
6.231 DYNAMIC PROGRAMMING

LECTURE 8

LECTURE OUTLINE

• Deterministic continuous-time optimal control

• From the HJB equation to the Pontryagin Mini-
mum Principle

• Examples



THE HJB EQUATION

• Continuous-time dynamic system

ẋ(t) = f
(
x(t), u(t)

)
, 0 ≤ t ≤ T, x(0) : given

• Cost function

h
(
x(T )

)
+

∫ T

0

g
(
x(t), u(t)

)
dt

• J∗(t, x): optimal cost-to-go from x at time t

• HJB equation: For all (t, x)

0 = min
u∈U

[
g(x, u)+∇tJ∗(t, x)+∇xJ∗(t, x)′f(x, u)

]
with the boundary condition J∗(T, x) = h(x).

• Verification theorem: If we can find a solution, it
must be equal to the optimal cost-to-go function.
Also a (closed-loop) policy µ∗(t, x) such that

µ∗(t, x) attains the min for each (t, x)

is optimal.



HJB EQ. ALONG AN OPTIMAL TRAJECTORY

• Observation I: An optimal control-state trajec-
tory pair {(u∗(t), x∗(t)) | t ∈ [0, T ]

}
satisfies for all

t ∈ [0, T ]

u∗(t) = arg min
u∈U

[
g
(
x∗(t), u

)
+∇xJ∗(t, x∗(t)

)′
f
(
x∗(t), u

)]
.

(1)

• Observation II: To obtain an optimal control tra-
jectory {u∗(t) | t ∈ [0, T ]

}
via this equation, we

don’t need to know ∇xJ∗(t, x) for all (t, x) - only
the time function

p(t) = ∇xJ∗(t, x∗(t)
)
, t ∈ [0, T ].

• It turns out that calculating p(t) is often easier
than calculating J∗(t, x) or ∇xJ∗(t, x) for all (t, x).

• Pontryagin’s minimum principle is just Eq. (1) to-
gether with an equation for calculating p(t), called
the adjoint equation.

• Also, Pontryagin’s minimum principle is valid
much more generally, even in cases where J∗(t, x)
is not differentiable and the HJB has no solution.



DERIVING THE ADJOINT EQUATION

• The HJB equation holds as an identity for all
(t, x), so it can be differentiated [the gradient of
the RHS with respect to (t, x) is identically 0].

• We need a tool for differentiation of “minimum”
functions.

Lemma: Let F (t, x, u) be a continuously differ-
entiable function of t ∈ �, x ∈ �n, and u ∈ �m,
and let U be a convex subset of �m. Assume
that µ∗(t, x) is a continuously differentiable func-
tion such that

µ∗(t, x) = arg min
u∈U

F (t, x, u), for all t, x.

Then

∇t

{
min
u∈U

F (t, x, u)
}

= ∇tF
(
t, x, µ∗(t, x)

)
, for all t, x,

∇x

{
min
u∈U

F (t, x, u)
}

= ∇xF
(
t, x, µ∗(t, x)

)
, for all t, x.



DIFFERENTIATING THE HJB EQUATION I

• We set to zero the gradient with respect to x
and t of the function

g
(
x, µ∗(t, x)

)
+∇tJ∗(t, x)+∇xJ∗(t, x)′

f
(
x, µ∗(t, x)

)
and we rely on the Lemma to disregard the terms
involving the derivatives of µ∗(t, x) with respect to
t and x.

• We obtain for all (t, x),

0 = ∇xg
(
x, µ∗(t, x)

)
+ ∇2

xtJ
∗(t, x)

+ ∇2
xxJ∗(t, x)f

(
x, µ∗(t, x)

)
+ ∇xf

(
x, µ∗(t, x)

)
∇xJ∗(t, x)

0 = ∇2
ttJ

∗(t, x) + ∇2
xtJ

∗(t, x)′f
(
x, µ∗(t, x)

)
,

where ∇xf
(
x, µ∗(t, x)

)
is the matrix

∇xf =




∂f1
∂x1

· · · ∂fn
∂x1

...
...

...
∂f1
∂xn

· · · ∂fn
∂xn






DIFFERENTIATING THE HJB EQUATION II

• The preceding equations hold for all (t, x). We
specialize them along an optimal state and con-
trol trajectory

{(
x∗(t), u∗(t)

) | t ∈ [0, T ]
}

, where
u∗(t) = µ∗(t, x∗(t)

)
for all t ∈ [0, T ].

• We have ẋ∗(t) = f
(
x∗(t), u∗(t)

)
, so the terms

∇2
xtJ

∗(t, x∗(t)
)

+ ∇2
xxJ∗(t, x∗(t)

)
f
(
x∗(t), u∗(t)

)
∇2

ttJ
∗(t, x∗(t)

)
+ ∇2

xtJ
∗(t, x∗(t)

)′
f
(
x∗(t), u∗(t)

)
are equal to the total derivatives

d

dt

(∇xJ∗(t, x∗(t)
))

,
d

dt

(∇tJ∗(t, x∗(t)
))

,

and we have

0 = ∇xg
(
x, u∗(t)

)
+

d

dt

(
∇xJ∗(t, x∗(t)

))
+ ∇xf

(
x, u∗(t)

)
∇xJ∗(t, x∗(t)

)
0 =

d

dt

(∇tJ∗(t, x∗(t)
))

.



CONCLUSION FROM DIFFERENTIATING THE HJB

• Define
p(t) = ∇xJ∗(t, x∗(t)

)
and

p0(t) = ∇tJ∗(t, x∗(t)
)

• We have the adjoint equation

ṗ(t) = −∇xf
(
x∗(t), u∗(t)

)
p(t)−∇xg

(
x∗(t), u∗(t)

)
and

ṗ0(t) = 0

or equivalently,

p0(t) = constant, for all t ∈ [0, T ].

• Note also that, by definition J∗(T, x∗(T )
)

=
h
(
x∗(T )

)
, so we have the following boundary con-

dition at the terminal time:

p(T ) = ∇h
(
x∗(T )

)



NOTATIONAL SIMPLIFICATION

• Define the Hamiltonian function

H(x, u, p) = g(x, u) + p′f(x, u)

• The adjoint equation becomes

ṗ(t) = −∇xH
(
x∗(t), u∗(t), p(t)

)
• The HJB equation becomes

0 = min
u∈U

[
H

(
x∗(t), u, p(t)

)]
+ p0(t)

= H
(
x∗(t), u∗(t), p(t)

)
+ p0(t)

so since p0(t) = constant, there is a constant C
such that

H
(
x∗(t), u∗(t), p(t)

)
= C, for all t ∈ [0, T ].



PONTRYAGIN MINIMUM PRINCIPLE

• The preceding (highly informal) derivation is
summarized as follows:

Minimum Principle: Let
{
u∗(t) | t ∈ [0, T ]

}
be

an optimal control trajectory and let
{
x∗(t) | t ∈

[0, T ]
}

be the corresponding state trajectory. Let
also p(t) be the solution of the adjoint equation

ṗ(t) = −∇xH
(
x∗(t), u∗(t), p(t)

)
,

with the boundary condition

p(T ) = ∇h
(
x∗(T )

)
.

Then, for all t ∈ [0, T ],

u∗(t) = arg min
u∈U

H
(
x∗(t), u, p(t)

)
.

Furthermore, there is a constant C such that

H
(
x∗(t), u∗(t), p(t)

)
= C, for all t ∈ [0, T ].



2-POINT BOUNDARY PROBLEM VIEW

• The minimum principle is a necessary condition
for optimality and can be used to identify candi-
dates for optimality.

• We need to solve for x∗(t) and p(t) the differen-
tial equations

ẋ∗(t) = f
(
x∗(t), u∗(t)

)
ṗ(t) = −∇xH

(
x∗(t), u∗(t), p(t)

)
,

with split boundary conditions:

x∗(0) : given, p(T ) = ∇h
(
x∗(T )

)
.

• The control trajectory is implicitly determined
from x∗(t) and p(t) via the equation

u∗(t) = arg min
u∈U

H
(
x∗(t), u, p(t)

)
.

• This 2-point boundary value problem can be
addressed with a variety of numerical methods.



ANALYTICAL EXAMPLE I

minimize
∫ T

0

√
1 +

(
u(t)

)2
dt

subject to

ẋ(t) = u(t), x(0) = α.

• Hamiltonian is

H(x, u, p) =
√

1 + u2 + pu,

and adjoint equation is ṗ(t) = 0 with p(T ) = 0.

• Hence, p(t) = 0 for all t ∈ [0, T ], so minimization
of the Hamiltonian gives

u∗(t) = arg min
u∈�

√
1 + u2 = 0, for all t ∈ [0, T ].

Therefore, ẋ∗(t) = 0 for all t, implying that x∗(t) is
constant. Using the initial condition x∗(0) = α, it
follows that x∗(t) = α for all t.



ANALYTICAL EXAMPLE II

• Optimal production problem

maximize
∫ T

0

(
1 − u(t)

)
x(t)dt

subject to 0 ≤ u(t) ≤ 1 for all t, and

ẋ(t) = γu(t)x(t), x(0) > 0 : given.

• Hamiltonian: H(x, u, p) = (1 − u)x + pγux.

• Adjoint equation is

ṗ(t) = −γu∗(t)p(t) − 1 + u∗(t), p(T ) = 0.

• Maximization of the Hamiltonian over u ∈ [0, 1]:

u∗(t) =

{
0 if p(t) < 1

γ ,
1 if p(t) ≥ 1

γ .

Since p(T ) = 0, for t close to T , p(t) < 1/γ and
u∗(t) = 0. Therefore, for t near T the adjoint equa-
tion has the form ṗ(t) = −1.



ANALYTICAL EXAMPLE II (CONTINUED)

T t0

p(t)

T - 1/~

1/~

• For t = T − 1/γ, p(t) is equal to 1/γ, so u∗(t)
changes to u∗(t) = 1.

• Geometrical construction

T t0

p(t)

T - 1/~

1/~

T t0 T - 1/~

u*(t)

u*(t) = 1 u*(t) = 0


