Lecture Note 4: Prediction and Wold Decomposition

We consider a weakly stationary time series x_{t} and are interested in obtaining a forecast of x_{t+1} based on past observed values of x_{t}. It is common to consider forecasts \hat{x}_{t+1} that minimize the mean squared forecast error.

$$
E\left(x_{t+1}-\hat{x}_{t+1}\right)^{2}=\inf _{y \in \mathcal{M}_{t}} E\left(x_{t+1}-y\right)^{2}
$$

where \mathcal{M}_{t} is the set of all measurable functions of $\left\{x_{t}, \ldots, x_{1}\right\}$ such that $y \in \mathcal{M}_{t}$ iff $E y^{2}$ and includes the constant functions ${ }^{1}$. By the projection theorem

$$
\hat{x}_{t+1}=P_{\mathcal{M}_{t}}\left(x_{t+1}\right)=E_{\mathcal{M}_{t}} x_{t+1}
$$

where $E_{\mathcal{M}_{t}} x_{t+1}$ is the conditional expectation defined by

$$
E W E_{\mathcal{M}_{t}} X=E W X \quad \forall W \in \mathcal{M}_{t}
$$

where X is any random variable defined on the same sample space as x_{t}.
It follows at once that $x_{t+1}-E_{\mathcal{M}_{t}} x_{t+1} \in \mathcal{M}_{t}^{\perp}$ since for all $y \in \mathcal{M}_{t}$ it has to hold from the definition of the conditional expectations that $E\left(y\left(x_{t+1}-E_{\mathcal{M}_{t}} x_{t+1}\right)\right)=E y x_{t+1}-E y E_{\mathcal{M}_{t}} x_{t+1}=0 . \quad$ By the projection theorem this establishes that the conditional expectation is a projection. This result is not very useful in practice because the conditional expectation cannot in general be computed. It is therefore useful to restrict attention to the class of best linear predictors. We denote the closed linear span of $\left\{1, x_{t}, \ldots, x_{1}\right\}$ by \mathcal{M}_{t}^{ℓ}. Then the best linear predictor satisfies

$$
E\left(x_{t+1}-\hat{x}_{t+1}\right)^{2}=\inf _{y \in \mathcal{M}_{t}^{\ell}} E\left(x_{t+1}-y\right)^{2}
$$

and by the projection theorem we have again that $\hat{x}_{t+1}=P_{\mathcal{M}_{t}^{\ell}}\left(x_{t+1}\right)=\mu+\sum_{j=0}^{t-1} \phi_{j, t} x_{t-j}$ such that

$$
\sum_{j=0}^{t-1} \phi_{j, t} \operatorname{cov}\left(x_{t-j}, x_{t-i}\right)=\operatorname{cov}\left(x_{t+1}, x_{t-i}\right) \quad i=0, \ldots, t-1
$$

since $\overline{s p}\left\{1, x_{t}, \ldots, x_{1}\right\} \subset \mathcal{M}_{t}$ it follows immediately that in general

$$
E\left(x_{t}-E_{\mathcal{M}_{t}}\left(x_{t+1}\right)\right)^{2} \leq E\left(x_{t+1}-P_{\mathcal{M}_{t}^{\ell}}\left(x_{t+1}\right)\right)^{2}
$$

The only exception is the case where x_{t} is a Gaussian process. Then it is the case that

$$
E_{\mathcal{M}_{t}}\left(x_{t+1}\right)=P_{\mathcal{M}_{t}^{\ell}}\left(x_{t+1}\right)
$$

In particular we write for the best linear predictor

$$
\hat{x}_{t+1}=P_{\mathcal{M}_{t}^{\ell}} x_{t+1} \quad \text { for } t \geq 1
$$

Note that $\mathcal{M}_{t}^{\ell}=\overline{s p}\left\{x_{t}, \ldots, x_{1}\right\}=s p\left\{x_{t}-\hat{x}_{t}, \ldots, x_{1}-\hat{x}_{1}\right\}$. Therefore x_{t+1} can be found by projecting onto the past forecast errors $\left\{x_{t}-\hat{x}_{t}, \ldots, x_{1}-\hat{x}_{1}\right\}$. We can define \hat{x}_{t+1} recursively by setting

$$
\hat{x}_{1}=0
$$

[^0]such that
$$
\hat{x}_{t+1}=\sum_{j=0}^{t-1} \theta_{j, t}\left(x_{t-j}-\hat{x}_{t-j}\right) \quad t>1
$$
where
$$
\sum_{j=0}^{t-1} \theta_{j, t}\left\langle x_{t-j}-\hat{x}_{t-j}, x_{t-i}-\hat{x}_{t-i}\right\rangle=\left\langle x_{t+1}, x_{t-i}-\hat{x}_{t-i}\right\rangle
$$

Since $x_{t-j}-\hat{x}_{t-j} \in \mathcal{M}_{t-j-1}^{\ell \perp}$ by the projection theorem, the left-hand side reduces to

$$
\begin{equation*}
\theta_{i, t}\left\|x_{t-i}-\hat{x}_{t-i}\right\|^{2}=\left\langle x_{t+1}, x_{t-i}-\hat{x}_{t-i}\right\rangle \tag{4.1}
\end{equation*}
$$

Denoting $\left\|x_{t-i}-\hat{x}_{t-i}\right\|^{2}=\sigma_{t-i}^{2}$ and substituting for $\hat{x}_{t-i}=\sum_{j=0}^{t-2-i} \theta_{j, t-i-1}\left(x_{t-i-j-1}-\hat{x}_{t-i-j-1}\right)$ leads to

$$
\begin{equation*}
\theta_{i, t}=\sigma_{t-i}^{-2}\left[\gamma_{x}(i+1)-\sum_{j=0}^{t-2-i} \theta_{j, t-i-1}\left\langle x_{t+1}, x_{t-i-j-1}-\hat{x}_{t-i-j-1}\right\rangle\right] \tag{4.2}
\end{equation*}
$$

where $\operatorname{cov}\left(x_{t}, x_{t+|h|}\right)=\gamma_{x}(h)$. Now, the last term in the sum, $\left\langle x_{t+1}, x_{t-i-j-1}-\hat{x}_{t-i-j-1}\right\rangle$, which is equal to $\sigma_{t-i-j-1}^{2} \theta_{j+i+1, t}$ form (4.1), can be substituted in (4.2) to give

$$
\theta_{i, t}=\sigma_{t-i}^{-2}\left[\gamma_{x}(i+1)-\sum_{j=0}^{t-2-i} \theta_{j, t-i-1} \theta_{j+i+1, t} \sigma_{t-i-j-1}^{2}\right] .
$$

Also, $\sigma_{t}^{2}=\left\|x_{t}-\hat{x}_{t}\right\|^{2}=\left\|x_{t}\right\|^{2}-\left\|\hat{x}_{t}\right\|^{2}=\gamma_{x}(0)-\sum_{j=0}^{t-1} \theta_{j, t-1}^{2} \sigma_{t-j-1}^{2}$ and $\sigma_{1}^{2}=\gamma_{x}(0)$. Note that $\theta_{t-1, t}=$ $\sigma_{1}^{-2} \gamma_{x}(1)$ assuming that $\gamma_{x}(h)$ is known or estimated. These equations show that all the coefficients can be calculated recursively.

h-step ahead prediction

We now want to predict x_{t+h} based on x_{t}, \ldots, x_{1}. The linear predictor is

$$
\begin{aligned}
\hat{x}_{t+h} & =P_{\mathcal{M}_{t}^{e}}\left(x_{t+h}\right) \\
& =\sum_{j=0}^{t-1} \theta_{j, t+h-1}\left(x_{t-j}-\hat{x}_{t-j}\right)
\end{aligned}
$$

We want to apply these general results to forecast x_{t+h} if x_{t} is assumed to follow an $\operatorname{ARMA}(p, q)$ process of the form

$$
\phi(L) x_{t}=\theta(L) \varepsilon_{t} \quad \varepsilon_{t} \sim W N\left(0, \sigma^{2}\right)
$$

where $\phi(L)=1-\phi_{1} L \ldots-\phi_{p} L^{p}$ and $\theta(L)=1+\theta_{1} L+\ldots+\theta_{q} L^{q}$. Define

$$
w_{t}=\sigma^{-1} \phi(L) x_{t} \quad t>\max (p, q)
$$

and let

$$
w_{t}=\sigma^{-1} x_{t} \quad \text { for } t \leq \max (p, q)
$$

Note that $\overline{s p}\left\{x_{t}, \ldots, x_{1}\right\}=\overline{s p}\left\{w_{t}, \ldots, w_{1}\right\}$. We determine \hat{w}_{t} recursively as before, i.e.

$$
\begin{aligned}
\hat{w}_{1} & =0 \\
\hat{w}_{t+1} & =\sum_{j=0}^{t-1} \theta_{j, t}\left(w_{t-j}-\hat{w}_{t-j}\right) .
\end{aligned}
$$

Denoting $\sigma_{t}^{2}=\left\|w_{t}-\hat{w}_{t}\right\|^{2}$ we can now determine the coefficients $\theta_{j, t}$ as

$$
\begin{equation*}
\theta_{j, t} \sigma_{t-j}^{2}=\left\langle w_{t+1}, w_{t-j}-\hat{w}_{t-j}\right\rangle \tag{4.3}
\end{equation*}
$$

Now for $t>\max (p, q)$ and $j>q$ it follows that $w_{t-j}-\hat{w}_{t-j} \in \mathcal{M}_{t-j}^{\ell}$ and $w_{t+1} \in \mathcal{M}_{t-j}^{\ell \perp}$. Therefore $\theta_{j, t}=0$ for $t>\max (p, q)$ and $j>q$. From (4.3) we have now for $t>\max (p, q)$ and $j<q$

$$
\theta_{j, t}=\sigma_{t-j}^{-2}\left[\left\langle w_{t+1}, w_{t-j}\right\rangle-\sum_{k=0}^{q-j-1} \theta_{k, t-j-1} \theta_{k+j+1, t} \sigma_{t-k-j-1}^{2}\right]
$$

and $\theta_{q, t}=\sigma_{t-q}^{-2}\left\langle w_{t+1}, w_{t-q}\right\rangle$. Also,

$$
\sigma_{t-j}^{2}=\left\|w_{t-j}\right\|^{2}-\sum_{k=0}^{q-1} \theta_{k, t-j-1}^{2} \sigma_{t-j-1-k}^{2}
$$

and noting that $E w_{i} w_{j}=\gamma_{w}(i-j)$ with

$$
\gamma_{w}(i-j)= \begin{cases}\sigma^{-2} \gamma_{x}(i-j) & 1 \leq i, j \leq m \\ \sigma^{-2}\left[\gamma_{x}(i-j)-\sum_{r=1}^{p} \phi_{r} \gamma_{x}(r-|i-j|)\right] & \min (i, j) \leq m<\max (i, j) \leq 2 m \\ \sum_{r=0}^{q} \theta_{r} \theta_{r+|i-j|} & \min (i, j)>m \\ 0 & \text { otherwise }\end{cases}
$$

These relationships allow for recursive estimation of $\theta_{j, t}, \sigma_{t}^{2}$ and \hat{w}_{t}. For large t and $\theta(L)$ invertible \hat{w}_{t} can be approximately determined by using the parameters θ_{j} of the lag polynomial $\theta(L)$ instead of the optimal projection parameters. The predictions for x_{t} are now obtained from

$$
\begin{aligned}
\hat{w}_{t} & =\sigma^{-1} P_{\mathcal{M}_{t-1}^{\ell}} x_{t} \\
& =\sigma^{-1} \hat{x}_{t} \quad t<\max (p, q)
\end{aligned}
$$

and

$$
\begin{aligned}
\hat{w}_{t} & =\sigma^{-1} P_{\mathcal{M}_{t-1}^{\ell}} \phi(L) x_{t} \\
& =\sigma^{-1}\left(\hat{x}_{t}-\phi_{1} x_{t-1}-\ldots-\phi_{p} x_{t-p}\right) \quad t \geq \max (p, q)
\end{aligned}
$$

It follows that $\sigma\left(w_{t}-\hat{w}_{t}\right)=x_{t}-\hat{x}_{t}$. Therefore

$$
\begin{aligned}
& \hat{x}_{t+1}=\sum_{j=0}^{t} \theta_{j, t}\left(x_{t-j}-\hat{x}_{t-j}\right) \quad t<\max (p, q) \\
& \hat{x}_{t+1}=\phi_{1} x_{t}+\ldots+\phi_{p} x_{t-p+1}+\sum_{j=0}^{q} \theta_{j, t}\left(x_{t-j}-\hat{x}_{t-j}\right) \quad t \geq \max (p, q)
\end{aligned}
$$

It follows immediately that for $x_{t} \sim \operatorname{ARMA}(p, 0)$

$$
\hat{x}_{t+1}=\phi_{1} x_{t}+\ldots+\phi_{p} x_{t-p+1} .
$$

The h-step ahead predictor can be found iteratively

$$
\begin{aligned}
\hat{x}_{t+2}= & P_{\mathcal{M}_{t}^{\ell}} x_{t+2} \\
= & \phi_{1} P_{\mathcal{M}_{t}^{\ell}} x_{t+1}+\phi_{2} x_{t}+\ldots+\phi_{p} x_{t-p+2} \\
& +\sum_{j=h}^{q} \theta_{j, t+1}\left(x_{t+2-j}-\widehat{x}_{t+2-j}\right),
\end{aligned}
$$

so in particular for the $\operatorname{AR}(p)$ model

$$
\hat{x}_{t+h}=\phi_{1} \hat{x}_{t+h-1}+\phi_{2} \hat{x}_{t+h-2}+\ldots+\phi_{p} \hat{x}_{t+h-p+1} \quad h>p-1 .
$$

4.1. The Wold Decomposition

We show that a mean zero stationary process x_{t} can be decomposed into a perfectly predictable component and a $M A(\infty)$ process with white noise innovations.

Let $\mathcal{M}_{t}=\overline{s p}\left\{x_{s}, s \leq t\right\}$ and define the one-step mean square prediction error as

$$
\begin{equation*}
\sigma^{2}=E\left(x_{t}-P_{\mathcal{M}_{t-1}} x_{t}\right)^{2} \tag{4.4}
\end{equation*}
$$

Also let $\mathcal{M}_{-\infty}=\bigcap_{t=-\infty}^{\infty} \mathcal{M}_{t}$ such that $\mathcal{M}_{-\infty}$ is a closed linear subspace of $\mathcal{M}=\overline{s p}\left\{x_{t}, t \in \mathbb{Z}\right\}$. We call a process x_{t} deterministic if $x_{t} \in \mathcal{M}_{-\infty}$. For a deterministic process the forecast error variance is

$$
E\left(x_{t}-P_{\mathcal{M}_{t-1}} x_{t}\right)^{2}=E\left(x_{t}-x_{t}\right)^{2}=0
$$

since $x_{t} \in \mathcal{M}_{-\infty} \subset \mathcal{M}_{t-1}$. We prove the Wold decomposition theorem.
Theorem 4.1 (Wold Decomposition). If x_{t} is weakly stationary and mean zero with $\sigma^{2}>0$ as defined in (4.4) then

$$
\begin{equation*}
x_{t}=\sum \psi_{j} \varepsilon_{t-j}+v_{t} \tag{4.5}
\end{equation*}
$$

with
i) $\varepsilon_{t} \sim W N\left(0, \sigma^{2}\right)$,
ii) $E\left(\varepsilon_{t} v_{s}\right)=0 \quad \forall t, s$,
iii) $v_{t} \in \mathcal{M}_{-\infty}$,
iv) $\sum \psi_{j}^{2}<\infty$.
v) v_{t} is deterministic.

Proof. Let

$$
\begin{aligned}
\varepsilon_{t} & =x_{t}-P_{\mathcal{M}_{t-1}} x_{t} \\
\sigma^{2} \psi_{j} & =\left\langle x_{t}, \varepsilon_{t-j}\right\rangle \\
v_{t} & =x_{t}-\sum_{j=0}^{\infty} \psi_{j} \varepsilon_{t-j}
\end{aligned}
$$

We have $\varepsilon_{t} \in \mathcal{M}_{t}$ and $\varepsilon_{t} \in \mathcal{M}_{t-1}^{\perp}$ by the projection theorem. Therefore

$$
E\left(\varepsilon_{t} \varepsilon_{s}\right)=0 \forall t \neq s
$$

Also $E \varepsilon_{t}=0$ by linearity of $P_{\mathcal{M}_{t-1}} x_{t}$ and stationarity of x_{t}. Again by linearity of $P_{\mathcal{M}_{t-1}} x_{t}$ and weak stationarity of x_{t} we have $E \varepsilon_{t}^{2}=E\left(x_{t}-P_{\mathcal{M}_{t-1}} x_{t}\right)^{2}=\sigma^{2}$ independent of t. This shows that ε_{t} is $W N\left(0, \sigma^{2}\right)$.

Also let $\mathcal{H}_{t}=\overline{s p}\left\{\varepsilon_{t}, \varepsilon_{t-1}, \ldots.\right\}$. Then \mathcal{H}_{t} has a countably infinite orthogonal basis ε_{t}. The projection of x_{t} onto \mathcal{H}_{t} is then given by

$$
P_{\mathcal{H}_{t}} x_{t}=\sum_{j=0}^{\infty} \psi_{j} \varepsilon_{t-j}
$$

To show this let $y_{t}=P_{\mathcal{H}_{t}} x_{t}$ such that by the definition of the projection operator $y_{t} \in \mathcal{H}_{t}$. It now follows that for every $\epsilon>0$ and some $k<\infty$

$$
\left\|y_{t}-\sum_{j=0}^{k}\left\langle y_{t}, \varepsilon_{t-j}\right\rangle \varepsilon_{t-j}\right\|^{2}=\sum_{j=k+1}^{\infty}\left|\left\langle y_{t}, \varepsilon_{t-j}\right\rangle\right|^{2}<\epsilon
$$

To see this first note that $\left\|y_{t}\right\|^{2} \leq\left\|x_{t}\right\|^{2}$ by the projection theorem. Then by Bessel's inequality

$$
\sum_{j=0}^{k}\left|\left\langle y_{t}, \varepsilon_{t-j}\right\rangle\right|^{2} \leq\left\|y_{t}\right\|^{2} \text { for all } k
$$

which proves the above inequality. Next note that

$$
\left\langle y_{t}, \varepsilon_{t-j}\right\rangle=\left\langle y_{t}-x_{t}, \varepsilon_{t-j}\right\rangle+\left\langle x_{t}, \varepsilon_{t-j}\right\rangle=\left\langle x_{t}, \varepsilon_{t-j}\right\rangle=\sigma^{2} \psi_{j}
$$

since $y_{t}-x_{t}$ is orthogonal to \mathcal{H}_{t}. We have therefore established that

$$
\left\|y_{t}-\sum_{j=0}^{k} \psi_{j} \varepsilon_{t-j}\right\|^{2}<\epsilon
$$

and that

$$
\sum_{j=0}^{\infty} \psi_{j}^{2}<\infty
$$

Then

$$
\begin{aligned}
E v_{t} \varepsilon_{s} & =E\left(x_{t}-\sum_{j=0}^{\infty} \psi_{j} \varepsilon_{t-j}, \varepsilon_{s}\right) \\
& =E x_{t} \varepsilon_{s}-\psi_{j} E \varepsilon_{s}^{2} \\
& =E x_{t} \varepsilon_{s}-\frac{E x_{t} \varepsilon_{s}}{\sigma^{2}} \sigma^{2}=0
\end{aligned}
$$

for $s \leq t$ and for $s>t \varepsilon_{s} \in \mathcal{M}_{s-1}^{\perp} \subset \mathcal{M}_{t}^{\perp}$, but $v_{t} \in \mathcal{M}_{t}$ so $E v_{t} \varepsilon_{s}=0$ again. From $v_{t} \in \mathcal{M}_{t}=\mathcal{M}_{t-1} \oplus \overline{s p}\left\{\varepsilon_{t}\right\}$ and $E v_{t} \varepsilon_{t}=0$ it follows $v_{t} \in \mathcal{M}_{t-1}$. Repeating the same argument and using $E v_{t} \varepsilon_{t-j}=0$ leads to $v_{t} \in \mathcal{M}_{t-j}$ thus $v_{t} \in \bigcap_{j=0}^{\infty} \mathcal{M}_{t-j} \subseteq \mathcal{M}_{-\infty}$. Then

$$
\overline{s p}\left\{v_{j}, j \leq t\right\} \subseteq \mathcal{M}_{-\infty}
$$

From $x_{t}=v_{t}+\sum \psi_{j} \varepsilon_{t-j}$ we have

$$
\begin{equation*}
\mathcal{M}_{t}=\mathcal{H}_{t} \oplus \overline{s p}\left\{v_{j}, j \leq t\right\} \tag{4.6}
\end{equation*}
$$

Finally, if $z \in \mathcal{M}_{-\infty} \cap \mathcal{M}_{t}=\mathcal{M}_{-\infty}$ then $z \in \mathcal{M}_{s-1}$ such that $\left\langle z, \varepsilon_{s}\right\rangle=0$ for all s. But this shows that $z \in \mathcal{H}_{t}^{\perp}$ or $z \in \overline{s p}\left\{v_{j}, j \leq t\right\}$ by (4.6) such that $\mathcal{M}_{-\infty} \subseteq \overline{s p}\left\{v_{j}, j \leq t\right\}$ implying that

$$
\mathcal{M}_{-\infty}=\overline{s p}\left\{v_{j}, j \leq t\right\} \text { for all } t
$$

This means that v_{j} is deterministic, i.e. the prediciton error variance is zero.
A process is said to be purely non-deterministic if $\mathcal{M}_{-\infty}=\{0\}$. In this case the Wold decomposition is of the form

$$
x_{t}=\sum_{j=0}^{\infty} \psi_{j} \varepsilon_{t-j}
$$

where ψ_{j} and ε_{t-j} are as defined before. Processes in this class include the $A R M A(p, q)$ model introduced before.

The h-step ahead predictor of (4.5) is given by

$$
P_{\mathcal{M}_{t}} x_{t+h}=\sum_{j=h}^{\infty} \psi_{j} \varepsilon_{t+h-j}+v_{t+h}
$$

since $\varepsilon_{t+k} \perp \mathcal{M}_{t}$ for $k>0$. It also follows that the variance of the prediction error is given by

$$
\begin{aligned}
\left\|x_{t+h}-P_{\mathcal{M}_{t}} x_{h+1}\right\|^{2} & =\left\|\sum_{j=0}^{h-1} \psi_{j} \varepsilon_{t+h-j}\right\|^{2} \\
& =\sigma^{2} \sum_{j=0}^{h-1} \psi_{j}^{2} .
\end{aligned}
$$

As $h \rightarrow \infty$ the variance of the prediction error tends to the variance of x_{t}.

[^0]: ${ }^{1}$ More formally, \mathcal{M}_{t} is the σ-field generated by $\left\{x_{t}, \ldots, x_{1}\right\}$, i.e. \mathcal{M}_{t} is the smallest sigma field of the sample space Ω such that x_{t}, \ldots, x_{1} are measurable functions.

