Lecture 21 - The Si surface and the Metal-Oxide-Semiconductor Structure

October 23, 2002

Contents:

- 1. The semiconductor surface
- 2. Ideal MOS structure in thermal equilibrium

Reading assignment:

del Alamo, Ch. 8, §§8.1-8.2 (8.2.1-8.2.2)

Seminar:

Oct. 24 - V. Mohindra (McKinsey): Turmoil in the Semiconductor Industry - An In-depth Perspective from a Leading Consultant at McKinsey . Rm. 35-225, 7 PM.

Key questions

- How does the surface of a semiconductor look like at the atomic level?
- If one assembles a metal-oxide-semiconductor structure and allows equilibrium to be established, what is the final situation?
- How does this picture change for different choices of metal work function?

1. Semiconductor Surface

At a surface, perfect crystalline periodicity of solid comes to an abrupt end. What happens?

\Box Ideal semiconductor surface

Semiconductor comes to an end, but bulk properties unaffected \rightarrow bonding arrangement at surface unchanged from bulk.

Zero carrier current normal to surface; other than that, carriers unaffected by surface.

\square Real surface

In ideal surface, four-fold coordination of atoms cannot be preserved \Rightarrow broken bonds \Rightarrow surface is very reactive.

Surface can lower its energy by:

- surface contamination: absorption of O, C, and other foreign atoms and molecules
- surface reconstruction: surface atoms bond among themselves.

Example of surface reconstruction: 7x7 (111) Si surface:

[courtesy of R. Martel and P. Avouris, IBM]

\square Passivated surface

"Coating" of semiconductor surface with *passivating layer* so that bulk bonding prevails for surface atoms.

Most important passivating material: SiO_2 - one of the keys of the microelectronics revolution:

- amorphous dielectric: only short-range order
- natural product of Si oxidation ("Si rusts!")
- exceptional chemistry
- nearly ideal interface with Si

Wide energy gap of SiO_2 prevents carriers from escaping from semiconductor. Residual surface roughness in modern Si/SiO₂ structures: ~ 2 monolayers.

[courtesy of D. Buchanan, IBM]

2. Ideal Metal-Oxide-Semiconductor structure in thermal equilibrium

MOS structures pervasive in modern microelectronics:

- heart of MOSFETs (from which CMOS is made)
- heart of DRAMs, Flash memories
- MOS structure everytime a metal line runs over a dielectriccoated semiconductor

MOS understanding is portable ⇒ view it as generic sandwich of highly conducting material/dielectric/semiconductor (better name MIS)

- Al/SiO₂/Si (early MOSFETs)
- n⁺-polySi/SiO₂/Si (modern MOSFETs)
- Al/Si₃N₄/Si (metal lines on Si)
- WSi/AlGaAs/InGaAs (modern high-frequency transistors)

□ Energy band diagram (p-type substrate)

Insulator does not allow charge exchange between metal and semiconductor \Rightarrow to attain thermal equilibrium, need wire that connects metal and semiconductor.

a) metal, insulator and semiconductor far apart

b) metal, insulator and semiconductor in intimate contact

$$q\phi_{bi} = W_S - W_M$$

Note: large band discontinuities at insulator-semiconductor interface.

Other possible band arrangements depending on relative values of W_S and W_M :

□ General relations for MOS electrostatics

- no charge in dielectric
- overall charge neutrality:

$$Q_q = -Q_s$$

• field inside dielectric uniform:

$$\mathcal{E}_{ox} = -\frac{Q_s}{\epsilon_{ox}}$$

• normal component of displacement vector conserved at semiconductor/dielectric interface:

$$\epsilon_s \mathcal{E}_s = \epsilon_{ox} \mathcal{E}_{ox}$$

Hence field at semiconductor surface:

$$\mathcal{E}_s = -\frac{Q_s}{\epsilon_s}$$

Total potential difference across structure:

$$\phi_{bi} = \phi_s + \phi_{ox}$$

-drop across semiconductor, ϕ_s , called *surface potential* -drop in oxide:

$$\phi_{ox} = x_{ox} \mathcal{E}_{ox}$$

Define oxide capacitance per unit area:

$$C_{ox} = \frac{\epsilon_{ox}}{x_{ox}}$$

All together, total potential build-up across MOS:

$$\phi_{bi} = \phi_s - \frac{Q_s}{C_{ox}}$$

Key relationship between ϕ_s and Q_s .

\square Depletion

Do depletion approximation:

Integrated semiconductor charge:

$$Q_s \simeq -qN_Ax_d$$

Field at semiconductor surface:

$$\mathcal{E}_s \simeq \frac{q N_A x_d}{\epsilon_s}$$

Field in insulator:

$$\mathcal{E}_{ox} \simeq \frac{q N_A x_d}{\epsilon_{ox}}$$

Surface potential:

$$\phi_s \simeq \frac{qN_A x_d^2}{2\epsilon_s}$$

Everything in terms of x_d , but don't know x_d !

Demand ϕ_{bi} be the right amount from energy considerations:

$$\phi_{bi} = \frac{1}{q}(W_S - W_M) = \phi_s + \phi_{ox} \simeq \frac{qN_A x_d^2}{2\epsilon_s} + \frac{qN_A x_d}{C_{ox}}$$

Solve for x_d :

$$x_d \simeq \frac{\epsilon_s}{C_{ox}} (\sqrt{1 + \frac{4\phi_{bi}}{\gamma^2}} - 1)$$

Where γ is body-factor coefficient:

$$\gamma = \frac{1}{C_{ox}} \sqrt{2\epsilon_s q N_A}$$

Key dependencies: $\phi_{bi} \uparrow \rightarrow x_d \uparrow$

$$N_A \uparrow \rightarrow x_d \downarrow$$

Body-factor coefficient, γ :

$$\gamma = \frac{1}{C_{ox}} \sqrt{2\epsilon_s q N_A}$$

 γ depends on:

- doping of body
- capacitance of insulator

 \Rightarrow relative magnitude of depletion capacitance and oxide capacitance.

In well designed MOSFETs, $\gamma \sim 0.1-1~V^{1/2}.$

\square Inversion

$$Q_s = Q_d + Q_i$$

Key conclusions

- Si/SiO₂ interface nearly ideal: most Si bonds satisfied but interface about two monolayers rough.
- Most typical equilibrium case of MOS structure: depletion region next to Si/SiO₂ interface; other possible cases: accumulation or inversion.
- Surface potential, ϕ_s : total potential build-up across semiconductor.
- General relationships for MOS electrostatics:
 - overall charge neutrality: $Q_g = -Q_s$
 - continuity of normal displacement vector at semiconductor/insulator interface: $\epsilon_s \mathcal{E}_s = \epsilon_{ox} \mathcal{E}_{ox}$
 - total potential difference must add up to ϕ_{bi} : $\phi_{bi} = \phi_s \frac{Q_s}{C_{ox}}$
- Order of magnitude of key parameters of Si at 300K:
 - Body factor coefficient: $\gamma \sim 0.1-1~V^{1/2}$ (depends on doping level of semiconductor and insulator capacitance).