
FMASSACHSETTS INSTITUTE

1 NOV 13 2008

LIBRARIES

SOUNDGEN
A Web Services Based Sound Generation System for the Psychoacoustics Laboratory

by
Michael R. Naber

S.B. 2zoo007

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degree of

Master of Engineering in Electrical Engineering and Computer Science
at the Massachusetts Institute of Technology

May zoo8

Copyright zoo8 Michael R. Naber. All rights reserved.

The author hereby grants to M.I.T. permission to reproduce and to distribute publicly paper
and electronic copies of this thesis document in whole and in part in any medium now

known or hereafter created.

Author

Department of Electrical Engineering and Computer Science
May 1, 2008

Certified by_

Louis D. Braida
Henry E1S"is-Wrren Professor of Electrical Engineering

Accepted by._.- __

Arthur C. Smith
Professor of Electrical Engineering

Chairman, Department Committee on Graduate Theses

Soundgen I
ARCHNES I~bF t..p u

~y \~ I

SOUNDGEN
A Web Services Based Sound Generation System for the Psychoacoustics Laboratory

by
Michael R. Naber

Submitted to the
Department of Electrical Engineering and Computer Science

May 1, 2008

In Partial Fulfillment of the Requirements for the Degree of
Master of Engineering in Electrical Engineering and Computer Science

at the Massachusetts Institute of Technology

I. ABSTRACT

Soundgen is a web services based sound generation system developed for the MIT

Psychoacoustics Laboratory Course 6.I82. The sounds created by Soundgen are combina-

tions of various tones and noises, produced by a dedicated server running Linux, MATLAB,

Apache, and PHP. As an example, Soundgen can generate a sound containing two tones of

5ooms duration, each with its own frequency and phase, and can produce them over a

broadband background noise. The characteristics of the tones and noises are passed to the

Soundgen web service via aJSON object sent over HTTP. When the generation is com-

plete, the web service replies with another JSON object containing the URL of the gener-
ated sound .wav file, along with some related information.

Accompanying the Soundgen web service is a smallJavaScript library, easing the web

service's use inJavaScript. This library allows JavaScript programmers to simply call a

soundgen() function, which triggers a callback function that executes when the request has

been processed by Soundgen. The library and web service allow Psychoacoustics Laboratory

students to quickly and easily create portable acoustics experiments as web-applications,

which can be written and run on any computer with speakers and a modern web browser.

Soundgen

2. DESIGN

As technology regularly progresses, methods for accomplishing software objectives

continue to evolve. With the advent of the Internet and the rise of distributed application

architectures, software components are no longer confined to single machines. Programmers

regularly divide application components across many different systems. This division allows

individual components to be separately maintained and updated, and also allows for simul-

taneous independent application expansion by multiple isolated teams or individuals.

With the web services application model, individual application components can be

located on different machines, but can work together by calling each other through HTTP

requests over the Internet. The components can be written in any programming language

that supports making HTTP requests such as Perl, Python, PHP, C, Java, HTML/

JavaScript, etc. Not only can the software components be written in any programming lan-

guage, they can also be deployed on completely different computing/operating system plat-

forms. This freedom to write application components in such a variety of ways allows the

programmer to work in his or her language of choice on his or her platform of choice. Fur-

thermore, should future programming languages or development tools become available,

they need only support the method of making HTTP requests to be integrated into an ex-

isting web services application.

Though it has been possible for years to design application components connected

through the network using other methods, the advantage of using the web services architec-

ture comes from the simplifications resulting from the use of standards for interoperability

such as JavaScript Object Notation (JSON). Because these standards greatly assist pro-

Soundgen 3

grammers and speed up application development, it is important to emphasize not only the

importance of the concepts behind distributed application architectures, but also the stan-

dards used for their implementation.

3. MOTIVATION

Students taking 6.i82 write software auditory experiments, which are run on labora-

tory PCs in sound-proof rooms. Prior to the development of Soundgen, 6.i82 experiments

were written in LISP and interpreted by the LISP interpreter ESPUD, which was run locally

on each of the PCs. Tones and other sounds presented during the experiments were gener-

ated by MATLAB, which also ran locally on the PCs. The ESPUD LISP interpreter com-

municated with MATLAB through a custom-made bridge program, Meta, written by Ray

Cheng. This communication between ESPUD and MATLAB was necessary because the

tones and other sounds generated by MATLAB needed to change as dictated by the applica-

tion logic written in LISP and interpreted by ESPUD. The old system is well visualized by a

diagram:

ESPUD _ _ MATLAB
6.182 experiments are LISP code Interpreter Custom-made bridge program MATLAB is used as a tone and
written in LISP. Allows ESPUD to communicate sound generator.

with MATLAB.

This LISP-based system, while adequate for writing and running experiments, had

been quite problematic to maintain. Troubleshooting bugs had become a particularly tedious

process. Common problems varied among the individual laboratory PCs, and included path

variable inconsistencies between Windows user accounts, incompatibilities arising from dif-

ferent versions of MATLAB, and failures in Meta. In addition to these problems, there were

Soundgen 4

inefficiencies inherent to the system. For example, in order for students to test experimental

code written in LISP, they had to restart both ESPUD and then Meta. Meta takes about fif-

teen seconds to start, and so when revising code, students had to wait fifteen seconds to test

their changes. These limitations were unacceptable given the vast number of alternative

ways for accomplishing the same software objectives that do not suffer from such difficul-

ties. The problems and limitations were significant enough that there was compelling reason

to abandon the old system and write a new one from scratch. Doing so has resulted in a

much more standards-based development environment and does not suffer from the prob-

lems arising from using obscure application components.

There were many reasons for bringing web services to the 6.182 development proc-

ess. Foremost, many difficulties were resolved when the 6.182 software experiments were

switched to a web services architecture and the application logic migrated from LISP to

HTML/JavaScript:

List ofDifficulties Resolved

I. The system for writing 6.182 experiments required students to know LISP.

Because 6.182 experiments were written in LISP, students had to know LISP in order

to modify or create experiments using the 6.182 tone generation API. While the

choice to write the 6.182 experiments in LISP made sense at the time decided, with

the retirement of 6.ooi, students are no longer taught LISP as part of the MIT cur-

riculum. By switching the 6.182 experiments to a web services architecture, the appli-

cation logic can be migrated from LISP to HTML/JavaScript. Since MIT will be

Soundgen 5

teachingJava and not LISP, and since JavaScript borrows most of its syntax from

Java, students taking 6.182 will be well prepared to work on experiment code written

inJavaScript.

2. The system for writing 6.182 experiments used many components, each of which

had multiple points of failure.

The 6.182 laboratory machines had many problems running the 6.i82 software ex-

periments due to system path variable inconsistencies between Windows user ac-

counts, incompatibilities arising from different versions of MATLAB, and failures in

Meta for unknown reasons. By switching the 6.182 experiments to a web services ar-

chitecture and migrating the 6.182 software to HTML/JavaScript, these difficulties

were eliminated.

3. The 6.182 development system required that students wait about fifteen seconds

when testing code revisions

In order for students to test their code, they had to restart Meta and ESPUD. Since

META takes about fifteen seconds to start, students had to wait at least that long

between testing successive iterations when revising code.

In addition to resolving problems with the old system, migrating the 6.182 experi-

mental protocols to a web services architecture has brought about the following benefits to

the 6.182 laboratory

List ofBenefits Gained

Soundgen

1. New laboratory computers will require minimal configuration for 6.182.

Since the 6.182 experiments are written in HTML/avaScript, they can be run on any

machine with a web browser and adequate sound card. This means that when the

machines in the sound lab booths are upgraded or replaced, the 6.182 experiments

will continue to run on the new hardware.

2. Students can debug and work on 6.182 projects on any computers they choose.

With the 6.182 experiments rewritten in HTML/JavaScript, 6.182 students can debug

and work on 6.182 projects on any computer with a web browser and adequate sound

capabilities. (Of course, students would still need to be in the lab to use sound-proof

booths when running experiments.)

3. Students can write 6.182 experiments in the programming language of their choice.

Previous development protocols required students to write experiment code in LISP.

Now that the 6.182 sound generation system has been made available as a web serv-

ice, students can write this code in any programming language of their choice, so

long as that programming language supported making HTTP requests over the

Internet.

Switching the 6.182 experiments to a web services architecture has benefitted the

6.182 laboratory by solving the problems and yielding the benefits aforementioned. It has

also directly benefitted students technical abilities by giving them experience working with

a distributed application architecture. This experience is an important part of a software

Soundgen

engineer's education, as it is very likely that he or she will encounter such distributed archi-

tectures in future careers.

4. USING SOUNDGEN

Overview

The JSON object received by the web service is passed over HTTP GET, and is

structured as an array of sound objects. Each sound object contains the attributes of a single

sound, either a tone or a noise. The Soundgen web service computes each of these sound

objects separately, sums them together, and then saves the .wav file containing their sum.

The amplitude of each tone or noise in the sound is visualized by the following diagram:

Initial
Pause Risetime Ontime Falltime

ewto m NNeW=%

Amplitude
A

/ :s

I
g

g I.JTime

This is a diagram of amplitude as a function of time for one tone or noise component

of the sound. The sound component diagramed is silent during its initial pause and is at its

Soundgen 8

i I,.i :I X I_
::: J "

:8 18~ jBa
: i

I CUIY

constant maximum amplitude during its ontime. During its risetime and falltime the ampli-

tude of the sound component varies as sin(time)^2.

Soundgen JavaScript Library

Although the Soundgen web service can be used by any programming language capa-

ble of interacting with aJSON web service, all of the experiments currently written for the

class use the JavaScript Soundgen library. This library can be included in standard HTML/

JavaScript web pages and allows ordinary JavaScript on the page to use Soundgen to gener-

ate tones and noise.

The easiest way to write experiments using Soundgen is through the sound genera-

tionJavaScript library Using the SoundgenJavaScript library, experiment interfaces can be

written in HTML, and their program logic written inJavaScript. The library provides a sim-

ple interface consisting of a single function: soundgen().

The soundgenO function accepts two arguments: an array of sound objects and a

sample frequency rate. A sound object is either a tone object or a noise object, and contains

all the relevant parameters of the tone or noise such as rise time, fall time, on time, fre-

quency, etc. The sounds are defined by their constructors, ToneO and NoiseO and the order

of arguments for the constructors is:

Tone object:
*Initial Pause - duration of silence before the begin of the rise in ms

between o and 6oooo inclusive
*Risetime - duration of the amplitude rise in ms

between o and 6oooo inclusive

Soundgen

*Ontime - duration of of constant maximum amplitude in ms
between o and 60000 inclusive

oFalltime - duration of the amplitude fall in ms

between o and 6oooo inclusive
*dB - decibel level of max. amplitude relative to the maximum output

between o and -3oo inclusive

i.e. a dB level of o would produce a high maximum output and a dB
level of -300 would be essentially undetectable

*Frequency - the frequency of the tone in Hz

between io and 20000 inclusive

*Phase - the phase of the tone sin wave

between -x and x inclusive

*Channel - which channel (left, right or both) the tone is played through
either '1' 'r' or 'b'

Noise object:
*Initial Pause - duration of silence before the begin of the rise in ms

between o and 6oooo inclusive
*Risetime - duration of the amplitude rise in ms

between o and 6oooo inclusive
*Ontime - duration of of constant maximum amplitude in ms

between o and 6oooo inclusive
*Falltime - duration of the amplitude fall in ms

between o and 6oooo inclusive
*dB - decibel level of max. amplitude relative to the maximum output

between o and -300 inclusive

i.e. a dB level of o would produce a high maximum output and a dB
level of -3oo would be essentially undetectable
It is important to note that the decibel level of a noise is also affected
by the highpass and lowpass filters.

oLowpass - frequency cutoff of lowpass filter in Hz
minus one means no lowpass filter, otherwise between I and 20000

inclusive
*Highpass - frequency cutoff of highpass filter in Hz

minus one means no highpass filter, otherwise between I and 20000
inclusive

*Loworder - order of the lowpass Butterworth filter

Soundgen

an integer between I and ioo inclusive
*Highorder - order of the highpass Butterworth filter

an integer between I and Ioo inclusive
*Seed - seed for the random number generator which creates the noise

integer can be either minus i (for randomly selected seed) or between
o and 2^32-I inclusive

-Channel - which channel (left, right or both) the tone is played through
either '1' 'r' or 'b'

Note: For noises, the amplitude envelope is applied after the Butterworth filters.

An example use of the soundgen() function is given in the following HTML file:

test.html

<head>
<script type="text/javascript"

src="http://tuliptree.mit.edu/soundgen/soundgen2.js"></script>
<script type="text/javascript">

function begin() {
var soundArray = new Array();
soundArray[0] = new Noise(0,1000,1000,1000, -20, 10000,5000, 2, 2, -1, 'b');
soundArray[l] = new Tone(0,1000,1000,1000, -20, 800, 0, 'b');
soundgen(soundArray, 44100);

}

/*

After the RPC executes, it automatically calls this function.
The RPC defines several variables within obj:
obj.sound - contains a path to the sound
obj.image - contains a path to the image
obj.result - either "success" or a message indicating why the failure

occurred
obj.statistics.version - the version of soundgen (2.0 in this case)
obj.statistics.gentime - the time in ms the server spent processing the

request

We can use these variables in any javascript code.
*/

//This bit of JavaScript plays a sound.
document.getElementById("soundspan").innerHTML="<embed src='"+obj.sound+

"'hidden=true autostart=true loop=false>";

</script>
c ~. ... A
SounTaren

</head>

<body>

Click here for sound!

</body>

This is a simple example of how to use the SoundgenJavaScript library From the

HTML/avaScript above, it can be seen that the SoundgenJavaScript library resides on a

server called tuliptree.mit.edu, and can be included in any HTML/avaScript document by

writing:

<script type="text/javascript" src="http://tuliptree.mit.edu/soundgen/soundgen. js"></script>

With the Soundgen library included in the JavaScript document, the soundgen()

function can be called. The sample frequency, which is passed to the soundgen function along

with the sound array, is input in Hz and accepts valid values of 10o25, i6ooo, 22050 , 32000,

44Ioo, and 88200.

Upon receipt of input, the server processes the request and replies with aJSON ob-

ject (called obj in the example soundgen_callbackO function) having the following structure:

*obj.sound - the HTTP URL where the .wav file can be accessed, or a failure

message

*obj.image - the HTTP URL where the .jpg representing the waveform can be

reached, or a failure message

*obj.result - either "success" or a message indicating why a failure has occurred

*obj.statistics.version - the version of Soundgen run on the server

Soundgen

*obj.statistics.gentime - the amount of server time spent processing the

request

The SoundgenJavaScript library will automatically call the soundgen_callback() func-

tion when the server has processed the request. In the HTML/JavaScript code given on the

previous page, contents of the JSON object returned by the server are available in the obj

variable passed into the soundgen_callback function. In the example, JavaScript plays the

sound returned by the server by embedding the URL of the .wav file into an empty HTML

 element. Most web browsers require Apple QuickTime or equivalent plugin to im-

plement this playback.

Using Soundgen Without JavaScript

Soundgen can be called directly without the use ofJavaScript by creating aJSON ob-

ject and passing it to the RPC over HTTP GET. The RPC is located at:

http://tuliptree.mit.edu/soundgen/soundgenapLrpcz.php

The structure of theJSON object passed to the RPC is an array of objects of type

stdtone and stdnoise, exemplified by:

II

type: stdtone
ip:
riisetime:
ontime:
falltime:
db:
freq:
phase:

Soundgen

channel:

{
type:stdtone
ip:
risetime:
ontime:
falltime:
db:
freq:
phase:
channel:

}

The acceptable input values for each of these properties are the same for the RPC as

for using the JavaScript library.

When this JSON object is passed to the Soundgen RPC, the RPC will reply with an-

otherJSON object structured as:

I
sound:
image:
result:
statistics.version:
statistics.gentime:

The Soundgen RPC may be called by any language capable of processingJSON over

HTTP. A current list of languages that supportJSON is provided on http://www.json.org.

Soundgen

5. TECHNICAL IMPLEMENTATION

Overview

The sound generation web service is deployed on an Apple Mac Mini running Fedora

Core Linux, MATLAB, Apache, and PHP The PHP scripting language turns JSON requests

into MATLAB sound generation commands, which are piped into a waiting MATLAB

process held open by a PHP MATLAB daemon script. The MATLAB process generates the

.wav files, and after their generation the PHP script replies with aJSON object containing

the URL at which they can be retrieved.

In between when the MATLAB commands are generated by PHP and when they are

piped into MATLAB, they are stored in a MySQL database. This database is used to both

resolve concurrency issues, as well as to keep a log of commands so that in case the MAT-

LAB process were to crash, the last commands to enter the process could be retrieved by a

server administrator (using the mysqldump command) to aid in debugging.

The following diagram is useful in visualizing the relationship between components

of Soundgen residing on the server:

Soundgen

~1
0

0

0
0

I

11

So undgen

The above diagram shows the interactions between software components used by

Soundgen. There are several server-side software components in the diagram, and they are

all run on tuliptree.mit.edu, the server which runs Soundgen:

Apache.

Soundgen RPC PHP Script

MyS9'L

MATLAB Daemon PHP Script

MATLAB Process

Each of these components interacts with the others as shown in the diagram. The

specific function of each component is given in the details below:

Apache

Apache is the conventional web server software included with Fedora Core Linux.

All client-server communications pass through this software component. It is run in stan-

dard configuration with PHP Because Apache accepts JSON requests over HTTP GET, the

httpd.conf file was modified to include the configuration directive LimitRequestLine

1000000. This directive sets the maximum allowable size (in bytes) of a client's HTTP

request-line. The default setting is 8192. Since JSON passed over HTTP GET encodes the

entire JSON request within the request-line, the maximum allowable size is set to ioooooo

so that a large JSON object can be passed to the server.

Soundgen

Soundgen RPC PHP Script

/var/www/html/soundgen/soundgenapirpcz.php

The Soundgen RPC PHP script processes clientJSON requests. Its principle pur-

pose is to interact with the client, both in processingJSON requests and returningJSON

encoded replies. In doing this, it must first validate the client input by verifying the struc-

ture and parameters of the request. If the input is determined to be valid, the Soundgen

RPC PHP script generates MATLAB commands that will generate the desired sound. If the

input is determined to be invalid, the Soundgen RPC PHP script returns an error message

to the client indicating what was wrong with the request.

After the MATLAB commands are generated, the Soundgen RPC PHP script inserts

them into a MySQL database along with the IP address of the client. The database server

returns a unique ID associated with the set of inserted commands. This ID is then passed to

a MATLAB Daemon PHP script over a TCP/IP socket connection, which retrieves the

MATLAB commands from the MySQL database and passes them into the MATLAB proc-

ess which it perpetually holds open.

If the MATLAB Daemon PHP script replies with a success message, the Soundgen

RPC PHP script generates aJSON object containing the URL of the sound and image as a

JSON object. Otherwise, it returns an error message to the client.

MySQL

Soundgen uses the standard MySQL database server included with Fedora Core

Linux. When a client uses Soundgen to request a sound, the MySQL database server is used

Soundgen i8

to store the MATLAB commands used to generate that sound, along with the IP address of

the client which requested it, and the time at which it was requested. The database server

has two tables: commands and jobs.

Table commands structure:

This table stores the commands input to MATLAB. The fields store:

id - a unique id for every stored command

cmdid - an id unique to every set of commands

seq - the sequence number for which a set of commands having the same
cmdid should be input to MATLAB

cmd - the MATLAB command

Table jobs structure:

Field Type Collation Attributes Null Default Extr

time timestamp No CURRENT.TIMESTAMP

This table stores the requesting client IP address and the time at which that client

made the request. The fields store:

id - a unique id for every row

ipaddr - the IP address of the requesting client
Soundgen

time - the date/time at which the client made the request

MATLAB Daemon PHP Script

/root/soundgen_daemon/socket.php

The MATLAB Daemon PHP script is started by the init script

/etc/rc5.d/S9osoundgen when the server first starts up and remains running at all times. Its

purpose is to hold a running MATLAB process open and pipe commands into it. The

MATLAB Daemon PHP script listens on TCP port 44445 for connections from the

Soundgen RPC.

After the Soundgen RPC has inserted the MATLAB commands into the MySQL da-

tabase, it passes the cmdid associated with those commands to the MATLAB Daemon PHP

Script over TCP/IP. If multiple requests are received simultaneously they are buffered by

the TCP/IP socket.

Upon receiving the cmdid from the Soundgen RPC, the MATLAB Daemon PHP

script immediately queries the MySQL database server for the commands, and pipes them

into the MATLAB process it holds open. Once the commands are processed by the MAT-

LAB process, the sound and image files are written to disk and available over HTTP re-

quest.

Note: The server runs PHP version 5.2.5, compiled with the -- enable-socket option.

This option allows for scripts to listen as TCP/IP socket servers. The configuration option

was necessary because the MATLAB Daemon PHP script listens over TCP/IP for connec-

tions from the Soundgen RPC.

Sounaen

MATLAB Process

The MATLAB Process is started by the MATLAB Daemon PHP Script and stays

open continually. Its purpose is to receive the MATLAB commands piped to it by the

MATLAB Daemon PHP Script and execute them in the MATLAB shell. The execution of

the commands results in writing a sound and image file to a web accessible location of the

server's hard disk.

The combined task of all these software components is to receive a request for a par-

ticular type of sound, to generate that sound, and to store its .wav file in a web accessible

location on the server's hard disk. Once the sound is stored on disk, the client is sent a reply

with the URL location at which it can be accessed.

The server side software components described are all located on a single server

which is accessed remotely by client machines viaJSON encoded requests over HTTP The

SoundgenJavaScript library, which eases the use of the Soundgen RPC byJavaScript clients,

contains constructors for Tone and Noise objects, as well as a function soundgenO for calling

the Soundgen RPC. The function which calls the Soundgen RPC utilizes moo.base.js,

cnet.base.js, and cnet.global.utils.js in order to allow cross-domainJSON requests.

6. MATLAB LICENSE

Soundgen uses MATLAB on the server, and as such requires that the MATLAB li-

cense be kept up to date. The currently installed MATLAB license is located on

tuliptree.mit.edu at /usr/local/matlab2007b/etc/license.dat. It is used by the MATLAB li-

Soundpenv

cense manager located at /usr/local/matlab2007b/etcllmboot, which is loaded at system boot

time by the Soundgen startup script located in /etc/rc.d/rc5.d/S9osoundgen.

The currently installed MATLAB license includes both the Signal Toolbox and the

Statistics Toolbox and expires August I, 20oo8.

7. APPENDIX
The SoundgenJavaScript library and the code run on the Tuliptree server is attached

for reference.

Soundgen

soundgen2.js Page 1 of 1

Printed: Thursday, May 15, 2008 3:04:40 PM Printed For: Michael Naber

/*soundgen2.js
Soundgen JavaScript Library
Michael Naber

Description:
This JavaScript file allows the Soundgen RPC to be easily used in JavaScript code. There are two

constructors for sound objects: Tone() and Noise().

The constructors are used to generate sound objects which may be inserted into an array. The array

may be inserted passed to the soundgen() function along with a sample frequency in order to

generate a sound. When the sound is generated, the soundgen_callback() function is called.

*/

//mootools base javascript (moo.base.js), cnet.base.js, cnet.global.utils.js

i/Packed JavaScript not shown.

//Function for the standard tone object

function Tone(ipVal, risetimeVal, ontimeVal, falltimeVal, dbVal, freqVal, phaseVal, channelVal)

{
this.type = 'stdtone';
this.ip = ipVal; //Between 0 and 60000 inclusive

this.risetime = risetimeVal; // Between 0 and 60000 inclusive

this.ontime = ontimeVal; // Between 0 and 60000 inclusive

this.falltime = falltimeVal; // Between 0 and 60000 inclusive
this.db = dbVal; //Between 0 and -300 inclusive

this.freq = freqVal; // Between 10 and 20000 inclusive
this.phase = phaseVal; // between -pi and pi inclusive
this.channel = channelVal // '1' for left, 'r' for right, or b' for both

//Function for the standard noise object
function Noise(ipVal, risetimeVal, ontimeVal, falltimeVal, dbVal, lowpassVal, highpassVal,

loworderVal, highorderVal, seedVal, channelVal) {
this.type = 'stdnoise';
this.ip = ipVal; //Between 0 and 60000 inclusive
this.risetime = risetimeVal; //Between 0 and 60000 inclusive
this.ontime = ontimeval; //Between 0 and 60000 inclusive
this.falltime = falltimeVal; //Between 0 and 60000 inclusive
this.db = dbVal; //Between 0 and -300 inclusive
this.lowpass = lowpassVal; // -1 means no lowpass, otherwise between 1 and 20000
this.highpass = highpassVal; //-1 means no highpass, otherwise between 1 and 20000
this.loworder = loworderVal; //order of the Butterworth filter
this.highorder = highorderval; //order of the Butterworth filter
this.seed = seedVal // Integer either -1 or between 0 and 2^32 - 1 inclusive; Seed for the
//MATLAB random number generator. The random seed can be -1 for a randomly selected seed;
this.channel = channelVal; // '1' for left, 'r' for right, or 'b' for both

}

function soundgen(soundArray,sampleFreq) {
//sampleFreq can be either 11025, 22050, 16000, 32000, 44100, or 88200
var jsonData = {

"soundArray": Json.toString(soundArray),
"sampleFreq": Json.toString(sampleFreq)

}
new JsonP('http://tuliptree.mit.edu/soundgen/soundgenapi_rpc2.php', {

data: {
"soundArray": Json.toString(soundArray),
"samnpleFreq": Json.toString(sampleFreq)

},
onComplete: function(ret){

soundgen callback(ret);

}
}).request();

soundgenapi_rpc2.php Page 1 of 2
Printed: Thursday, May 15, 2008 3:05:13 PM Printed For: Michael Haber

<?php
/*
Soundgen RPC
Michael Naber

Description:
The Soundgen RPC is responsible for receiving requests for sounds, determining whether those
requests are valid, generating MATLAB syntax, and replying to the JSON request. The Soundgen RPC
makes use of three classes to accomplish this. They are:

1) The InputValidator
Determines whether the user submitted a valid JSON request

2) The MatlabGenerator
Generates MATLAB code based on received JSON
Requests generation from the MATLAB daemon PHP script

3) The JsonResponder
Generates the JSON response

sessionstart();
include('config.php'); //sets Sabsoute_uri and $tempdir

//These two lines will prevent the client from caching the RPC response
//The date is an arbitrary date in the past
header("Cache-Control: no-cache, must-revalidate");
header("Expires: Mon, 26 Jul 1997 05:00:00 GMT");

S_GET = array_map('stripsiashes',$_GET); //Receive the JSON data over HTTP GET
$_GET = array_map('json_decode',$_GET); //Decode the JSON data

//Create an $input object to store all the user input
$input->soundArray = $_GET['soundArray'];
$input->sampleFreq = $_GET['sampleFreq'];
$input->callback = $_GET['callback'];

function _autoload($classname) {
require_once 'classes/' . $class_name . '.php';

}

//These classes are defined in separate files
SmyInputValidator = new inputValidator(); //Determines whether the user submitted a valid request
$myMatlabGenerator = new matlabGenerator(); //Generates MATLAB code based on received JSON
SmyJsonResponder = new jsonResponder(); //Generates the JSON response

$statistics->version = "2.0";
$statistics->gentime = "error - see obj.result";

//If our input is invalid, then fail indicating what about it is invalid
if(l$mylnputValidator->validateInput($input)) {

$myJsonResponder->echoFailure($myInputValidator->error, $statistics, $input->callback);
//If the input is valid, then generate the sound
} else {

Stime_start = microtime(true); // time the generation
SmyMatlabGenerator->generateCommands($input);
$result = SmyMatlabGenerator->sendCommandsToMatlab();
Stime_end = microtime(true);

if($result->picname && $result->soundname) {
Spicpath = $absolute_uri . "/temp/" . Sresult->picname;
$soundpath = $absolute_uri . "i/temp/" . $result->soundname;
$statistics->gentime = $time_end - $time_start;
$myJsonResponder->echoSuccess($soundpath, $picpath, $statistics, $input->callback);

} else {
$myJsonResponder->echoFailure("Valid input, but MATLAB generator failed!", $statistics,

soundgenapi rpc2.php
Printed: Thursday, May 15, 2008 3:05:13 PM

Page 2 of 2
Printed For: Michael Naber

Sinput->callback);

r

inputValidator.php
Printed: Thursday, May 15, 2008 3:05:50 PM

Page 1 of 3
Printed For: Michael Naber

InputValidator Class - Used by Soundgen RPC
Michael Naber

Description:
The InputValidator class has one public function validateInput, which takes a sound generation
request and returns true if the input is valid and returns false if the input is invalid.

If the input is determined to be invalid, the InputValidator will generate an error message
indicating what about the request is invalid.

*/

class inputValidator {

//Pass a $str to be concatenated to the error message.
private function errorproc($str) {

if(strien($this->error) == 0) {
Sthis->error = "There was an error processing your request. The following problems wer
found:
";

Sthis->error = $this->error . "
" . $str;

//Helper function to validateInput
private function validateVal($num, Smin, $max, $name, Si) {

if(l($num <= Smax && $Snum >= Smin)) {
Sthis->errorproc('The ' . Sname . " " . Si . ' is invalid. It

' and ' . Smax . ' inclusive.');

//Function returns true if the input is valid, and false if the input
is invalid, the error variable is set with a description of the error.

public function validateInput($input) {

must be between ' . Smin

is invalid. If the input

Sthis->error = "";

22050

//Check that the sample frequency is valid.
if($input->sampleFreq != 11025 && Sinput->sampleFreq 1= 16000 && Sinput->sampleFreq !=

&& Sinput->sampleFreq 1= 32000 && Sinput->sampleFreq != 44100
&& Sinput->sampleFreq != 88200) {

Sthis->errorproc('The sample frequency value is invalid.');

if(is_array($input->soundArray)) {
//Check the validity of the toneArray
for($i = 0; Si < sizeof($input->soundArray); $i++) {

$sound = $input->soundArray[$i];

if($sound->type == 'stdtone') {
Sthis->validateVal($sound->ip, 0, 60000, 'initial pause of tone at index', $i)
$this->validateVal($sound->risetime, 0, 60000, 'risetime of tone at index',

$i);
Sthis->validateVal($sound->ontime, 0, 60000, 'ontime of tone at index', Si);
Sthis->validateVal($sound->falltime, 0, 60000, 'falltime of tone at index',

$i);
Sthis->validateVal($sound->db, -300, 0, 'dB of tone at index', $i);
Sthis->validateVal($sound->freq, 10, 20000, 'frequency of tone at index', $i);

$this->validateVal($sound->phase, -pi(), pi(), 'phase of tone at index', $Si);

inputValidator.php Page 2 of 3
Printed: Thursday, May 15, 2008 3:05:50 PM Printed For: Michael Naber

if($sound->channel 1= '1' && $sound->channel 1= 'r' && $sound->channel 1= 'b')

$this->errorproc('The channel of tone ' . Si . ' is invalid. It must be
either "r", "1", or 'b"');
Sthis->valid = false;

if($sound->type == 'stdnoise') {
Sthis->validateVal($sound->ip, 0, 60000, 'initial pause of noise at index',

$i);
Sthis->validateVal($sound->risetime, 0, 60000, 'risetime of noise at index',

$i);
Sthis->validateVal($sound->ontime, 0, 60000, 'ontime of noise at index', $i);
Sthis->validateVal($sound->falltime, 0, 60000, 'falltime of noise at index',

Si);
Sthis->validateVal($sound->db, -300, 0, 'dB of noise at index', Si);

if($sound->lowpass 1= -1 && ($sound->lowpass > 20000 1 S$sound->lowpass < 1))
Sthis->errorproc('The lowpass filter frequency value for noise ' . Si .

is invalid. It must be either -1 or between 1 and 20000 inclusive.');
}

if($sound->highpass I=-1 && ($sound->highpass > 20000 II $sound->highpass < 1)

Sthis->errorproc('The highpass filter frequency value for noise ' . Si
is invalid. It must be either -1 or between I and 20000 inclusive.');

}

if($sound->loworder < 1 I $sound->loworder > 100))
Ssound->loworder/ceil($sound->loworder) I= 1.0) {
Sthis->errorproc('The order of the lowpass filter for noise ' . Si

is invalid. It must be an integer between 1 and 100 inclusive.');
}

if($sound->highorder < 1 1I $sound->highorder > 100 1j
$sound->highorder/ceil($sound->highorder) 1= 1.0) {

echo('high order ' . $sound->highorder);
Sthis->errorproc('The order of the highpass filter for noise ' . Si

is invalid. It must be an integer between 1 and 100 inclusive.');
}

if(floor($sound->seed) 1= $sound->seed) {
Sthis->errorproc('The seed of noise ' . Si . ' must be an intenger');

} elseif(($sound->seed > 4294967295 11 $sound->seed < 0) &&
$sound->seed 1= -1) {

Sthis->errorproc('The seed of noise ' . Si . ' must be either -1 or betwee
0 and 2^32 - 1 and 0 inclusive.');

}

if($sound->channel 1= '1' && Ssound->channel = 'r' && Ssound->channel 1= 'b')

Sthis->errorproc('The channel of noise ' . $i . ' is invalid. It must be
either "r", "I", or "b"');

}
}

}
} else {

$this->errorproc('The soundArray is not a valid array.');
}

if(Sthis->error == '") {
return true;

inputValidator.php

Printed: Thursday, May 15, 2008 3:05:50 PM
Page 3 of 3

Printed For: Michael Naber

} else {
return false;

S ----~------------------- ====~== ~----------

jsonResponder.php Page 1 of 1
Printed: Thursday, May 15, 2008 3:06:34 PM Printed For: Michael Naber

JsonResponder Class - Used by Soundgen RPC
Michael Naber

Description:
The JsonResponder class is used by the Soundgen RPC to encode JSON replies. After the Soundgen RPC
receives a generation request, this class is always used to either indicate successful generation
or reason for failure.

class jsonResponder {
//Returns a JSON response to the client
function echoFailure($reason, $statistics, $callback)

Sresponse->sound = "error - see obj.result";
$response->image = "error - see obj.result";
$response->result = $reason;
$response->statistics = $statistics;
if($callback 1= ") {

echo($callback . "(" . json_encode($response)
} else {

echo(json_encode($response));

function echoSuccess($sound, $image, Sstatistics, $callback) {
$response->sound = $sound;
Sresponse->image = $image;
Sresponse->result = "success";
Sresponse->statistics = $statistics;
if($callback I= '') {

echo($callback . "(" . jsonencode($response) . ")");
} else {

echo(jsonencode($response));

matlabGenerator.php Page 1 of 4
Printed: Thursday, May 15, 2008 3:06:59 PM Printed For: Michael Naber

<?

MatlabGenerator Class - Used by Soundgen RPC
Michael Naber

Description:
If the InputValidator class determines that the sound request is valid, the Soundgen RPC uses the
MatlabGenerator class to generate MATLAB commands which, when input into the MATLAB Daemon, will
write the .wav sound file and .jpg waveform image to a http accessible directory on the server's
disk.
*/

class matlabGenerator {

//This function sends the generated commands to the MATLAB Daemon PHP script.
//First, it inserts the commands into the MySQL database, and next it sends the ID of those

commands to the MATLAB Daemon PHP script.
function sendCommandsToMatlab() {

$return->picname = false;
Sreturn->soundname = false;

mysql_connect("localhost", "root", "soundlab") or die(mysql_error());
mysql_select db("mcmds") or die(mysql_error());
Sip = $_SERVER['REMOTE ADDR'];

$q_insjob = "INSERT INTO 'mcmds'.'jobs' ('id' ,'ipaddr" ,'time') VALUES (",
'$ip',CURRENTTIMESTAMP)";

$r insjob = mysqlquery($q insjob);
$cmdid = mysql_insert_id();

//Insert the commands into the database
foreach ($this->mcmds as $i => $value) {

$value = addslashes($value);
$qinscmd = "INSERT INTO 'mcmds'.'commands' ('id' ,'cmdid' ,'seq' ,'cmd') VALUES (',

'$cmdid', 'Si', '$value')";
$r_inscmd = mysql_query($qinscmd);

}

Shost = "127.0.0.1";
Sport = 44445; I/port chosen arbitrarily
$fp = fsockopen($host, Sport, Serrno, $errstr);
if($fp) {

fputs ($fp, $cmdid); //send the id of the commands to the MATLAB PBP Daemon Script
$result .= fgets ($fp, 1024); //get 1024 bytes from the socket
$result = trim($result);

//Make sure the .wav file is on the disk before returning
//We will wait up to $maxwaittime and we will check for the files every $waitinc
if($result == "woohoo") {

$maxwaittime = 30000000; // max time to wait for generator in microseconds
$waitinc = 10000; // max time to check in microseconds
Swaitedsofar = 0; // in microseconds

while($waitedsofar < Smaxwaittime && (Ifileexists($this->soundpath))) {
Swaitedsofar = Swaitedsofar + $waitinc;
usleep($waitinc);

}

if(file_exists(Sthis->soundpath)) {
$return->picname = $this->picname;
$return->soundname = Sthis->soundname;

}

natlabGenerator.php
Printed: Thursday, May 15, 2008 3:06:59 PM

Page 2 of 4
Printed For: Michael Naber

return $return;

//Generates the MATLAB commands for a valid Sinput sound request
function generateCommands($input) {

global $tempdir;

$random = rand();
$soundname = $random . ".wav";

$this->soundpath = $tempdir . "/" . $soundname;
$picname = $random . ".jpg";
$picpath = $tempdir . "/" . $picname;

$this->mcmds = array("sample freq = " . $input->sampleFreq . ";");

$soundArray = $input->soundArray;
foreach($soundArray as Si => $sound) {

//If the sound is a tone, generate MATLAB commands for the tone.
if($sound->type == 'stdtone') {

$this->mcmds = array_merge($this->mcmds, array("stdtone" . Si
$sound->freq . ";",

//Define the tone envelope
"stdtone" . $i . '

db = " . $sound->db . ";"
"stdtone" . $i . "_ip = " . $sound->ip . ";"
"stdtone" . $i . "_risetime = " . $sound->risetime . ";",
"stdtone" . Si . " ontime = " . $sound->ontime . ";",
"stdtone" . $i . " failtime = " . $sound->falltime . ";",
"stdtone" . $i . "_phase = " . $sound->phase . ";",

"stdtone" . Si . "_ip_sf = floor(sample_freq*stdtone" . S
"stdtone" . Si . " risetime_sf = floor(sample_freq*stdton

" risetime/1000);",
"stdtone" . Si . "_ontimesf = floor(sample_freq*stdtone"

"_ontime/1000);",
"stdtone" . Si . " falltime sf = floorlsamnle frea*stdton

"_freq = " .

i . "_ip/1000);",

i .

'e" . Si.
" falltime/1000);",

"stdtone" . Si . "_size_sf = stdtone" . $i . "_ip_sf + stdtone" .i .
"_risetimesf + stdtone" . $i . " ontimesf + stdtone" . $i . "falltime_sf;",

"if(stdtone" . $i . "_risetime_sf == 0)",
rampon = zeros(l,0);",

"else",
rampon = sin(linspace(0,pi/2,stdtone" . $i . "_risetime_sf)).^2;",

"end" ,
"if(stdtone" . Si . "_falltime sf == 0)",

rampoff = zeros(1,0);",
"else",

rampoff = sin(linspace(pi/2,pi,stdtone" . $i . "_failtime_sf)).^2;",
"end",
"stdtone" . $i . "_envelope = [zeros(l,stdtone" . Si . "_ip_sf) , rampon ,

ones(1,stdtone" . $i . "_ontime_sf), rampoff];",

"t=[0:1/sample freq:(stdtone" . Si . "_size_sf - 1)/sample_freq];",
//Define the tone as a sin wave multiplied by its envelope
"stdtone" . Si . " = sin(2*pi*t*stdtone" . Si . "_freq + stdtone" . i .

"_phase) .* stdtone" . Si . "_envelope;",
"stdtone" . Si . " = stdtone" . $i . "*10^(stdtone" . Si . "_db/20);"));

//If the sound is a stdnoise, generate MATLAB commands for it
} else if($sound->type =='stdnoise') {

if($sound->seed == -1) {
$seed = rand(0,429496729);

} else {
$seed = $sound->seed;

}

atlabGenerator.php
Printed: Thursday, May 15, 2008 3:06:59 PM

Page 3 of 4
Printed For: Michael Naber

Sthis->mcmds = array_ merge($this->mcmds, array(
//define the noise envelope
"stdnoise" . $i . " db = " . $sound->db . ";"

"stdnoise" . $i . "_ip = " . $sound->ip . ";",
"stdnoise" . $i . " risetime = " . $sound->risetime . ";",
"stdnoise" . $i . " ontime = " . Ssound->ontime .

";
"
,

"stdnoise" . $i . " falltime = $. Ssound->falltime . ";",
"stdnoise" . $i . "_lowpass = " . $sound->lowpass ";",
"stdnoise" . $i . "highpass = " . $sound->highpass . ";",

" risetimei1000);",

" ontime/1000);",

"falltime/1000);",

"stdnoise" . $i . "_ip_sf = floor(sample_freq*stdnoise" . $i . "_ip/1000);",
"stdnoise" . $i . "_risetime_sf = floor(samplefreq*stdnoise" . i .

"stdnoise" . $i . "_ontime_sf = floor(sample_freq*stdnoise" . $i .

"stdnoise" . Si . "_falltime_sf = floor(sample_freq*stdnoise" . Si .

"stdnoise" . $i . "_sizesf = stdnoise" . $i . "_ipsf + stdnoise" . i .
" risetime sf + stdnoise" . $i . " ontime sf + stdnoise" . $i . " falltime sf;",

ones(l,stdnoise" .

"if(stdnoise" . $i . "_risetime_ sf == 0)",
rampon = zeros(1,0);",

"else",
rampon = sin(linspace(0,pi/2,stdnoise" . $i . "_risetime_sf)).^2;",

"end",
"if(stdnoise" . $i . "_falltime sf == 0)",

rampoff = zeros(1,0);",
"else",

rampoff = sin(linspace(pi/2,pi,stdnoise" . $i . " falltime_sf)).^2; " ,

"end",
"stdnoise" . $i . "_envelope = [zeros(l,stdnoise" . $i . "_ip_sf) , rampon ,

$i . "- ontime sf), rampoff];",
"randn('state'," . $seed . ");",
"stdnoise" . $i . " = 2*randn(1,stdnoise" . $i . " sizesf) - 1;"));

//apply the lowpass butterworth filter
if($sound->lowpass 1= -1) {

Sthis->mcmds = array_merge($this->mcmds, array(
"[LB,LA] = butter(" . $sound->loworder . ",[stdnoise" . i .

"_lowpass/(sample_freq/2)],'low');",
"stdnoise" . $i . " = filter(LB,LA,stdnoise" . Si . ");"));

}

//apply the highpass butterworth filter
if($sound->highpass != -1) {

Sthis->mcmds = arraymerge(S$this->mcmds, array(
"HB,HAj = butter(" . $sound->highorder . ",[stdnoise" . i .

"_highpass/(samplefreq/2)],'high');",
"stdnoise" . $i . " = filter(HB,HA,stdnoise" . $i . ");"));

}

//multiply the noise by its envelope

Sthis->mcmds = array_merge($this->mcmds, array(
"stdnoise" . $i . " = stdnoise" . $i . " .* stdnoise"
"stdnoise" . Si .

"
= stdnoise" . $i . "*10^(stdnoise"

Si . " envelope;",
SSi . "_db/20);"));

$this->mcmds = arraymerge($this->mcmds, array("maxsize=0;"));

//compute the maximum duration tone or noise in the sound
foreach($soundArray as $i => $sound) {

Sthis->mcmds = arraymerge($this->mcmds,array("maxsize=max([maxsize,size(
'

r

--

matlabGenerator.php
Printed: Thursday, May 15, 2008 3:06:59 PM

Page 4 of 4
Printed For: Michael Naber

$sound->type . $i . ",2)]);"));
}

foreach($soundArray as $i => $sound) {
//resize the sound and set the channel
$this->mcmds = array_merge($this->mcmds, array($sound->type . $i . " = [".

$sound->type . Si . ", zeros(1,maxsize-size(" . $sound->type . $i . ",2))]';"));

//Set the sound to the right channel
if($sound->channel == 'r') {

$this->mcmds = array_merge($this->mcmds, array($sound->type .
[zeros(size(" . $sound->type . Si . ",1),1)," . $sound->type . $i . "J;"));

} else if($sound->channel == '1') {
Sthis->mcmds = array_merge($this->mcmds, array($sound->type .

$sound->type . Si . ",zeros(size(" . $sound->type . Si . ",1),1)];"));
} else {

Sthis->mcmds = array_ merge(S$this->mcmds,
Ssound->type . Si . "," . Ssound->type . Si . "];"));

foreach($soundArray as Si => $sound) {
if($i == 0) {

Sthis->mcmds = array_merge(S$this->mcmds,

} else {
Sthis->mcmds = array_merge($this->mcmds,

Si . ";"));

Si . " = ["

array($sound->type . Si . " = [" .

array("playme = " . $sound->type . Si .

array("playme = playme + " . Ssound->type

Sthis->mcmds = array_merge($this->mcmds, array(
"wavwrite(playme,sample _freq,32,'S$this->soundpath');",
"plot([l:maxsize]/samplefreq,playme);",
"set(gca,'ylabel',text(O,O,'Magnitude'),'FontSize',10);",
"set(gca,'xlabel',text(0,0,'Time (seconds)'));",
"print -djpeg -r72 $picpath;",
"clear all;"));

Sthis->soundname = Ssoundname;
$this->picname = Spicname;

r

daily.php Page 1 of 1
Printed: Thursday, May 15, 2008 3:07:26 PM Printed For: Michael Naber

<?
/*

daily.php
Daily Maintenance Script
Michael Naber

This script is run daily and performs two tasks.
1) Deletes old generated .wav and .jpg files from the temp directory
2) Delete old matlab commands from the database

*/

include('config.php');
//sets $tempdir and $absoluteuri

//delete the old (more than 5 days old) .wav and .jpg files from the temp directory
exec('find lvar/www/html/soundgen/temp -type f -mtime +5 ' grep "wav\ jpg" I xargs rm -f');

//delete the old matlab commands from the database
mysql_connect("localhost", "root", "soundlab") or die(mysql error());
mysql_select_db("mcmds") or die(mysql_error());
mysqlquery("TRUNCATE TABLE 'jobs");
sleep(5);
mysql_query("TRUNCATE TABLE 'commands'");

,----~------~------~----~-

config.php
Printed: Thursday, May 15, 2008 3:07:47 PM

Page 1 of 1
Printed For: Michael Naber

<?
1*
config.php
Just a configuration file...
*/

//The http path where the library is located
$absoluteuri = "http://tuliptree.mit.edu!soundgen";
//The file path where the library is located
Stempdir = "ivar/www/html/soundgen/temp";

--

socket.php Page 1 of 2
Printed: Thursday, May 15, 2008 3:08:09 PM Printed For: Michael Naber

<?
/*

MATLAB Daemon PHP Script
Michael Naber

Description:
This script is run when the server boots, and remains running at all times. Its purpose is to pass
matlab commands to the MATLAB process it continually holds open. Keeping the MATLAB process
continually running prevents the MATLAB startup delay that would happen otherwise.

include('/root/soundgen_daemon/config.php'); //sets Stempdir and $absoluteuri.

$host = "127.0.0.1"; // listen on the the localhost
Sport = 44445; // the listening tcp port

//Make the script not time out
set time_limit(0);

i/Listen on the tcp address and port specified above
$socket = socket_create(AF_INET, SOCK_STREAM, 0) or die("Could not create socket\n");
$result = socket bind($socket, $host, Sport) or die("Could not bind to socket\n");
$result = socket_listen($socket, 3) or die("Could not set up socket listener\n");

//Descriptorspec to be used by the MATLAB process.
$descriptorspec = array(

0 => array("pipe", "r"), // stdin is a pipe that the child will read from
1 => array("pipe", "$tempdir/stdout.txt, "a"'), // stdout is a pipe that the child will write

to
2 => array("file', '$tempdirierror.txt", "a") // stderr is a file to write to

//Start the MATLAB process with no GUI
$process = procopen("/usr/local/bin/matlab -nodesktop -nodisplay -nojvm", $descriptorspec,

$pipes);
echo("Matl.ab started\n");

do{

$spawn = socket__accept($socket) or die("Could not accept incoming connection\n");

//Receive the command ID
$cmdid = socket_read($spawn, 1024);
$cmdid = trim($cmdid);

//Get the commands to generate from the database
mysql_connect("localhost", "root", "soundlab") or die(mysqlerror());

mysql_select_db("'mcds") or die(mysql_error());
$q_mcmds = "SELECT * FROM 'mcmds'.'commands' WHERE 'cmdid' =$cmdid ORDER BY "seq" ASC";

$r_mcmds = mysqlquery($q_mcmds);

mysql_close();

//Perform the generation
if (is_resource($process)) {

// $pipes now looks like this:
// 0 => writeable handle connected to child stdin

// 1 => readable handle connected to child stdout

$time start = microtime(true);
$time diff = 0;
//10 seconds MAX to run the generation
while($w_mcmds = mysql fetch_array($rmcmds)) {

$mcmd = stripslashes($w_mcmds['cmdn]);

socket.php Page 2 of 2
Printed: Thursday, May 15, 2008 3:08:09 PM Printed For: Michael Naber

if($time_diff < 10) {
fwrite($pipes[0], $mcmd . "\n");

} else {
fwrite($pipes[0], "clear all;" . "\n");
break;

}
$time-now = microtime(true);
Stime_diff = $time_now - Stimestart;

//If we finished generating in less than 10 seconds return success
if($timediff < 10) {

$output = 'woohoo' ;
} else {

$output = 'boohoo';
}

socket_write($spawn, $output, strlen ($output)) or die("Could not write output\n");
socket_close($spawn);

} while(true);

//These last few lines should never execute since the previous while look should never end.
socket_close($socket);
fclose($pipes[0]);
fclose($pipes[1]);
proc close(S$process);
?>

