂t+1 = φ1xt + ... + φpxt−p+1. 

The h-step ahead predictor can be found iteratively 

x̂t+2 = PMc xt+2 
t 

= φ1PMc xt+1 + φ2xt + ... + φpxt−p+2 
t 

qX 
+	 θj,t+1 (xt+2−j − xt+2−j ) , 

j=h 

so in particular for the AR(p) model 

t ≥ max(p, q) 

ˆ ˆ ˆ xt+h−p+1 h > p  − 1.xt+h = φ1xt+h−1 + φ2xt+h−2 + ... + φp ̂  

3 



∞

4.1. The Wold Decomposition 

We show that a mean zero stationary process xt can be decomposed into a perfectly predictable component 
and a MA(∞) process with white noise innovations. 
Let Mt = sp{xs, s  ≤ t} and define the one-step mean square prediction error as 

σ2 = E 
¡
xt − PMt−1 xt 

¢2 
. (4.4) 

T 
Also let M−∞ = Mt such that M−∞ is a closed linear subspace of M = sp{xt, t  ∈ Z}. We call a process 

t=−∞ 
xt deterministic if xt ∈ M−∞. For a deterministic process the forecast error variance is ¢2 

E 
¡
xt − PMt−1 xt = E (xt − xt)

2 
= 0  

since xt ∈ M−∞ ⊂ Mt−1. We prove the Wold decomposition theorem. 

Theorem 4.1 (Wold Decomposition). If xt is weakly stationary and mean zero with σ2 > 0 as defined in 
(4.4) then X 

xt = ψj εt−j + vt (4.5) 

with 

i) εt ∼ WN  
¡
0, σ2 

¢ 
, 

ii) E (εtvs) = 0 ∀ t, s, 
iii)	 vt ∈ M−∞, P 
iv) ψj 

2 < ∞. 

v) vt is deterministic. 

Proof. Let 

εt = xt − PMt−1 xt 

σ2ψj = hxt, εt−j i 
∞X 

vt = xt − ψj εt−j 

j=0 

We have εt ∈ Mt and εt ∈ M⊥ 
t−1 by the projection theorem. Therefore 

E(εtεs) = 0 ∀ t 6= s. 

Also Eεt = 0  by linearity of PMt−1 xt and stationarity of xt. Again by linearity of PMt−1 xt and weak stationarity 
of xt we have Eε2 

t = E(xt − PMt−1 xt)
2 = σ2 independent of t. This shows that εt is WN  (0, σ2). 

Also let Ht = sp{εt, εt−1, ....}. Then Ht has a countably infinite orthogonal basis εt. The projection of xt 
onto Ht is then given by 

∞X 
PHt xt = ψj εt−j . 

j=0 

To show this let yt = PHt xt such that by the definition of the projection operator yt ∈ Ht. It now follows that 
for every � >  0 and some k <  ∞ ° ° 2° ° k ∞° X ° X ° ° yt − hyt, εt−j i εt−j ° = < �.° ° ° j=0 j=k+1 

|hyt, εt−j i|2 

4 



∞

To see this first note that kytk2 ≤ kxtk2 by the projection theorem. Then by Bessel’s inequality 

kX 
for all k 

j=0 

|hyt, εt−j i|2 ≤ kytk2 

which proves the above inequality. Next note that 

hyt, εt−j i = hyt − xt, εt−j i + hxt, εt−j i = hxt, εt−j i = σ2ψj 

since yt − xt is orthogonal to Ht. We have therefore established that ° ° 2° ° k° X ° ° ° yt − ψj εt−j ° < �° ° ° j=0 

and that ∞X 

j=0 

ψ2 
j < ∞. 

Then   
∞X xt −  
j=0 

Evtεs = E ψj εt−j , εs 

= Extεs − ψj Eε
2 
s 

= Extεs − 
Extεs 

σ2 = 0  
σ2 

for s ≤ t and for s > t εs ∈ M⊥ 
s−1 ⊂ M⊥ 

t , but vt ∈ Mt so Evtεs = 0  again. From vt ∈ Mt = Mt−1 ⊕ sp{εt}
and Evtεt = 0  it follows vt ∈ Mt−1. Repeating the same argument and using Evtεt−j = 0  leads to vt ∈ Mt−j 

thus vt ∈ 
T 

j=0 
Mt−j ⊆ M−∞. Then 

sp{vj , j  ≤ t} ⊆ M−∞. P 
ψj εt−j we haveFrom xt = vt + 

Mt = Ht ⊕ sp{vj , j  ≤ t}. (4.6) 

Finally, if z ∈ M−∞ ∩ Mt = M−∞ then z ∈ Ms−1 such that hz, εsi = 0  for all s. But this shows that z ∈ Ht 
⊥ 

or z ∈ sp{vj , j  ≤ t} by (4.6) such thatM−∞ ⊆ sp{vj , j  ≤ t} implying that 

M−∞ = sp{vj , j  ≤ t} for all t. 

This means that vj is deterministic, i.e. the prediciton error variance is zero. 

A process is said to be purely non-deterministic if M−∞ = {0}. In this case the Wold decomposition is of 
the form 

xt = 
∞X 

j=0 

ψj εt−j 

where ψj and εt−j are as defined before. Processes in this class include the ARMA(p, q) model introduced 
before. 
The h-step ahead predictor of (4.5) is given by 

PMt xt+h = 
∞X 

j=h 

ψj εt+h−j + vt+h 

5 



since εt+k ⊥Mt for k >  0. It also follows that the variance of the prediction error is given by ° ° 2° ° h−1°X °
° °
kxt+h − PMt xh+1k2 
= ° ψj εt+h−j °
° ° j=0 

h−1X 
= σ2 ψj 

2 . 
j=0 

As h →∞  the variance of the prediction error tends to the variance of xt. 
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