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Lecture Note 4: Prediction and Wold Decomposition

We consider a weakly stationary time series x; and are interested in obtaining a forecast of x;;; based on
past observed values of x;. It is common to consider forecasts ;7 that minimize the mean squared forecast
erTor.

E(xiy41 — 2 2= inf E(mpq —y)?
(Te41 t4+1) veM, (Te41 —Y)
where M, is the set of all measurable functions of {y,...,x1} such that y € M, iff Ey? and includes the
constant functions'. By the projection theorem

i1 = P, (2441) = Ep, Tog1
where Eaq, w141 is the conditional expectation defined by
EWEuy,X = EWX YW e M,

where X is any random variable defined on the same sample space as x;.

It follows at once that xyy1 — Eaq,2e+1 € /\/lf' since for all y € M, it has to hold from the definition of
the conditional expectations that F (y (141 — Em,%t41)) = Eyxir1 — FyEa,x¢41 = 0. By the projection
theorem this establishes that the conditional expectation is a projection. This result is not very useful in
practice because the conditional expectation cannot in general be computed. It is therefore useful to restrict
attention to the class of best linear predictors. We denote the closed linear span of {1,x;,...,21} by M¢.
Then the best linear predictor satisfies

B(z41 — #141)° = inf B (241 —y)
yeM;

. . . t—1
and by the projection theorem we have again that ;11 = Py (Te41) = p+ ijo ¢;+@t—; such that

t—1
Z Gj 0OV (T—j, Tp—i) = coV (Typ1,Tp—q) 1=0,...,t—1
j=0

since sp{1, z¢,...,x1} C M, it follows immediately that in general

E (2 — Em,(241))* < E (ift+1 — Py ($t+1))2
The only exception is the case where x; is a Gaussian process. Then it is the case that
Epm, (2141) = Ppge(Te41).
In particular we write for the best linear predictor
Tpp1 = PMfa?tH fort > 1.

Note that M{ =3p{x,...,21} = sp{x; — &t,...,21 — &1} . Therefore 24, can be found by projecting onto the

past forecast errors {x; — 24, ...,x1 — &1}. We can define ;1 recursively by setting

1 =0

IMore formally, M; is the o-field generated by {x¢,....,21}, i.e. My is the smallest sigma field of the sample space  such that
Tt,....,x1 are measurable functions.



such that

Brpr = 01 (@ j —84j) t>1
where
t—1
Z 9j,t <$t7j - jtfj’ Tt—q — it7i> = <$t+1, Tt—i — jt7i> .
j=0

Since xy—; — T4—; € Mfi‘j_l by the projection theorem, the left-hand side reduces to

Ot [|we—i — f?tfiHQ = (Teq1, Tp—i — Tt—q) (4.1)

. . 2 o . t—2—i .
Denoting ||x;_; — #;—||” = 0?_, and substituting for #;_; = Zj:() "0 i1 (e—i—j_1 — T¢—i—j_1) leads to

t—2—1

ei,t:fffi Vp (i +1) — Z it—ie1 (Teg1, Te—imjo1 — To—ij—1) (4.2)
7=0

where cov(x¢, Ty qjn)) = v,(h). Now, the last term in the sum, (z¢1,%¢—;—j—1 — L¢—i—j—1), which is equal to
07 i j_10jrir1,e form (4.1), can be substituted in (4.2) to give

t—2—1
Oii =0, % |7, (i+1 Z jt—i—19j+i+17t0'§_i_j_1
7=0
Also, 0 = |lay — &)|* = llm]l* = [&l* = 7,(0) = X520 05,-107 ;1 and 0% = 7,(0). Note that 0, 1, =

o727, (1) assuming that +,(h) is known or estimated. These equations show that all the coefficients can be
calculated recursively.

h-step ahead prediction
We now want to predict x;,5, based on zy,...,x1. The linear predictor is

Tren = P (@een)
t—1

> Oiipn1 (@ j — ).

=0

We want to apply these general results to forecast a1 if a4 is assumed to follow an ARMA(p, q) process
of the form
¢(L)It = 0(L)€t Et ~ WN(O, 0'2)

where ¢(L) =1~ ¢y L... — ¢,LP and 0(L) = 1+ 61 L + ... + 0,L%. Define

wy=0"'¢(L)x;  t>max(p,q)

and let
wy =0 tay for t < max(p,q).

Note that 3p {4, ...,21} = 5p {wy, ..., w1 }. We determine w,; recursively as before, i.e.

w = 0
t—1
W1 = ;¢ (we—j —We—j).
=0



Denoting 02 = ||lw; — 1||* we can now determine the coefficients 6;+ as
ej,tgf—j = (Weg1, We—j — We—j) . (4.3)

Now for ¢ > max(p, ¢) and j > ¢ it follows that w,_; —;_; € Mffj and wyyq € /\/lffj. Therefore 6;; =0
for t > max(p, q) and j > ¢. From (4.3) we have now for ¢ > max(p,q) and j < ¢

q 1

—2 2
050 = 072 | (Wi, we ) = Y Okij10k1j41,607 4 j1
k=0

-2
and Gq,t = O—t—q <’th+1,wt_q> . 1AISO7

g—1
2
U?,j = |lw—;[|” — Zez,tfjflagfjflfk
k=0

and noting that Fw;w; = ~,,(i — j) with

O_Q’Yz(i_j) ISZ,]Sm
ey = ] TEBa D) = S 6 = i = D] minGij) < m < max(.j) < 2m
v D0 0r0r i iy min(i,j) > m
0 otherwise.

These relationships allow for recursive estimation of 6, ;, o? and ;. For large t and §(L) invertible w; can
be approximately determined by using the parameters 6; of the lag polynomial §(L) instead of the optimal
projection parameters. The predictions for x; are now obtained from

Wy = U_lngflﬂUt
= o & t < max(p,q)
and
Wy = o 'Pye d(L)xy
= o Y& — @1 — ... — GpTi_p) t > max(p, q).

It follows that o(wy — W) = x4 — &¢. Therefore

¢
.fit_H = Zeﬁ (.CCt_j — it_j) t < max(p, q)
=0
a
Ty = QT+ Oplp + Z Ot (215 — T1—j) t > max(p, q)
=0

It follows immediately that for x; ~ARMA(p, 0)
Tr1 = Q12 + oo + PpTt—pt1-
The h-step ahead predictor can be found iteratively

Trpo = Pppeaipo
= O1Ppe®i1 + Gotp + o+ OpTpio
q
+ Z Ojt+1 (Tep2—j — Teyoj),
j=h
so in particular for the AR(p) model

Ttn = Q18t4n—1 + GoZt4n—2 + . + OpTtrh—pt1 h>p-—1.



4.1. The Wold Decomposition

We show that a mean zero stationary process x; can be decomposed into a perfectly predictable component
and a M A(oo) process with white noise innovations.
Let My =35p{zs,s < t} and define the one-step mean square prediction error as

0% = E (2 — Pam, ,2)” (4.4)

Alsolet M_o = [ M, such that M_ is a closed linear subspace of M = sp{x,t € Z}. We call a process

t=—0o0
x; deterministic if z; € M_,,. For a deterministic process the forecast error variance is

2
E (mt — PMt71$t) =F (ZL’t - ZL't)Q =0
since Ty € M_o, C M;_1. We prove the Wold decomposition theorem.

Theorem 4.1 (Wold Decomposition). If x; is weakly stationary and mean zero with o> > 0 as defined in
(4.4) then

Ty = Zz/}jat,j + vy (4.5)
with
i) &g ~WN (0,02) ,
ii) E(gws) =0 Vi,s,
iii) v € M_,
iv) Ziﬁ? < 00.
v) v is deterministic.
Proof. Let

€ = @ — Pny_ 1

oy = wne)

oo
vy = xt_g piet—j
j=0

We have g; € M; and &; € Mj- ; by the projection theorem. Therefore
E(eies) =0Vt #s.

Also Ee; = 0 by linearity of Pyq,_, x+ and stationarity of ;. Again by linearity of Py4,_, z; and weak stationarity
of z; we have Fe? = E(xy — Pm,_,2¢)? = 02 independent of t. This shows that ¢; is WN(0,0?).

Also let H: = sp{et,e¢-1,....}. Then H; has a countably infinite orthogonal basis ;. The projection of x;
onto H; is then given by

o0
PHtxt: E ’l/JjEt,j.
=0

To show this let y» = Py, x+ such that by the definition of the projection operator y; € H;. It now follows that
for every € > 0 and some k < oo

2

k [’}
2
ve— > (neg)al| = Y e ) <e
=0 j=k+1



To see this first note that |jy;]|* < ||lz¢||* by the projection theorem. Then by Bessel’s inequality

k
|<yt75t7j>|2 < lye||? for all k
=0

which proves the above inequality. Next note that

<yt,€t—j> = (yt — xt75t7j> + <xt75t7j> = <xt75t7j> = 02¢j
since y; — x; is orthogonal to H;. We have therefore established that

2

k
Yt — ijgtfj <e
i=0

and that
o0
D ¥ <o
=0
Then
oo
Fves, = E|xp— ijst,j,ss
§j=0
= FExie, — ijei
Exeg
= Exie, — 250220
g

for s < tand for s > te, € ME | C Mg, but vy € My so Evie, = 0 again. From v; € My = M;_; ©5p{e;}
and Eviey = 0 it follows v; € M;_;. Repeating the same argument and using Fv;e;—; = 0 leads to vy € M;_;
thus v; € Mi_j € M_. Then
=0
@{/Uja.j S t} g M—oo-
From z; = v; + Zz/}jst,j we have
M =H; ® @{’l}j,j < t}. (46)

Finally, if 2 € M_o N M; = M_, then z € M,_; such that (z,e,) = 0 for all s. But this shows that z € H;-
or z € sp{v;,j <t} by (4.6) such that M _, C 5p{v;,j < t} implying that
M_ =35p{v;,j <t} for all t.

This means that v; is deterministic, i.e. the prediciton error variance is zero.
|

A process is said to be purely non-deterministic if M_,, = {0}. In this case the Wold decomposition is of

the form
o0
Ty = Z "/ijtfj
=0

where 1; and &;_; are as defined before. Processes in this class include the ARM A(p, q) model introduced
before.
The h-step ahead predictor of (4.5) is given by

o0
Pp,mppn = E Yi€trn—j + Vegn
Jj=h



since g4y LMy for k > 0. It also follows that the variance of the prediction error is given by

2

h—1
lzern = Paganin | = | ¢5eeny
7=0

h—1
_ 2 2
= o0 E 3.

Jj=0

As h — oo the variance of the prediction error tends to the variance of x;.



