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LECTURE 14

LECTURE OUTLINE

• Limited lookahead policies

• Performance bounds

• Computational aspects

• Problem approximation approach

• Vehicle routing example

• Heuristic cost-to-go approximation

• Computer chess



LIMITED LOOKAHEAD POLICIES

• One-step lookahead (1SL) policy : At each k and
state xk, use the control µk(xk) that

min
uk∈Uk(xk)

E
{
gk(xk, uk, wk)+J̃k+1

(
fk(xk, uk, wk)

)}
,

where

− J̃N = gN .

− J̃k+1: approximation to true cost-to-go Jk+1

• Two-step lookahead policy : At each k and xk,
use the control µ̃k(xk) attaining the minimum above,
where the function J̃k+1 is obtained using a 1SL
approximation (solve a 2-step DP problem).

• If J̃k+1 is readily available and the minimization
above is not too hard, the 1SL policy is imple-
mentable on-line.

• Sometimes one also replaces Uk(xk) above with
a subset of “most promising controls” Uk(xk).

• As the length of lookahead increases, the re-
quired computation quickly explodes.



PERFORMANCE BOUNDS

• Let Jk(xk) be the cost-to-go from (xk, k) of the
1SL policy, based on functions J̃k.

• Assume that for all (xk, k), we have

Ĵk(xk) ≤ J̃k(xk), (*)

where ĴN = gN and for all k,

Ĵk(xk) = min
uk∈Uk(xk)

E
{
gk(xk, uk, wk)

+ J̃k+1

(
fk(xk, uk, wk)

)}
,

[so Ĵk(xk) is computed along with µk(xk)]. Then

Jk(xk) ≤ Ĵk(xk), for all (xk, k).

• Important application: When J̃k is the cost-to-
go of some heuristic policy (then the 1SL policy is
called the rollout policy).

• The bound can be extended to the case where
there is a δk in the RHS of (*). Then

Jk(xk) ≤ J̃k(xk) + δk + · · · + δN−1



COMPUTATIONAL ASPECTS

• Sometimes nonlinear programming can be used
to calculate the 1SL or the multistep version [par-
ticularly when Uk(xk) is not a discrete set]. Con-
nection with the methodology of stochastic pro-
gramming.

• The choice of the approximating functions J̃k is
critical, and is calculated with a variety of methods.

• Some approaches:

(a) Problem Approximation: Approximate the op-
timal cost-to-go with some cost derived from
a related but simpler problem

(b) Heuristic Cost-to-Go Approximation: Approx-
imate the optimal cost-to-go with a function
of a suitable parametric form, whose param-
eters are tuned by some heuristic or system-
atic scheme (Neuro-Dynamic Programming)

(c) Rollout Approach: Approximate the optimal
cost-to-go with the cost of some suboptimal
policy, which is calculated either analytically
or by simulation



PROBLEM APPROXIMATION

• Many (problem-dependent) possibilities

− Replace uncertain quantities by nominal val-
ues, or simplify the calculation of expected
values by limited simulation

− Simplify difficult constraints or dynamics

• Example of enforced decomposition: Route m
vehicles that move over a graph. Each node has
a “value.” The first vehicle that passes through the
node collects its value. Max the total collected
value, subject to initial and final time constraints
(plus time windows and other constraints).

• Usually the 1-vehicle version of the problem is
much simpler. This motivates an approximation
obtained by solving single vehicle problems.

• 1SL scheme: At time k and state xk (position
of vehicles and “collected value nodes”), consider
all possible kth moves by the vehicles, and at the
resulting states we approximate the optimal value-
to-go with the value collected by optimizing the
vehicle routes one-at-a-time



HEURISTIC COST-TO-GO APPROXIMATION

• Use a cost-to-go approximation from a paramet-
ric class J̃(x, r) where x is the current state and
r = (r1, . . . , rm) is a vector of “tunable” scalars
(weights).

• By adjusting the weights, one can change the
“shape” of the approximation J̃ so that it is reason-
ably close to the true optimal cost-to-go function.

• Two key issues:

− The choice of parametric class J̃(x, r) (the
approximation architecture).

− Method for tuning the weights (“training” the
architecture).

• Successful application strongly depends on how
these issues are handled, and on insight about the
problem.

• Sometimes a simulator is used, particularly
when there is no mathematical model of the sys-
tem.



APPROXIMATION ARCHITECTURES

• Divided in linear and nonlinear [i.e., linear or
nonlinear dependence of J̃(x, r) on r].

• Linear architectures are easier to train, but non-
linear ones (e.g., neural networks) are richer.

• Architectures based on feature extraction

Feature Extraction
Mapping

Cost Approximator w/
Parameter Vector r

Feature
Vector yState x

Cost Approximation

J (y,r )

• Ideally, the features will encode much of the
nonlinearity that is inherent in the cost-to-go ap-
proximated, and the approximation may be quite
accurate without a complicated architecture.

• Sometimes the state space is partitioned, and
“local” features are introduced for each subset of
the partition (they are 0 outside the subset).

• With a well-chosen feature vector y(x), we can
use a linear architecture

J̃(x, r) = Ĵ
(
y(x), r

)
=

∑

i

riyi(x)



COMPUTER CHESS I

• Programs use a feature-based position evalua-
tor that assigns a score to each move/position

Feature
Extraction

Weighting
of Features

Score

Features:
Material balance,
Mobility,
Safety, etc

Position Evaluator

• Most often the weighting of features is linear but
multistep lookahead is involved.

• Most often the training is done by trial and error.

• Additional features:

− Depth first search

− Variable depth search when dynamic posi-
tions are involved

− Alpha-beta pruning



COMPUTER CHESS II

• Multistep lookahead tree
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• Alpha-beta pruning: As the move scores are
evaluated by depth-first search, branches whose
consideration (based on the calculations so far)
cannot possibly change the optimal move are ne-
glected


