6.231 DYNAMIC PROGRAMMING

LECTURE 21

LECTURE OUTLINE

• With this lecture, we start a four-lecture sequence on advanced dynamic programming and neuro-dynamic programming topics. References:

- Dynamic Programming and Optimal Control, Vol. II, by D. Bertsekas
- Neuro-Dynamic Programming, by D. Bertsekas and J. Tsitsiklis

• 1st Lecture: Discounted problems with infinite state space, stochastic shortest path problem

• 2nd Lecture: DP with cost function approximation

• 3rd Lecture: Simulation-based policy and value iteration, temporal difference methods

• 4th Lecture: Other approximation methods: Q-learning, state aggregation, approximate linear programming, approximation in policy space

DISCOUNTED PROBLEMS W/ BOUNDED COST

• System

$$x_{k+1} = f(x_k, u_k, w_k), \qquad k = 0, 1, \dots,$$

• Cost of a policy $\pi = \{\mu_0, \mu_1, ...\}$

$$J_{\pi}(x_0) = \lim_{N \to \infty} E_{\substack{w_k \\ k=0,1,\dots}} \left\{ \sum_{k=0}^{N-1} \alpha^k g(x_k, \mu_k(x_k), w_k) \right\}$$

with g(x, u, w): bounded over (x, u, w), and $\alpha < 1$.

• Shorthand notation for DP mappings (operate on functions of state to produce other functions)

$$(TJ)(x) = \min_{u \in U(x)} \mathop{E}_{w} \left\{ g(x, u, w) + \alpha J \left(f(x, u, w) \right) \right\}, \ \forall x$$

TJ is the optimal cost function for the one-stage problem with stage cost g and terminal cost αJ .

• For any stationary policy μ

$$(T_{\mu}J)(x) = \mathop{E}_{w} \left\{ g\left(x, \mu(x), w\right) + \alpha J\left(f(x, \mu(x), w)\right) \right\}, \ \forall x$$

"SHORTHAND" THEORY

• Cost function expressions [with $J_0(x) \equiv 0$]

 $J_{\pi}(x) = \lim_{k \to \infty} (T_{\mu_0} T_{\mu_1} \cdots T_{\mu_k} J_0)(x), \ J_{\mu}(x) = \lim_{k \to \infty} (T_{\mu}^k J_0)(x)$

- Bellman's equation: $J^* = TJ^*$, $J_{\mu} = T_{\mu}J_{\mu}$
- Optimality condition:
 - μ : optimal $\langle == \rangle$ $T_{\mu}J^* = TJ^*$
- Value iteration: For any (bounded) J and all x,

$$J^*(x) = \lim_{k \to \infty} (T^k J)(x)$$

- Policy iteration steps: Given μ^k ,
 - Policy evaluation: Find $J_{\mu k}$ by solving

$$J_{\mu^k} = T_{\mu^k} J_{\mu^k}$$

- Policy improvement: Find μ^{k+1} such that

$$T_{\mu^{k+1}}J_{\mu^k} = TJ_{\mu^k}$$

THE THREE KEY PROPERTIES

• Monotonicity property: For any functions Jand J' such that $J(x) \leq J'(x)$ for all x, and any μ

$$(TJ)(x) \le (TJ')(x), \qquad \forall x,$$
$$(T_{\mu}J)(x) \le (T_{\mu}J')(x), \qquad \forall x$$

• Additivity property: For any J, any scalar r, and any μ

$$(T(J+re))(x) = (TJ)(x) + \alpha r, \quad \forall x,$$

$$(T_{\mu}(J+re))(x) = (T_{\mu}J)(x) + \alpha r, \quad \forall x,$$

where e is the unit function $[e(x) \equiv 1]$.

• Contraction property: For any (bounded) functions J and J', and any μ ,

$$\max_{x} |(TJ)(x) - (TJ')(x)| \le \alpha \max_{x} |J(x) - J'(x)|,$$
$$\max_{x} |(T_{\mu}J)(x) - (T_{\mu}J')(x)| \le \alpha \max_{x} |J(x) - J'(x)|.$$

"SHORTHAND" ANALYSIS

• Contraction mapping theorem: The contraction property implies that:

- T has a unique fixed point, J^* , which is the limit of $T^k J$ for any (bounded) J.
- For each μ , T_{μ} has a unique fixed point, J_{μ} , which is the limit of $T_{\mu}^{k}J$ for any J.
- Convergence rate: For all *k*,

$$\max_{x} |(T^{k}J)(x) - J^{*}(x)| \le \alpha^{k} \max_{x} |J(x) - J^{*}(x)|$$

• An assortment of other analytical and computational results are based on the contraction property, e.g, error bounds, computational enhancements, etc.

• Example: If we execute value iteration *approximately*, so we compute TJ within an ϵ -error, i.e.,

$$\max_{x} |\tilde{J}(x) - (TJ)(x)| \le \epsilon,$$

in the limit we obtain J^* within an $\epsilon/(1-\alpha)$ error.

UNDISCOUNTED PROBLEMS

• System

$$x_{k+1} = f(x_k, u_k, w_k), \qquad k = 0, 1, \dots,$$

• Cost of a policy $\pi = \{\mu_0, \mu_1, ...\}$

$$J_{\pi}(x_0) = \lim_{N \to \infty} E_{\substack{w_k \\ k=0,1,\dots}} \left\{ \sum_{k=0}^{N-1} g(x_k, \mu_k(x_k), w_k) \right\}$$

Shorthand notation for DP mappings

 $(TJ)(x) = \min_{u \in U(x)} \mathop{E}_{w} \left\{ g(x, u, w) + J(f(x, u, w)) \right\}, \ \forall \ x$

• For any stationary policy μ

$$(T_{\mu}J)(x) = \mathop{E}_{w} \left\{ g\left(x, \mu(x), w\right) + J\left(f(x, \mu(x), w)\right) \right\}, \ \forall x$$

• Neither T nor T_{μ} are contractions in general. Some, but not all, of the nice theory holds, thanks to the monotonicity of T and T_{μ} .

• Some of the nice theory is recovered in SSP problems because of the termination state.

STOCHASTIC SHORTEST PATH PROBLEMS I

• Assume: Cost-free term. state t, a finite number of states $1, \ldots, n$, and finite number of controls

• Mappings T and T_{μ} (modified to account for termination state t):

$$(TJ)(i) = \min_{u \in U(i)} \left[g(i, u) + \sum_{j=1}^{n} p_{ij}(u)J(j) \right], \quad i = 1, \dots, n,$$
$$(T_{\mu}J)(i) = g(i, \mu(i)) + \sum_{j=1}^{n} p_{ij}(\mu(i))J(j), \quad i = 1, \dots, n.$$

• Definition: A stationary policy μ is called proper, if under μ , from every state *i*, there is a positive probability path that leads to *t*.

• Important fact: If μ is proper then T_{μ} is a contraction with respect to some weighted max norm

$$\max_{i} \frac{1}{v_{i}} |(T_{\mu}J)(i) - (T_{\mu}J')(i)| \le \alpha \max_{i} \frac{1}{v_{i}} |J(i) - J'(i)|$$

• If all μ are proper, then T is similarly a contraction (the case discussed in the text, Ch. 7).

STOCHASTIC SHORTEST PATH PROBLEMS II

- The theory can be pushed one step further. Assume that:
 - (a) There exists at least one proper policy
 - (b) For each improper μ , $T_{\mu}(i) = \infty$ for some i
- Then *T* is not necessarily a contraction, but:
 - J^* is the unique solution of Bellman's Equ.
 - $-\mu^*$ is optimal if and only if $T_{\mu^*}J^* = TJ^*$
 - $-\lim_{k\to\infty} (T^k J)(i) = J^*(i) \text{ for all } i$
 - Policy iteration terminates with an optimal policy, if started with a proper policy
- Example: Deterministic shortest path problem with a single destination
 - States <=> nodes; Controls <=> arcs
 - Termination state <=> the destination
 - Assumption (a) <=> every node is connected to the destination
 - Assumption (b) <=> all cycle costs > 0
 - Pathology: If there is a cycle cost = 0 (or < 0), Bellman's equation has an infinite number of solutions (no solution, respectively)

PATHOLOGIES: THE BLACKMAILER'S DILEMMA

- Two states, state 1 and the termination state *t*.
- At state 1, choose a control $u \in (0, 1]$ (the blackmail amount demanded), and move to t at no cost with probability u^2 , or stay in 1 at a cost -u with probability $1 - u^2$.
- Every stationary policy is proper, but the control set in not finite.
- For any stationary μ with $\mu(1)=u$, we have

$$J_{\mu}(1) = -(1 - u^2)u + (1 - u^2)J_{\mu}(1)$$

from which $J_{\mu}(1) = -\frac{1-u^2}{u}$

• Thus $J^*(1) = -\infty$, and there is no optimal stationary policy.

• It turns out that a *nonstationary* policy is optimal: demand $\mu_k(1) = \gamma/(k+1)$ at time k, with $\gamma \in (0, 1/2)$. (Blackmailer requests diminishing amounts over time, which add to ∞ ; the probability of the victim's refusal diminishes at a much faster rate.)