6.231 DYNAMIC PROGRAMMING

LECTURE 10

LECTURE OUTLINE

- Problems with imperfect state info
- Reduction to the perfect state info case
- Machine repair example

BASIC PROBLEM WITH IMPERFECT STATE INFO

• Same as basic problem of Chapter 1 with one difference: the controller, instead of knowing x_k , receives at each time k an observation of the form

$$
z_0 = h_0(x_0, v_0), \quad z_k = h_k(x_k, u_{k-1}, v_k), \quad k \ge 1
$$

• The observation z_k belongs to some space Z_k .

• The random observation disturbance v_k is characterized by a probability distribution

 $P_{v_k}(\cdot | x_k, \ldots, x_0, u_{k-1}, \ldots, u_0, w_{k-1}, \ldots, w_0, v_{k-1}, \ldots, v_0)$

• The initial state x_0 is also random and characterized by a probability distribution P_{x_0} .

• The probability distribution $P_{w_k}(\cdot \mid x_k, u_k)$ of w_k is given, and it may depend explicitly on x_k and u_k but not on $w_0,\ldots,w_{k-1},v_0,\ldots,v_{k-1}.$

• The control u_k is constrained to a given subset U_k (this subset does not depend on x_k , which is not assumed known).

INFORMATION VECTOR AND POLICIES

• Denote by I_k the *information vector*, i.e., the information available at time k :

$$
I_k = (z_0, z_1, \dots, z_k, u_0, u_1, \dots, u_{k-1}), \quad k \ge 1,
$$

$$
I_0 = z_0.
$$

• We consider policies $\pi = {\mu_0, \mu_1, \ldots, \mu_{N-1}}$, where each function μ_k maps the information vector I_k into a control u_k and

$$
\mu_k(I_k) \in U_k, \qquad \text{for all } I_k, \ k \ge 0.
$$

• We want to find a policy π that minimizes

$$
J_{\pi} = \underset{k=0,...,N-1}{\overset{x_0, w_k, v_k}{\sum}} \left\{ g_N(x_N) + \underset{k=0}{\overset{N-1}{\sum}} g_k(x_k, \mu_k(I_k), w_k) \right\}
$$

subject to the equations

$$
x_{k+1} = f_k(x_k, \mu_k(I_k), w_k), \qquad k \ge 0,
$$

$$
z_0 = h_0(x_0, v_0), \ z_k = h_k(x_k, \mu_{k-1}(I_{k-1}), v_k), \ k \ge 1
$$

EXAMPLE: MULTIACCESS COMMUNICATION I

• Collection of transmitting stations sharing a common channel, are synchronized to transmit packets of data at integer times.

- x_k : backlog at the beginning of slot k.
- a_k : random number of packet arrivals in slot k.
- t_k : the number of packets transmitted in slot k.

 $x_{k+1} = x_k + a_k - t_k,$

• At kth slot, each of the x_k packets in the system is transmitted with probability u_k (common for all packets). If two or more packets are transmitted simultaneously, they collide.

• So $t_k = 1$ (a success) with probability $x_k u_k(1$ u_k) x_k-1 , and $t_k = 0$ (idle or collision) otherwise.

• Imperfect state info: The stations can observe the channel and determine whether in any one slot there was a collision (two or more packets), a success (one packet), or an idle (no packets).

EXAMPLE: MULTIACCESS COMMUNICATION II

• Information vector at time k : The entire history (up to k) of successes, idles, and collisions. Mathematically, z_{k+1} , the observation at the end of the k th slot, is

$$
z_{k+1} = v_{k+1}
$$

where v_{k+1} yields an idle with probability (1 – $(u_k)^{x_k}$, a success with probability $x_k u_k (1-u_k)^{x_k-1}$,
and a collision otherwise and a collision otherwise.

• If we had perfect state information, the DP algorithm would be

$$
J_k(x_k) = g_k(x_k) + \min_{0 \le u_k \le 1} E_{a_k} \{ p(x_k, u_k) J_{k+1}(x_k + a_k - 1) + (1 - p(x_k, u_k)) J_{k+1}(x_k + a_k) \},
$$

 $p(x_k, u_k)$ is the success probability $x_ku_k(1-u_k)^{x_k-1}$.

• The optimal (perfect state information) policy would be to select the value of u_k that maximizes $p(x_k, u_k)$, so $\mu_k(x_k) = \frac{1}{x_k}$, for all $x_k \ge 1$.

• Imperfect state info problem is much harder.

REFORMULATION AS A PERFECT INFO PROBLEM

• We have

 $I_{k+1} = (I_k, z_{k+1}, u_k), k = 0, 1, \ldots, N-2, I_0 = z_0.$

View this as a dynamic system with state I_k , control u_k , and random disturbance z_{k+1} .

• We have

$$
P(z_{k+1} | I_k, u_k) = P(z_{k+1} | I_k, u_k, z_0, z_1, \ldots, z_k),
$$

since z_0, z_1, \ldots, z_k are part of the information vector I_k . Thus the probability distribution of z_{k+1} depends explicitly only on the state I_k and control u_k and not on the prior "disturbances" z_k, \ldots, z_0 .

• Write

$$
E\{g_k(x_k, u_k, w_k)\} = E\left\{\underset{x_k, w_k}{E} \{g_k(x_k, u_k, w_k) | I_k, u_k\}\right\}
$$

so the cost per stage of the new system is

$$
\tilde{g}_k(I_k, u_k) = E_{x_k, w_k} \{ g_k(x_k, u_k, w_k) | I_k, u_k \}
$$

DP ALGORITHM

• Writing the DP algorithm for the (reformulated) perfect state info problem and doing the algebra:

$$
J_k(I_k) = \min_{u_k \in U_k} \left[\underset{x_k, w_k, z_{k+1}}{E} \left\{ g_k(x_k, u_k, w_k) + J_{k+1}(I_k, z_{k+1}, u_k) \mid I_k, u_k \right\} \right]
$$

for $k = 0, 1, ..., N - 2$, and for $k = N - 1$,

$$
J_{N-1}(I_{N-1}) = \min_{u_{N-1} \in U_{N-1}}
$$

$$
\left[E \underset{x_{N-1}, w_{N-1}}{E} \left\{ g_N \left(f_{N-1}(x_{N-1}, u_{N-1}, w_{N-1}) \right) \right. \right. \\ \left. + g_{N-1}(x_{N-1}, u_{N-1}, w_{N-1}) \mid I_{N-1}, u_{N-1} \right\} \right],
$$

• The optimal cost J^* is given by

$$
J^* = E\{J_0(z_0)\}.
$$

MACHINE REPAIR EXAMPLE I

- A machine can be in one of two states denoted P (good state) and \overline{P} (bad state).
- At the end of each period the machine is inspected.
- Two possible inspection outcomes: G (probably good state) and B (probably bad state).
- Transition probabilities:

- Possible actions after each inspection:
	- C : Continue operation of the machine.
	- S: Stop the machine, determine its state, and if in \overline{P} bring it back to the good state P.
- Cost per stage:

$$
g(P, C) = 0, g(P, S) = 1, g(\overline{P}, C) = 2, g(\overline{P}, S) = 1.
$$

MACHINE REPAIR EXAMPLE II

• The information vector at times 0 and 1 is

$$
I_0 = z_0,
$$
 $I_1 = (z_0, z_1, u_0),$

and we seek functions $\mu_0(I_0), \mu_1(I_1)$ that minimize

$$
\underset{v_0, w_0, v_1}{E} \{g(x_0, \mu_0(z_0)) + g(x_1, \mu_1(z_0, z_1, \mu_0(z_0)))\}.
$$

DP algorithm: Start with $J_2(I_2)=0$. For $k=$ 0, 1, take the min over the two actions, C and S,

$$
J_k(I_k) = \min \left[P(x_k = P | I_k) g(P, C) + P(x_k = \overline{P} | I_k) g(\overline{P}, C) + E \{ J_{k+1}(I_k, C, z_{k+1}) | I_k, C \}, P(x_k = P | I_k) g(P, S) + P(x_k = \overline{P} | I_k) g(\overline{P}, S) + E \{ J_{k+1}(I_k, S, z_{k+1}) | I_k, S \} \right]
$$

MACHINE REPAIR EXAMPLE III

• Last Stage: Compute $J_1(I_1)$ for each of the eight possible information vectors $I_1 = (z_0, z_1, u_0)$. We have

cost of $C = 2 \cdot P(x_1 = \overline{P} | I_1)$, cost of $S = 1$,

and therefore $J_1(I_1) = \min \bigl[2P(x_1 = \overline{P} | I_1), 1 \bigr].$
The probabilities $P(x_1 = \overline{P} | I_1)$ are computed The probabilities $P(x_1 = \overline{P} | I_1)$ are computed using Bayes' rule:

(1) For
$$
I_1 = (G, G, S)
$$

$$
P(x_1 = \overline{P} | G, G, S) = \frac{P(x_1 = \overline{P}, G, G | S)}{P(G, G | S)}
$$

=
$$
\frac{\frac{1}{3} \cdot \frac{1}{4} \cdot \left(\frac{2}{3} \cdot \frac{3}{4} + \frac{1}{3} \cdot \frac{1}{4}\right)}{\left(\frac{2}{3} \cdot \frac{3}{4} + \frac{1}{3} \cdot \frac{1}{4}\right)^2} = \frac{1}{7}.
$$

Hence

$$
J_1(G, G, S) = \frac{2}{7},
$$
 $\mu_1^*(G, G, S) = C.$

MACHINE REPAIR EXAMPLE IV

(2) For
$$
I_1 = (B, G, S)
$$

\n
$$
P(x_1 = \overline{P} | B, G, S) = P(x_1 = \overline{P} | G, G, S) = \frac{1}{7},
$$
\n
$$
J_1(B, G, S) = \frac{2}{7}, \qquad \mu_1^*(B, G, S) = C.
$$
\n(3) For $I_1 = (G, B, S)$
\n
$$
P(x_1 = \overline{P} | G, B | S) = \frac{P(x_1 = \overline{P}, G, B, S)}{P(G, B | S)}
$$
\n
$$
= \frac{\frac{1}{3} \cdot \frac{3}{4} \cdot (\frac{2}{3} \cdot \frac{3}{4} + \frac{1}{3} \cdot \frac{1}{4})}{(\frac{2}{3} \cdot \frac{1}{4} + \frac{1}{3} \cdot \frac{3}{4}) (\frac{2}{3} \cdot \frac{3}{4} + \frac{1}{3} \cdot \frac{1}{4})}
$$
\n
$$
= \frac{3}{5},
$$

• Similarly, for all possible I_1 , we compute $J_1(I_1)$, and $\mu_1^*(I_1)$, which is to continue $(u_1 = C)$ if the last inspection was G and to stop otherwise last inspection was G , and to stop otherwise.

 $J_1(G, B, S) = 1,$ $\mu_1^*(G, B, S) = S.$

MACHINE REPAIR EXAMPLE V

• *First Stage*: Compute $J_0(I_0)$ for each of the two possible information vectors $I_0 = (G)$, $I_0 = (B)$. possible information vectors $I_0 = (G)$, $I_0 = (B)$.
We have We have

cost of
$$
C = 2P(x_0 = \overline{P} | I_0) + E\left\{J_1(I_0, z_1, C) | I_0, C\right\}
$$

= $2P(x_0 = \overline{P} | I_0) + P(z_1 = G | I_0, C)J_1(I_0, G, C)$
+ $P(z_1 = B | I_0)J_1(I_0, B, C),$

cost of
$$
S = 1 + E\{J_1(I_0, z_1, S) | I_0, S\}
$$

= $1 + P(z_1 = G | I_0)J_1(I_0, G, S)$
+ $P(z_1 = B | I_0)J_1(I_0, B, S),$

using the values of J_1 from the previous stage.

• We have

$$
J_0(I_0) = \min[\text{cost of } C, \text{ cost of } S]
$$

• The optimal cost is

$$
J^* = P(G)J_0(G) + P(B)J_0(B).
$$