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Lecture 15 - Metal-Semiconductor Junction
(cont.)

October 7, 2002
Contents:
1. Metal-semiconductor junction outside equilibrium (cont. )

Reading assignment:

del Alamo, Ch. 6, §6.2.3

Seminar:

October 1: High Performance CMOS Design at IBM
by J. Welser, IBM; Rm. 34-101, 4 PM.

Announcement:

Quiz 1: October 10, Rm. 50-340 (Walker), 7:30-9:30
PM; lectures #1-13 (up to metal-semiconductor junction,
no space-charge-region transport). Open book. Calcula-
tor requared.
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Key questions

e In a metal-semiconductor junction under bias, is there current
flow? If so, how exactly does it happen?

e What are the key dependences of the current in a metal-semiconductor
junction?

e How appropriate is the use of the Boltzmann relation across SCR
out of equilibrium?
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1. M-S junction outside equilibrium (cont.)

O I-V Characteristics

Few minority carriers anywhere — majority carrier device

Bottleneck: transport through SCR

Je:O
° W.:
R N

a) equilibrium

b) forward bias

c) reverse bias

e in forward bias, J oc e?V/*T

e in reverse bias, J saturates with V'
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Balance between electron drift and diffusion in SCR:

e TE: perfectly balanced
e forward bias: £ | = diffusion > drift

e reverse bias: £ T = diffusion < drift

Net current due to imbalance of drift and diffusion =
O Drift-diffusion model

Start with electron current equation:

dn gnd¢ dn
e — e De— — De —
Je=auen€ +qDepn = gDl =m0+ 50
Multiply by exp(—%):
qo qn do qp, dn qo
e ) De S T B I
Jeexp(=gp) = aDel= 3 g, (=) + g (= 7)]
d
= 4D L nexp(— 12,

dx
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Integrate along the depletion region:

e Left-hand side: J, ~ J; (negligible hole contribution), and
Jy independent of x (steady state):

L q¢ g qe
/0 Jeexp(—k—T)dx: Jt |, exp(—k—T)dx

and use ¢(x) obtained earlier:

2 2

¢(x):—(¢bi—V)($—?l—x—d+1) for 0 < <y

e Right-hand side

. d 0
D, mesp(— 12 )dx = gDon exp(— 22

0 dx kT kT

Need n(0), ¢(0), n(xq), ¢(xq).
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e r = x4 is edge of depletion region with quasi-neutral bulk:
P(zq) =0
n(xq) = Np
e r = ( is metal-semiconductor interface:
$(0) = = (¢ = V)
n(0) =7

What if T use Boltzmann relation across SCR?

B q|9(0) — ¢(za)]
n(0) = n(zq) exp T
This would give:
B —q(poi = V) —qyp qV
n(0) = Npexp T = N.exp o XP T

Under what conditions could I do this?

Let’s see where it leads first...
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Do integral, substitute boundary conditions and get:

. ¢*D.N. J 2¢(ds —VI)Np  —qosn
t— exp

KT ; vr O )

Total current, multiply J; by area A;:

v
I = IS(eXpZ—T —1)

Is = saturation current (A)

[N log [1] 4

>

<v

f 0

linear scale semilogarithmic scale
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Key dependencies of drift-diffusion model:

olmexp%—l
o [g oc exp —42En

e [s weakly dependent on V

Experiments [PtSi/n-Si Schottky diode courtesy of B. Scharf (Analog
Devices)|:
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Lecture 15-9

Schottky-barrier diodes, Mg,Si-
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Courtesy of the American Institute of Physics. Used with permission.
[from Akiya and Nakamura, JAP 59, 1596, 1986]
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Another dependence in drift-diffusion model:

e Temperature dependence of Ig: Ig oc T2 exp ~2¢En

Not seen in practice!

What one finds experimentally is:

—4q4¥Bn
kT

Ig o< T? exp

= Ig/T 2 thermally activated with E, = qppy,
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O Source of problem with drift-diffusion model: Boltzmann relation
is only valid in thermal equilibrium!

Boltzmann relation derived from:
Jo = Je(drift)+ J(dif f) =0

Out of TE, J.(drift) # —J.(dif f) = Boltzmann not applicable.

But... if difference between J,(drift) and —J.(dif f) is small, error
in Boltzmann relation might be tolerable = Quasi-equilibrium.

Quasi-equilibrium assumption good if:

[ S| = [ Je| < [Jeldrift)], [Je(dif f)]

Test at x = 0:

"]6’ ~ |
| Je(drift)]

Assumption fails at x = 0. Need to look at situation closely around
x = 0.
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O Thermionic-emission theory

Closer than a mean free path from the interface, arguments of
drift and diffusion do not work.

In the last mean free path:

e clectrons do not suffer any collisions (ballistic transport),
e only those with enough Ex get over the barrier
e actually, only half of those with enough Ex do

e this is bottleneck: thermionic emission theory

Focus on bottleneck at x = 0:
J. = —qn(0)v.(0)

Assume quasi-equilibrium up to the last mean-free path.
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O Electron current:

—q¥YBn qV

- _ *r2 47
Jy=J.=A"T exp T (exp 1)

ET

with:

A* = Richardson’s constant
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O If thermionic emission theory applies:

o [, flat throughout SCR up to x = [.

e from = = 0 to = l., Ey. has no physical meaning (electron
distribution is not Maxwellian!)

forward bias

reverse hias
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Key conclusions

e Minority carriers play no role in I-V characteristics of MS junc-
tion.

e Energy barrier preventing carrier flow from S to M modulated
by V', barrier to carrier flow from M to S unchanged by V' =
rectifying behavior:

v

I = IS(eXpZ—T —1)

o Drift-diffusion theory of current: small perturbation of balance
of drift and diffusion inside SCR.

e Drift-diffusion theory of current exhibits several dependences
observed in devices, but fails temperature dependence.

e Thermionic emission theory of current: bottleneck is flow of
carriers over energy barrier at M-S interface. Transport at this
bottleneck is of a ballistic nature.

o I5/T? is thermally activated; activation energy is qop,.
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Self study

e Thermionic emission theory



