Lecture 5 - Carrier generation and recombination (cont.)

September 12, 2001

Contents:

- 1. G&R rates outside thermal equilibrium
- 2. Surface generation and recombination

Reading assignment:

del Alamo, Ch. 3, §§3.4, 3.6

Key questions

- What happens to the balance between generation and generation when carrier concentrations are perturbed from thermal equilibrium values?
- How is this balance upset for each G&R mechanism?
- What are the key dependencies of this imbalance in G&R rates?
- How can surface G&R be characterized?

1. G&R rates outside equilibrium

• In thermal equilibrium:

$$n = n_o$$

$$p = p_o$$

$$G_{oi} = R_{oi}$$

$$G_o = R_o$$

• Outside thermal equilibrium (with carrier concentrations disturbed from thermal equilibrium values):

$$n \neq n_o$$

$$p \neq p_o$$

$$G_i \neq R_i$$

$$G \neq R$$

thermal equilibrium

outside thermal equilibrium

If $G \neq R$, carrier concentrations change in time.

Useful to define $net\ recombination\ rate,\ U$:

$$U = R - G$$

Reflects imbalance between internal G&R mechanisms:

- if $R > G \rightarrow U > 0$, net recombination prevails
- if $R < G \rightarrow U < 0$, net generation prevails

If there are several mechanisms acting simultaneously, define:

$$U_i = R_i - G_i$$

and

$$U = \Sigma U_i$$

What happens to the G&R rates of the various mechanisms outside thermal equilibrium?

a) Band-to-band optical G&R

thermal equilibrium

with excess carriers

• optical generation rate unchanged since number of available bonds unchanged:

$$G_{rad} = g_{rad} = r_{rad} n_o p_o$$

• optical recombination rate affected if electron and hole concentrations have changed:

$$R_{rad} = r_{rad}np$$

• define net recombination rate:

$$U_{rad} = R_{rad} - G_{rad} = r_{rad}(np - n_o p_o)$$

- if $np > n_o p_o$, $U_{rad} > 0$, net recombination prevails
- if $np < n_o p_o$, $U_{rad} < 0$, net generation prevails
- note: we have assumed that g_{rad} and r_{rad} are unchanged from equilibrium

b) $Auger~G \mathcal{E} R$

• Involving hot electrons:

thermal equilibrium

with excess carrier

$$G_{eeh} = g_{eeh}n$$

$$R_{eeh} = r_{eeh}n^2p$$

If relationship between g_{eeh} and r_{eeh} unchanged from TE:

$$U_{eeh} = R_{eeh} - G_{eeh} = r_{eeh}n(np - n_o p_o)$$

• Involving hot holes, similarly:

$$U_{ehh} = r_{ehh}p(np - n_o p_o)$$

• Total Auger:

$$U_{Auger} = (r_{eeh}n + r_{ehh}p)(np - n_op_o)$$

c) Trap-assisted thermal G&R

thermal equilibrium

with excess carriers

Out of equilibrium, if rate constants are not affected:

$$r_{ec} = c_e n(N_t - n_t)$$

 $r_{ee} = e_e n_t = c_e n_i n_t$
 $r_{hc} = c_h p n_t$
 $r_{he} = e_h (N_t - n_t) = c_h n_i (N_t - n_t)$

Recombination: capture of one electron + one hole \Rightarrow

net recombination rate = net electron capture rate = net hole capture rate

$$U_{tr} = r_{ec} - r_{ee} = r_{hc} - r_{he}$$

From this, derive n_t , and finally get U_{tr} :

$$U_{tr} = \frac{np - n_o p_o}{\tau_{ho}(n + n_i) + \tau_{eo}(p + n_i)}$$

${\bf d)}\ All\ processes\ combined$

$$U = U_{rad} + U_{Auger} + U_{tr}$$

□ Special case: **Low-level Injection**

Define excess carrier concentrations:

$$n = n_o + n'$$

$$p = p_o + p'$$

LLI: Equilibrium minority carrier concentration overwhelmed but majority carrier concentration negligibly disturbed

- for n-type:

$$p_o \ll n' \simeq p' \ll n_o$$

- for p-type:

$$n_o \ll n' \simeq p' \ll p_o$$

In LLI:

$$np - n_o p_o = n_o p_o + n_o p' + p_o n' + n' p' - n_o p_o \simeq (n_o + p_o) n'$$

All expressions of U follow the form:

$$U_i \simeq \frac{n'}{\tau_i}$$

 τ_i is *carrier lifetime* of process i, a constant characteristic of each G&R process:

$$\tau_{rad} = \frac{1}{r_{rad}(n_o + p_o)}$$

$$\tau_{Auger} \simeq \frac{1}{(r_{eeh}n_o + r_{ehh}p_o)(n_o + p_o)}$$

$$\tau_{tr} \simeq \frac{\tau_{ho}n_o + \tau_{eo}p_o}{n_o + p_o}$$

Under LLI, net recombination rate depends linearly on excess carrier concentration through a constant that is characteristic of material and temperature.

If all G&R processes are independent, combined process:

$$U \simeq \frac{n'}{\tau}$$

with

$$\frac{1}{\tau} = \Sigma \frac{1}{\tau_i}$$

The G&R process with the smallest lifetime dominates.

Physical meaning of *carrier lifetime*:

- U is rate of net recombination rate in unit volume in response to excess carrier concentration n' (linear in n')
- ullet is mean time between recombination events in unit volume
- $\tau = \frac{n'}{U}$ is mean time between recombination event *per excess* carrier,

or average time excess carrier will "survive" before recombining

 \rightarrow constant characteristic of material

For n-type material, $n_o \gg p_o$:

$$\tau_{rad} = \frac{1}{r_{rad}n_o}$$

$$\tau_{Auger} = \frac{1}{r_{eeh}n_o^2}$$

$$\tau_{tr} = \tau_{ho} \propto \frac{1}{N_t}$$

Trap recombination (n-type material):

 \bullet Lifetime does not depend on n_o [trap occupation probability rather insensitive to $n_o]$

• Lifetime depends on trap concentration as $\tau \propto N_t^{-1}$

□ Measurements of carrier lifetime in Si at 300 K

For low doping levels, $N_{A,D} < 10^{17} \ cm^{-3}$, τ_{tr} dominates:

- \bullet τ depends on material quality and process \to wide data scatter
- N_t correlated with $N_{A,D} \to \tau \propto N_{A,D}^{-1}$

For high doping levels, $N_{A,D} > 10^{18} \ cm^{-3}$, τ_{Auger} dominates:

- \bullet "intrinsic" recombination: \rightarrow tight data distribution
- $\tau \propto N_{A,D}^{-2}$

2. Surface generation and recombination

Surface: severe disruption of periodic crystal \Rightarrow lots of traps (G&R centers)

Under LLI:

$$U_s \simeq Sn'(s)$$

 $S \equiv \text{surface recombination velocity } (cm/s)$

note units:

$$U_s(cm^{-2} \cdot s^{-1}) = S(cm \cdot s^{-1}) \ n'(cm^{-3})$$

S is perpendicular component of velocity with which excess carriers "dive" into the surface to recombine.

Key conclusions

- Excess np product is driving force for net generation/recombination.
- Under low-level injection:

$$U \sim \frac{n'}{\tau}$$

with $\tau \equiv carrier\ lifetime$.

- Carrier lifetime: mean time that an average excess carrier "survives" before recombining.
- In Si around 300K,
 - $-\tau \sim N^{-1}$ for low N (trap-assisted recombination),
 - $-\tau \sim N^{-2}$ for high N (Auger recombination).
- Order of magnitude of key parameters for Si at 300K:
 - $-\tau \sim 1 \ ns 1 \ ms$, depending on doping

Self study

• Carrier extraction, generation lifetime