6.231 DYNAMIC PROGRAMMING
LECTURE 8
LECTURE OUTLINE

e Deterministic continuous-time optimal control

e From the HJB equation to the Pontryagin Mini-
mum Principle

e Examples



THE HIB EQUATION

e Continuous-time dynamic system

i(t) = f(z(t),u(t)), 0<t<T, z(0):given

e Cost function

h(z(T)) —I—/ g(z(t),u(t))dt

0

e J*(t,x). optimal cost-to-go from z at time ¢

e HJB equation: For all (¢, )

0 = min|g(z, u)+ VeJ*(t, ) + Vo J*(t, ) f (2, u))

uelU

with the boundary condition J*(T',z) = h(x).

e Verification theorem: If we can find a solution, it
must be equal to the optimal cost-to-go function.
Also a (closed-loop) policy u*(t, x) such that

w*(t, ) attains the min for each (¢, x)

IS optimal.



HJB EQ. ALONG AN OPTIMAL TRAJECTORY

e Observation I: An optimal control-state trajec-
tory pair {(u*(t),z*(t)) |t € [0,T]} satisfies for all
te|0,T]

u” (t) = arg min [g (az* (1), u) +VoJ" (t, x (t))/f(a:* (1), u)} .

uelU
(1)
e Observation II: To obtain an optimal control tra-
jectory {u*(t)|t € [0,T]} via this equation, we
don’t need to know V,J*(t,x) for all (t,x) - only
the time function

p(t) = VaJ*(t,2*(t)), te€[0,T].

e It turns out that calculating p(¢) is often easier
than calculating J* (¢, x) or V,J* (¢, x) for all (¢, x).

e Pontryagin’s minimum principle is just Eq. (1) to-
gether with an equation for calculating p(t), called
the adjoint equation.

e Also, Pontryagin’s minimum principle is valid
much more generally, even in cases where J* (¢, x)
IS not differentiable and the HIB has no solution.



DERIVING THE ADJOINT EQUATION

e The HJB equation holds as an identity for all
(t,x), so it can be differentiated [the gradient of
the RHS with respect to (¢, x) is identically 0].

e \We need a tool for differentiation of “minimum”
functions.

Lemma: Let F(¢,x,u) be a continuously differ-
entiable function of t € R, x € k", and u € k™,
and let U be a convex subset of ™. Assume
that p* (¢, x) is a continuously differentiable func-
tion such that

p*(t,x) = arg mi(r]l F(t,xz,u), for all ¢, .
uc

Then

Vi {min F(t,z, u)} — VtF(t, x, 1w* (1, az)), for all ¢, z,

ucelU

Va {min F(t,x, u)} — VxF(t, x, * (1, x)), for all ¢, z.

uelU



DIFFERENTIATING THE HIB EQUATION |

e We set to zero the gradient with respect to x
and ¢ of the function

g(z, p(t,2))+VeJ*(t, x)+Va J* (¢, CE)/f(ilf, p*(t, )

and we rely on the Lemma to disregard the terms
involving the derivatives of u*(t, ) with respect to
t and x.

e We obtain for all (¢, x),

0= viﬂg(xvu*(tax)) + v?ct!]*(tax)
+ Vo J(t, x)f(:v, w(t, x)) + fo(:v, w(t, x))VmJ* (t,x)

0= ViJ*(t,z) + V%t,]*(t,:v)’f(:v,,u* (t,:z:)),

where V.. f (z, u*(t,x)) is the matrix

ofr ... Ofn
Oxq Ox1
Vaf = ; ; :
ofr ... O9fn

3:13n afﬂn



DIFFERENTIATING THE HIB EQUATION Il

e The preceding equations hold for all (¢, z). We
specialize them along an optimal state and con-
trol trajectory {(z*(¢),u*(t)) |t € [0,T]}, where
w*(t) = p* (¢, z*(t)) for all t € [0,T7.

e We have @*(t) = f(x*(t),u*(t)), so the terms
V2, J* (t, :U*(t)) + V2, J* (t, a:*(t))f(a?*(t), u*(t))
V2T (b, x5 (1)) + V2T (t, () f (2 (), u(t))

are equal to the total derivatives

d d
—(Vadr(tzx(1)), (Ve (t,27(2))),

and we have

0= Vag(z,u"(t)) + %(ij* (t.2"(1)))

+ wa(a:, u*(t))VxJ* (t, x” (t))

d
0= %(VtJ*(t,:c*(t))).



CONCLUSION FROM DIFFERENTIATING THE HJB

e Define
p(t) = VaJ*(t, 2*(t))

and
Do (t) = Vi J* (t, xT* (t))

e We have the adjoint equation
p(t) — _Va:f(m*(t)awk (t))p(t) —ng(:c* (t)awk (t))

and
20 (t) =

or equivalently,

po(t) = constant,  forallt € [0,77.

e Note also that, by definition J*(T,2*(T)) =
h(z*(T)), so we have the following boundary con-
dition at the terminal time:

p(T) = Vh(z*(T))



NOTATIONAL SIMPLIFICATION

e Define the Hamiltonian function
H(z,u,p) = g(x,u) +p'f(z, u)
e The adjoint equation becomes
p(t) = —VaH (2*(t), u*(t), p(t))
e The HJB equation becomes

0= Znellr} H (z*(t),u,p(t))] + po(t)

= H (2*(t),u*(t),p(t)) + po(t)

SO since po(t) = constant, there is a constant C
such that

H (x*(t),u*(t), p(t)) = C, for all ¢ € [0,T].



PONTRYAGIN MINIMUM PRINCIPLE

e The preceding (highly informal) derivation is
summarized as follows:

Minimum Principle: Let {u*(¢) |t € [0,T]} be
an optimal control trajectory and let {x* )|t €

0,7 } be the corresponding state trajectory. Let
also p(t) be the solution of the adjoint equation

p(t) = =V H (x*(t),u*(t),p(t)),
with the boundary condition

p(T) = Vh(z*(T)).
Then, for all t € [0,T],

u*(t) = arg Lréi{]lH(x*(t), u, p(t)).

Furthermore, there is a constant (' such that

H (x*(t),u*(t), p(t)) = C, for all ¢ € [0, 7.



2-POINT BOUNDARY PROBLEM VIEW

e The minimum principle is a necessary condition
for optimality and can be used to identify candi-
dates for optimality.

e \We need to solve for z*(¢) and p(t) the differen-
tial equations

B (t) = f(z*(t), u(t))

p(t) = =V H (z*(t), u*(t), p(t)),

with split boundary conditions:

z*(0) : given,  p(T) = Vh(z*(T)).

e The control trajectory is implicitly determined
from z*(¢) and p(t) via the equation

u*(t) = arg glei(I]lH(ZE*(t), u,p(t)).

e This 2-point boundary value problem can be
addressed with a variety of numerical methods.



ANALYTICAL EXAMPLE |

minimize /T \/1 + (u(t))2 dt

subject to

e Hamiltonian is
H(z,u,p) = v1+u? + pu,

and adjoint equation is p(t) = 0 with p(T") = 0.

e Hence, p(t) = 0forallt € [0, T], so minimization
of the Hamiltonian gives

u*(t) = arg mig V1+uZ =0, forallt € [0,T].
uc

Therefore, z*(t) = 0 for all ¢, implying that x*(?) is
constant. Using the initial condition z*(0) = «, it
follows that x*(t) = « for all .



ANALYTICAL EXAMPLE I

e Optimal production problem
T
maximize / (1 — u(t))x(t)dt
0

subject to 0 < u(t) < 1 for all ¢, and
t(t) = yu(t)x(t), x(0) > 0 : given.

e Hamiltonian: H(z,u,p) = (1 — u)x + pyux.

e Adjoint equation is
p(t) = —yu(t)p(t) — 1+u*(t), p(T)=0.

e Maximization of the Hamiltonian over u € |0, 1]:

() = {0 fp(t) < 2,

- 1

Since p(T) = 0, for t close to T, p(t) < 1/~ and
u*(t) = 0. Therefore, for t near 7" the adjoint equa-
tion has the form p(t) = —1.



ANALYTICAL EXAMPLE Il (CONTINUED)

i e K

0 T- 1/~ T t

e Fort =T —1/~, p(t) is equal to 1/~, SO u*(t)
changes to u*(t) = 1.

e Geometrical construction

Ap@)

AU

u'(t) =1 u*t)=0




