6.231 DYNAMIC PROGRAMMING

LECTURE 11

LECTURE OUTLINE

- Review of DP for imperfect state info
- Linear quadratic problems
- Separation of estimation and control

REVIEW: PROBLEM WITH IMPERFECT STATE INFO

• Instead of knowing x_k , we receive observations

$$
z_0 = h_0(x_0, v_0), \quad z_k = h_k(x_k, u_{k-1}, v_k), \quad k \ge 1
$$

• I_k : information vector available at time k :

 $I_0 = z_0, I_k = (z_0, z_1, \ldots, z_k, u_0, u_1, \ldots, u_{k-1}), k \ge 1$

- Optimization over policies $\pi = {\mu_0, \mu_1, \ldots, \mu_{N-1}}$, where $\mu_k(I_k) \in U_k$, for all I_k and k .
- Find a policy π that minimizes

$$
J_{\pi} = \underset{k=0,\dots,N-1}{\overset{x_0,\overset{w_k,v_k}{\sum}}{}} \left\{ g_N(x_N) + \underset{k=0}{\overset{N-1}{\sum}} g_k(x_k,\mu_k(I_k),w_k) \right\}
$$

subject to the equations

$$
x_{k+1} = f_k(x_k, \mu_k(I_k), w_k), \qquad k \ge 0,
$$

 $z_0 = h_0(x_0, v_0), z_k = h_k(x_k, \mu_{k-1}(I_{k-1}), v_k), k \ge 1$

DP ALGORITHM

Reformulate to perfect state info problem, and write the DP algorithm:

$$
J_k(I_k) = \min_{u_k \in U_k} \left[\underset{x_k, w_k, z_{k+1}}{E} \left\{ g_k(x_k, u_k, w_k) + J_{k+1}(I_k, z_{k+1}, u_k) \mid I_k, u_k \right\} \right]
$$

for $k = 0, 1, ..., N - 2$, and for $k = N - 1$,

$$
J_{N-1}(I_{N-1}) = \min_{u_{N-1} \in U_{N-1}}
$$

$$
\left[E \underset{x_{N-1}, w_{N-1}}{E} \left\{ g_N \left(f_{N-1}(x_{N-1}, u_{N-1}, w_{N-1}) \right) \right. \right. \\ \left. + g_{N-1}(x_{N-1}, u_{N-1}, w_{N-1}) \mid I_{N-1}, u_{N-1} \right\} \right],
$$

• The optimal cost J^* is given by

$$
J^* = E\{J_0(z_0)\}.
$$

LINEAR-QUADRATIC PROBLEMS

- System: $x_{k+1} = A_k x_k + B_k u_k + w_k$
- Quadratic cost

$$
\underset{k=0,1,...,N-1}{E} \left\{ x_N' Q_N x_N + \sum_{k=0}^{N-1} (x_k' Q_k x_k + u_k' R_k u_k) \right\}
$$

where $Q_k \geq 0$ and $R_k > 0$.

• Observations

 $z_k = C_k x_k + v_k, \qquad k = 0, 1, \ldots, N - 1.$

• $w_0, \ldots, w_{N-1}, v_0, \ldots, v_{N-1}$ indep. zero mean

• Key fact to show:

 $-$ Optimal policy $\{\mu_0^*, \ldots, \mu_{N-1}^*\}$ is of the form:

$$
\mu_k^*(I_k) = L_k E\{x_k | I_k\}
$$

 L_k : same as for the perfect state info case

− Estimation problem and control problem can be solved separately

DP ALGORITHM I

• Last stage $N - 1$ (supressing index $N - 1$):

$$
J_{N-1}(I_{N-1}) = \min_{u_{N-1}} \left[E_{x_{N-1}, w_{N-1}} \left\{ x'_{N-1} Q x_{N-1} + u'_{N-1} R u_{N-1} + (Ax_{N-1} + Bu_{N-1} + w_{N-1})' \right\} \right]
$$

+ $u'_{N-1} R u_{N-1} + (Ax_{N-1} + Bu_{N-1} + w_{N-1}) | I_{N-1}, u_{N-1} \} \right]$

• Since $E\{w_{N-1} | I_{N-1}\} = E\{w_{N-1}\} = 0$, the minimization involves

$$
\min_{u_{N-1}} \left[u'_{N-1} (B'QB + R) u_{N-1} + 2E\{x_{N-1} | I_{N-1}\}^{\prime} A'QB u_{N-1} \right]
$$

The minimization yields the optimal μ^*_{N-1} :

$$
u_{N-1}^* = \mu_{N-1}^*(I_{N-1}) = L_{N-1}E\{x_{N-1} | I_{N-1}\}
$$

where

$$
L_{N-1} = -(B'QB + R)^{-1}B'QA
$$

DP ALGORITHM II

• Substituting in the DP algorithm

$$
J_{N-1}(I_{N-1}) = E_{x_{N-1}} \{ x'_{N-1} K_{N-1} x_{N-1} | I_{N-1} \}
$$

+
$$
E_{x_{N-1}} \{ (x_{N-1} - E\{ x_{N-1} | I_{N-1} \})' \}
$$

-
$$
P_{N-1} (x_{N-1} - E\{ x_{N-1} | I_{N-1} \}) | I_{N-1} \}
$$

+
$$
E_{w_{N-1}} \{ w'_{N-1} Q_N w_{N-1} \},
$$

where the matrices K_{N-1} and P_{N-1} are given by

$$
P_{N-1} = A'_{N-1} Q_N B_{N-1} (R_{N-1} + B'_{N-1} Q_N B_{N-1})^{-1}
$$

$$
\cdot B'_{N-1} Q_N A_{N-1},
$$

$$
K_{N-1} = A'_{N-1} Q_N A_{N-1} - P_{N-1} + Q_{N-1}.
$$

• Note the structure of J_{N-1} : in addition to the quadratic and constant terms, it involves a quadratic in the estimation error

$$
x_{N-1} - E\{x_{N-1} \mid I_{N-1}\}\
$$

DP ALGORITHM III

• DP equation for period $N-2$:

$$
J_{N-2}(I_{N-2}) = \min_{u_{N-2}} \left[E \underbrace{E}_{x_{N-2}, w_{N-2}, z_{N-1}} \{x'_{N-2}Qx_{N-2} + u'_{N-2}Ru_{N-2} + J_{N-1}(I_{N-1}) \mid I_{N-2}, u_{N-2}\} \right]
$$

\n
$$
= E \left\{ x'_{N-2}Qx_{N-2} \mid I_{N-2} \right\}
$$

\n
$$
+ \min_{u_{N-2}} \left[u'_{N-2}Ru_{N-2} + x'_{N-1}K_{N-1}x_{N-1} \mid I_{N-2} \right\} \right]
$$

\n
$$
+ E \left\{ \left(x_{N-1} - E\{x_{N-1} \mid I_{N-1}\} \right)' \right\}
$$

\n
$$
\cdot P_{N-1} \left(x_{N-1} - E\{x_{N-1} \mid I_{N-1}\} \right) \mid I_{N-2}, u_{N-2} \right\}
$$

\n
$$
+ E_{w_{N-1}} \{ w'_{N-1}Q_{N}w_{N-1} \}.
$$

- Key point: We have excluded the next to last term from the minimization with respect to u_{N-2} .
- This term turns out to be independent of u_{N-2} .

QUALITY OF ESTIMATION LEMMA

• For every k, there is a function M_k such that we have

$$
x_k - E\{x_k | I_k\} = M_k(x_0, w_0, \dots, w_{k-1}, v_0, \dots, v_k),
$$

independently of the policy being used.

- The following simplified version of the lemma conveys the main idea.
- Simplified Lemma: Let r, u, z be random variables such that r and u are independent, and let $x = r + u$. Then

$$
x - E\{x \mid z, u\} = r - E\{r \mid z\}.
$$

• Proof: We have

$$
x - E\{x \mid z, u\} = r + u - E\{r + u \mid z, u\}
$$

$$
= r + u - E\{r \mid z, u\} - u
$$

$$
= r - E\{r \mid z, u\}
$$

$$
= r - E\{r \mid z\}.
$$

APPLYING THE QUALITY OF ESTIMATION LEMMA

• Using the lemma,

$$
x_{N-1} - E\{x_{N-1} | I_{N-1}\} = \xi_{N-1},
$$

where

 ξ_{N-1} : function of $x_0, w_0, \ldots, w_{N-2}, v_0, \ldots, v_{N-1}$

• Since ξ_{N-1} is independent of u_{N-2} , the conditional expectation of ξ_7' $N_{N-1}^{\prime}P_{N-1}\xi_{N-1}$ satisfies

$$
E\{\xi'_{N-1}P_{N-1}\xi_{N-1} | I_{N-2}, u_{N-2}\}\
$$

= $E\{\xi'_{N-1}P_{N-1}\xi_{N-1} | I_{N-2}\}\$

and is independent of u_{N-2} .

• So minimization in the DP algorithm yields

$$
u_{N-2}^* = \mu_{N-2}^*(I_{N-2}) = L_{N-2}E\{x_{N-2} | I_{N-2}\}\
$$

FINAL RESULT

• Continuing similarly (using also the quality of estimation lemma)

$$
\mu_k^*(I_k) = L_k E\{x_k \mid I_k\},\
$$

where L_k is the same as for perfect state info:

$$
L_k = -(R_k + B'_k K_{k+1} B_k)^{-1} B'_k K_{k+1} A_k,
$$

with K_k generated from $K_N = Q_N$, using

$$
K_k = A'_k K_{k+1} A_k - P_k + Q_k,
$$

 $P_k = A'_k$ $k_{k}K_{k+1}B_{k}(R_{k} + B_{k}^{\prime})$ $k_{k}^{'}K_{k+1}B_{k}$)⁻¹ B_{k}^{\prime} $k_{k}K_{k+1}A_{k}$

SEPARATION INTERPRETATION

- The optimal controller can be decomposed into
	- (a) An $estimator$, which uses the data to generate the conditional expectation $E\{x_k | I_k\}$.
	- (b) An $actuator$, which multiplies $E\{x_k | I_k\}$ by the gain matrix L_k and applies the control input $u_k = L_k E\{x_k | I_k\}.$

• Generically the estimate \hat{x} of a random vector x given some information (random vector) I , which minimizes the mean squared error

 $E_x\{\|x-\hat{x}\|^2\mid I\} = \|x\|^2 - 2E\{x\mid I\}\hat{x} + \|\hat{x}\|^2$

is $E\{x \mid I\}$ (set to zero the derivative with respect to \hat{x} of the above quadratic form).

• The estimator portion of the optimal controller is optimal for the problem of estimating the state x_k assuming the control is not subject to choice.

The actuator portion is optimal for the control problem assuming perfect state information.

STEADY STATE/IMPLEMENTATION ASPECTS

• As $N \to \infty$, the solution of the Riccati equation converges to a steady state and $L_k \to L$.

• If x_0 , w_k , and v_k are Gaussian, $E\{x_k | I_k\}$ is a *linear* function of I_k and is generated by a nice recursive algorithm, the Kalman filter.

• The Kalman filter involves also a Riccati equation, so for $N \to \infty$, and a stationary system, it also has a steady-state structure.

• Thus, for Gaussian uncertainty, the solution is nice and possesses a steady state.

• For nonGaussian uncertainty, computing $E\{x_k | I_k\}$ maybe very difficult, so a suboptimal solution is typically used.

• Most common suboptimal controller: Replace $E\{x_k | I_k\}$ by the estimate produced by the Kalman filter (act as if x_0 , w_k , and v_k are Gaussian).

It can be shown that this controller is optimal within the class of controllers that are *linear* functions of I_k .