6.231 DYNAMIC PROGRAMMING

LECTURE 21

LECTURE OUTLINE

• With this lecture, we start a four-lecture sequence on advanced dynamic programming and neuro-dynamic programming topics. References:

- − Dynamic Programming and Optimal Control, Vol. II, by D. Bertsekas
- − Neuro-Dynamic Programming, by D. Bertsekas and J. Tsitsiklis

• **1st Lecture:** Discounted problems with infinite state space, stochastic shortest path problem

• **2nd Lecture:** DP with cost function approximation

• **3rd Lecture:** Simulation-based policy and value iteration, temporal difference methods

• **4th Lecture:** Other approximation methods: Q-learning, state aggregation, approximate linear programming, approximation in policy space

DISCOUNTED PROBLEMS W/ BOUNDED COST

• System

$$
x_{k+1} = f(x_k, u_k, w_k), \qquad k = 0, 1, \ldots,
$$

• Cost of a policy $\pi = {\mu_0, \mu_1, \ldots}$

$$
J_{\pi}(x_0) = \lim_{N \to \infty} E_{\substack{w_k \\ k=0,1,...}} \left\{ \sum_{k=0}^{N-1} \alpha^k g(x_k, \mu_k(x_k), w_k) \right\}
$$

with $g(x, u, w)$: bounded over (x, u, w) , and $\alpha < 1$.

• Shorthand notation for DP mappings (operate on functions of state to produce other functions)

$$
(TJ)(x) = \min_{u \in U(x)} E\left\{g(x, u, w) + \alpha J(f(x, u, w))\right\}, \forall x
$$

 TJ is the optimal cost function for the one-stage problem with stage cost g and terminal cost αJ .

• For any stationary policy μ

$$
(T_{\mu}J)(x) = E_{w} \{g(x, \mu(x), w) + \alpha J(f(x, \mu(x), w))\}, \forall x
$$

"SHORTHAND" THEORY

Cost function expressions [with $J_0(x) \equiv 0$]

 $J_{\pi}(x) = \lim_{k \to \infty} (T_{\mu_0} T_{\mu_1} \cdots T_{\mu_k} J_0)(x), \ J_{\mu}(x) = \lim_{k \to \infty} (T_{\mu}^k J_0)(x)$

- Bellman's equation: $J^* = TJ^*$, $J_\mu = T_\mu J_\mu$
- Optimality condition:
	- $μ$: optimal <==> $T_μJ[*] = TJ[*]$
- Value iteration: For any (bounded) J and all x ,

$$
J^*(x) = \lim_{k \to \infty} (T^k J)(x)
$$

- Policy iteration steps: Given μ^k ,
	- $-$ Policy evaluation: Find $J_{\mu k}$ by solving

$$
J_{\mu^k}=T_{\mu^k}J_{\mu^k}
$$

 $-$ Policy improvement: Find μ^{k+1} such that

$$
T_{\mu^{k+1}}J_{\mu^{k}}=TJ_{\mu^{k}}
$$

THE THREE KEY PROPERTIES

• **Monotonicity property:** For any functions J and J' such that $J(x) \leq J'(x)$ for all x, and any μ

$$
(TJ)(x) \le (TJ')(x), \qquad \forall x,
$$

$$
(T_{\mu}J)(x) \le (T_{\mu}J')(x), \qquad \forall x
$$

• **Additivity property:** For any J, any scalar r, and any μ

$$
(T(J+re))(x) = (TJ)(x) + \alpha r, \qquad \forall x,
$$

$$
(T_{\mu}(J+re))(x) = (T_{\mu}J)(x) + \alpha r, \qquad \forall x,
$$

where *e* is the unit function $[e(x) \equiv 1]$.

• **Contraction property:** For any (bounded) functions J and J' , and any μ ,

$$
\max_{x} |(TJ)(x) - (TJ')(x)| \le \alpha \max_{x} |J(x) - J'(x)|,
$$

$$
\max_{x} |(T_{\mu}J)(x) - (T_{\mu}J')(x)| \le \alpha \max_{x} |J(x) - J'(x)|.
$$

"SHORTHAND" ANALYSIS

• **Contraction mapping theorem:** The contraction property implies that:

- $-$ T has a unique fixed point, J^* , which is the limit of $T^k J$ for any (bounded) J.
- $-$ For each μ , T_{μ} has a unique fixed point, J_{μ} , which is the limit of $T_{\mu}^{k}J$ for any $J.$
- Convergence rate: For all k ,

$$
\max_x |(T^k J)(x) - J^*(x)| \le \alpha^k \max_x |J(x) - J^*(x)|
$$

• An assortment of other analytical and computational results are based on the contraction property, e.g, error bounds, computational enhancements, etc.

• Example: If we execute value iteration $approxi$ $mately$, so we compute TJ within an ϵ -error, i.e.,

$$
\max_{x} |\tilde{J}(x) - (TJ)(x)| \le \epsilon,
$$

in the limit we obtain J^* within an $\epsilon/(1 - \alpha)$ error.

UNDISCOUNTED PROBLEMS

• System

$$
x_{k+1} = f(x_k, u_k, w_k), \qquad k = 0, 1, \ldots,
$$

• Cost of a policy $\pi = {\mu_0, \mu_1, \ldots}$

$$
J_{\pi}(x_0) = \lim_{N \to \infty} E_{\substack{w_k \\ k=0,1,\dots}} \left\{ \sum_{k=0}^{N-1} g(x_k, \mu_k(x_k), w_k) \right\}
$$

• Shorthand notation for DP mappings

 $(TJ)(x) = \min_{u \in U(x)}$ E ω $\{g(x, u, w) + J(f(x, u, w))\}, \forall x$

• For any stationary policy μ

$$
(T_{\mu}J)(x) = E_{w} \{g(x, \mu(x), w) + J(f(x, \mu(x), w))\}, \forall x
$$

Neither T nor T_{μ} are contractions in general. Some, but not all, of the nice theory holds, thanks to the monotonicity of T and T_{μ} .

Some of the nice theory is recovered in SSP problems because of the termination state.

STOCHASTIC SHORTEST PATH PROBLEMS I

• Assume: Cost-free term. state t , a finite number of states $1, \ldots, n$, and finite number of controls

Mappings T and T_{μ} (modified to account for termination state t):

$$
(TJ)(i) = \min_{u \in U(i)} \left[g(i, u) + \sum_{j=1}^{n} p_{ij}(u)J(j) \right], \quad i = 1, ..., n,
$$

$$
(T_{\mu}J)(i) = g(i, \mu(i)) + \sum_{j=1}^{n} p_{ij}(\mu(i))J(j), \quad i = 1, ..., n.
$$

• Definition: A stationary policy μ is called proper, if under μ , from every state i, there is a positive probability path that leads to t .

Important fact: If μ is proper then T_{μ} is a contraction with respect to some weighted max norm

$$
\max_{i} \frac{1}{v_i} |(T_{\mu}J)(i) - (T_{\mu}J')(i)| \le \alpha \max_{i} \frac{1}{v_i} |J(i) - J'(i)|
$$

• If all μ are proper, then T is similarly a contraction (the case discussed in the text, Ch. 7).

STOCHASTIC SHORTEST PATH PROBLEMS II

- The theory can be pushed one step further. Assume that:
	- (a) There exists at least one proper policy
	- (b) For each improper μ , $T_{\mu}(i) = \infty$ for some i
- Then T is not necessarily a contraction, but:
	- J^* is the unique solution of Bellman's Equ.
	- $-\mu^*$ is optimal if and only if $T_{\mu^*}J^* = TJ^*$
	- $\lim_{k \to \infty} (T^k J)(i) = J^*(i)$ for all i
	- − Policy iteration terminates with an optimal policy, if started with a proper policy
- **Example:** Deterministic shortest path problem with a single destination
	- [−] States <=> nodes; Controls <=> arcs
	- $-$ Termination state $\langle \equiv \rangle$ the destination
	- [−] Assumption (a) <=> every node is connected to the destination
	- $-$ Assumption (b) $\lt=\gt$ all cycle costs >0
	- $-$ Pathology: If there is a cycle cost $= 0$ (or $<$ 0), Bellman's equation has an infinite number of solutions (no solution, respectively)

PATHOLOGIES: THE BLACKMAILER'S DILEMMA

- Two states, state 1 and the termination state t .
- At state 1, choose a control $u \in (0,1]$ (the blackmail amount demanded), and move to t at no cost with probability u^2 , or stay in 1 at a cost $-u$ with probability $1 - u^2$.
- Every stationary policy is proper, but the control set in not finite.
- For any stationary μ with $\mu(1) = u$, we have

$$
J_{\mu}(1) = -(1 - u^2)u + (1 - u^2)J_{\mu}(1)
$$

from which $J_{\mu}(1) = -\frac{1-u^2}{u}$ \overline{u}

Thus $J^*(1) = -\infty$, and there is no optimal stationary policy.

It turns out that a $nonsationary$ policy is optimal: demand $\mu_k(1) = \gamma/(k+1)$ at time k, with $\gamma \in (0,1/2)$. (Blackmailer requests diminishing amounts over time, which add to ∞ ; the probability of the victim's refusal diminishes at a much faster rate.)