6.231 DYNAMIC PROGRAMMING
LECTURE 14
LECTURE OUTLINE

Limited lookahead policies
Performance bounds
Computational aspects

Problem approximation approach
Vehicle routing example

Heuristic cost-to-go approximation

Computer chess

LIMITED LOOKAHEAD POLICIES

e One-step lookahead (1SL) policy: At each k and
state xj, use the control 77, (xx) that

min E{gk(xk, Uk , wk)—l—jk+1 (fk(xk, Uk, wk)) }7
up €U (zg)

where
— JN =¢gnN.
— Jr1: approximation to true cost-to-go Jx. 1

o Two-step lookahead policy:. At each k and xy,
use the control /i () attaining the minimum above,

where the function .J, 1 IS obtained using a 1SL
approximation (solve a 2-step DP problem).

o |f jkﬂ IS readily available and the minimization
above is not too hard, the 1SL policy is imple-
mentable on-line.

e Sometimes one also replaces Uy () above with
a subset of “most promising controls” Uy (xx).

e As the length of lookahead increases, the re-
qguired computation quickly explodes.

PERFORMANCE BOUNDS

o Let J,(x) be the cost-to-go from (zy, k) of the
1SL policy, based on functions Jj.

e Assume that for all (z, k), we have

A

Ji(@r) < Ji(z), (*)

where Jy = gy and for all &,

Je(zp) = min F{gr(zr, ug, wy
() up €U (zg) { ()

+ Jie1 (fu(an, ug, wr)) }s

[s0 Ji (1) is computed along with 7, (x1)]. Then

7k(37k) < jk(a:k), for all (:Ek, k)

e Important application: When .J, is the cost-to-
go of some heuristic policy (then the 1SL policy is
called the rollout policy).

e The bound can be extended to the case where
there is a o5 in the RHS of (*). Then

Te(z) < Jp(xp) + 0k + -+ 0n_1

COMPUTATIONAL ASPECTS

e Sometimes nonlinear programming can be used
to calculate the 1SL or the multistep version [par-
ticularly when Uy (x) is not a discrete set]. Con-
nection with the methodology of stochastic pro-
gramming.

e The choice of the approximating functions .J is
critical, and is calculated with a variety of methods.

e Some approaches:

(a) Problem Approximation. Approximate the op-
timal cost-to-go with some cost derived from
a related but simpler problem

(b) Heuristic Cost-to-Go Approximation. APprox-
Imate the optimal cost-to-go with a function
of a suitable parametric form, whose param-
eters are tuned by some heuristic or system-
atic scheme (Neuro-Dynamic Programming)

(c) Rollout Approach:. Approximate the optimal
cost-to-go with the cost of some suboptimal
policy, which is calculated either analytically
or by simulation

PROBLEM APPROXIMATION

e Many (problem-dependent) possibilities

— Replace uncertain quantities by nominal val-
ues, or simplify the calculation of expected
values by limited simulation

— Simplify difficult constraints or dynamics

e Example of enforced decomposition: Route m
vehicles that move over a graph. Each node has
a “value.” The first vehicle that passes through the
node collects its value. Max the total collected
value, subject to initial and final time constraints
(plus time windows and other constraints).

e Usually the 1-vehicle version of the problem is
much simpler. This motivates an approximation
obtained by solving single vehicle problems.

e 1SL scheme: At time k and state x; (position
of vehicles and “collected value nodes”), consider
all possible £th moves by the vehicles, and at the
resulting states we approximate the optimal value-
to-go with the value collected by optimizing the
vehicle routes one-at-a-time

HEURISTIC COST-TO-GO APPROXIMATION

e Use a cost-to-go approximation from a paramet-
ric class J(z,r) where z is the current state and
r = (r1,...,rm) IS @ vector of “tunable” scalars
(weights).

e By adjusting the weights, one can change the
“shape” of the approximation J so that it is reason-
ably close to the true optimal cost-to-go function.

e Two key Issues:

— The choice of parametric class J(z,r) (the
approximation architecture).

— Method for tuning the weights (“training” the
architecture).

e Successful application strongly depends on how
these issues are handled, and on insight about the
problem.

e Sometimes a simulator is used, particularly
when there is no mathematical model of the sys-
tem.

APPROXIMATION ARCHITECTURES

e Divided in linear and nonlinear [i.e., linear or
nonlinear dependence of J(x,r) on r].

e Linear architectures are easier to train, but non-
linear ones (e.g., neural networks) are richer.

e Architectures based on feature extraction

Feature Cost Approximation
State x | Vectory . J(.r)
»| Feature Extraction »| Cost Approximator w/ .
Mapping Parameter Vector r

e Ideally, the features will encode much of the
nonlinearity that is inherent in the cost-to-go ap-
proximated, and the approximation may be quite
accurate without a complicated architecture.

e Sometimes the state space is partitioned, and
“local” features are introduced for each subset of
the partition (they are 0 outside the subset).

e With a well-chosen feature vector y(x), we can
use a linear architecture

j(x,r) = j(y(m),r) = Zfr@yz(x)

()

COMPUTER CHESS |

e Programs use a feature-based position evalua-
tor that assigns a score to each move/position

1 1
| |
1 1
; Features: !
! Material balance, !
I MObI'Ity, I
1 1
I s2Wwa X Safety etC . . 1 S
....... 1 1 core
= 2= I Feature .| Weighting Bl
""" Extraction of Features
B LWd &I |

Position Evaluator

e Most often the weighting of features is linear but
multistep lookahead is involved.

e Most often the training is done by trial and error.

e Additional features:
— Depth first search

— Variable depth search when dynamic posi-
tions are involved

— Alpha-beta pruning

COMPUTER CHESS |

e Multistep lookahead tree

P (White to Move)

M4 (+16) Mo
(+16) (+11) P 4 Black to Move
I cutoff
O (+16) P,) (+20) (+11) () () White to Move
J Cutoff
(+8) (+16) f (+20) Poal (+8) P 3 Y (+11) Black to

Move

I Cutoff I Cutoff
'4
OO OO0 OO LLLLOLLOOLOOOOO

+8 +20 +18 +16 +24 +20 +10+12 -4 +8 +21+11 -5 +10+32 +27+10 +9 +3

e Alpha-beta pruning: As the move scores are
evaluated by depth-first search, branches whose
consideration (based on the calculations so far)
cannot possibly change the optimal move are ne-
glected

