6.231 DYNAMIC PROGRAMMING
LECTURE 20
LECTURE OUTLINE

e Control of continuous-time Markov chains —
Semi-Markov problems

e Problem formulation — Equivalence to discrete-
time problems

e Discounted problems

e Average cost problems



CONTINUOUS-TIME MARKOV CHAINS

e Stationary system with finite number of states
and controls

e State transitions occur at discrete times

e Controlapplied atthese discrete times and stays
constant between transitions

e Time between transitions is random

e Cost accumulates in continuous time (may also
be incurred at the time of transition)

e Example: Admission control in a system with
restricted capacity (e.g., a communication link)

Customer arrivals: a Poisson process

Customers entering the system, depart after
exponentially distributed time

Upon arrival we must decide whether to ad-
mit or to block a customer

There is a cost for blocking a customer

For each customer thatis inthe system, there
IS a customer-dependent reward per unittime

Minimize time-discounted or average cost



PROBLEM FORMULATION

e x(t) and u(t): State and control at time ¢

e ;.. Time of kth transition (to = 0)

o v, = x(tr): Wehavex(t) = xpfort, <t < tpi1.
o ur = u(ty): Wehaveu(t) = upfort, <t < tpi1.

¢ |In place of transition probabilities, we have tran-
sition distributions

Qij(T,u) = P{ths1—te < 7, o1 = J | 26 =1, up = u}
e Two important formulas:

(1) Transition probabilities are specified by

pij(u) = P{Try1 = j|xx =%, up = u} = lim Qi;(7, u)

T—00

(2) The Cumulative Distribution Function (CDF) of
T given i, 7, u is (assuming p;;(u) > 0)

_ u} _ Q’LJ (7-7 u)

P{g1—tx < 7|2k =1, Tp41 = J, Uk
{ ’ pis (0

Thus, Q;;(7,u) can be viewed as a “scaled CDF”



EXPONENTIAL TRANSITION DISTRIBUTIONS

e Important example of transition distributions

Qz'j (7‘, u) = Pij (u) (1 — G_Vi(“)T),

where p;;(u) are transition probabilities, and v;(u)
IS called the transition rate at state 1.

e Interpretation: If the system is in state ¢ and
control u 1s applied

— the next state will be 5 with probability p;; (u)

— the time between the transition to state ; and
the transition to the next state j is exponen-
tially distributed with parameter v;(u) (inde-
pendtly of 7):

P{transition time interval > 7|i,u} = e=%i (W7

e The exponential distribution is memoryless. This
Implies that for a given policy, the system is a
continuous-time Markov chain (the future depends
on the past through present). Without the mem-
oryless property, the Markov property holds only
at the times of transition.



COST STRUCTURES

e There is cost g(i,u) per unit time, i.e.

g(t,u)dt = the costincurred in time dt

e There may be an extra “instantaneous” cost
g(7,u) at the time of a transition (let’s ignore this
for the moment)

e Total discounted cost of 7 = {0, p1, ...} Start-
Ing from state ¢ (with discount factor 5 > 0)

_ }
e Average cost per unit time

lk+1
s 243 [ o)
tk+1 .
JJEHOOE{ iy Z/ (e (et | 20 =i
e \We will see that both problems have equivalent
discrete-time versions.




A NOTE ON NOTATION

e The scaled CDF Q;;(7,u) can be used to model
discrete, continuous, and mixed distributions for
the transition time .

e Generally, expected values of functions of 7
can be written as integrals involving d Q;;(7,u).
For example, the conditional expected value of 7
given ¢, 7, and w IS written as

> szjTu)
B{rlija= [ 70T

o If Q;;(7,u) is continuous with respect to 7, its
derivative

1Qs;
qij (T, u) = ij(ﬂu)

can be viewed as a “scaled” density function. Ex-
pected values of functions of = can then be written
in terms of ¢;; (7, u). For example

E{rl|i,j,u} = / q;’j ik u)dT
i (

o If Q);;(7,u)is discontinuous and" stalrcase-like,”
expected values can be written as summations.




DISCOUNTED PROBLEMS — COST CALCULATION
e For a policy m = {uo, p1, - ..}, write
Jr (i) = E{cost of 1st transition}+E{e " Jx, (4) | i, uo(i)}

where J, (j) is the cost-to-go of the policy m; =

{:ulnu% g }

e We calculate the two costs in the RHS. The
FEA{transition cost}, if u is applied at state ¢, is

G(i,u) = E, {ET{transition cost |j}}

— - (u N Te_ﬁt 1, U inj(77U)
;pw( )/0 (/0 9(7 )dt) pij(u)
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e Thus the E{cost of 1st transition} is

T

n ey s
G(i»uo(i))zg(i»uo(i))Z/ 1 7 dQi (7, uo(9))




COST CALCULATION (CONTINUED)

o Also
Ble e, ()
= E,{B{e5 |j}Jm, (1))
=St ([ e )

pij(u)

where m;;(u) is given by

mij(u):/ e PTdQi (T, u) (</ sz’j(Tau):pij(u)>
0] 0]

and can be viewed as the “effective discount fac-
tor” [the analog of ap;; (u) in the discrete-time case].

e S0 J:(7) can be written as

Jr (i) = Z , 1o (7 ‘|‘ me (J)



EQUIVALENCE TO AN SSP

e Similar to the discrete-time case, introduce a
stochastic shortest path problem with an artificial
termination state ¢

e Under control u, from state : the system moves
to state j with probability m;;(«) and to the termi-
nation state ¢ with probability 1 — 3", m;;(u)

e Bellman’s equation: For: =1,...,n,

J(i) = min |G ()T
(i) = min_ (@,U)+ng(U)

e Analogs of value iteration, policy iteration, and
linear programming.

e If In addition to the cost per unit time g, there
IS an extra (instantaneous) one-stage cost §(¢, u),
Bellman’s equation becomes

Te0) — 1o el Z
(2) u]gl(}%) g(i,u) (2, u) Zm]




MANUFACTURER'S EXAMPLE REVISITED

e A manufacturer receives orders with interarrival
times uniformly distributed in [0, Tmax]-

e He may process all unfilled orders at cost K > 0,
or process none. The cost per unit time of an
unfilled order is ¢. Max number of unfilled orders
IS n.

e The nonzero transition distributions are

Tmax

Qil (T, F|”) = Qi(i—|—1) (7', Not F|”) — min [1, i ]

e The one-stage expected cost GG is

G(i,Fil) =0,  G(i,Not Fill) = v ci,

1 —e b7 Tmax 1 _ =0T
7 Z/ ﬁ dQZ] (T, u> N /O BTmaX

e There is an “instantaneous” cost

g(i,Fil) = K, §(i,Not Fill) = 0



MANUFACTURER'S EXAMPLE CONTINUED

e The “effective discount factors” m;;(u) in Bell-
man’s Equation are

mzl(FIII) — mz’(i—l—l)(NOt FI”) = Q,

where

o0 Tmax _—[f(3T1 —BTmax
_ e 1—e
o = / (& IBTdQZJ (’7'7 ’LL) = / dTr =
0 0

Tmax BTmax

e Bellman’s equation has the form

J*(i) = min| K+aJ*(1), yei+aJ*(i+1)], i=1,2,...

e AS In the discrete-time case, we can conclude
that there exists an optimal threshold :*:

fill the orders <==> their number ; exceeds 7*



AVERAGE COST
e Minimize
i ! t
im E x(t), u(t))dt
N—oo E{tn} {/ g( Q ()) }

assuming there is a special state that is “recurrent
under all policies”

e Total expected cost of a transition

G(Zv U) — 9(7’7 u)?i (”LL),
where 7;(u): Expected transition time.

e \We now apply the SSP argument used for the
discrete-time case. Divide trajectory into cycles
marked by successive visits to n. The cost at
(i,u) is G(i,u) — A*T;(u), where \* is the optimal
expected cost per unit time. Each cycle Is viewed
as a state trajectory of a corresponding SSP prob-
lem with the termination state being essentially n

e So Bellman’s Eq. for the average cost problem:

h() = min |Gl 4) — AT |
(i) = min |G, u) = X7 +Zpg




AVERAGE COST MANUFACTURER'S EXAMPLE

e The expected transition times are

7umnzﬂmmﬁm:T§X

the expected transition cost is

C 1 Tmax

G (i, Fill) = 0, G (i, Not Fill) =

and there Is also the “Instantaneous” cost

g(i,Fill) = K, §(i,Not Fill) = 0

e Bellman’s equation:

hﬂ@:mmp>wﬂfX+ma%

. Tmax )\ Tmax

cl
2 2

+h*(i+1)

e Again it can be shown that a threshold policy is
optimal.



