6.231 DYNAMIC PROGRAMMING
LECTURE 11
LECTURE OUTLINE

e Review of DP for imperfect state info
e Linear quadratic problems

e Separation of estimation and control



REVIEW: PROBLEM WITH IMPERFECT STATE INFO

¢ Instead of knowing x;, we receive observations

20 = ho(zo,v0), 2k = hi(Tk, ur—1,vk), k>1

e /.: Information vector available at time k:

Io — 20, Ik — (zo,zl,...,zk,uo,ul,...,uk_l), kZ 1

e Optimization over policies 7 = { o, ft1,---, UN—1},
where u(I) € Uy, for all I, and k.

e Find a policy 7 that minimizes

Jr = ,E {gN(SUN) + Z_ gk (wk,/ik(fk),wk)}

k=0
subject to the equations
Titr1 = [ (@, ok (Ik), wg), k>0,

20 = h()(lU(),U()), Rk = hk (xkaluk—l(lk—l)avk)a k 2 1



DP ALGORITHM

e Reformulate to perfect state info problem, and
write the DP algorithm:

Jk(]k):: min { FE {gk(xk,uk,zuk)
upCUk Lag, wg, 241

+ Je+1 (T, 2k+1, uk) | Ik, Uk}}

fork=0,1,..., N —2,and for k = N — 1,

JN—l(IN—l) — min
un—1€UN_1

[ E {QN (fN—1(fBN—1,uN—17wN—1))

ITN—-1,WN—-1

+gnv_1(xN_1,UN—1,WN—1) | IN—1,UN—1} :

e The optimal cost J* is given by

J* = ZEO’{JQ(ZQ)}.



LINEAR-QUADRATIC PROBLEMS

e System: xpy1 = Arxr + Brug + wy

e Quadratic cost

N—1
E {foQNxN + Z (27, Qrxr + U%Rkuk)}
N—1 k=0

where Q. > 0 and R, > 0.

e Observations
2 = Crop + vg, k=0,1,... N —1.

® wp,...,WN_1,V0,...,UN_1 INDEpP. Zzero mean
e Key fact to show:
— Optimal policy {p, ..., w4} is of the form:

pip(Ie) = L E{ @y | Ii}

L. same as for the perfect state info case

— Estimation problem and control problem can
be solved separately



DP ALGORITHM |

e Last stage IV — 1 (supressing index N — 1):

JN-1(In-1) = min [ExN—lawN—l{xEV—leN—l
UN—1

+uy_jRun_1 + (Azn_1+ Buny_1+wn_1)’

- Q(Arxny_1+ Bun_1+wn_1) | IN—laUN—l}}

e Since E{wN_1 ‘ ]N—l} — E{wa_l} = (), the
minimization involves

min [ug\f_l(B'QB + R)un—1
uUN_—1
+ 2FE{xNn_1 | IN—l},A/QBUN—l]
The minimization yields the optimal p},_;:
un_1 = By_1(In-1) = Ln 1 E{zN 1 [ IN-1}

where

Ln_1=—(B'QB + R)-1B'QA



DP ALGORITHM Il

e Substituting in the DP algorithm
In_1(In-1)= E {a/y_Kn—1zn-1]|In-1}
TN-—1

+ E {(zn-1— E{an_1] IN_l})/

TN-—1

'PN—1<ZUN—1 — F{zn_1 | IN—1}) | IN—1}
+ E {wy_@NnwN-1},

WN -1

where the matrices Ky _1 and Py_1 are given by

Py_o1=A4A%_QNBN-1(RN-1+ By_,QNBn-1)"!
- By _1QNAN_1,
Kn_1=A QNAN—1 —Pn_1+ Qn-1.

e Note the structure of Jy_1: In addition to the
guadratic and constant terms, it involves a quadratic
In the estimation error

rn—1— FE{rn_1|In-1}



DP ALGORITHM I

e DP equation for period N — 2:

JN—2(In—2) = min [ E {2y _2QrN_2
UN—-2 LZN_2,WN_-2,ZN—1

+ ’U,?V_QRUJN_Q +Jnv_1(Un=1) | IN—27UN—2}}

= E{CCQV_QQOUN—Q | IN—Q}

. / /
+ min [uN_QRuN_g +azy Kn_1zn_1 | IN_2H
UN 2

+E{(CBN—1 — E{zNn_1 | IN—l})/
'PN—1(xN—1 — E{zn_1 | IN—l}) | IN—2>UN—2}

+ E’wN_l{wE\f_lQNwN—l}'

e Key point.: We have excluded the next to last
term from the minimization with respect to uy_s.

e This term turns out to be independent of u_s.



QUALITY OF ESTIMATION LEMMA

e Forevery k, there is a function M;. such that we
have

rp—E{xy | I} = My(xo,wo,. .., Wk—1,v0,...,Vk),

Independently of the policy being used.

e The following simplified version of the lemma
conveys the main idea.

e Simplified Lemma: Let r,u, z be random vari-
ables such that » and « are independent, and let
r =71+ u. Then

r— FE{x|z,u} =r — E{r|z}.

e Proof: We have

r— F{x|z,u} =r4+u— E{r+ul|zu}
=r4+u— FE{r|z,u} —u
=r — E{r|z,u}
=r— E{r|z}.



APPLYING THE QUALITY OF ESTIMATION LEMMA

e Using the lemma,
en—1— FE{rn_1|In-1} =EN-1,
where

¢Env—1. function of xg, wo, ..., wN_2,v0,...,UN_1

e Since ¢{ny_1 IS independent of un_», the condi-
tional expectation of &%, | Pnv—_1&n—1 satisfies

E{&_Pn—1&n—1 | IN—2,un—2}
= F{&\_Pn_1&n—1 | IN—2}

and is independent of ux_s.

e S0 minimization in the DP algorithm yields

Un_o = Un_oUN—2) =Ly 2FE{zNn_2 | IN_2}



FINAL RESULT

e Continuing similarly (using also the quality of
estimation lemma)

pyp(Ix) = L E{zg | Ix},
where L, is the same as for perfect state info:
Ly = —(Rr + B, Ky41B) ' B} K1 Ag,
with K generated from Kny = (Qn, using
Ky = A, K1 Ar — P + Q.
P, = A Ki41Br(Rr + B, Ki11By) "1 B Kjy1 Ak

" 5

> X +1 = A¥ + By +wy - 2, =Gty [

- Delay >

u E{ |1} ) z
Kk - Ly - KK Estimator ~|—e——K




SEPARATION INTERPRETATION

e The optimal controller can be decomposed into

(a) An estimator, which uses the data to gener-
ate the conditional expectation E{x | Ix}.

(b) An actuator, which multiplies E{xy | I} by
the gain matrix L; and applies the control
iﬂpUt U = LkE{xk ’ ]k}

e Generically the estimate z of a random vector x
given some information (random vector) I, which
minimizes the mean squared error

Exillz = []* | I} = |lzf]* = 2Bz [ T}z + || 2]
Is E{x | 1} (setto zero the derivative with respect

to 2 of the above quadratic form).

e The estimator portion of the optimal controller
IS optimal for the problem of estimating the state
x), assuming the control is not subject to choice.

e The actuator portion is optimal for the control
problem assuming perfect state information.



STEADY STATE/IMPLEMENTATION ASPECTS

e As N — oo, the solution of the Riccati equation
converges to a steady state and L, — L.

o If xo, wg, and v are Gaussian, E{xy | I} is
a linear function of I, and is generated by a nice
recursive algorithm, the Kalman filter.

e The Kalman filter involves also a Riccati equa-
tion, so for N — oo, and a stationary system, it
also has a steady-state structure.

e Thus, for Gaussian uncertainty, the solution is
nice and possesses a steady state.

e For nonGaussian uncertainty, computing E{xy, | Ix }
maybe very difficult, so a suboptimal solution is
typically used.

e Most common suboptimal controller: Replace
E{xi | I} by the estimate produced by the Kalman
filter (act as If g, wg, and v are Gaussian).

e It can be shown that this controller is optimal
within the class of controllers that are linear func-
tions of 1.



