Lecture 37 - Bipolar Junction Transistor (cont.)

December 4, 2002

Contents:

1. Common-emitter short-circuit current-gain cut-off frequency, f_{T}

Reading material:

del Alamo, Ch. 11, §11.4.2

Key questions

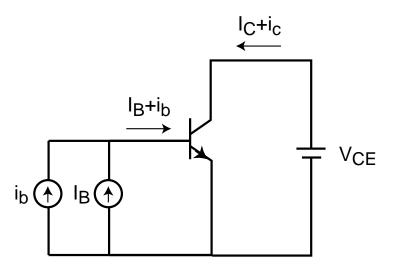
- How is the frequency response of a transistor assessed?
- What determines the frequency response of an ideal BJT?

1. Common-emitter short-circuit current-gain cut-off frequency, f_T

 f_T : high-frequency figure of merit for transistors

Short-circuit means from the small-signal point of view.

BJT is biased in FAR.



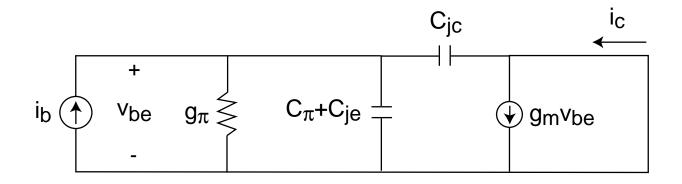
Focus on small-signal current gain:

$$h_{21} = \frac{i_c}{i_b}|_{v_{ce}=0}$$

For low frequency, $h_{21} \rightarrow \beta_F$, for high frequency h_{21} rolls off due to capacitors.

Definition of f_T : frequency at which $|h_{21}| = 1$.

Small-signal equivalent circuit model:



$$i_c = g_m v_{be} - j\omega C_{jc}$$

$$i_b = [g_\pi + j\omega (C_\pi + C_{je} + C_{jc})]v_{be}$$

Then:

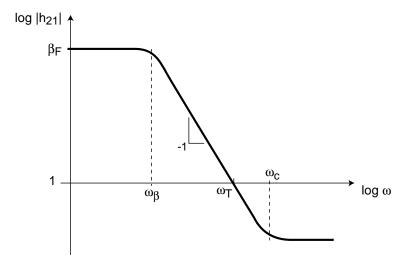
$$h_{21} = \frac{g_m - j\omega C_{jc}}{g_\pi + j\omega (C_\pi + C_{je} + C_{jc})}$$

Magnitude of h_{21} :

$$|h_{21}| = \frac{\sqrt{g_m^2 + \omega^2 C_{jc}^2}}{\sqrt{g_\pi^2 + \omega^2 (C_\pi + C_{je} + C_{jc})^2}}$$

$$|h_{21}| = \frac{\sqrt{g_m^2 + \omega^2 C_{jc}^2}}{\sqrt{g_\pi^2 + \omega^2 (C_\pi + C_{je} + C_{jc})^2}}$$

Bode plot of $|h_{21}|$:



Three regimes in $|h_{21}|$:

• low frequency, $\omega \ll \omega_{\beta}$:

$$|h_{21}| \simeq \frac{g_m}{g_\pi} = \beta_F$$

• intermediate frequency, $\omega_{\beta} \ll \omega \ll \omega_c$:

$$|h_{21}| \simeq \frac{g_m}{\omega(C_\pi + C_{je} + C_{jc})}$$

• high frequency, $\omega \gg \omega_c$:

$$|h_{21}| \simeq \frac{C_{jc}}{C_{\pi} + C_{je} + C_{jc}}$$

Angular frequencies that separate three regimes:

$$\omega_{\beta} = \frac{g_{\pi}}{C_{\pi} + C_{je} + C_{jc}}$$
$$\omega_{c} = \frac{g_{m}}{C_{jc}}$$

Angular frequency at which $|h_{21}| = 1$:

$$\omega_T = \frac{g_m}{C_\pi + C_{je} + C_{jc}}$$

In terms of frequency:

$$f_T = \frac{g_m}{2\pi(C_\pi + C_{je} + C_{jc})}$$

Note:

$$\omega_{\beta} = \frac{\omega_T}{\beta_F}$$

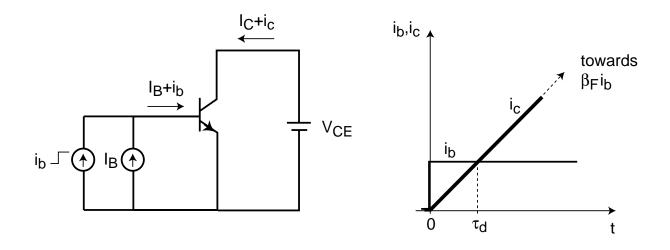
\Box Physical meaning of f_T

 $1/2\pi f_T$ has units of time. Define *delay time*:

$$\tau_d = \frac{1}{2\pi f_T} = \frac{C_{\pi}}{g_m} + \frac{C_{je}}{g_m} + \frac{C_{jc}}{g_m} = \tau_{tB} + \frac{\tau_{tE}}{\beta_F} + \frac{C_{je}}{g_m} + \frac{C_{jc}}{g_m}$$

Four delay components in τ_d .

Consider response of BJT to a step-input base current:



At t = 0

$$I_B \rightarrow I_B + i_b$$

As
$$t \to \infty$$

 $V_{BE} \to V_{BE} + v_{be}$

$$I_C \to I_C + i_c = I_C + \beta_F i_b.$$

How much time does it take for i_C to reach its final value?

Charge must be delivered to four regions in BJT:

• Quasi-neutral emitter

$$q_e = \tau_{tE} i_b$$

• Quasi-neutral base

$$q_b = \tau_{tB} i_c$$

• Emitter-base depletion region

$$q_{je} = C_{je} v_{be} = \frac{C_{je}}{g_m} i_c$$

• Base-collector depletion region

$$q_{jc} = C_{jc} v_{bc} = C_{jc} v_{be} = \frac{C_{jc}}{g_m} i_c$$

Charge delivered at constant rate to base. Time that it takes for all charge to be delivered:

$$\tau_{\beta} = \frac{q_e + q_b + q_{je} + q_{jc}}{i_b} = \tau_{tE} + \beta_F (\tau_{tB} + \frac{C_{je}}{g_m} + \frac{C_{jc}}{g_m}) = \frac{1}{2\pi f_{\beta}}$$

How much time does it take for i_C to build up to $I_C + i_b$?

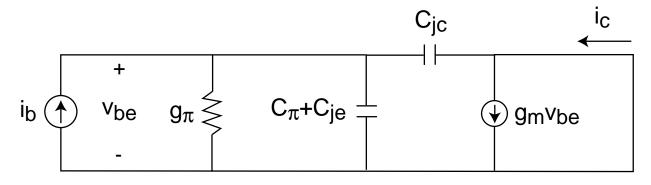
Since $i_c = \beta_F i_b$,

$$\tau_d = \frac{\tau_\beta}{\beta_F} = \frac{\tau_{tE}}{\beta_F} + \tau_{tB} + \frac{C_{je}}{g_m} + \frac{C_{jc}}{g_m} = \frac{1}{2\pi f_T}$$

• $\tau_d = \frac{1}{2\pi f_T}$: delay time before i_C increases to $I_C + i_b$

•
$$\tau_{\beta} = \frac{1}{2\pi f_{\beta}}$$
: delay time before i_C increases to $I_C + \beta_F i_b$

With sinusoidal input:



 $f \uparrow \Rightarrow$ fraction of i_b that goes into capacitors $\uparrow \Rightarrow v_{be} \downarrow \Rightarrow i_c \downarrow$. At f_T : $|i_c| = |i_b|$

\Box Key dependencies of f_T in ideal BJT

$\star f_T$ dependence on I_C :

Rewrite f_T :

$$f_T = \frac{g_m}{2\pi (C_\pi + C_{je} + C_{jc})} = \frac{1}{2\pi \tau_F} \frac{1}{1 + \frac{kT}{q\tau_F} \frac{C_{je} + C_{jc}}{I_C}}$$

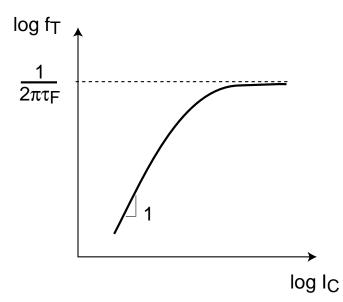
Two limits:

• Small I_C : limited by depletion capacitances

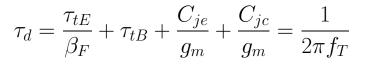
$$f_T \simeq \frac{q}{2\pi kT} \frac{I_C}{C_{je} + C_{jc}}$$

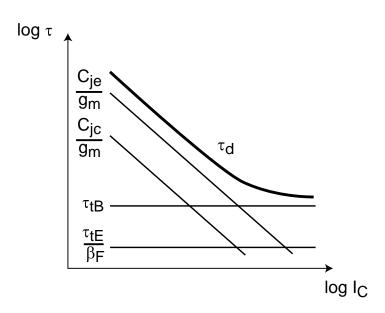
• Large I_C : limited by intrinsic delay (dominated by τ_{tB})

$$f_T \simeq \frac{1}{2\pi\tau_F}$$

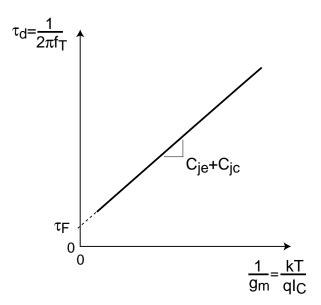


Alternative view of I_C dependence:



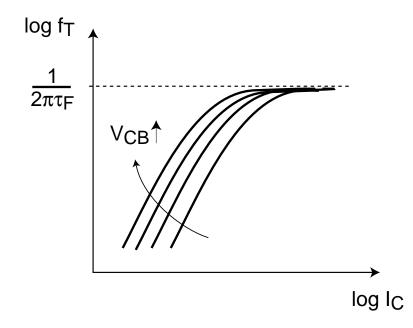


Standard experimental technique to extract τ_F and $C_{je} + C_{jc}$:



 \star f_T dependence on V_{BC} :

 $V_{CB} \uparrow (B-C \text{ junction is more reverse biased}) \Rightarrow C_{jc} \downarrow \Rightarrow f_T \uparrow$ [but only in low I_C regime of f_T]



Key conclusions

- f_T : high-frequency figure of merit for transistors: frequency at which $|h_{21}| = 1$.
- f_T of ideal BJT:

$$f_T = \frac{g_m}{2\pi(C_\pi + C_{je} + C_{jc})}$$

• Delay time, $\tau_d = \frac{1}{2\pi f_T}$: time it takes for step increase in i_B to yield an identical step increase in i_C .