
6.231 DYNAMIC PROGRAMMING

LECTURE 21

LECTURE OUTLINE

• With this lecture, we start a four-lecture se-
quence on advanced dynamic programming and
neuro-dynamic programming topics. References:

− Dynamic Programming and Optimal Control,
Vol. II, by D. Bertsekas

− Neuro-Dynamic Programming, by D. Bert-
sekas and J. Tsitsiklis

• 1st Lecture: Discounted problems with infinite
state space, stochastic shortest path problem

• 2nd Lecture: DP with cost function approxi-
mation

• 3rd Lecture: Simulation-based policy and
value iteration, temporal difference methods

• 4th Lecture: Other approximation methods:
Q-learning, state aggregation, approximate linear
programming, approximation in policy space



DISCOUNTED PROBLEMS W/ BOUNDED COST

• System

xk+1 = f(xk, uk, wk), k = 0, 1, . . . ,

• Cost of a policy π = {µ0, µ1, . . .}

Jπ(x0) = lim
N→∞ E

wk
k=0,1,...

{
N−1∑
k=0

αkg
(
xk, µk(xk), wk

)}

with g(x, u, w): bounded over (x, u, w), and α < 1.

• Shorthand notation for DP mappings (operate
on functions of state to produce other functions)

(TJ)(x) = min
u∈U(x)

E
w

{
g(x, u, w) + αJ

(
f(x, u, w)

)}
, ∀ x

TJ is the optimal cost function for the one-stage
problem with stage cost g and terminal cost αJ .

• For any stationary policy µ

(TµJ)(x) = E
w

{
g
(
x, µ(x), w

)
+ αJ

(
f(x, µ(x), w)

)}
, ∀ x



“SHORTHAND” THEORY

• Cost function expressions [with J0(x) ≡ 0]

Jπ(x) = lim
k→∞

(Tµ0Tµ1 · · ·TµkJ0)(x), Jµ(x) = lim
k→∞

(T k
µ J0)(x)

• Bellman’s equation: J∗ = TJ∗, Jµ = TµJµ

• Optimality condition:

µ: optimal <==> TµJ∗ = TJ∗

• Value iteration: For any (bounded) J and all x,

J∗(x) = lim
k→∞

(T kJ)(x)

• Policy iteration steps: Given µk,

− Policy evaluation: Find Jµk by solving

Jµk = TµkJµk

− Policy improvement: Find µk+1 such that

Tµk+1Jµk = TJµk



THE THREE KEY PROPERTIES

• Monotonicity property: For any functions J
and J ′ such that J(x) ≤ J ′(x) for all x, and any µ

(TJ)(x) ≤ (TJ ′)(x), ∀ x,

(TµJ)(x) ≤ (TµJ ′)(x), ∀ x

• Additivity property: For any J , any scalar r,
and any µ

(
T (J + re)

)
(x) = (TJ)(x) + αr, ∀ x,

(
Tµ(J + re)

)
(x) = (TµJ)(x) + αr, ∀ x,

where e is the unit function [e(x) ≡ 1].

• Contraction property: For any (bounded)
functions J and J ′, and any µ,

max
x

∣∣(TJ)(x) − (TJ ′)(x)
∣∣ ≤ α max

x

∣∣J(x) − J ′(x)
∣∣,

max
x

∣∣(TµJ)(x)−(TµJ ′)(x)
∣∣ ≤ α max

x

∣∣J(x)−J ′(x)
∣∣.



“SHORTHAND” ANALYSIS

• Contraction mapping theorem: The con-
traction property implies that:

− T has a unique fixed point, J∗, which is the
limit of T kJ for any (bounded) J .

− For each µ, Tµ has a unique fixed point, Jµ,
which is the limit of T k

µ J for any J .

• Convergence rate: For all k,

max
x

∣∣(T kJ)(x) − J∗(x)
∣∣ ≤ αk max

x

∣∣J(x) − J∗(x)
∣∣

• An assortment of other analytical and computa-
tional results are based on the contraction prop-
erty, e.g, error bounds, computational enhance-
ments, etc.

• Example: If we execute value iteration approxi-
mately , so we compute TJ within an ε-error, i.e.,

max
x

|J̃(x) − (TJ)(x)| ≤ ε,

in the limit we obtain J∗ within an ε/(1 − α) error.



GEOMETRIC INTERPRETATIONS

J*

J*

450

450

T¨

J TJ T2J

Value Iteration Sequence
J, TJ, T2J

Policy Iteration Sequence
µ 0, µ 1, µ 2

+|PµJ

g µ 0 +| Pµ0J

g µ 1 + |Pµ 1J

Jµ 0Jµ 10

0

gµ 2 +|Pµ 2J

T¨

¨

¨

gµ



UNDISCOUNTED PROBLEMS

• System

xk+1 = f(xk, uk, wk), k = 0, 1, . . . ,

• Cost of a policy π = {µ0, µ1, . . .}

Jπ(x0) = lim
N→∞ E

wk
k=0,1,...

{
N−1∑
k=0

g
(
xk, µk(xk), wk

)}

• Shorthand notation for DP mappings

(TJ)(x) = min
u∈U(x)

E
w

{
g(x, u, w) + J

(
f(x, u, w)

)}
, ∀ x

• For any stationary policy µ

(TµJ)(x) = E
w

{
g
(
x, µ(x), w

)
+ J

(
f(x, µ(x), w)

)}
, ∀ x

• Neither T nor Tµ are contractions in general.
Some, but not all, of the nice theory holds, thanks
to the monotonicity of T and Tµ.

• Some of the nice theory is recovered in SSP
problems because of the termination state.



STOCHASTIC SHORTEST PATH PROBLEMS I

• Assume: Cost-free term. state t, a finite number
of states 1, . . . , n, and finite number of controls

• Mappings T and Tµ (modified to account for
termination state t):

(TJ)(i) = min
u∈U(i)

[
g(i, u) +

n∑
j=1

pij(u)J(j)

]
, i = 1, . . . , n,

(TµJ)(i) = g
(
i, µ(i)

)
+

n∑
j=1

pij

(
µ(i)

)
J(j), i = 1, . . . , n.

• Definition: A stationary policy µ is called proper,
if under µ, from every state i, there is a positive
probability path that leads to t.

• Important fact: If µ is proper then Tµ is a con-
traction with respect to some weighted max norm

max
i

1
vi
|(TµJ)(i)−(TµJ ′)(i)| ≤ α max

i

1
vi
|J(i)−J ′(i)|

• If all µ are proper, then T is similarly a contrac-
tion (the case discussed in the text, Ch. 7).



STOCHASTIC SHORTEST PATH PROBLEMS II

• The theory can be pushed one step further.
Assume that:

(a) There exists at least one proper policy
(b) For each improper µ, Tµ(i) = ∞ for some i

• Then T is not necessarily a contraction, but:

− J∗ is the unique solution of Bellman’s Equ.

− µ∗ is optimal if and only if Tµ∗J∗ = TJ∗

− limk→∞(T kJ)(i) = J∗(i) for all i

− Policy iteration terminates with an optimal
policy, if started with a proper policy

• Example: Deterministic shortest path problem
with a single destination

− States <=> nodes; Controls <=> arcs

− Termination state <=> the destination

− Assumption (a) <=> every node is con-
nected to the destination

− Assumption (b) <=> all cycle costs > 0
− Pathology: If there is a cycle cost = 0 (or

< 0), Bellman’s equation has an infinite num-
ber of solutions (no solution, respectively)



PATHOLOGIES: THE BLACKMAILER’S DILEMMA

• Two states, state 1 and the termination state t.

• At state 1, choose a control u ∈ (0, 1] (the black-
mail amount demanded), and move to t at no cost
with probability u2, or stay in 1 at a cost −u with
probability 1 − u2.

• Every stationary policy is proper, but the control
set in not finite.

• For any stationary µ with µ(1) = u, we have

Jµ(1) = −(1 − u2)u + (1 − u2)Jµ(1)

from which Jµ(1) = − 1−u2

u

• Thus J∗(1) = −∞, and there is no optimal
stationary policy.

• It turns out that a nonstationary policy is opti-
mal: demand µk(1) = γ/(k + 1) at time k, with
γ ∈ (0, 1/2). (Blackmailer requests diminishing
amounts over time, which add to ∞; the proba-
bility of the victim’s refusal diminishes at a much
faster rate.)


