Lecture 7 - Carrier Drift and Diffusion (cont.)

September 19, 2001

Contents:

- 1. Drift
- 2. Diffusion
- 3. Transit time

Reading assignment:

del Alamo, Ch. 4, §4.2-4.4

Key questions

- How do carriers move in an electric field? What are the key dependencies of the drift velocity?
- How do the energy band diagrams represent the presence of an electric field?
- How does a concentration gradient affect carriers?
- How much time does it take for a carrier, on average, to travel from one region of a semiconductor to another by drift or diffusion?

1. Drift

Carrier movement in presence of electric field:

 \Box Drift velocity

-electric field: \mathcal{E} -electrostatic force on electron: $-q\mathcal{E}$ -acceleration between collisions: $\frac{-q\mathcal{E}}{m_{ce}^*}$ -velocity acquired during time τ_{ce} :

$$v_e^{drift} = -\frac{q\mathcal{E}\tau_{ce}}{m_{ce}^*}$$

or

$$v_e^{drift} = -\mu_e \mathcal{E}$$

 $\mu_e \equiv \text{electron mobility} [cm^2/V \cdot s]$

Mobility indicates ease of carrier motion in response to \mathcal{E} .

$$v_e^{drift} = -\mu_e \mathcal{E}$$
 $v_h^{drift} = \mu_h \mathcal{E}$

Mobility depends on doping level and whether carrier is majority or minority-type.

Si at 300 K:

- at low N: limited by phonon scattering
- at high N: limited by ionized impurity scattering

\Box Velocity saturation

Implicit assumption: *quasi-equilibrium*, that is, scattering rates not much affected from equilibrium.

$$v^{drift} \sim \mathcal{E}$$
 only if $v^{drift} \ll v_{th}$

For high \mathcal{E} : carriers acquire substantial energy from \mathcal{E}

- \rightarrow optical phonon emission strongly enhanced
- \rightarrow scattering rate $\sim 1/\mathcal{E}$
- \rightarrow drift velocity saturates

$$v_{sat} \simeq \sqrt{\frac{8}{3\pi} \frac{E_{opt}}{m_c^*}}$$

For Si at 300 K, $v_{sat} \simeq 10^7 \ cm/s$

Drift velocity vs. electric field fairly well described by:

$$v^{drift} = \mp \frac{\mu \mathcal{E}}{1 + \left|\frac{\mu \mathcal{E}}{v_{sat}}\right|}$$

Field required to saturate velocity:

$$\mathcal{E}_{sat} = rac{v_{sat}}{\mu}$$

Velocity saturation crucial in modern devices:

if $\mu = 500 \ cm^2/V.s$, $\mathcal{E}_{sat} = 2 \times 10^4 \ V/cm \ (2 \ V \ across 1 \ \mu m)$ Since μ depends on doping, \mathcal{E}_{sat} depends on doping too.

\Box Particle flux and current density

particle flux \equiv # particles crossing unity surface (normal to flow) per unit time $[cm^{-2} \cdot s^{-1}]$

current density \equiv electrical charge crossing unity surface (normal to flow) per unit time $[cm^{-2} \cdot s^{-1}]$

$$J_e = -qF_e$$

$$F_e = \frac{nv_e dt}{dt} = nv_e$$

Then

$$J_e = -qnv_e$$
$$J_h = qpv_h$$

• Drift current (low fields):

$$J_e = q\mu_e n \mathcal{E}$$
 $J_h = q\mu_h p \mathcal{E}$

total:

$$J = q(\mu_e n + \mu_h p)\mathcal{E}$$

Electrical conductivity $[(\Omega \cdot cm)^{-1}]$:

$$\sigma = q(\mu_e n + \mu_h p)$$

Electrical resistivity $[\Omega \cdot cm]$:

$$\rho = \frac{1}{q(\mu_e n + \mu_h p)}$$

Check signs:

$$\rho = \frac{1}{q(\mu_e n + \mu_h p)}$$

 ρ strong function of doping \Rightarrow frequently used by wafer vendors to specify doping level of substrates

-for n-type:
$$\rho_n \simeq \frac{1}{q\mu_e N_D}$$

-for p-type: $\rho_p \simeq \frac{1}{q\mu_h N_A}$

Si at 300K:

• Drift current (high fields):

$$J_{esat} = qnv_{esat}$$

$$J_{hsat} = qpv_{hsat}$$

The only way to get more current is to increase carrier concentration.

\Box Energy band diagram under electric field

Energy band diagram needs to account for potential energy of electric field

• Vacuum:

Electron trades potential energy by kinetic energy as it moves to the left \rightarrow total electron energy unchanged

• Must add E_p to semiconductor energy band diagram \Rightarrow bands tilt

Meauring from an arbitrary energy reference, E_{ref} :

$$E_c + E_{ref} = E_p = -q\phi$$

Then:

$$\mathcal{E} = -\frac{d\phi}{dx} = \frac{1}{q}\frac{dE_c}{dx} = \frac{1}{q}\frac{dE_v}{dx}$$

Shape of energy bands = shape of ϕ with a minus sign. Can easily compute \mathcal{E} from energy band diagram.

2. Diffusion

Movement of particles from regions of high concentration to regions of low concentration.

Diffusion produced by collisions with background medium (*i.e.*, vibrating Si lattice).

• Diffusion flux \propto concentration gradient [Fick's first law]

$$F_e = -D_e \frac{dn}{dx}$$
$$F_h = -D_h \frac{dp}{dx}$$

 $D \equiv \text{diffusion coefficient } [cm^2/s]$

$$F_e = -D_e \frac{dn}{dx}$$
$$F_h = -D_h \frac{dp}{dx}$$

• Diffusion current:

$$J_e = qD_e \frac{dn}{dx}$$
$$J_h = -qD_h \frac{dp}{dx}$$

Check signs:

3. Transit time

Transit time \equiv average time for a carrier to travel through a certain region.

$$\tau_t = \int_0^{\tau_t} dt = \int_0^L \frac{dx}{v(x)}$$

• Diffusion transit time:

$$J_e = q D_e \frac{dn}{dx} = -q n v_e^{diff} \implies v_e^{diff} = -D_e \frac{1}{n} \frac{dn}{dx}$$

Then:

$$\tau_t = -\frac{1}{D_e} \int_0^L \frac{n}{\frac{dn}{dx}} dx$$

Example: linear profile (as in base of BJT):

• Drift transit time (low field):

$$v_e^{drift} = -\mu_e \mathcal{E}$$

Example: uniform field:

Key conclusions

- Two processes for carrier flow in semiconductors: drift and diffusion.
- General relationship between carrier net velocity (by drift or diffusion) and current density:

$$J_e = -qnv_e \qquad \qquad J_h = qpv_h$$

- For low fields, $v^{drift} \sim \mathcal{E}$.
- For high fields, $v^{drift} \sim v_{sat}$.
- Driving force for diffusion: concentration gradient.
- *Transit time*: mean time for carriers to travel from one region to another by drift or diffusion.
 - by diffusion:

$$\tau_t \sim \frac{L^2}{D}$$

– by drift:

$$\tau_t \sim \frac{L}{\mu \mathcal{E}}$$

- Order of magnitude of key parameters for Si at 300K:
 - electron mobility: $\mu_e \sim 100 1400 \ cm^2/V \cdot s$
 - hole mobility: $\mu_h \sim 50 500 \ cm^2/V \cdot s$
 - saturation velocity: $v_{sat} \sim 10^7 \ cm/s$

Self study

- Study doping dependence of \mathcal{E}_{sat} .
- Study phenomenological diffusion model in §4.3.
- Perform calculations of transit time of both lecture examples.
- Study transit time calculation if drift and diffusion are present simultaneously.