6.231 DYNAMIC PROGRAMMING

LECTURE 8

LECTURE OUTLINE

- Deterministic continuous-time optimal control
- From the HJB equation to the Pontryagin Minimum Principle
- Examples

THE HJB EQUATION

• Continuous-time dynamic system

 $\dot{x}(t) = f\big(x(t), u(t)\big), \ \ 0 \leq t \leq T, \ \ x(0) :$ given

- Cost function $h(x(T))$ $\frac{1}{2}$ \int_0^T 0 $g(x(t),u(t))dt$
- $J^*(t, x)$: optimal cost-to-go from x at time t
- HJB equation: For all (t, x)

$$
0 = \min_{u \in U} \left[g(x, u) + \nabla_t J^*(t, x) + \nabla_x J^*(t, x)' f(x, u) \right]
$$

with the boundary condition $J^*(T,x) = h(x)$.

• Verification theorem: If we can find a solution, it must be equal to the optimal cost-to-go function. Also a (closed-loop) policy $\mu^*(t, x)$ such that

 $\mu^*(t,x)$ attains the min for each (t,x)

is optimal.

HJB EQ. ALONG AN OPTIMAL TRAJECTORY

• Observation I: An optimal control-state trajectory pair $\{(u^*(t), x^*(t))\,|\,t\in [0,T]\}$ satisfies for all $t\in [0,T]$ $t\in[0,T]$

$$
u^*(t) = \arg\min_{u \in U} \left[g(x^*(t), u) + \nabla_x J^*(t, x^*(t))' f(x^*(t), u) \right].
$$

(1)

• Observation II: To obtain an optimal control trajectory $\{u^*(t) | t \in [0,T]\}$ via this equation, we
don't need to know $\nabla^{-} J^{*}(t,x)$ for all (t,x) - only don't need to know $\nabla_x J^*(t, x)$ for all (t, x) - only the time function

$$
p(t) = \nabla_x J^*(t, x^*(t)), \qquad t \in [0, T].
$$

• It turns out that calculating $p(t)$ is often easier than calculating $J^*(t, x)$ or $\nabla_x J^*(t, x)$ for all (t, x) .

• Pontryagin's minimum principle is just Eq. (1) together with an equation for calculating $p(t)$, called the *adjoint* equation.

• Also, Pontryagin's minimum principle is valid much more generally, even in cases where $J^*(t, x)$ is not differentiable and the HJB has no solution.

DERIVING THE ADJOINT EQUATION

• The HJB equation holds as an identity for all (t, x) , so it can be differentiated [the gradient of the RHS with respect to (t, x) is identically 0].

• We need a tool for differentiation of "minimum" functions.

Lemma: Let $F(t, x, u)$ be a continuously differentiable function of $t \in \Re$, $x \in \Re^n$, and $u \in \Re^m$, and let U be a convex subset of \mathbb{R}^m . Assume that $\mu^*(t, x)$ is a continuously differentiable function such that

$$
\mu^*(t, x) = \arg\min_{u \in U} F(t, x, u), \qquad \text{for all } t, x.
$$

Then

$$
\nabla_t \left\{ \min_{u \in U} F(t, x, u) \right\} = \nabla_t F(t, x, \mu^*(t, x)), \text{ for all } t, x,
$$

$$
\nabla_x \left\{ \min_{u \in U} F(t, x, u) \right\} = \nabla_x F(t, x, \mu^*(t, x)), \text{ for all } t, x.
$$

DIFFERENTIATING THE HJB EQUATION I

We set to zero the gradient with respect to x and t of the function

$$
g(x, \mu^*(t, x)) + \nabla_t J^*(t, x) + \nabla_x J^*(t, x)' f(x, \mu^*(t, x))
$$

and we rely on the Lemma to disregard the terms involving the derivatives of $\mu^*(t,x)$ with respect to t and x .

• We obtain for all (t, x) ,

$$
0 = \nabla_x g(x, \mu^*(t, x)) + \nabla_{xt}^2 J^*(t, x) + \nabla_{xx}^2 J^*(t, x) f(x, \mu^*(t, x)) + \nabla_x f(x, \mu^*(t, x)) \nabla_x J^*(t, x)
$$

$$
0 = \nabla_{tt}^2 J^*(t, x) + \nabla_{xt}^2 J^*(t, x)' f(x, \mu^*(t, x)),
$$

where $\nabla_x f\bigl(x,\mu^*(t,x)\bigr)$ is the matrix

$$
\nabla_x f = \begin{pmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_n}{\partial x_1} \\ \vdots & \vdots & \vdots \\ \frac{\partial f_1}{\partial x_n} & \cdots & \frac{\partial f_n}{\partial x_n} \end{pmatrix}
$$

DIFFERENTIATING THE HJB EQUATION II

• The preceding equations hold for all (t, x) . We specialize them along an optimal state and control trajectory $\{(x^*(t), u^*(t)) | t \in [0,T]\},$ where $u^*(t) = \mu^*\bigl(t, x^*(t)\bigr)$ for all $t \in [0, T]$.

• We have $\dot{x}^*(t) = f(x^*(t), u^*(t)),$ so the terms

$$
\nabla_{xt}^2 J^*(t, x^*(t)) + \nabla_{xx}^2 J^*(t, x^*(t)) f(x^*(t), u^*(t))
$$

$$
\nabla_{tt}^2 J^*(t, x^*(t)) + \nabla_{xt}^2 J^*(t, x^*(t))' f(x^*(t), u^*(t))
$$

are equal to the total derivatives

$$
\frac{d}{dt}(\nabla_x J^*(t, x^*(t))), \qquad \frac{d}{dt}(\nabla_t J^*(t, x^*(t))),
$$

and we have

$$
0 = \nabla_x g\big(x, u^*(t)\big) + \frac{d}{dt} \big(\nabla_x J^*\big(t, x^*(t)\big)\big) + \nabla_x f\big(x, u^*(t)\big) \nabla_x J^*\big(t, x^*(t)\big) 0 = \frac{d}{dt} \big(\nabla_t J^*\big(t, x^*(t)\big)\big).
$$

CONCLUSION FROM DIFFERENTIATING THE HJB

• Define

$$
p(t) = \nabla_x J^*(t, x^*(t))
$$

and

$$
p_0(t) = \nabla_t J^*(t, x^*(t))
$$

• We have the $adjoint$ equation

$$
\dot{p}(t) = -\nabla_x f(x^*(t), u^*(t)) p(t) - \nabla_x g(x^*(t), u^*(t))
$$

and

$$
\dot{p}_0(t)=0
$$

or equivalently,

$$
p_0(t)
$$
 = constant, for all $t \in [0, T]$.

• Note also that, by definition $J^*(T, x^*(T))$
b(x*(T)), so we have the following boundary α \overline{p} $h(x^*(T)),$ so we have the following boundary con-
dition at the terminal time: dition at the terminal time:

$$
p(T) = \nabla h\big(x^*(T)\big)
$$

NOTATIONAL SIMPLIFICATION

• Define the $Hamiltonian$ function

$$
H(x, u, p) = g(x, u) + p'f(x, u)
$$

• The adjoint equation becomes

$$
\dot{p}(t) = -\nabla_x H\big(x^*(t), u^*(t), p(t)\big)
$$

• The HJB equation becomes

$$
0 = \min_{u \in U} [H(x^*(t), u, p(t))] + p_0(t)
$$

= $H(x^*(t), u^*(t), p(t)) + p_0(t)$

so since $p_0(t) =$ constant, there is a constant C such that

$$
H(x^*(t), u^*(t), p(t)) = C
$$
, for all $t \in [0, T]$.

PONTRYAGIN MINIMUM PRINCIPLE

The preceding (highly informal) derivation is summarized as follows:

Minimum Principle: Let $\{u^*(t) | t \in [0,T]\}$ be
an optimal control trajectory and let $\{u^*(t) | t \in$ an optimal control trajectory and let $\{x^*(t) | t \in$ $[0,T]$ } be the corresponding state trajectory. Let also $n(t)$ be the solution of the adioint equation also $p(t)$ be the solution of the adjoint equation

$$
\dot{p}(t) = -\nabla_x H\big(x^*(t), u^*(t), p(t)\big),
$$

with the boundary condition

$$
p(T) = \nabla h(x^*(T)).
$$

Then, for all $t \in [0, T]$,

$$
u^*(t) = \arg\min_{u \in U} H\big(x^*(t), u, p(t)\big).
$$

Furthermore, there is a constant C such that

$$
H(x^*(t), u^*(t), p(t)) = C, \quad \text{for all } t \in [0, T].
$$

2-POINT BOUNDARY PROBLEM VIEW

• The minimum principle is a necessary condition for optimality and can be used to identify candidates for optimality.

• We need to solve for $x^*(t)$ and $p(t)$ the differential equations

 $\dot{x}^*(t) = f(x^*(t), u^*(t))$

 $\dot{p}(t) = -\nabla_x H(x^*(t), u^*(t), p(t)),$

with split boundary conditions:

 $x^*(0)$: given, $p(T) = \nabla h(x^*(T)).$

The control trajectory is implicitly determined from $x^*(t)$ and $p(t)$ via the equation

$$
u^*(t) = \arg\min_{u \in U} H\big(x^*(t), u, p(t)\big).
$$

This 2-point boundary value problem can be addressed with a variety of numerical methods.

ANALYTICAL EXAMPLE I

$$
\text{minimize } \int_0^T \sqrt{1 + \left(u(t)\right)^2} \, dt
$$

subject to

$$
\dot{x}(t) = u(t), \qquad x(0) = \alpha.
$$

• Hamiltonian is

$$
H(x, u, p) = \sqrt{1 + u^2} + pu,
$$

and adjoint equation is $\dot{p}(t)=0$ with $p(T)=0$.

• Hence, $p(t)=0$ for all $t\in [0,T]$, so minimization of the Hamiltonian gives

$$
u^*(t) = \arg\min_{u \in \mathbb{R}} \sqrt{1 + u^2} = 0
$$
, for all $t \in [0, T]$.

Therefore, $\dot{x}^*(t)=0$ for all t, implying that $x^*(t)$ is constant. Using the initial condition $x*(0) = \alpha$, it follows that $x^*(t) = \alpha$ for all t.

ANALYTICAL EXAMPLE II

• Optimal production problem

$$
\text{maximize } \int_0^T \bigl(1-u(t)\bigr)x(t)dt
$$

subject to $0 \le u(t) \le 1$ for all t, and

$$
\dot{x}(t) = \gamma u(t)x(t), \qquad x(0) > 0
$$
: given.

- Hamiltonian: $H(x, u, p) = (1 u)x + p\gamma u x$.
- Adjoint equation is

$$
\dot{p}(t) = -\gamma u^*(t)p(t) - 1 + u^*(t), \quad p(T) = 0.
$$

• Maximization of the Hamiltonian over $u \in [0,1]$:

$$
u^*(t) = \begin{cases} 0 & \text{if } p(t) < \frac{1}{\gamma}, \\ 1 & \text{if } p(t) \ge \frac{1}{\gamma}. \end{cases}
$$

Since $p(T)=0$, for t close to T, $p(t) < 1/\gamma$ and $u^*(t)=0$. Therefore, for t near T the adjoint equation has the form $\dot{p}(t) = -1$.

ANALYTICAL EXAMPLE II (CONTINUED)

For $t = T - 1/\gamma$, $p(t)$ is equal to $1/\gamma$, so $u^*(t)$ changes to $u^*(t)=1$.

Geometrical construction

