Lecture 30 - The "Short" Metal-Oxide-Semiconductor Field-Effect Transistor

November 15, 2002

Contents:

1. Short-channel effects

Reading assignment:

P. K. Ko, "Approaches to Scaling."

Key questions

- Why does it seem that in practice the drain current is significantly smaller than predicted by simple long MOSFET models?
- What is the impact of velocity saturation in the device characteristics?

1. Short-channel effects

 \square Mobility degradation: mobility dependence on \mathcal{E}_x (vertical field).

Experimental observation in linear regime:

Experimental observation:

$$\mu_{eff} = \frac{\mu_o}{1 + |\frac{\mathcal{E}_{av}}{\mathcal{E}_o}|^{\nu}}$$

where \mathcal{E}_{av} is average normal field in inversion layer.

$$\mathcal{E}_{av} = \frac{Q_{dmax} + \frac{1}{2}Q_i}{\epsilon_s}$$

Due to semiconductor-oxide interface roughness.

 μ_{eff} vs. \mathcal{E}_{av} : universal relationship for many MOSFET designs:

Fig. 4. Measured universal μ eff vs. Eeff curves for electrons and holes in the inversion layer. (After Liang et al. [20].)

Parameters for the effective mobility models for electrons and holes:

	electrons	holes
$\mu_o \; (cm^2/V \cdot s)$	670	160
$\mathcal{E}_o~(MV/cm)$	0.67	0.7
ν	1.6	1

Figure 6 graph from Inversion layer electron mobility data, graph from: Arora and Richardson, P. Ko, "Approaches to Scaling," in VLSI Electronics: Microstructure Science, vol. 18, chapter 1, pp. 1--37, Academic Press, 1989.

Simplified expression of \mathcal{E}_{av} for n⁺-polySi gate:

1) Relationship between Q_{dmax} and V_{th} :

$$V_{th} = V_{FB} + \phi_{sth} - \frac{Q_{dmax}}{C_{ox}}$$

with:

$$V_{FB} = -\phi_{bi} = \frac{1}{q}(W_M - W_S) = \frac{1}{q}(W_M - \chi_s - \frac{E_g}{2} - q\phi_f) = -\frac{1}{q}\frac{E_g}{2} - \phi_f$$

Plug into V_{th} and solve for Q_{dmax} :

$$Q_{dmax} = -C_{ox}(V_{th} + \frac{E_g}{2q} + \phi_f - 2\phi_f) = -C_{ox}(V_{th} + \frac{E_g}{2q} - \phi_f) \simeq -C_{ox}V_{th}$$

2) Relationship between Q_i and $V_{GS} - V_{th}$:

$$Q_i = -C_{ox}(V_{GS} - V_{th})$$

3) Plug Q_{dmax} and Q_i into \mathcal{E}_{av} :

$$|\mathcal{E}_{av}| \simeq |\frac{Q_{dmax} + \frac{1}{2}Q_i}{\epsilon_s}| = \frac{C_{ox}V_{th} + \frac{1}{2}C_{ox}(V_{GS} - V_{th})}{\epsilon_s} = \frac{\epsilon_{ox}V_{GS} + V_{th}}{\epsilon_s}$$

$$|\mathcal{E}_{av}| \simeq \frac{\epsilon_{ox}}{\epsilon_s} \frac{V_{GS} + V_{th}}{2x_{ox}}$$

Key dependences:

- $V_{GS} \uparrow \Rightarrow |\mathcal{E}_{av}| \uparrow \Rightarrow \mu_{eff} \downarrow$
- $V_{th} \uparrow \Rightarrow |\mathcal{E}_{av}| \uparrow \Rightarrow \mu_{eff} \downarrow$
- $x_{ox} \downarrow \Rightarrow |\mathcal{E}_{av}| \uparrow \Rightarrow \mu_{eff} \downarrow$

Fig. 5. Calculated µeff of current carrier, graph. From: VLSI Electronics P. Ko, "Approaches to Scaling," in VLSI Electronics: Microstructure Science, vol. 18, chapter 1, pp. 1--37, Academic Press, 1989.

Several comments:

- Since $I_D \sim \mu_e$, mobility degradation more severe as V_{GS} increases $\Rightarrow I_D$ won't rise as fast with V_{GS} .
- Since μ_e depends on $|\mathcal{E}_{av}| \Rightarrow \mu_{eff}$ depends on y. Disregard to first order \Rightarrow use same μ_{eff} everywhere.
- Mobility degradation considered "short-channel effect" because as $L \downarrow \Rightarrow x_{ox} \downarrow$ and μ degradation becomes important.

g_m in linear regime $(V_{DS} = 0.1 V)$ for $L_g = 1.5 \mu m$ MOSFET:

 g_m in linear regime $(V_{DS} = 0.1 V)$ for $L_g = 0.18 \ \mu m$ MOSFET:

\Box Velocity saturation

At high longitudinal fields, v_e cannot exceed v_{sat} :

Best fit to experiments:

$$v_e = \frac{\mu_e \mathcal{E}}{(1 + |\frac{\mu_e \mathcal{E}}{v_{sat}}|^n)^{1/n}}$$

For inversion layer:

	electrons	holes
$v_{sat} \ (cm/s)$	$8 \times 10^6 \ cm/s$	$6 \times 10^6 \ cm/s$
n	2	1

To develop analytical model, use n = 1:

$$v_e = \frac{\mu_e \mathcal{E}}{1 + \left|\frac{\mu_e \mathcal{E}}{v_{sat}}\right|}$$

New current model:

$$J_e = \mu_e Q_i \frac{dV}{dy} = \frac{\mu_e}{1 + \left|\frac{\mathcal{E}}{\mathcal{E}_{sat}}\right|} Q_i \frac{dV}{dy}$$

with

$$\mathcal{E}_{sat} = \frac{v_{sat}}{\mu_e}$$

Rewrite current equation:

$$J_e = \left[\mu_e Q_i - \frac{J_e}{\mathcal{E}_{sat}}\right] \frac{dV}{dy}$$

Plug in fundamental charge relationship:

$$Q_i = -C_{ox}(V_{GS} - V - V_{th})$$

and integrate along channel:

$$J_e L = -\mu_e C_{ox} \int_0^{V_{DS}} (V_{GS} - V - V_{th}) dV - \frac{J_e}{\mathcal{E}_{sat}} V_{DS}$$

Solve for J_e :

$$J_e = -\frac{\mu_e C_{ox}}{L + \frac{V_{DS}}{\mathcal{E}_{sat}}} (V_{GS} - V_{th} - \frac{1}{2} V_{DS}) V_{DS}$$

Terminal drain current in linear regime:

$$I_{D} = \frac{W}{L} \frac{\mu_{e} C_{ox}}{1 + \frac{V_{DS}}{\mathcal{E}_{sat}L}} (V_{GS} - V_{th} - \frac{1}{2} V_{DS}) V_{DS}$$

Effectively, impact of velocity saturation:

$$\mu_e \Rightarrow \frac{\mu_e}{1 + \frac{V_{DS}}{\mathcal{E}_{sat}L}}$$

with $\frac{V_{DS}}{L} \equiv average \ longitudinal \ field.$

- For $\frac{V_{DS}}{L} \ll \mathcal{E}_{sat} \Rightarrow$ velocity saturation irrelevant (mobility regime).
- For $\frac{V_{DS}}{L} \gg \mathcal{E}_{sat} \Rightarrow$ velocity saturation prominent (velocity saturation regime).

Since $\mathcal{E}_{sat} \simeq 10^5 \ V/cm$ and V_{DS} order $1 - 10 \ V$, velocity saturation important if $L \sim 0.1 - 1 \ \mu m$.

Current saturation occurs when v_{sat} reached anywhere in the channel $\Rightarrow I_D$ won't increase anymore with V_{DS} :

Bottleneck is current flowing through v_{sat} region:

$$I_{Dsat} = -Wv_eQ_i$$

= $Wv_{sat}C_{ox}(V_{GS} - V_{th} - V_{DSsat})$
= $\frac{W}{L}\frac{\mu_eC_{ox}}{1 + \frac{V_{DSsat}}{\mathcal{E}_{sat}L}}(V_{GS} - V_{th} - \frac{1}{2}V_{DSsat})V_{DSsat}$

Solve for V_{DSsat} :

$$V_{DSsat} = \mathcal{E}_{sat}L(\sqrt{1+2\frac{V_{GS}-V_{th}}{\mathcal{E}_{sat}L}}-1)$$

$$V_{DSsat} = \mathcal{E}_{sat}L(\sqrt{1+2\frac{V_{GS}-V_{th}}{\mathcal{E}_{sat}L}}-1)$$

• For long
$$L$$
, $V_{DSsat} \simeq V_{GS} - V_{th}$
• For short L , $V_{DSsat} \simeq \sqrt{2\mathcal{E}_{sat}L(V_{GS} - V_{th})} < V_{GS} - V_{th}$

Velocity saturation results in *premature current saturation* and less current:

$$I_{Dsat} = W v_{sat} C_{ox} (V_{GS} - V_{th} - V_{DSsat})$$

Experiments:

Fig. 7. The saturation voltage for several channel lengths, graph. From: VLSI P. Ko, "Approaches to Scaling," in VLSI Electronics: Microstructure Science, vol. 18, chapter 1, pp. 1--37, Academic Press, 1989.

Current-voltage characteristics:

Fig. 15 Comparison of drain characteristics for constant mobility case and P. Ko, "Approaches to Scaling," in VLSI Electronics: Microstructure Science, vol. 18, chapter 1, pp. 1--37, Academic Press, 1989. Impact of velocity saturation on transconductance:

$$g_m = \frac{\partial I_{Dsat}}{\partial V_{GS}} = W v_{sat} C_{ox} (1 - \frac{\partial V_{DSsat}}{\partial V_{GS}})$$

with

$$\frac{\partial V_{DSsat}}{\partial V_{GS}} = \frac{1}{\sqrt{1 + 2\frac{V_{GS} - V_{th}}{\mathcal{E}_{sat}L}}}$$

Then:

$$g_m = W v_{sat} C_{ox} \left(1 - \frac{1}{\sqrt{1 + 2\frac{V_{GS} - V_{th}}{\mathcal{E}_{sat}L}}}\right)$$

In the limit of short L:

$$g_m = W v_{sat} C_{ox}$$

In the limit of short L, g_m determined only by x_{ox} .

Fig. 10: Deep submicon NMOS transistors, graph. From: VLSI Electronics P. Ko, "Approaches to Scaling," in VLSI Electronics: Microstructure Science, vol. 18, chapter 1, pp. 1--37, Academic Press, 1989.

theoretical limit for L=0 Fig. 9: Measured and calculated gm, graph. From: VLSI Electronics Microstructure P. Ko, "Approaches to Scaling," in VLSI Electronics: Microstructure Science, vol. 18, chapter 1, pp. 1--37, Academic Press, 1989.

L=1 µm, x_{OX}=20 nm

L=2 μ m, x_{OX}=30 nm

L=3 µm, x_{OX}=50 nm

L=1.3 µm, x_{OX}=20 nm

L=2.3 µm, x_{OX}=30 nm

L=3.3 µm, x_{OX}=50 nm

MOSFET I_d scaling (Ko, 1989)

Key conclusions

- Inversion layer mobility degraded by transveral field due to roughness of semiconductor-oxide interface $\Rightarrow I_D$ lower than predicted by simple models.
- There is a *universal relationship between mobility and* average *transversal field in inversion layer*.
- For short L, velocity saturation in inversion layer important \Rightarrow I_D lower than predicted by simple models.
- Velocity saturation \Rightarrow premature MOSFET saturation $\Rightarrow V_{DSsat}$ lower than predicted by simple models.
- Velocity saturation $\Rightarrow g_m$ saturation in limit of short L:

$$g_m = W v_{sat} C_{ox}$$