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Lecture 12 - Carrier Flow (cont.)

September 30, 2002

Contents:

1. Minority-carrier-type situations (cont.)

2. Dynamic situations

Reading assignment:

del Alamo, Ch. 5, §§5.6-5.7

Seminar:

October 1: Submicron Scaling of InP Bipolar Transis-
tors: Device Design, Scaling Laws, Technology Roadmaps,
and Advanced Fabrication Processes by M. Rodwell,
University of California at Santa Barbara; Rm. 34-101, 4
PM.
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Key questions

• What is the length scale for minority-carrier type situations?

• What is the characteristic time constant of minority-carrier-type

situations? Always?

• What do majority carriers do in minority-carrier type situations?
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1. Minority-carrier-type situations (cont.)

2 Example 1:

Diffusion and bulk recombination in a ”long” bar
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Solution

Step 1. Minority carrier flow problem (for x ≥ 0):

d2p′

dx2
− p′

L2
h

= 0

with

Lh =
√

Dhτ

solution of the form:

p′ = A exp
x

Lh
+ B exp

−x

Lh

B.C. at x = 0:

gl

2
=

1

q
Jh(0) = −Dh

dp′

dx
|x=0

Then:

p′ =
glLh

2Dh
exp

−x

Lh
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Step 2. Hole current:

Assuming Jh(drift) � Jh(diff)

Jh ' −qDh
dp′

dx
=

qgl

2
exp

−x

Lh

Step 3. Total current:

Jt = 0 everywhere

Step 4. Electron current:

Je = −Jh = −qgl

2
exp

−x

Lh

Step 5. Electron profile:

n′ ' p′ =
glLh

2Dh
exp

−x

Lh
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Step 6. Electron diffusion current:

Je(diff) = qDe
dn′

dx
= −qgl

2

De

Dh
exp

−x

Lh

Step 7. Electron drift current:

Je(drift) = Je − Je(diff)

=
qgl

2

De − Dh

Dh
exp

−x

Lh

Note: if De = Dh ⇒ Je(drift) = 0

Step 8. Average velocity of hole diffusion:

vdiff
h =

Jdiff
h (x)

qp(x)
' Jh(x)

qp′(x)
=

Dh

Lh

independent of x.

[will use when deriving I-V characteristics of pn junction diode]
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Now verify assumptions

Step 9. Verify quasi-neutrality: |p′−n′

p′ | � 1

Compute E ′ from Je(drift):

E ′ =
Je(drift)

qµeno
=

kT

q

gl

2no

De − Dh

DeDh
exp

−x

Lh

From Gauss’ law, get difference between n′ and p′:

p′ − n′ = − εkT

q2no

gl

2Lh

De − Dh

DeDh
exp

−x

Lh

Then

|p
′ − n′

p′
| = (

LD

Lh
)2

De − Dh

De

If characteristic length of problem is much longer than LD (Debye

length), quasi-neutrality applies in minority-carrier-type situations.

Put numbers: for ND = 1016 cm−3, LD ∼ 0.04 µm, Lh ∼ 400 µm,

and (LD/Lh)
2 ∼ 10−8.
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Step 10. Verify Jh(drift) � Jh(diff)

|Jh(drift)

Jh(diff)
| = | qµhp

′E ′

−qDh
dp′
dx

| =
1

2

p′

no

De − Dh

De

as good as low-level injection

Step 11. Limit to injection to maintain LLI: p′(0) � no

gl �
2Dhno

Lh

Step 12. Verify linearity between vdrift and E ′

At x = 0 (worst point):

µeE ′ =
gl

2no

De − Dh

Dh
� De − Dh

Lh

∼ 1000 cm/s � vsat.
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2 Example 2: Diffusion and surface recombination in

a ”short” or ”transparent” bar

Uniform doping: Eo = 0; static conditions: ∂
∂t = 0

Bar length: L � Lh; S = ∞ at bar ends.
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Length scales of minority-carrier situations

2 Diffusion Length: mean distance that a carrier diffuses in a bulk

semiconductor before recombining

Ldiff =
√

Dτ

Ldiff strong function of doping:
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2 Sample size, L

• If L � Ldiff , Ldiff is characteristic length of problem

• If L � Ldiff , L is characteristic length of problem
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2. Dynamic situations

2 Majority carrier situations: characteristic time constant

is dielectric relaxation time ∼ sub − ps

⇒ nearly always quasi-static

2 Minority carrier situations: characteristic time constant

dominated by minority carrier physics

⇒ Substantial memory effects

• in uniform situations characteristic time constant is carrier life-

time

• in non-uniform situations?
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2 Example: Transient in semiconductor bar with S =

∞

Uniformly-doped n-type bar.

Switch-off transient after uniform illumination

S=S=
S=S=

xx00 L/2L/2-L/2-L/2

t=0t=0

tt

hhυυ

xx-L/2-L/2 L/2L/200

nn

tt00

GGextext

ggll

p'

Two recombination paths:

• Bulk recombination: time constant τ (carrier lifetime)

• Surface recombination: limited by carrier diffusion to surfaces;

time constant: ∝ L, ∝ 1/D

Combined time constant: < τ
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2 For t ≤ 0 (steady-state solution under illumination):

Dh
d2p′

dx2
− p′

τ
+ Gext = 0

Boundary conditions:

dp′

dx
|x=0 = 0

p′(±L

2
) = 0

Solution:

p′(x, t = 0) = glτ (1 −
cosh x

Lh

cosh L
2Lh

)



6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 12-14

2 For t ≥ 0:

Dh
∂2p′

∂x2
− p′

τ
=

∂p′

∂t

Solve by method of separation of constants:

p′n(x, t) = exp
−t

τ

∑

n
Kn exp

−Dht

λ2
n

cos
x

λn
for n = 1, 2, 3, ...

Kn are proper weighting coefficients and

λn =
L

(2n − 1)π
for n = 1, 2, 3, ...

Time decay is not simple exponential but sum of individual expo-

nentials. Time constant of nth component:

1

τn
=

1

τ
+ Dh[

(2n − 1)π

L
]2 >

1

τ
for n = 1, 2, 3, ...

n ↑ → τn ↓
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High-order components decay quickly ⇒ initial fast decay followed

by slow decay dominated by 1st order time constant

t

log p'(x=0,t)

all modes

first mode

0

This is seen in experiments:
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After short time, decay dominated by first mode with time constant:

1

τ1
=

1

τ
+ Dh(

π

L
)2

This is the dominant time constant of the problem.

In a general way:

1

τ1
=

1

τ
+

1

τt

with τt ≡ transit time or average time for excess carrier to reach

surface

τt =
L2

π2Dh

Surface recombination speeds up excess minority carrier decay by

providing additional recombination paths:

τ1 < τ

In the limit of very slow bulk recombination,

τ1 ' τt

Getting the excess carriers to the surface becomes the bottleneck to

the recombination rate.
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Key conclusions

• Two characteristic lengths in minority-carrier type situations:

– diffusion length, L =
√

Dτ , average distance that a carrier

diffuses in a bulk semiconductor before recombining;

– sample size, L

– whichever one is smallest, L or Ldiff , dominates behavior of

minority carriers.

• Majority-carrier type situations can be considered quasi-static.

• Minority-carrier type situations show substantial memory.

• Time constants in minority-carrier type situations:

– carrier lifetime

– transit time ∝ L2/D

– whichever one is smallest dominates

• Minority-carrier type situations called that way because:

– length and time scales of problem dominated by minority

carrier behavior (diffusion, recombination, and drift)

– role of majority carriers is to preserve quasi-neutrality and

total current continuity

• Order of magnitude of key parameters in Si at 300K:

– Diffusion length: Ldiff ∼ 0.1−1000 µm (depends on doping

level).



6.720J/3.43J - Integrated Microelectronic Devices - Fall 2002 Lecture 12-18

Self study

• Work out example 2: diffusion and surface recombination in a

”short bar” (§5.6.2)


