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Abstract

This thesis presents FIFS (Framework for Implementing File Systems), a framework that
facilitates academic file system research under Windows NT. FIFS addresses the high
cost of file system development under Windows NT by providing a simple user-mode
development environment. The environment is a Common Internet File System (CIFS)
loopback server that seamlessly integrates with NT's Installable File System (IFS)
architecture via the Common Internet File System (CIFS) client included in the operating
system. As such, it can provide full NT remote file system semantics. Initial performance
measurements of the prototype FIFS implementation show FIFS capable of achieving
good performance. Our prototype non-caching user-mode NFS implementation performs
at about 70% the speed of a commercial non-caching kernel-mode NFS implementation.
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1 Introduction

This thesis presents FIFS, a framework for implementing file systems in Windows

NT. For many years, file system research has been conducted on UNIX, which is popular

in academic research environments. However, there has recently been increasing interest

in Microsoft's Windows NT as a research operating system. Unfortunately, Windows NT

does not a have a well-documented, inexpensive file system development environment.

Its I/O architecture is radically different from the traditional UNIX architectures and is

thus not as widely understood. Access to Windows NT source is more restricted than

many UNIX implementations. As a result, no significant academic research file systems

are implemented on NT today. The motivation for FIFS is to give file system researchers

a mechanism that enables them to use a new and increasingly popular operating system to

do their work. This will enable file system researchers to reach a wider user base and to

use popular application workloads with their file system implementations. In addition,

they will be able to explore the architectural implications of NT on their work. With

FIFS, almost anyone should be able to write file systems for Windows NT.

1.1 Background

The file systems shipped with Windows NT are implemented as kernel-mode file

system drivers that plug into the NT's Installable File System (IFS) architecture. NT has

a hierarchical kernel namespace where all machine resources, including devices and

drivers, are named. When a user issues an I/O request to a given name, NT translates the

beginning of the name into a file system driver name and dispatches the request along

with the untranslated portion of the name to the driver. The file system driver then

interacts with the NT I/0 manager, cache manager, and virtual memory manager to

satisfy the request. Figure 1-1 illustrates the basic structure of the IFS driver architecture.



ApplicationI user mode

kernel mode

Figure 1-1: Overview of NT IFS Architecture

Unfortunately, writing file system drivers for Windows NT is difficult. In general,

device drivers for NT tend to be more difficult to write than UNIX drivers [2] due to the

extra complexity of NT's asynchronous I/O request packet-based architecture, the lack of

quality kernel-mode development documentation, and the additional difficulty in

obtaining an academic license for kernel source. The situation for file system driver

development is even worse because these drivers are the most complex type of driver in

NT but are the least documented. Thus, NT file system driver development is a difficult

and time-consuming undertaking [18].

Microsoft has limited support for file system development via the NT Installable

File System (IFS) Development Kit. At the beginning of 1997, Microsoft started selling

the NT IFS Development Kit for US$1,000 [17]. The kit includes no documentation of

the IFS architecture, but instead provides a single half-megabyte header file and source

code for the FAT and CDFS 1 file systems. The sample code is fairly optimized and

complex, and, without documentation, requires that the developers reverse engineer the

IFS architecture. In addition, there are no assurances that the file system-related portions

of the driver environment will remain stable between releases of Windows NT [17, 18,

19].

The NT operating system includes several local file system drivers, including

those that support NTFS, FAT, and CDFS. The only remote file system 2 driver that

'CDFS provides ISO-9660 (CD-ROM file system) support in Windows NT.
2 For the rest of this document, the term remote file system is being used to denote a file system accessed
over the network.
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comes with the operating system is a Common Internet File System (CIFS) client, which

uses the Server Message Block (SMB) protocol3 [12].

1.2 Issues

Several important criteria affect file system development. Any file system

development framework must address these issues. These criteria are price, performance,

portability, richness of semantics, ease of programming, and ease of use. Here is a

summary of these issues:

Price The framework must be inexpensive so that researchers on a low
budget can still implement file systems.

Performance

Portability

Richness of
Semantics

Ease of
Programming

Ease of Use

A file system developed under the framework must be able to
perform at speeds comparable to a kernel-mode file system driver
implementation.

The framework and file systems developed within it should be easily
portable across operating system revisions and perhaps even across
different operating systems.

File systems developed using the framework should support full
operating system file system semantics. For example, if an operating
system supports byte range locking, a good framework should allow
users to take advantage of a file system's byte range locking
capabilities through the operating system's standard file system
interfaces.

The file system development interface provided by the framework
must be easy for programmers to use. If a file system programming
interface is difficult to use, file system development time increases,
and easier alternatives will be sought.

A file system should be easy to use. Programs should not need to be
recompiled or re-linked to take advantage of a new file system.

3 The terms CIFS and SMB will be used interchangeably throughout the rest of the document. Both terms
refer to a single protocol. Servers (or clients) implementing the protocol are known as both CIFS and SMB
servers (or clients).



1.3 Goals

Our goal is to provide a file system development framework that addresses these

issues in a way that makes it easy for developers to implement file systems. Thus, we

prefer ease of programming rather than the absolute highest performance.

1.4 Solution

Our solution is FIFS, a user-mode file system architecture that plugs into NT's

Common Internet File System (CIFS) client. The framework provides a user-mode CIFS

loopback server that can be configured to serve a file system implemented via a Windows

dynamic link library (DLL). The server is multi-threaded so as to handle requests

asynchronously. It calls into a simple but functionally rich file system interface and,

given a full implementation, is capable of performing all file system operations available

to NT user-mode programs, including file locking, byte range locking, and directory

notification.

1.5 Contributions

This thesis makes several contributions to file system development under

Windows NT: prototype implementations of FIFS and the FSWIN32, FSMUNGE, and

FSNFS user-mode file system drivers. This implementation of FIFS is the first user-mode

file system development framework for Windows NT that is fully implemented in user-

mode. FSWIN32 is a FIFS file system driver that makes Win32 file system API calls to

provide access to whatever is accessible via the local machine. It is mainly intended as a

testing and performance measurement tool. FSMUNGE is a pathname dissection filter

driver that allows simpler file system driver implementations to plug directly into FIFS.

FSNFS is a simple NFS file system driver that works with FSMUNGE.

1.6 Organization

The remainder of this thesis is organized as follows: Chapter 2 examines related

work, including previous efforts in file system development under Windows NT. Chapter

3 discusses the design of FIFS. Chapter 4 describes some of the aspects of the initial

implementation of FIFS and the FSWIN32, FSMUNGE, and FSNFS file system drivers.



Chapter 5 investigates the performance of the initial FIFS implementation by comparing

FSWIN32 to local file system access and comparing FSNFS to a commercial kernel-

mode NFS implementation. Chapter 6 suggests future enhancements to FIFS.



2 Related Work

The vnode interface originally developed by Sun is one of the most common

mechanisms for adding file systems to UNIX [5, 10]. It is simple compared to, the

interfaces used by NT's IFS architecture and has enjoyed a fair amount of use in research

file system implementations [4, 9]. There has been no similarly simple interface to NT

file system development. It is our hope that FIFS will change this situation.

One of the most well-established file system development groups for Windows

NT is Open Systems Resource (OSR). OSR's File Systems Development Kit (FSDK) is

based on source code licensed from Microsoft and is considered to be an excellent NT

kernel-mode file system development kit [19]. It provides wrappers that attempt to isolate

the file system driver developer from the complexity of the NT kernel [see Figure 2-1].

Unfortunately, the kit is sold for US$95,000. According to OSR, the price of the FSDK

reflects the current cost of NT file system driver development [21].

Application
user mode

kernel mode

Figure 2-1: Overview of the OSR FSDK

More recently, NT Core Services (NTCS) has announced a beta version of their

File System Veneer Toolkit, which is also a kernel-mode file system development kit.

We requested documentation and licensing information for this product, but never

received any.

In late 1997, the first book about NT file systems was published [18]. It explains

the complex, highly asynchronous NT 1O architecture in more detail than does the only
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other NT device driver book [1]. Due to the complexity of developing file systems under

NT, the sample source from the book does not attempt to provide a working file system.

In fact, the author stresses that developing file systems under NT is a time-consuming

process (more so than traditional operating systems, i.e., UNIX). The book does not

contain enough information to completely implement a file system driver.

There are several kernel-mode file system drivers available to users in addition to

those that are shipped with NT. Most are commercial NFS clients. Some of these include

Intergraph's DiskAccess, Xlink's Omni-NFS Enterprise, FTP Software's InterDrive, and

Hummingbird's NFS Maestro. No freely available file system drivers exist at this time.

User-mode file systems have also been implemented under Windows NT. In mid-

1997, Galen Hunt at Microsoft Research developed a kernel-mode proxy driver that calls

back into user-mode and allows for the development of user-mode file systems [7, 8].

The principle of his proxy driver is illustrated in Figure 2-2. Since it is a generic device

driver proxy, the driver simply proxies I/O request packets into user-mode. Such an

implementation is guaranteed to be slower than a full kernel-mode driver implementation

due to additional context switching. However, the user-mode environment provides a rich

feature set and is more forgiving in that programming errors will not cause the system to

crash. The user-mode environment is also better documented. In addition, file systems

developed in user-mode are more portable across versions of Windows NT (though the

proxy driver itself may not necessarily be so).

Application User Mode Operation:

File System Driver 1. Application issues file system
rn, t to tth kernel

user mode
kernel mode

2

2. Proxyfile system driver
forwards request to user mode
file system component

3. User mode file system
component fulfills request and
returns results to the proxy
driver

4. Application receives results
trom the Kernel

Figure 2-2: Operation of proxy file system driver
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Hunt successfully implemented an HTTP and FTP file system driver using this

scheme. He indicated that his proxy driver is expected to be included in the Windows NT

Device Driver Kit. However, the latest Windows NT Device Driver Kit, which was

released several months after the publication of his paper, contained no such driver [16].

While his proxy driver has fairly good performance, the programming environment it

provides is not specialized for file systems. Rather, it exposes the generic device driver

I/O request packet architecture to the programmer. One novel feature of Hunt's proxy

driver is that the user-mode drivers are developed as Component Object Model (COM)

objects. FIFS uses a similar object-oriented approach.

Fortunately, it is possible to use an existing network file system driver to forward

file system requests to a user-mode file server. The user-mode server can run on the same

machine and serve as a loopback server. This was the approach used in creating a

portable UNIX SFS (secure file system) client implementation in [13]. In that case, an

NFS loopback server was used because most UNIX kernels contain an NFS client. While

Windows NT does not include an NFS client, it does have a CIFS client. A CIFS

loopback server would therefore be more suitable than NFS for NT both because NT's

CIFS client comes at no additional cost and because some of the SMB calls are exactly

the same as NT system calls. In fact, we reverse-engineered Transarc's commercial AFS

client for Windows NT and discovered that their AFS client is implemented as a CIFS

loopback server. This is the only instance of such a file system implementation of which

we are aware. One problem with the CIFS loopback server approach is that there is not a

convenient way to set file system-specific information, such as access control lists,

through the SMB protocol. Transarc addresses this issue by providing several utilities

that communicate with the loopback server to perform these special functions. The

communication takes place via a special invisible file in the root of the file system.

Unfortunately, their implementation requires that the file be opened in exclusive mode,

preventing more than one communication session from occurring at a given time (thus

making users of this AFS implementation vulnerable to denial of service attacks). Figure

2-3 shows how a CIFS loopback server file system implementation works. FIFS uses a

CIFS loopback approach to provide its file system framework in a fairly portable manner.
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loopbac
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4--

Operation:

k 1. Application issues file system
request to the kernel

2. Kernel mode CIFS client issues
corresponding SMB request(s) to
the user mode CIFS loopback

3 server
3. User mode CIFS loopback server

fulfills request(s) (possibly by
going out over the network and/or
reading the local disk) and
returns results to the CIFS client
as an SMB response

4. Application receives results from
the kernel

Figure 2-3: Operation of CIFS loopback server file system

A user-mode file system can also be implemented as a file system library.

However, each program that wishes to make use of the new file system needs to be

statically or dynamically linked to the library. Programs that use the file system interface

exported directly by the kernel will simply be unable to use the new file system unless

they are recompiled. No work on such a file system implementation has been done on

NT. However, some work has been done in providing UNIX libraries on NT which

provide users with UNIX-like semantics for file systems under NT [11, 25].
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3 Design

We chose a user-mode CIFS loopback server4 design for FIFS. This gives the

framework full integration into the NT namespace as well as the potential for full NT

remote file system semantics. As a user-mode server using a standard protocol, the

loopback server is portable across operating system revisions. To facilitate file system

programming, the loopback server calls into a straightforward file system dispatch table.

3.1 Server

The loopback server is a user-mode process that listens on a NetBIOS name [15]

and responds to CIFS requests from the local machine's CIFS client. (To prevent

connection hijack attacks, requests are accepted only from the local client.) The requests

can be divided into 2 categories: connection management and file system dispatch

operations. Connection management requests consist of setting up the CIFS session to the

local machine and performing user authentication. File system dispatch operations are the

standard open, close, read, write, etc. operations.

When a user attempts to connect to a particular file system, the CIFS server can

use pass-through authentication to the local machine or any other trusted administrative

domain. After establishing the identity of the user, the server passes the user's principal

identifier to an underlying user-mode file system driver and receives a dispatch table for

the user. Subsequent file system operations for that user are invoked through that dispatch

table. Figure 3-1 illustrates the basic operation of the server.

The functionality supported via the loopback server is only as rich as the

functionality provided by the SMB protocol. Since SMB does not support such things as

hard links, creating symbolic links, and setting standard UNIX ownership information

and mode bits, the framework cannot support this feature directly. However, this

additional functionality can be provided over SMB via IOCTLs.

4 For the remainder of this document, the term FIFS server, loopback server, and CIFS server refer to the
FIFS loopback server. Unless otherwise noted, other references to server refer to the FIFS loopback server.



3.2 Namespace

A user names files on a FIFS file system via universal naming convention (UNC)

names of the form \\FIFS NetBIOSname\share name\path. The NT CIFS

client will direct requests to names of this form to the FIFS loopback server, passing the

share identifier and path portion of the name to the server. A user can avoid having to

specify the share (\\FIFS_NetBIOS_name\share_name) portion of a pathname

by associating the share with a drive letter.

I----------------------------
FIFR nfddmrpsq sq nqr

Figure 3-1 : FIFS Architecture

3.3 File System Drivers

The FIFS server uses user-mode FIFS file system drivers to satisfy SMB requests

(see Figure 3-1). File system drivers are implemented in a Windows DLL. The DLL

exports a single function, FileSystemCreate (), that allows the server to request an

interface pointer to a FileSystem interface. FileSystemCreate () takes in a file

system name, a configuration string, and an interface version. It returns a pointer to the

desired version of the FileSystem interface for the corresponding file system,

configured according to the configuration string. In pseudo-code, the function is defined

as follows:

FileSystem = FileSystemCreate(fs_name, fs_config_path, version)

This design is based on the Component Object Model (COM) [3]. The fsname

argument allows a DLL to act as a driver for multiple file systems. The
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fs_config_path argument allows the file system to be dynamically configured by

the server. If a new version of the file system interface is developed, a different

version number can be used for the interface. Then, the server can try to use the latest

version of the file system interface supported by the file system DLL.

3.4 File System Interfaces

The file system interfaces are thread-safe, COM-like interfaces. This is so that a

multi-threaded server can be easily used with the interfaces. As COM interfaces, they

perform their own reference counting via AddRef () and Release (). Programmers

using these interfaces must therefore call AddRe f () whenever they assign an additional

reference to the interface and Release () whenever they release a reference to the

interface object. This is so that the memory allocated for the interface can be

automatically de-allocated by the interface object itself once its reference count is zero.

Thus, any function that allocates an interface object and returns an interface pointer (such

as FileSystemCreate () above and FileSystem: : connect () below) must

ensure that the reference count for the interface is equal to one.

The initial version of the file system interfaces is FSVERSION_0. The main

interface is the Fi leSystem interface. Aside from reference counting, the only function

that this interface provides is connect () , which, in pseudo-code, is defined as follows:

FsDispatchTable = FileSystem::connect(principal)

The server passes a principal identifier string for the user into connect () to get

a FsDispatchTable interface that is associated with the user's security context.

The FsDispatchTable interface is a simple, handle-based file system

interface derived from the Win32 interface and the vnode interface. Aside from

AddRef () and Release(), it contains the following functions (which are fully

prototyped in Appendix A):



Function Description
get principal () Returns principal associated with this dispatch table
get root () Returns handle to root of file system.
Create () Creates/opens files, opens directories with given attributes

and returns a handle. Action depends on flags specified.
Lookup () Looks up a name in a directory and returns its attributes.
set attr () Given a handle, sets file/directory attributes.
get attr () Given a handle, returns file/directory attributes.
close () Closes a handle.
write () Writes data to a file handle at the specified offset.
read () Reads data from a file at the specified offset.
read dir () Given a directory handle and cookie, returns directory entries.
statfs () Returns file system attributes, including volume name and

size information.
remove () Removes file with given name from a directory.
rename () Renames a file.
mkdir () Creates a directory with the specified attributes.
rmdir () Removes a directory.
readl ink () Given a symbolic link handle, returns path to which it points.
symlink () Creates a symbolic link.
link () Adds a hard link.
ioctl () Performs an IOCTL on a file handle.
flush () Returns after putting file on stable storage.

Table 3-1: Summary of FsDispatchTable interface

This interface allows all standard directory and file operations to be performed.

However, it does lack locking and callback notification facilities. Section 6.3 discusses

this missing feature in more detail.

3.5 Layering: Filters and Adapters

The framework provided by FIFS is flexible. A file system driver can call into

any other file system driver in the same way that the server can. Thus, the framework can

achieve layering of file system drivers. Figure 3-2 illustrates this principle.

There are a wide variety of applications for file system driver layering. For

example, a simple encrypting layer can be used as a filter to encrypt and decrypt all data

written to and read from a given file system. A separate filter driver might audit all file

accesses in a particular directory that contains confidential information.



A file system driver can also be used as an adapter from the FIFS server

component to a simple file system implementation. For example, a simple FIFS server

can be implemented such that it is not aware of symbolic links and never calls

readlink () and symlink () . To make this server work with a file system driver that

returns symbolic link attributes and does not automatically traverse symbolic links, an

adapter layer can be written that transparently traverses symbolic links. Similarly, if a file

system driver is case sensitive, but the names provided by the CIFS client are not, a file

system adapter can mask the mismatch between the server and the client.

SMB FI------FSaddressace--------SMB 1 FIFS address SDace

----------------------

Figure 3-2 : Example of File System Layering in FIFS

This layered architecture allows developers to write simple file system drivers

that can be matched to whatever server implementation is being used through any number

of layered drivers. Thus, if desired, a filter or adapter can be simple and do a single task

but several can be combined to perform complex data transformations and actions.
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4 Implementation

The initial FIFS implementation consists of the CIFS loopback server, two file

system drivers, and an adapter driver.

4.1 Server Implementation

The SMB protocol used in CIFS supports several different dialects [12]. The first

step in implementing the FIFS loopback server is the selection of an SMB dialect. The

newer dialects have more advanced functionality (e.g., file locking, better user

authentication, etc.) but also support all requests in the older dialects. The CIFS

specification suggests that new clients using a new protocol should not use older-style

SMB messages so that, in the future, new SMB servers will not have to support the older

messages. However, new SMB servers are currently supposed to support old-style

messages in their dialect. This makes writing SMB servers more cumbersome than

necessary. 5 In this implementation, the LM1.2X002 dialect [12] is used. It provides the

richest semantics without the more obscure NT-specific features of the more recent NT

LM 0. 12 dialect [12]. Because all current SMB dialects include older dialects, an

LM1.2X002 implementation can be used as a stepping stone to an NT LM 0.12

implementation.

A drawback of not using NT LM 0. 12 is that IOCTLs are not supported in

previous SMB dialects (or, at least, are undocumented). Therefore, this FIFS

implementation does not support IOCTLs.

For the initial FIFS implementation, we chose not to support SMB's opportunistic

locking [12] so as to simplify the implementation. We also do not implement pass-

through authentication. Sections 6.1 and 6.3 have more details on these topics.

The server is multi-threaded and maintains a minimal amount of global state that

is protected from concurrent access. (This state mainly consists of FsDispatchTable

5 The correct solution is to define a new dialect that only supports the newer-style SMB messages. Then,
writing servers that speak the newest SMB dialect would be a less cumbersome task. Since the SMB
loopback server needs to work with the current NT CIFS client, it cannot define a new SMB dialect and
must instead use one of the supported dialects.



pointers.) The access operations are fast and allow the server to be highly concurrent. The

only time-consuming operations that a thread might do are calls into a dispatch table. In

that case, the file system driver is responsible for safely maintaining its internal state and

achieving as much concurrency as desired.

The server does not directly call any of the symbolic or hard link functions in

underlying drivers because SMB does not know about symbolic links. Instead, it relies on

the file system driver to provide transparent access to symbolic links (directly or via a

layered driver).

4.1.1 Configuration

Server configuration parameters are specified via a Windows NT registry

pathname argument to the server. The configuration includes NetBIOS name (which by

default consists of the local machine name and a few extra characters), the desired

NetBIOS buffer size, the number of worker threads desired, the file system driver DLL to

use, the file system name to ask for, and the file system configuration information string.

The server runs as a regular process rather than as a Windows NT service.

4.1.2 Pathnames

An important feature of this server is that it passes pathnames to the underlying

file system driver without interpreting them. Thus, since CIFS often passes full

pathnames, the underlying file system driver must be prepared to handle a backslash-

delimited pathname. An advantage of this approach is that the FIFS server does not have

to split up the name and traverse the pathname by calling create () multiple times.

Rather, it can just pass the full name to the underlying file system driver, which can do

whatever it wants to do.

One problem that we discovered while implementing the server is that the NT

CIFS client sometimes passes uppercase pathnames to the loopback server. This is a

problem if the underlying FIFS file system driver is case-sensitive. In some cases, the NT

client requests all entries in a directory from the loopback server. However, there are

cases where the NT client passes an uppercase string as a filter to an SMB directory

enumeration request. Our loopback server optimizes lookups for such a filter by calling



the lookup () function on the given name instead of calling read dir () and

filtering the results. One problem with this approach is that lookup () does not return a

name. So, the server fills in the name information in the SMB directory enumeration

reply with the uppercase string that it received from the CIFS client. This can be a

problem if the client then uses the name to open a file on a case-sensitive file system. In

order to circumvent this idiosyncrasy, some future work can be done either in the main

file system driver itself or as a layered driver (see Section 6.6).

4.2 FSWIN32

FSWIN32 is the first file system driver implemented for FIFS. It allows the user

to access a subtree of the local machine's namespace. It simply converts its arguments

and calls directly into the Win32 API. The implementation uses coarse locking and thus

exhibits little concurrency. Most of the file system functions in this driver lock the user's

entire dispatch table object. The purpose of this file system driver was to do initial

framework validation as well as to get an idea of the overhead of FIFS when accessing

parts of the Win32 namespace. Its only interesting performance feature is that it pre-

fetches and caches directory information.

4.3 FSMUNGE

FSMUNGE is a file system adapter. Its configuration information specifies the

underlying file system driver to which it will serve as an adapter. Whenever FSMUNGE

receives a request with a multi-part pathname, it breaks down the pathname and opens

each directory component of the pathname using the underlying file system driver. It then

fulfills the request by calling the underlying file system driver with the resulting directory

handle and final pathname component. This filter driver is fully asynchronous. It will

block only if the underlying file system driver blocks.

The purpose of this file system driver was to allow us to develop FSNFS without

having to handle multi-part pathnames. The file system driver was easy to develop. In

fact, it only took about an hour of development time, most of which was spent writing a

pathname dissection class. The ease of development is a good indication of how easy it is

to write FIFS drivers. FSMUNGE was later revised to make pathnames lower case so that



the underlying FSNFS driver did not have to handle uppercase names sent by the NT

CIFS client. (A side effect of this is that the FSNFS driver is unable to access files with

names containing upper case letters. A fix to this problem is suggested in Section 6.6).

4.4 FSNFS

FSNFS is an NFS version 2 file system driver. The purpose of this file system

driver is to validate that the framework is easy to use and that it can achieve reasonable

performance. The development of FSNFS showed that the framework is easy to use. Like

FSMUNGE, this driver took relatively little time to develop. Its was implemented in a

day by someone who had never implemented an NFS client or server and who had never

written a significant piece of code using the ONC/Sun RPC library. Due to lack of time,

we did not add any caching optimizations to this driver. So FSNFS must always make

one or more NFS remote procedure calls to satisfy requests.

Because the ONC/Sun RPC library implementation freely available for NT is not

thread-safe, we use a coarse locking discipline for FSNFS. One big drawback to the low

FSNFS concurrency is that large read and write requests get broken down into 8KB

chunks that are issued synchronously rather than asynchronously.

Though NFS supports symbolic links, this first FSNFS implementation does not.

FSNFS does not make any provisions to handle case-insensitive names passed into it. The

driver could support this functionality by reading the directory where the name lookup is

taking place and doing a case-insensitive match. Since FSNFS does no caching, such

functionality can just as easily be implemented as an adapter driver. Section 6.6 discusses

the issues that must be addressed to fix this problem.



5 Experiments and Results

We compared the performance of accessing the local NTFS file system directly

versus access through FSWIN32 to obtain a rough measurement of the overhead of FIFS.

We also compared FSNFS to NFS Maestro Solo, a commercial NFS client implemented

as a kernel-mode file system driver created by Hummingbird Communications Ltd. We

chose NFS Maestro because it has been rated as one of the best-performing NFS clients

for NT. By default, Maestro uses the NT cache manager. However, it does have an option

to disable caching. To obtain a clearer picture of the FIFS overhead, we ran Maestro both

with and without caching. We ran the LFS large and small file micro-benchmarks to help

understand the performance characteristics of these systems. We then ran an application

benchmark inspired by the Andrew benchmark to understand of how these file systems

compare under some typical workloads.

5.1 Setup

The FIFS loopback server and NFS server for these experiments are both

200MHz Pentium Pro machines with 256KB L2 cache, 64MB RAM, 2GB disks, and

10Mb/s SMC Ultra Ethernet cards connected via a 100Mb/s switch. The FIFS machine

runs Windows NT Server 4.0 with Service Pack 3 while the NFS server run OpenBSD.

The tests were run 3 to 5 times to verify that they generated similar results. Neither

machine was loaded. While no special care was taken to isolate the machines from

broadcast traffic and other connections, the network was monitored to verify that the tests

ran under similar conditions. The loopback server was configured to run with a 16KB

buffer size. We configured NFS Maestro to use NFS version 2. In addition, as per its

performance optimization configuration tool, NFS Maestro was configured to use a 4KB

read size and an 8KB write size with no parallelism on reads and 8-way parallelism on

writes.

In the results, we indicate the FSWIN32 driver running in a single FIFS server

worker thread as FSWIN32-1. Similarly, the FSNFS driver running in a single worker

thread is indicated by FSNFS-1. FSWIN32-4 and FSNFS-4 indicate four-threaded runs of



the FIFS server with each of these drivers. The kernel-mode NFS Maestro results are

listed as kNFS. kNFSnc indicates the results of running kNFS without caching enabled.

5.2 Large File Micro-Benchmark

The large file benchmark sequentially writes a large file, reads it sequentially,

writes it randomly, reads it randomly, and then sequentially re-reads it. Data is flushed to

disk after each write. For these tests, we used an 8MB file with I/O sizes of 256KB and

8KB. The results are shown in Figure 5-1 and Figure 5-2.

The benchmark shows that the FIFS file system driver implementations are

slightly slower when running with a multiple worker threads. This is expected as the

current FSWIN32 and FSNFS implementations block the entire file system dispatch table

on each call.
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Figure 5-1 : Large File Micro-Benchmark Results (8MB file using 256KB I/O)

The large file write performance for FSWIN32 versus direct NTFS access shows

that FIFS does not add much overhead to writes. We are uncertain as to why FSWIN32
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exhibited slightly better performance in the random write phase of the benchmark. It may

be a result of the random number generator, but we are not certain. Varying the I/O size

does not significantly affect the FSWIN32 results.

FSWIN32 read performance is poor compared to direct NTFS access. The

difference is 0.87 seconds for FSWIN32 versus 0.15 seconds direct NTFS using 256KB

I/O and 1.14 seconds versus 0.07 seconds for 8KB I/O. This is because NT I/O subsystem

cannot satisfy FSWIN32 read requests by looking directly at the NT cache. Instead, NT

must use FIFS to satisfy the request. FSWIN32 takes more time for the 8KB I/O than the

256KB I/O because it needs to satisfy more individual I/O requests. It is unclear why NT

is able to satisfy 8KB I/O requests more quickly than 256KB I/O requests.
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Figure 5-2 : Large File Micro-Benchmark Results (8MB file using 8KB I/0)

For the most part, FSNFS performs comparably to kNFSnc. In reading, kNFSnc is

actually slower than FSNFS. It may be the case that the supposedly optimal 4KB read

size and 1-way parallelism of NFS Maestro really is not optimal. For reads, the 256KB

and 8KB I/O performance does not differ significantly. For writes, kNFSnc significantly

outperforms FSNFS for 256KB I/O. While FSNFS handles its I/O synchronously,
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kNFSnc uses 8-way parallelism during writes and can thus issue 64KB of a 256KB write

at once. For 8KB writes, kNFSnc outperforms FSNFS by less than 10 percent.

With NT cache manager integration enabled, kNFS is significantly faster than

FSNFS. In reads, kNFS is as fast as NTFS since the data is in the NT cache. Unlike

kNFSnc, kNFS can issue writes to the NFS server asynchronously and thus achieve

slightly better performance than even kNFSnc does with 256KB I/O. However, kNFS

does not achieve this same level of performance when doing sequential I/O. It is unclear

why its performance suffers there.

5.3 Small File Micro-Benchmark

The small file micro-benchmark creates 1000 1KB files across 10 directories. It

then reads the files, re-writes them, re-writes them flushing the changes for each file, and

deletes them. Because this benchmark operates on 1000 files, the read and write phases of

the benchmark must open the files before performing I/O. Thus, the times for these

benchmarks reflect the time to lookup each file. Figure 5-3 shows the benchmark results.

FSWIN32 performance for create, read, and both types of write takes an additional

constant amount of time compared to direct NTFS access. This is because the SMB reply

to the opening of a file includes some file attribute information. So, FIFS needs to get

attributes for each of the 1000 files that are opened. For delete, however, there is no such

overhead, so the execution times are nearly the same.

For the NFS clients, the small I/O size prevents I/O overlap while the lookups and

deletes synchronize access to the NFS server. FSNFS performance is not as good as

kNFS and kNFSnc performance because FSNFS does a lookup on every pathname

component when a file is opened. KNFS and kNFSnc cache the directory lookups and

thus save the lookup times. Even with some network tracing, we are unable to explain

why the read difference is large while the write and delete differences are small. A more

detailed study is needed.
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Figure 5-3 : Small File MicroBenchmark Results (1000 1KB files in 10 directories)

5.4 Application Benchmark

Our application benchmark represents a program build scenario. The source tree

built in the benchmark is an older version of the FIFS source tree. It contains 209 files

with an average file size of approximately 4.5KB.

The benchmark first copies a zip file containing the source tree. It then unzips the

source tree and copies it into a new directory tree. It recursively checks the size of every

file in the source tree using du. Next, it compares the two trees using a recursive di ff.

It then builds the source tree and recursively checks the size of the built source size using

du. Next, it compares the built source tree with the original copy using a recursive di ff.

The build tree is then zipped into a new archive. It is also zipped into the original zip

archive. Then, the trees and original archive are removed.

The benchmark results are divided into 6 categories: copy, unzip, attributes,

compare, compile, zip, and remove. The copy, unzip, compare, compile, zip, and remove
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categories consist of the corresponding operations above. The attributes category consists

of the du operations. The results are summarized in Figure 5-4 and Figure 5-5.

The FSWIN32 driver was overall not substantially slower than direct NTFS

access. However, a big component of the test is the compilation phase, which has a high

CPU utilization. The less CPU-intensive phases show FSWIN32's performance to be 2 to

4 times slower than direct access. The large file micro-benchmark suggests that these

performance differences are due to reads rather than writes (see Section 5.2). The NT

cache also caches directory information, so FSWIN32 suffers just as much when reading

directory information as when reading data compared to direct NTFS access. If it is

possible to support the NT cache through support for CIFS opportunistic locks (see

Section 6.3), FSWIN32 may become more on par with direct NTFS access.
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Figure 5-5: Application Benchmark Results - Part 2

The FSNFS driver performs reasonably well compared to NFS Maestro. The

kernel-mode client performs at about 1.3 times the speed of FSNFS. The slowest

application benchmark category for FSNFS is the attributes category. NFS Maestro is 1.6

times faster than FSNFS in that category. The problem is that FIFS and FSNFS interact

poorly when reading directory entries. Section 6.4 contains a more detailed explanation

of this problem and some possible solutions.
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6 Future Work

While the current FIFS implementation does allow file systems to be

implemented under NT, it is still missing some important functionality. The areas that

need work are user authentication, IOCTL support, locking, readdir () caching,

symbolic link support, and achieving more concurrency in current FIFS file system

drivers. We discuss each in turn.

6.1 Authentication

The server currently performs no real authentication and is thus unsuitable for

multi-user use under NT. It should be straightforward to implement the pass-through

authentication scheme described in Chapter 3.

6.2 IOCTLs

In order to support IOCTLs for non-CIFS file system semantics, the FIFS server

needs to be updated to support the NT LM 0. 12 SMB dialect. This will require some

additional work to implement the additional NT LM 0. 12 SMB messages. However,

given the current LM1 . 2X 0 0 2 implementation, the change will be incremental in nature.

6.3 Locking, Change Notification, and Caching

FIFS currently has no support for locking and file and directory change

notification. It currently lacks the necessary interfaces to support this functionality. In

addition, the server currently lacks the support for SMB opportunistic locks that would be

necessary to support such functionality. For locking and notification to be implemented, a

callback needs to be passed into the file system so that the file system driver can notify

the server of directory and file changes. This would require the addition of some extra

lock status state to the server and some additional notification threads to the server and

file system drivers. The callback mechanism would also support layering as filter drivers

could store a higher level driver's callback and pass its own call back to the underlying

file system driver.



If this functionality is added, the framework will be able to efficiently support

caching of callback and lease-based network file systems like AFS and SFS. With

opportunistic locks enabled, the CIFS client will be allowed to cache files directly and

will not need to go the loopback server on cache hits.

One of the most important areas to investigate in this area is whether the NT CIFS

client will take advantage of the server's opportunistic lock support and use the NT cache

manager to cache data. If so, it may be possible to have a FIFS file system driver whose

performance more closely matches kernel-mode file system that use the NT cache

manager.

6.4 Reading Directories

Some investigation of the network traffic indicates that the reading of directory

entries could be made more efficient. Currently, a file system that does not cache

directory entry information for an open directory (such as the current implementation of

FSNFS) can suffer from unnecessary directory read overlap. The problem is that the size

of each entry in the SMB directory enumeration response message depends on length of

the returned file names. Thus, the loopback server needs how many entries to read from

the underlying file system driver to fill the SMB response buffer. Currently, the server

will make a guess and keep calling the underlying file system driver until it fills up the

response buffer. So, the loopback server ends up ignoring extra directory entries from the

file system and must re-read them when the CIFS client asks for more directory entries.

FSWIN32 does not suffer form this behavior because it caches directory responses.

However, FSNFS goes out to the network each time.

The only way to fix this is to cache extra directory entries that get returned. This

cache can be added at either the file system driver level (like FSWIN32) or the server

level. While a server level cache would benefit all file system drivers, it might be

redundant if a file system does its own caching across different directory enumeration

operations. Therefore, it may be worthwhile to write a simple filter driver that cache

directory entries during directory enumeration. Then the filter driver can be used with file

system driver implementations that do not do their own caching of directory enumeration

information.



6.5 Symbolic Links

Symbolic links were not explored in any of the current FIFS file system drivers.

To validate the framework's ability to easily deal with symbolic links, a simple symbolic

link adapter driver should be developed to make symbolic links transparent to the CIFS

loopback server. With this adapter, UNIX-style file system driver implementations such

as FSNFS would simply have to return symbolic link attributes and implement

readlink () and symlink () to provide transparent symbolic link support.

6.6 Case-Sensitive File Systems

The current FIFS framework does not transparently handle case-sensitive file

systems (see Sections 4.1.2 and 4.3). This issue can be addressed via a filter driver that

reads the directory where a case-insensitive name is being looked up and does a case-

insensitive string compare to figure out the corresponding case-sensitive name. The filter

can then pass the request through the underlying driver with the case-sensitive name.

Such an implementation is fairly nafve, however. It could suffer from poor

performance. A high performance implementation could maintain a per-directory cache

of directory entries for recently accessed directories. The cache could be kept up-to-date

via the directory notification callback suggested in Section 6.3.

6.7 Achieving More Concurrency

The performance of initial file system driver implementations for FIFS could be

improved through fine-grained locking. While the server framework can achieve high

concurrency through the use of multiple threads, the current file system driver

implementations cannot. It should be possible to retrofit FSWIN32 with finer locking

without too much difficulty. This should allow FSWIN32 to have better large file

performance for small I/O sizes. FSNFS would likely benefit a lot more from

concurrency than FSWIN32 running against the local file system. FSNFS would be able

to issue multiple I/O requests on the wire without waiting for the server to reply.

However, for FSNFS to achieve this, it would need would need to use a thread-safe

concurrent RPC library.



7 Conclusion

The FIFS prototype demonstrates the potential for a CIFS loopback server-based file

system framework. While initial work shows that FIFS performance is comparable to

kernel-mode performance in certain cases, it also shows that read performance in the

FIFS prototype suffers from not being able to use the NT cache manager. The short time

required to implement the FSMUNGE and FSNFS file system drivers shows that FIFS

provides a framework where file systems can be easily developed. It is our hope that

further work on FIFS and its file system drivers will yield higher performance and a more

functional implementation.



Appendix A: fsinterface.hxx

This appendix contains the header file for the file system interfaces.
#ifndef FS_INTERFACE_HXX-
#define _FS_INTERFACE_HXX

// note: we assume DWORD and DWORDDLONG are defined (from windows.h)

#ifndef IN
#define IN
#endif

#ifndef OUT
#define OUT
#endif

// disposition:
namespace FsInterface {

typedef
typedef
typedef
typedef

DWORDLONG
DWORD
UINT64
UINT64

UINT64;
UINT32;
TIME64;
fhandle_t;

a 64-bit unsigned value
a 32-bit unsigned value
in units of 100ns since Jan 1, 1601 (AD)
a file handle -- a bit wide

INVALIDUINT64
INVALIDUINT32
INVALID_TIME64
INVALID_FHANDLE_T

((UINT64)(-1));
((UINT32)(-1));
INVALID_UINT64;
((fhandle_t)(-1));

// disposition:
const UINT32 DI
const UINT32 DI
const UINT32 DI
const UINT32 DI
const UINT32 DI
const UINT32 DI
const UINT32 DI

// access:
const UINT32 AC
const UINT32 AC
const UINT32 AC

// sharing:
const UINT32 SH
const UINT32 SH
const UINT32 SH

SP_CREATE_NEW
SPCREATEALWAYS
SP_OPEN_EXISTING
SPOPENALWAYS
SP_TRUNCATE_EXIST:
SP_DIRECTORY
SP_MASK

CESSREAD
CESS_WRITE
CESS_MASK

ARE_READ
ARE_WRITE
ARE MASK

= 0x10000000;
= 0x20000000;
= 0x30000000;
= 0x40000000;

ING = 0x50000000;
= 0x60000000;
= 0x70000000;

= Ox00010000;
= 0x00020000;
= 0x00030000;

= Ox00100000;
= 0x00200000;
= 0x00300000;

// flags = dispositions I access I sharing
const UINT32 FLAGS_MASK = DISP_MASK I ACCESS_MASK

// attributes:
const UINT32 ATTRSYMLINK
const UINT32 ATTR_DIRECTORY
const UINT32 ATTR_READONLY
const UINT32 ATTR_HIDDEN
const UINT32 ATTRSYSTEM
const UINT32 ATTRARCHIVE
const UINT32 ATTR_COMPRESSED
const UINT32 ATTR_OFFLINE
const UINT32 ATTRMASK

I SHARE_MASK;

0x00002000;
Ox00000010;
0x00000001;
0x00000002;
0x00000004;
0x00000020;
0x00000800;
0x00001000;
(ATTR_SYMLINK ATTRDIRECTORY
ATTR_READONLY ATTR_HIDDEN
ATTRSYSTEM ATTRARCHIVE
ATTRCOMPRESSED I ATTROFFLINE
); // 0x00003837;

const size_t MAX_FS_NAME_LEN = 64; // somewhat arbitrary...

// file system attributes
struct fs_attr_t {

char fs_name[MAXFS_NAME_LEN];
UINT64 total_bytes;
UINT64 free_bytes;

};

const
const
const
const

UINT64
UINT32
TIME64
fhandlet



// file/dir attributes
// - we do not use gid/uid because SMB does not deal
// - passing in INVALID_XXX (-1) for any of the values below makes it

unspecified.

struct fattr_t {
// sizes
UINT64 file_size;
UINT64 alloc_size;
// times
TIME64 create_time;
TIME64 accesstime;
TIME64 mod_time;
// mode/attr
// - a la win32, but wider so that we can pass in -1 safely
UINT32 attributes;

};

const size_t MAX_NAME_LENGTH = 256;

typedef struct {
char name[MAX_NAME_LENGTH];
struct fattr_t attribs;
UINT32 cookie;

} dirinfo_t;

class FsDispatchTable {
public:

virtual ULONG AddRefO = 0; // returns new reference count
virtual ULONG Release() = 0; // returns new reference count

// returns string for principal owning this interface
virtual const char* get_principal() = 0;

// returns immutable root handle, which can only be used by create()
virtual fhandlet get_root() = 0;

virtual DWORD statfs(
IN fhandle_t handle,
OUT fs_attr_t* attr
) = 0;

// create() can take an empty string (a NULL byte) as its name
// argument to signify opening the given dir again.
virtual DWORD create(

IN fhandle_t dir,
IN const char* name,
IN UINT32 flags,
IN fattr_t* attr,
OUT fhandle_t* handle
) = 0;

virtual DWORD lookup(
IN fhandle_t dir,
IN const char* name,
OUT fattr_t* attr
) = 0;

virtual DWORD set_attr(
IN fhandle_t handle,
IN fattr_t* attr
) = 0;

virtual DWORD getattr(
IN fhandle_t handle,
OUT fattr_t* attr
) = 0;

virtual DWORD close(
IN fhandlet handle
) = 0;

virtual DWORD write(
IN fhandlet handle,
IN UINT64 offset,
IN OUT UINT64* count,
IN void* buffer
) = 0;

virtual DWORD read(
IN fhandle_t handle,
IN UINT64 offset,
IN OUT UINT64* count,
OUT void* buffer
) = 0;



// to use readirO, we do a create() with DISP_DIRECTORY
// returns ERROR_NO_MORE_FILES when done...
virtual DWORD read_dir(

IN fhandle_t dir,
IN UINT32 cookie,
OUT dirinfo_t* buffer,
IN UINT32 size,
OUT UINT32* entries_found
) = 0;

virtual DWORD remove(
IN fhandle_t dir,
IN const char* name
) = 0;

virtual DWORD rename(
IN fhandle_t fromdir,
IN const char* fromname,
IN fhandle_t todir,
IN const char* toname
) = 0;

virtual DWORD mkdir(
IN fhandle_t dir,
IN const char* name,
IN fattr_t* attr
) = 0;

virtual DWORD rmdir(
IN fhandle_t dir,
IN const char* name
) = 0;

virtual DWORD readlink(
IN fhandle_t handle,
IN OUT int* size,
OUT char* pathbuffer
) = 0;

virtual DWORD symlink(
IN fhandle_t dir,
IN const char* name,
IN const char* path
) = 0;

virtual DWORD link(
IN fhandle_t dir,
IN const char* name,
IN fhandlet handle
) = 0;

virtual DWORD ioctl(
IN fhandle_t handle,
IN UINT32 code,
IN void* in_buffer,
IN OUT UINT32* out_size,
OUT void* out_buffer
) = 0;

virtual DWORD flush(
IN fhandlet handle
) = 0;

};

class FileSystem {
public:

virtual ULONG AddRefO = 0; // returns new reference count
virtual ULONG Release() = 0; // returns new reference count

virtual DWORD connect(
IN const char* principal,
OUT FsDispatchTable** ppDT
) = 0;

typedef DWORD (WINAPI *FS_CREATEPROC)(
IN const char*, // fsname
IN const char*, // fs_config_path
IN DWORD, // interface_version
OUT FileSystem** // interface pointer

// (i.e., FileSystem** if FS_VERSION_0)

const char FSCREATE_PROC_NAME[] = "FileSystemCreate";

const DWORD FSVERSION_0 = 0;
}
#endif /* __FSINTERFACE_HXX_ */
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