6.231 DYNAMIC PROGRAMMING
LECTURE 21
LECTURE OUTLINE

e With this lecture, we start a four-lecture se-
guence on advanced dynamic programming and
neuro-dynamic programming topics. References:

— Dynamic Programming and Optimal Control,
Vol. I, by D. Bertsekas

— Neuro-Dynamic Programming, by D. Bert-
sekas and J. Tsitsiklis

e 1st Lecture: Discounted problems with infinite
state space, stochastic shortest path problem

e¢ 2nd Lecture: DP with cost function approxi-
mation

e¢ 3rd Lecture: Simulation-based policy and
value iteration, temporal difference methods

e 4th Lecture: Other approximation methods:
Q-learning, state aggregation, approximate linear
programming, approximation in policy space



DISCOUNTED PROBLEMS W/ BOUNDED COST

e System

Trr1 = f(xg, ug, Wk ), k=0,1,...,

e Cost of a policy 7 = {uo, 1, ...}

Jx(xo) = lim E {Z a’“g(:ck,uk(xk),wk)}

N — o0 WL
k=0,1,... k=0

with g(x, u, w): bounded over (x, u,w), and a < 1.

e Shorthand notation for DP mappings (operate
on functions of state to produce other functions)

(TJ)(x) = ugfl&)g {g(x,u, w) + on(f(x,u,w))} , Vx

TJ 1s the optimal cost function for the one-stage
problem with stage cost g and terminal cost a.J.

e For any stationary policy p

(1,)(@) = E {g(w, nl@), w) + o (F(z, p(e), w)) }, Vo



“SHORTHAND"” THEORY

e Cost function expressions [with Jy(z) = 0]
Jr(2) = Hm (Lo Tyy - Ty Jo) (@), Ju(x) = kllrgo(TﬁJo)(w)
e Bellman’'s equation: J* =TJ*, J, =1T,J,

e Optimality condition:

p:optimal  <==> T,J*=TJ*

e Value iteration: For any (bounded) J and all x,

J*(x) = lim (TkJ)(x)

k— o0

e Policy iteration steps: Given u*,
— Policy evaluation: Find J ,» by solving

S =T 1k
— Policy improvement: Find p5+1 such that

Tpsr J e =T



THE THREE KEY PROPERTIES

e Monotonicity property: For any functions J
and J’ such that J(x) < J/(x) for all z, and any p

(TJ)(x) < (TJ")(x), v x,
(TpJ)(x) < (TpJ')(z), Va

e Additivity property: For any J, any scalar r,
and any u

(T(J +re))(z) = (TJ)(z) + ar, vV x,

(Tu(J +7re))(z) = (TuJ)(x) + ar, V x,
where e is the unit function [e(z) = 1].

e Contraction property: For any (bounded)
functions J and J’, and any g,

)

mgx‘ (TJ)(z) — (TJ)(z)] < ozmgx‘J(a:) — J'(z)

mgx’(TuJ)(x)—(TuJ’)(x)} < amgx’J(x)—J’(x)‘.



“SHORTHAND"” ANALYSIS

e Contraction mapping theorem: The con-
traction property implies that:

— T has a unique fixed point, J*, which is the
limit of T%.J for any (bounded) J.

— For each p, T, has a unique fixed point, J,,,
which is the limit of T} J for any .J.

e Convergence rate: For all k,

mgx‘(T’fJ)(:E) — J*(z)| < ok mxax‘J(a:) — J*(z)|

e An assortment of other analytical and computa-
tional results are based on the contraction prop-
erty, e.g, error bounds, computational enhance-
ments, etc.

e Example: If we execute value iteration approxi-
mately, SO we compute 7'J within an e-error, I.e.,

max | J(z) — (TJ)(z)| < e,

x

In the limit we obtain J* within an ¢/(1 — «) error.



GEOMETRIC INTERPRETATIONS

Value Iteration Sequence
J, T3, T

9,+ 1P,

450

Policy Iteration Sequence
uOy ul’ uZ P

gu0+ I PHO‘]

450




UNDISCOUNTED PROBLEMS

e System

Trr1 = f(xg, ug, Wk ), k=0,1,...,

e Cost of a policy m = {uo, pt1,- .-}

Jr(xp) = lim F {Z g(azk,,uk(xk),wk)}

N — o0 WL
k=0,1,... k=0

e Shorthand notation for DP mappings

(TJ)(xr) = min E{g(x,u,w)—l—J(f(x,u,w))}, vV x

uwelU (x) w

e For any stationary policy p
(T])(@) = B {g(w, (@), w) + T (f(2. p(z) )} Vo

e Neither 7" nor 7), are contractions in general.
Some, but not all, of the nice theory holds, thanks
to the monotonicity of 7" and 7),.

e Some of the nice theory is recovered in SSP
problems because of the termination state.



STOCHASTIC SHORTEST PATH PROBLEMS |

e Assume: Cost-free term. state ¢, a finite number
of states 1, ..., n, and finite number of controls

e Mappings 7' and T, (modified to account for
termination state t):

(T‘])()_uren&%) iU +sz-g , i=1,...,n,
j=1
(T,.J)(3) +pr i=1,...,n.

e Definition: A stationary policy u Is called proper,
If under p, from every state i, there is a positive
probability path that leads to ¢.

e Important fact: If i is proper then 7}, is a con-
traction with respect to some weighted max norm

max —|(T,]) (1) ~(T,7)(9)] < o max |1 ())—J/()

U5

e If all ;1 are proper, then 7' is similarly a contrac-
tion (the case discussed in the text, Ch. 7).



STOCHASTIC SHORTEST PATH PROBLEMS Il

e The theory can be pushed one step further.
Assume that:

(a) There exists at least one proper policy

(b) For each improper u, T,,(¢) = oo for some ¢

e Then T is not necessarily a contraction, but:

J* Is the unique solution of Bellman’s Equ.
p* 1s optimal if and only if T« J* = T'J*
limg 00 (T*J) (7)) = J*(¢) for all 4

Policy iteration terminates with an optimal
policy, if started with a proper policy

e Example: Deterministic shortest path problem
with a single destination

States <=> nodes; Controls <=> arcs
Termination state <=> the destination

Assumption (a) <=> every node is con-
nected to the destination

Assumption (b) <=> all cycle costs > 0

Pathology: If there is a cycle cost = 0 (or
< 0), Bellman’s equation has an infinite num-
ber of solutions (no solution, respectively)



PATHOLOGIES: THE BLACKMAILER'S DILEMMA

e TWO states, state 1 and the termination state ¢.

e Atstate 1, choose a control u € (0, 1] (the black-
mail amount demanded), and move to ¢ at no cost
with probability «2, or stay in 1 at a cost —u with
probability 1 — u?2.

e Every stationary policy is proper, but the control
set in not finite.

e For any stationary p with p(1) = u, we have

Ju(l) = =(1 —w?)u+ (1 —u?)Ju(1)

2

from which J,(1) = — 1=

u

e Thus J*(1) = —oo, and there is no optimal
stationary policy.

e It turns out that a nonstationary policy IS opti-
mal: demand ur(1) = v/(k + 1) at time k, with
v € (0,1/2). (Blackmailer requests diminishing
amounts over time, which add to oo; the proba-
bility of the victim’s refusal diminishes at a much
faster rate.)



