Lecture 36 - Bipolar Junction Transistor (cont.)

December 2, 2002

Contents:

- 1. Current-voltage characteristics of ideal BJT (cont.)
- 2. Charge-voltage characteristics of ideal BJT
- 3. Small-signal behavior of ideal BJT

Reading material:

del Alamo, Ch. 11, §§11.2 (11.2.5), 11.3, 11.4 (11.4.1)

Announcements:

Note special schedule for the end of the semester:

- Dec. 5: lecture
- Dec. 6: lecture
- Dec. 9: guest lecture by Prof. H. Tuller
- Dec. 11: recitation

All in regular room and regular meeting times.

Key questions

- How do the output characteristics of the ideal BJT look like?
- How do the charge-voltage characteristics of the ideal BJT look like?
- What is the topology of the small-signal equivalent circuit model of the ideal BJT in FAR?
- What are the key dependencies of its elements?

1. Current-voltage characteristics of ideal BJT (cont.)

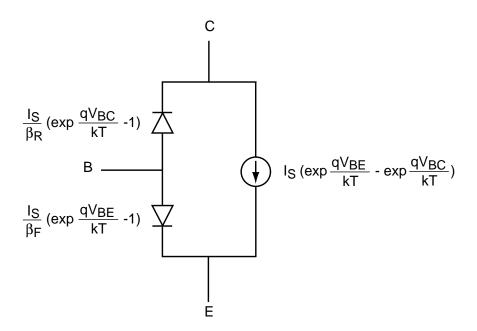
Ideal BJT current equations (superposition of forward active + reverse):

$$I_{C} = I_{S}(\exp \frac{qV_{BE}}{kT} - \exp \frac{qV_{BC}}{kT}) - \frac{I_{S}}{\beta_{R}}(\exp \frac{qV_{BC}}{kT} - 1)$$

$$I_{B} = \frac{I_{S}}{\beta_{F}}(\exp \frac{qV_{BE}}{kT} - 1) + \frac{I_{S}}{\beta_{R}}(\exp \frac{qV_{BC}}{kT} - 1)$$

$$I_{E} = -\frac{I_{S}}{\beta_{F}}(\exp \frac{qV_{BE}}{kT} - 1) - I_{S}(\exp \frac{qV_{BE}}{kT} - \exp \frac{qV_{BC}}{kT})$$

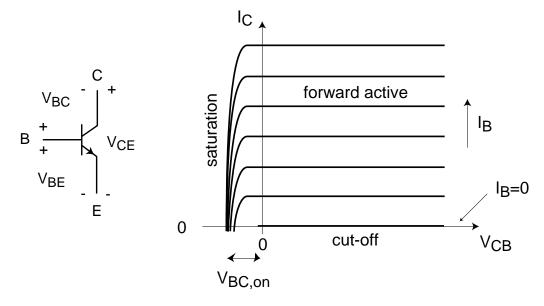
Equivalent circuit model representation:



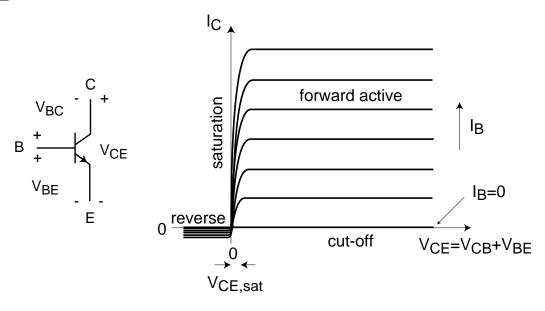
Complete model has only three parameters: I_S , β_F , and β_R .

\square Common-emitter output I-V characteristics

 $vs. V_{CB}$:

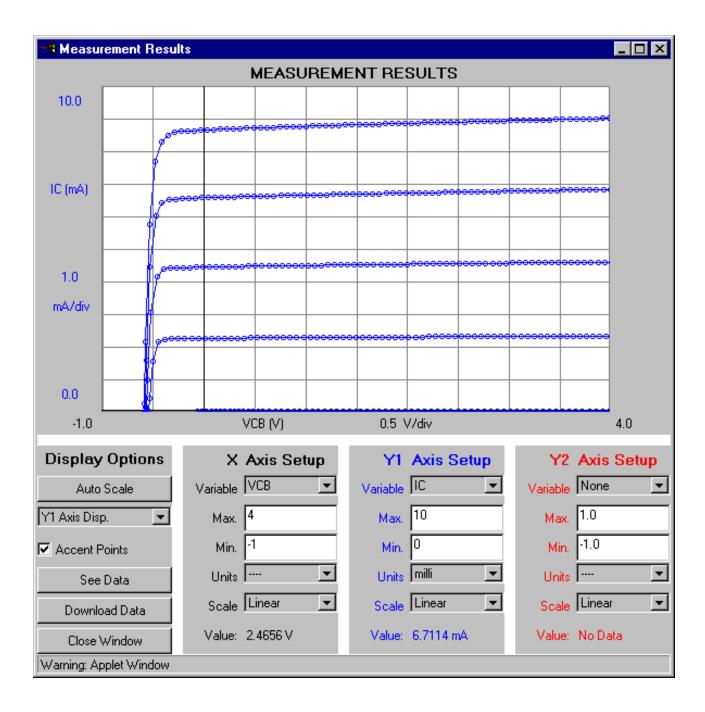


 $vs. V_{CE}$:

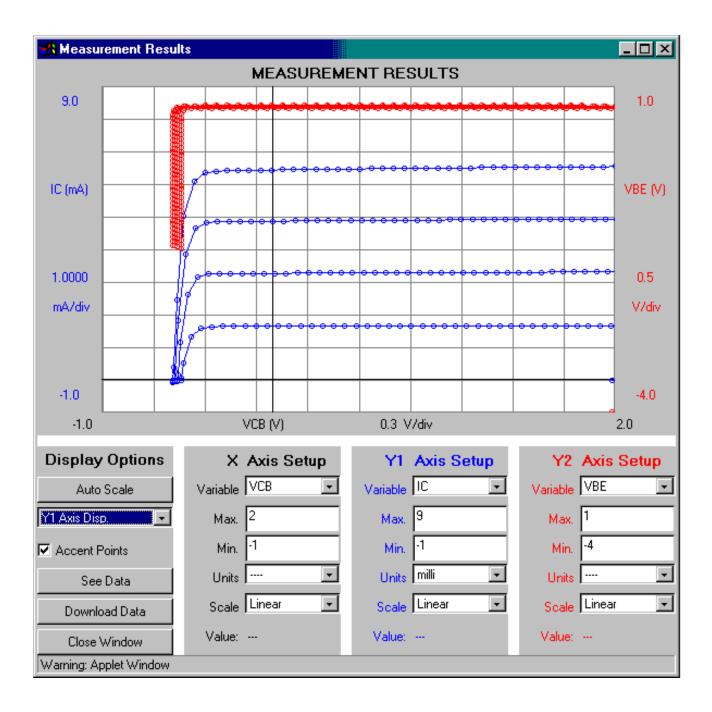


$$V_{CEsat} = -V_{BCon} + V_{BEon}$$

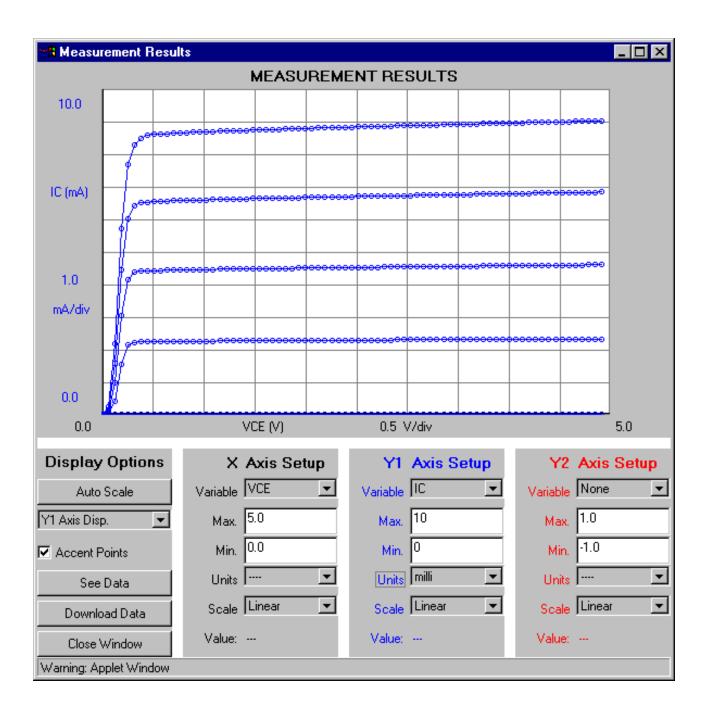
I_C vs. V_{CB} with I_B as parameter:



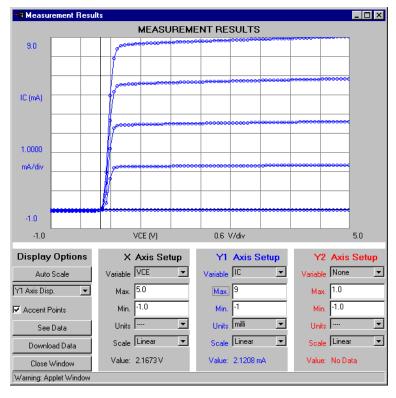
Where is the reverse regime?

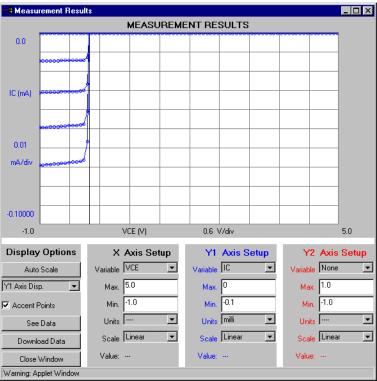


Common-emitter output characteristics:



Zoom into inverse regime:



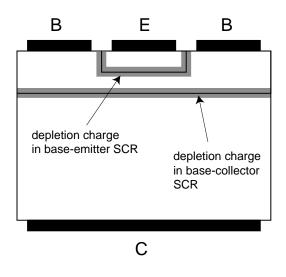


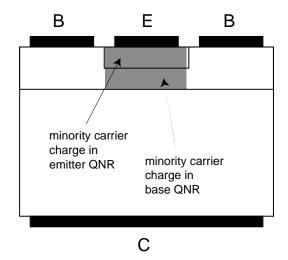
2. Charge-voltage characteristics of ideal BJT

In BJT, two types of stored charge:

- depletion layer charge
- minority carrier charge

In forward-active regime:





□ Depletion layer charge

In B-E and B-C SCR's, respectively:

$$Q_{jE} = A_E \sqrt{\frac{2\epsilon q N_E N_B (\phi_{biE} - V_{BE})}{N_E + N_B}}$$

$$Q_{jC} = A_C \sqrt{\frac{2\epsilon q N_B N_C (\phi_{biC} - V_{BC})}{N_B + N_C}}$$

 ϕ_{biE} and ϕ_{biC} are respective built-in potentials.

Since $N_E \gg N_B \gg N_C$,

$$Q_{jE} \simeq A_E \sqrt{2\epsilon q N_B (\phi_{biE} - V_{BE})}$$

$$Q_{jC} \simeq A_C \sqrt{2\epsilon q N_C (\phi_{biC} - V_{BC})}$$

Depletion capacitance:

$$C_{je} = \frac{\partial Q_{jE}}{\partial V_{BE}} \simeq A_E \sqrt{\frac{\epsilon q N_B}{2(\phi_{biE} - V_{BE})}} = \frac{C_{jeo}}{\sqrt{1 - \frac{V_{BE}}{\phi_{biE}}}}$$

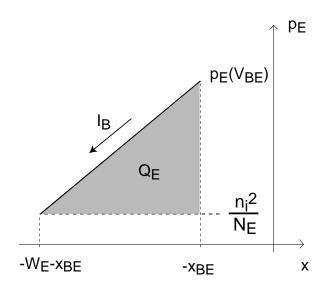
$$C_{jc} = \frac{\partial Q_{jC}}{\partial V_{BC}} \simeq A_C \sqrt{\frac{\epsilon q N_C}{2(\phi_{biC} - V_{BC})}} = \frac{C_{jco}}{\sqrt{1 - \frac{V_{BC}}{\phi_{biC}}}}$$

□ Minority carrier charge

Excess minority carriers in QNR's \Rightarrow excess majority carriers to keep quasi-neutrality \Rightarrow diffusion capacitance.

Key result from pn diode: in "short" or "transparent" QNR:

• For **emitter** in FAR:

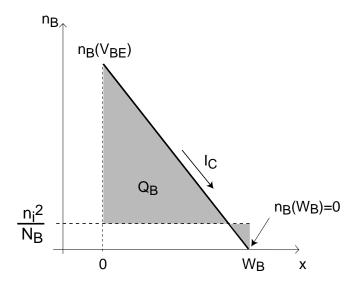


$$Q_E = \tau_{tE} I_B$$

with hole transit time:

$$\tau_{tE} = \frac{W_E^2}{2D_E}$$

• For **base** in FAR:



$$Q_B = \tau_{tB} I_C$$

with electron transit time:

$$\tau_{tB} = \frac{W_B^2}{2D_B}$$

Comments:

- Units of Q_E and Q_B are C.
- Q_E and Q_B scale with A_E .

Total minority carrier charge in FAR:

$$Q_F = Q_E + Q_B = \tau_{tE}I_B + \tau_{tB}I_C = (\frac{\tau_{tE}}{\beta_F} + \tau_{tB})I_C = \tau_F I_C$$

$$\tau_F \equiv intrinsic \ delay [s]$$

 τ_F is overall time constant for minority carrier storage in BJT in FAR:

$$\tau_F = \frac{\tau_{tE}}{\beta_F} + \tau_{tB}$$

Note: emitter contribution to τ_F is τ_{tE}/β_F because I_B is β_F times smaller than I_C .

If V_{BE} changes, Q_E and Q_B change \Rightarrow capacitive effect:

$$C_F = \frac{dQ_F}{dV_{BE}} = \tau_F \frac{qI_C}{kT}$$

Location of this capacitance? Think of which terminals supply stored charge (minority and majority carriers):

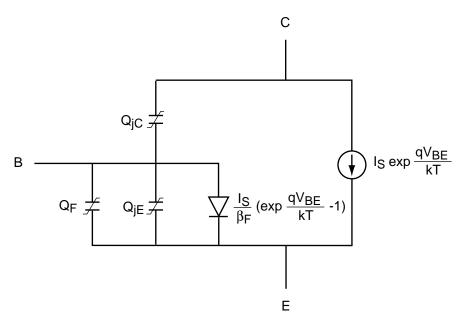
For Q_E :

- minority carriers (holes) injected from base
- ullet majority carriers (electrons) come from emitter contact

For Q_B :

- minority carriers (electrons) injected from *emitter*
- majority carriers (holes) come from *base* contact

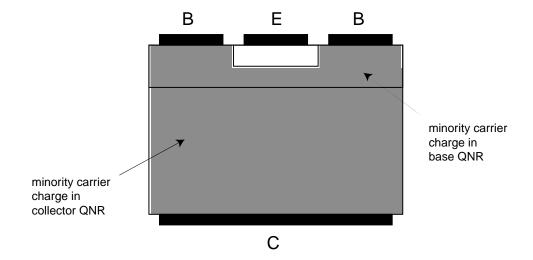
Equivalent-circuit model:



Similar picture in reverse regime: charge storage in base and collector

$$Q_R = \tau_R I_E$$

 τ_R a bit complicated because it accounts for charge storage in *intrinsic* and *extrinsic* base and collector regions.

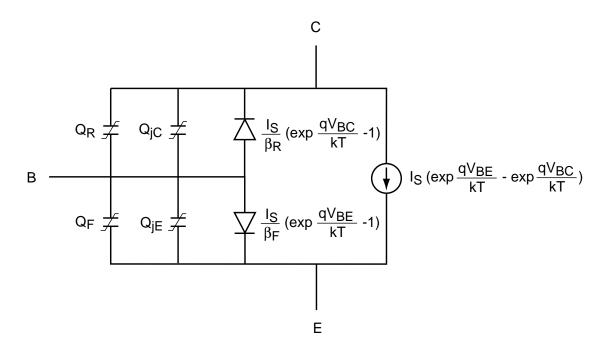


Diffusion capacitance:

$$C_R = \frac{dQ_R}{dV_{BC}} = \tau_R \frac{qI_E}{kT}$$

Located between base and collector terminals.

By superposition, complete equivalent circuit model valid in all four regimes:



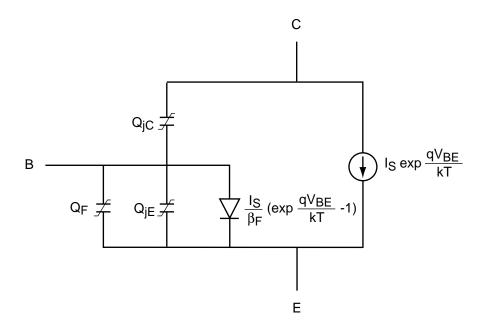
3. Small-signal behavior of ideal BJT

In analog (and digital) applications, interest in behavior of BJT to small-signal applied on top of bias

 \Rightarrow small-signal equivalent circuit model.

□ Small-signal equivalent circuit model in FAR

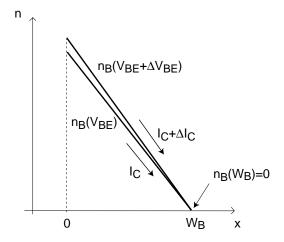
Must linearize hybrid- π model in FAR:



- -Non-linear voltage-controlled current source linearized to *linear voltage-controlled current source*.
- -Diode linearized to resistor.
- -Charge storage elements linearized to *capacitors*.

• Linearized voltage-controlled current source

Apply small signal v_{be} on top of bias V_{BE} .



Collector current:

$$I_C + i_c = I_S \exp \frac{q(V_{BE} + v_{be})}{kT} \simeq I_S \exp \frac{qV_{BE}}{kT} (1 + \frac{qv_{be}}{kT}) = I_C (1 + \frac{qv_{be}}{kT})$$

Small-signal collector current:

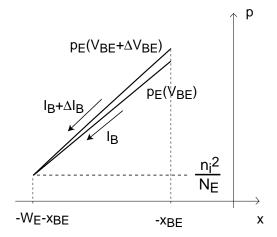
$$i_c = \frac{qI_C}{kT}v_{be}$$

Define transconductance:

$$g_m = \frac{qI_C}{kT}$$

 g_m depends only on absolute value of I_C and T (unlike MOSFET, where g_m depends on device geometry)

• Linearized diode



Base current:

$$I_B + i_b = I_S \exp \frac{q(V_{BE} + v_{be})}{kT} \simeq \frac{I_S}{\beta_F} \exp \frac{qV_{BE}}{kT} (1 + \frac{qv_{be}}{kT})$$

Small-signal base current:

$$i_b = \frac{qI_B}{kT}v_{be}$$

Define *conductance*:

$$g_{\pi} = \frac{qI_B}{kT} = \frac{q}{kT}\frac{I_C}{\beta_F} = \frac{g_m}{\beta_F}$$

Then, in general,

$$g_{\pi} \ll g_m$$

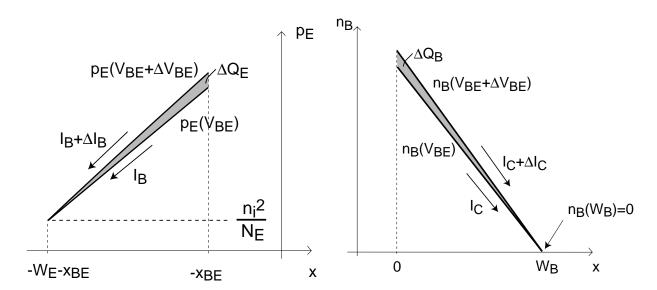
• Capacitors

$$Q_{jE} \to C_{je}$$

$$Q_{jC} \to C_{jc}$$

$$Q_F \to C_\pi$$

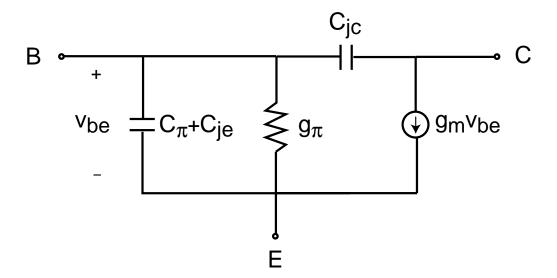
Two components in C_{π} :



Note:

$$C_{\pi} = \tau_F g_m$$

• Small-signal equivalent circuit model for ideal BJR in FAR:



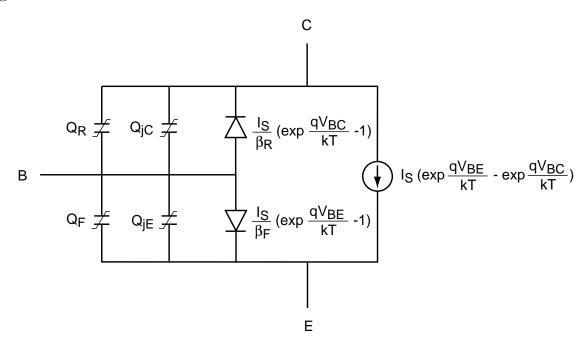
Key conclusions

- In BJT, two types of stored charge: depletion layer charge and minority carrier charge.
- Depletion layer charge accounted through depletion capacitances.
- Minority carrier charge accounted through time constant τ_F (intrinsic delay):

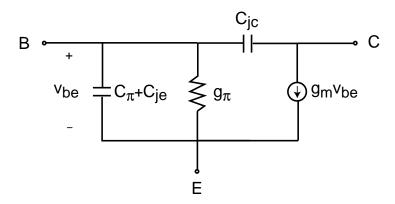
$$\tau_F = \frac{\tau_{tE}}{\beta_F} + \tau_{tB}$$

Emitter contribution to τ_F is β_F times smaller than τ_{tE} because I_B is β_F times smaller than I_C .

• Non-linear hybrid- π model for ideal BJT including charge storage elements:



• Small-signal equivalent circuit model of ideal BJT in FAR:



with:

$$g_m = \frac{qI_C}{kT}$$
 $g_\pi = \frac{qI_B}{kT} = \frac{g_m}{\beta_F}$ $C_\pi = \tau_F g_m$