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ABST"RACT: TIle analysis of visual motion divides naturall)T into two stages: the
first is tIle measurerrlent of illotion, for example, the assignment) of direction and
ITlagnitude of velocity to elements in the image, on the basis of the changirlg in.tensity
pattern; the secaIld is the 'use of lnotion m.easurements, for example, to separate the
sceIle into distinct objects, and infer their three-dimensional structure. In tllis paper,
we present a cornputational stud}! of the measurerrleIlt of motion. Sirnilar to otller
visual processes, the motion of elements is not determined llniquely by il1formation
in the cllan.ging lIllage; additional constraint is required to compute a tlnique velocity
field. Given tllis glolJal arnbiguity of motion, local measurements frolll t11e changing
ilnage, such as tllose provided by directionally-selective sirnple cells in primate
visual cortex, cannot possibly specify a unique local velocity vector, and in fact,
specify only one component of v.elocity. COlnputation of the full t"vvo-dimensional
'velocity field requires the integration of local motion measurem'ents, either o1ter
an area, or along COlltOUTS in the image. \Ve will examine possible algorithms for
computing motion, based 011 a range of additional constraiIlts. Firlally, we will
present implications for the biological computation of motion.
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1. Introduction

The organization of movement in a changing two-dimeI1sional image provides a
valuar)le source of information for analyzing the eTI1lironment in terlns of objects,
their Illotion ifl space, and their three-dirrlensional structure. It is not surprizing,
therefore, that the analysis of visual Illotion plays a central role in biological vision
systerrls. S011histicated Dlccllanisrns for extracting and utilizing motion exist even in
sirnple animals. F'or example, the frog has efficient "bug detection" rnechanisms that
respond selectively to small, dark: objects moving in its visual field [1). The ordinary
llousefiy can track moving objects and discover tIle relative nlotion between a target
and its bac.kground, even when the two are identical in texture, and therefore
iIldistillguishable in the absence of relative motion [2).

In higher animals, including primates, the analysis of motion is "\vired into"
the visual system from the earliest processing stages. Some species, sucll as the
pigeon [3] and rabbit f4] (see [5J for other examples) perform rudimentary motion
analysis at the retinal level. In other animals, including cats ailel primates, the first
neurons in visual cortex to receive input from the eyes are already involved in the
analysis of motion: they respond well to stimuli ITloving in one direction, but little,
or llot at all, to motion in the opposite direction [6,7].

In SaIne animals, visual motion is used in the guidance of locomotion and
tile control of body motion. The plummeting gannet [8], for example, uses visual
flow information to stretch back its V\rings a fraction of a secoIld before it hits
the water. Perhaps the most remarkable use of visual motion is the recovery
of tllree-dimensional shape using motion information alorle. This capacity of the
human visual system has been demonstrated in tIle studies of Wallach and O'Connell
[9] and Johansson [10,11).

TIle extensive use of motion by biological systems, arld in particular the human
visual system, demonstrates the feasibility of carryirlg out certain information
processing tasks and helps to establish specific goals for the analysis of time-varying
imagery. This analysis divides naturally into two parts. The first stage is the
measurement of motion; for example, the assignment of direction and magnitude
of velocity to elements in the image, on the basis of the changing intensity pattern.
The second is the use of motion measurements; for example, to separate the scene
into distinct objects, and infer their three-dimensional structure.

In this paper, we present a computational study of the measurement of visual
motion. It is a problem which was found to be surprizingly difficult, both in
computer vision, and in modelling biological vision systems. We will present the
general problem of motion measurement in Sectioll 2, aIld discuss methods that
have been proposed for its solution. Section 3 presents a specific scheme, proposed
by Marr and Ullman [12], for extracting the first motion measurements from the
changing image. The initial measurements do not yet specify the true motion of
objects in the changing image, and must be combined in some way. This raises the
motion integration problem, which will be discussed in Sections 3 and 4. Section
5 presents some implications for the analysis of motion in biological vision systems.

2. Motion Detection and MeasuremeIt

The motion of elements and regions in an image is not given directly, but must
be computed from more elementary measurements. The initia.l registration of light
by the eye or by electronic imaging devices can be described as producing a
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two-dimensional array of tirne-dependellt light intensity values, l(x, y, t). Motion in.
the image carl be described in terIDS of a vector field ·V(x, y, t) giving the velocity
of a point with irnage coordinates (x, y) at time t. The first problem in analyzing
visual motion is tIle computation of V(x, y, t) from I(x, y, t). This computation is
the rneasurement of visual motion.

In SOIlle cases it may be sufficient to detect only certain properties of the
velocity field, rather than measure it completely and precisely. Ji'or example, ill order
to respond quickly to a moving object, matiaIl IIlust be detected, l)ut not necessarily
measured. Other tasks, such as the recovery of three-dimensional structure from
motion, require a more complete and accurate measurement of the velocity field
[13-17].

The measurement of motion may be performed at different stages in the
processing of all image, utilizing different motion primitives. It is useful to draw a
distiIlction between two Inain schemes. At the lowest level, motioIl measurements
may be based directly on the local charlges in ligrlt interlsity values; these are
called interLsity-based schemes. Alternatively, it is possible to first identify features
such as edges and their termirlation pOi11tS, corners, blobs, or regions, and then
rneasure motion by nlatclling these features over time, and detecting their changing
positions. Schemes of this type are called token-matching schemes. 1-'hese two
lllodes of motion detection and measurement give rise to different computational
problems, and consequently to different kinds of processes in biological as well as
.computer vision systems.

2.1. Intensity-based Schemes for Motion Measurement

Two main types of intensity-b~sed schemes have been advanced for 11iological
and computer vision systems: correiatioll techniques and gradient methods. Cross
correlation of raw intensity values has l)een used in computer vision applications
[18-21], and has been proposed as a model for motion measurement ill the human
visual system [22-24]. Related to cross-correlation schemes are subtraction schemes,
involving simple differencing operations between successive frames. In computer
vision, such schemes are primarily used for tIle detection of motion, and object
segmentation [25-28]; together with cross-correlation, they llave been utilized for
the measurement of motion [26,28]. A fundamental problem of most correlation
and subtraction schemes is that they assume the image (or a large portion of it)
moves as a whole between the two frames. Images containing independently moving
objects and image distortions induced by the unrestricted motion of objects in
space pose difficult, perhaps insurmountable, problems for these techniques.

Other intensity-based schemes have been proposed for biological systems. A
simple motion detector can be constructed by comparirlg the outputs of two
detectors to light increments at two adjacent positions. The output at position PI
and time t is compared with that at P2 at time t - 6t (a low-pass temporal filter
may be used insteaJd of tile delay [29J). Two variations of this approach, called the
delayed comparison scheme, have been proposed as models for biological systems.
The first is obtained by multiplying the two values, i.e. D(Pl, t) ·D(p2, t-bt), where
D denotes the output of the subunits, shown in Figure la. If a point of light moves
from P2 to PI in time equal to bt, this product will be positive. In an array of such
detectors, the average output is essentially equivalent to a cross-correlation of the
inputs [29]. An alternative method along the same general line is the"And-Not"
scheme proposed by Barlow and I..Jevick [30] for the directionally selective units in
the rabbit's retina (a similar scheme was suggested for the eat's visual cortex [31]).
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(a) (b)

Figure 1. The delayed comparison schemes. (a) The two inputs are multiplied
(b) The "And-Not" scheme

Eviderlce for inhibitory interactions within the directionally selective mechanism
led to a model in which the motion detector computes the logical" And" of D(pl' t)
aIld "Not" of D(P2' t - 8t) (see F"igure lb). In this scherne, a motion. from P2 to Pl
is "vetoed" by a delayed response from P2, \vhereas motion froTll PI to P2 produces
a positive response. Poggio and Reichardt [32] have proposed a similar scheme for
the visual system of the fly, and an elegant synaptic mechanism that implements
these computations was described by Torre and Poggio [33].

Some general properties of the delayed comparison schemes are worth noting.
First, these detectors respond selectively not only to continuous motion, but also
to discrete jumps of the stimulus between positions PI and P2. Second, the speed of
motion must lie within a certain range, determined by the delay (or the low-pass
filtering) and the separation between the receptors. A range of velocities can be
covered by a family of detectors with different internal delays and interreceptor
spacing. Finally, motion measurements canIlot be determined reliably from the
output of a single detector of this type. The accurate and reliable measurement of
motion will require the combination of the outputs from an array of such elementary
detectors.

In gradient schemes, the local motion measurements are derived via a comparison
between intensity gradients, and temporal intensity changes. A one-dimensional
example, illustrating the basic principle, is shown in Figure 2. Consider the intensity
profile (intensity- I as a function of position x), indicated by the solid curve in Figure
2. At the point p, the profile has a positive slope. If the profile moves to the left,
indicated by the dashed curve, the intensity value I at p will be increasing; for a
rightward motion, indicated by the dotted and dashed curve, I(p) will be decreasing.
The sign of the temporal change in I(p) thus signals the direction or motion, and
from the magnitude of tIle spatial and temporal intensity changes, the speed of
motion can be determined. In principle, measurements of motion may be obtained
wherever the image intensity gradient is non-zero; however, the measurements are
more reliable at the location of edges, where steep intensity gradients are induced.
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Figure 2. Comparison of the sign of the spatial and temporal derivatives of intensity
at the point p yields the sign of direction of Illation

In two dirnensions, the spatial and temporal intensity changes alone are not
sufficient to determine the local directioIl and magnitude of velocity [12,34-37],
because of the aperture problem, illustrated in Figure 3. If the motion of the
edge E is to be detected by operations which examine an area A that is small
compared to the overall extent of the edge, the only Inotion that can be extracted
is the conlponent c perpendicular to the local orientation of the edge. For example,
such operations cannot distinguish between' motion in the directions h, c, and d.
rro determine the Illation completely, a second stage of analysis is required, which
integrates the local motion measurements, either over an area of the image, or
along contours.

--~d

Figure 3. The aperture problem. Motion in the directions h, e and d can not be
distinguished when viewed through the local aperture A.

2.2. Token-matching Schemes for Motion Measurement

In token-matching schemes, identifiable elements - tokens - are located and then
matched over time. Assuming that the visual> input is given as a sequence of
discrete frames, a counterpart for each element in one frame must be located in
the' next. This raises the correspondence problem, illustrated in Figure 4. The
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filled circles in the figure represent the first fraIne, and the open circles the second.
,~ There are tV/O possible one-to-one pairings between the elements of the two frames,

leading to two patterns of perceived motion: diagonal (a) or horizolital (b). In
this example, the match is only two-way arnbiguous. In general, each fralne could
contain many elements arranged in complex figures; a correspondenee must then
be established among them. The rules governing the correspondence proc.ess in
human vision have been investigated [38-44], but are still far froln being completely
understood. Token-Tnatching schemes for motion measurernent llave also been
studied for computer vision [45-50] .
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Figure 4. A simple correspondence problem

Two general problems of tokeIl-matching schemes are relevant to both
biological and machine Ination analysis. 'The first concerns the level at which
the correspondence is establislled. By· this' we mean the degree 6f preprocessing
and the complexity of the participating tokens. Matching may be established
between simple tokens such as points, blobs, and edge fragments. Alternatively,
the matching process may operate on complex tokens such as structured forms,
or even the irrlages of recognized objects. The use of complex tokens can simplify
the correspo~ldence process, since a conlplex tokerl will usually have a unique
counterpart in a subsequent frame. Primitive tokens will usually have many
competing possible matches, but their use lIas t"vo distinct advantages. The first
is.a reduced preprocessing requirement, which is of special importance in motion
perception, where computatiorl time is severely restricted. The second is that a
correspondence scheme based on primitive tokens can operate on arbitrary objects
engaged in complex shape changes. It seems, therefore, that the correspondence
process should operate on the level of rather primitive elements, perhaps at the
level of Marr's full primal sketch [51,52].

The second general problem concerns the possible role of intensity-based and
token-matching schemes in an integrated vision system. Intensity-based schemes
tend to be fast and sensitive, but the ambiguity of the local measurements may
make it difficult to recover the velocity field accurately. A token-matching scheme
can, in principle, track a sharply localized token (such as a line termination) over
long distances, and thereby achieve a high degree of accuracy, at the price of
more extensive processing, in locating the tokens and solving the correspondence
p~oblem.

In light of the differences in their basic properties, it is possible that the two
motion measurement schemes serve distinct visual tasks. The intensity-based system
may be useful as an "early warning" system, and for the separation of moving
objects from their background. Token-matching schemes may play an important
role in the recovery of structure from motion, where the accurate tracking over
considerable distances is useful. A second possiblility is that the two schemes
interact to complement each other. For example, a token-matching scheme might
be guided by additional COIlstraints supplied by an intensity- based system.
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2.3. rr·wo Motion SysteIIls in IIuman Vision

Psychological studies of motion (ietection arid measurernent in tIle human system
have distinguished two types of visual motion: discrete and continuous. F'or human
observers to perceive motion, the stimulus need not move continuously across the
visual field. Under trle appropriate spatial and terrlporal presentation parameters, a
stimullls presented sequentially can prodllce the impression of smooth, uninterrupted
motion (as in motion pictures) [53]. The visual system can "fill-in" the gaps in the
discrete presentation everl when tIle stimuli are separated by up to several degrees
of visual angle, and by long temporal intervals (400 fisec., fS4]). Tile resulting
motion, terrned "apparent" or "beta" motion is perceptually indistinguishable froIn
continuous motion.

The apparent motion phenomena raise the question of wllether discrete and
c.ontinuous motion are registered by two different mechanisms. T'he fact that the
visual system can register both types of motion does not imply the existence of
tvvo separate mechanisms, since a system that registers discrete motion could in
principle register contillUol1S motion as well. Psycllophysical evidence supports,
however, the view that two differeIlt mecllanisms are in fact involved. in the process
of motion detection and n1casurement [55-60]. The terms" s]10rt range" and" long
range" processes were suggested by Braddick [58] for tIle two mechanisms. The
short range IIlechanism registers COIltinuous motion, or motioll presented discretely,
with d-isplacements of up to about 15 mi~. of arc (if1 the cellter of the visual
field) and temporal intervals of less than about 60-100 msec. The long range
ITlechanism can process larger displacelnents and temporal intervals. Braddick's
termiIlology characterizes tIle distinction betweell the t~TO mechanisms better than
the discrete/continuous dichotomy, since discrete presentation with jumps of up to
15 min. of visual arc will be processed by the short range mechanism.

In the human visual system, it appears that the short range process is an
intensity-based scheIIle, whereas the long range process is a token-matching scheme.
Braddick [58] proposed that the directionally-selective units of visual cortex underly
the short range process, suggesting that the spatial and temporal limits reflect
the spatial and temporal parameters of these neural units. Marr and Ullman
[12], present a gradient scheme for the detection and meaSl1rement of motion,
which includes a model for constructing the directionally-selective units, and an
algorithm for combining the local mea~urements to compute the two-dirnensional
velocity field. The long range motion phenomena illustrate our ability to derive a
correspondence of elements in the changing image, over considerable distances and
temporal intervals. In these situations, there is no continuous motion of elements
across the retina to be measured directly. Psychophysical studies have shown the
long range correspondence to be based on more symbolic primitives, such as edges,
bars, blobs, simple groups of primitive elements, and texture edges [13,61].

2.4. Summary

To summ.arize, several methods are available for the detection and measurement
of motion. These methods differ in the constraints they derive from the changing
image. Intensity-based schemes utilize the spatial and temporal changes in the image
intensity pattern to constrain local velocity, while token-matching schemes extract
more symbolic tokens from the image, which are then matched over time. These
two techniques for motion analysis give rise to different computational problems,
and consequently to different kinds of processes in biological and computer vision
systems.
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3. Deriving Veloeity· ljonstraints from tIle lInage

In tIlis sectioll i we first present a scheme for extracting initial Illation constraints
from the image, proposed by Marr and lTllman [12], \Arbich was rnotivated by
cornputational studies of' early visual processing, and 11europhysiologicaI studies
of directionally-selective sirrlplc cells in primate visual cortex. The use of this
type of initial Ination n1casurement raises the -n1otion integration problem; the
measurelncnts do not yet specify the true illotion of objects in the changing image,
and rnust. be i11tegrated in some \vay to compute the velocity field. COlnputational
stud ics suggested that the first stage of irIlage analysis sho111(1 be tIle detection
of intensity changes (see [62] for a review). ~1arr and IIi](lreth [63] llave proposed
that an optirrlal operator for tIle initial filtering of the image is tIle I.Japlacian
of a Gaussian, V 2C, whose shape may be approximated by t.he difference of
two Gaussians. The elernents in this convolution output, ¥'!bich correspond to the
location of Intensity c}langcs, are the zero-crossiIlgs [64]. Figure 5 stlOWS an image
which has been processed through a \J2G filter, and the resulting zero-crossing
contours. :tv1arr and flildreth suggested that the convolution of the irTlage \vith V 2C
is represented in the output of the reLinal ganglion X-cells, and that a class of
simple cells in visual cortex assumes tIle role of zero-crossing detection.

(a) (b) (c)

Figure 5. The detection of intensity changes. (a) The original image (b) The convolution

of (~) with a \12 G operator (c) The resulting zero- crossing contours.

Marr and Ullman (12) have extended this model for sinlple cells, including a
mechanism for their directional selectivity. The basic idea is illustrated in Figure
6. Figure 6a shows the one-dimensional output of the convolution of a step-edge
intensity profile, with the second derivative of a gaussian, (D2G*I). Figure 6b and
Figure 6c illustrate the time derivative, Gt(D2G* I), for motion of the profile to
the left and right, respectively. At the location of the zero-crossing Z, the time
derivative will be negative for motion to the left, and positive for motion to the
right. Similar to the gradient scheme introduced in Section 2, the sign of contrast
of tIle zero-crossing can be compared with the sign 'of the temporal derivative, to
compute the direction of motion of the zero-crossing. By cornbining the magnitude
of the slope of the convolution output as it crosses zero, with the magnitude of the
time derivative, rough magnitude of velocity can be computed. In two dimensions,
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·- comparison of the spatial and temporal derivatives of \72 G* I (where I is now a
two-dilnensional intensity distribution) at the location of zero-crossings, provides
only the component of motion in the direction perpendicular to the local orientation
of the contour.

Marr and tJllman have proposed that the retinal ganglion Y-cells carry the
time derivative of the 'l2C convolution, and that simple cells combine the spatial
and temporal derivatives, carried by the X-system and "{-system (via the LGN),
to compute the direction of motion of the zero-crossing contours. A neural Inodel
for the derivation of the spatial and temporal derivatives has been proposed by
Richter and Ullman [65]. Recent neurophysiological studies support the role of
simple cells in the detection of zero-crossings (Ii-ichter, personal cOffilnunication]. In
addition to neurophysiological support, this sC}leme appears to be consistent with
psychophysical studies of the sllort-range process [12].

(a)

(b)

(c)

Figure 6. The Marr-Ullman scheme. (a) Convolution of a step intensity change with
D2G (b) and (c) Temporal intensity derivative for motion of the profile to the left and
right

From a computational standpoint, restricting the measurement of motion to
the location of zero-crossings has two advantages over schemes based only on the raw

. intensities. First, the zero-crossings of \72G*I correspond to points in the image at.
which the gradient of intensity is locally maximum, yielding the most reliable local
velocity measurements. Second, the zero-crossings are tied more closely to physical
features; if the zero-crossings move, it "is more likely to be the consequence of
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moverrlent of all underlying physical surface. There are nlany factors that can cause
intcIlsity to change locally, SUCll as cllanging illumination; a change in intensity
over time is not necessarily due to the motion of an underlying surface.·

The zero-crossing scheme presented above does not yet solve the motion
measurement problenl.The rneasurement of tIle motion of zero-crossings, using
a local gradient scherne, provides only the compOIlent of motion in the direction
perpendicular to the orientation of the contour. The componerlt of velocity along the
contour rernains undetected. More formally, we may express the velocity field along
a contour by the ftInction 'V(s), where s denotes arclength. V(s) can be decornposed
into components tangent and perpendicular to the contour, as illustrated in Figure
7. u T(s) and u-.l(s) ate unit vectors in the directions tangent and perpendicular to
the curve, and vT (s) and v-l(s) denote the magnitudes of the t\¥O components:

(1)

.....
•••••• •••••VT(S).. .

.... . V(5)

...... -....
•••···~.L(5).....

Figure 7. The decomposition of velocity V(s) into tangential and perpendicular
components

The cornponent v.l(s) is given directly by the initial measurements from the
changing image; the COlllputation of V(s) requires the further recovery of vT (s).

At the very least, the computation of V(s) requires the integration of the
constraints provided by v.l (s) along the contour. In general however, the solution
may still be underdetermiIled. Additional constraint is required to compute a single
velocity field. Figure 8 illustrates two examples, in which the velocity field solution
is not unique. In Figure 8a, the solid and dotted lines represent the irnage of a
moving circle, at different instants of time. In the first frame (solid line), the circle
lies parallel to the image plane, while in the second frame, the circle is slanted in
depth. One velocity field consistent with this -sequence is derived from pure rotation
of the circle about the central vertical axis, as shown to the left in Figure Sa.
(The arrows represent local velocities.) However, there could also be a component
of rotation in the plane of the circle, about its center; as shown to the right in
Figure 8a. Both velocity fields correspond to valid rigid motions of the circle. This
ambiguity is not particular to circles. In Figure 8b, the solid curve C 1 rotates,
translates and deforms over time, to yield the dotted curve C2. The mapping of
points from C 1 to C 2 is much less clear (consider, for example, different possible
velocities for the point p). The precise computation of the velocity field in this case
is important, when one considers the subsequent computation of structure from
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(a) (b)
Figure 8. Ambiguity of the velocity field computation. (a) A circle, rotating in depth
(b) A deforming curve

motion; different choices for the velocity field may yield different three-dimensional
structures. The computation of a unique velocity field requires additional assump
tions about physical surfaces, and the velocity field tllat they generate under
motion.

In conclusion, the computation of the velocity field, for the case of general
motion, requires a scheme that combines local measurements of motion from the
changing image, subject to additional constraints. This is the motion integration
problem.

4. The Integra.tion of Local Motion MeasuremeIts

In this section, we discuss the motion integration problem, strictly from a
computational viewpoint. The results that we present here are largely independent
of the nature of the initial motion measurements, and in particular, do not depend
on the Marr-Ullman scheme discussed previously. This section will be organized by
ttle type of additional constraint that may be utilized in the combination stage. We
will consider fOUf types of additional constraint on the velocity field: (1) velocity
is constant over an area of the image (valid for pure translation); (2) the velocity
field is consistent with rigid rotation and translation of objects in the image plane;
(3) the velocity field is smooth, and exhibits the least variation among the set
of velocity fields consistent with the image constraints; and (4) the velocity field
is smooth, exhibits the least variation possible, and is constant over small time
intervals. We will discuss methods for combining local measurements, given each of
the fOUf types of constraint.

4.1. The Constant Velocity Constraint

Much of the previous work in motion analysis has addressed the case of pure
translation of objects in the image plane. The early gradient schemes used in
computer vision [34,66] assumed that velocity would be constant over a large
area of the image. Most correlation and subtraction schemes also embodied this
assumption. Marr and Ullman [12,67] proposed a- scheme in which each local
measurement restricts the true velocity of a patch to lie within a 1800 range of
directions to one side of a segment of the local zero-crossing contour. A set of
measurements taken at different orientations along a zero-crossing contour then
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further restrict the allo\vable velocity directions, until a single velocity direction is
obtained, which is consistent \vith all the local measurements.

The scheme that we present in the next section, for analyzing rotatioll and
translatioIl in the image plane, may also be used for the restricted case of pure
translation. While these schemes cannot account for the full range of human motion
perception, they may be useful for the initial detection and rough measurement
of motion in the periphery, or analysis of motion during smooth pursuit eye
movements, in which stationary objects translate rigidly with respect to the eye.
In computer vision, there are restricted applications for these techniques, such as
the tracking of objects along a conveyor, or computation of camera motion [68].

4.2. Rigid Motion in the Inlage Plane

In this and remaining sections, we will focus on the motion of contours. The results
apply, however, to continuous patches in the ilnage as well. First, suppose we have
a rigid curve undergoing general motioIl in space. Its instantaneous motion may
be described as tlle COlllbination of: (1) a rotation with angular velocity w about a

single axis in space, which we will denote by the vector n = [ni, n2, na]T (T denotes
the transpose of a vector), and (2) a translation, which we will denote by the vector

d = [d i , d2 , d3 f. Let the curve be given parametrically by C = (x(s), y(s), z(s)).
The location of a point on the curve may be given by the position vector r =
[x( s), y( s), z(s)f i If we let the 'optical axis lie along the z-axis, and let the projection
of the curve onto the image plane (the (x, y) plane) be orthographic, then the
tvvo-dimensional velocity field V(s) along the contour is given by:

M denotes the matrix which performs the orthographic projection. The first ternl in
the resulting expression describes the component of the velocity field due to rotation

in depth about an axis parallel to the image plane (the axis n = [nt, n2, O]T); the
second term is the cOIIlponent due to motion in the image plalle (rotation about

the axis n - [0, 0, n3]T), and the third term is the translation component.

Consider the restricted case of rigid motion in the image plane; the velocity
field now corresponds to the combination of a translation, and rotation about the

axis n- [0,0, If. Thus, V(s) is given by:

V(s) = w[-Y(S)] + [d1]
x(s) d2

(3)

V(s) is simply a translation, rotation and scaling of the image curve (x(s);y(s)),
as illustrated in Figure 9. In Figure 9a, the curve Cl undergoes a small rotation
and translation in the image plalle to yield the curveC2 . The arrows indicate local
velocity vectors along the curve. In Figure 9b, these velocity vectors have been
translated to a common origin in velocity space, where the x and y axes represent
the x and y components of velocity. The curve in velocity space has the sarne shape
as the image curve C1; its size is proportional to angular velocity w, and it is rotated
900 with respect to C1 (this relationship is also used in kinematics [69]).
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(a) (b)

FigureJ!.: Rigid motion in the image plane. (a) The velocity field in the image (b) The
veloci ty vectors in veloci ty space

The additional translation of the curve in the image yields the same traIlslation of
the curve in velocity space. In ttle case of pure translation, the image of tIle velocity
Held in velocity space degenerates to a single vector. In general, the explicit use of
the velocity space aids in the visualization of properties of tIle motion of curves,
and provides a tool for establishing theoretical properties of the velocity field.

For the simple case of rigid motion in the image plane, this relationship between
the shape of the curve and the velocity field is not restricted to continuous motion
of the curve. For discrete motion of .a curve, we will use the term displacement
field for the set of vectors which describe the discrete displacement of points on the
curve. If we let (j be a discrete angular rotation of the curve in the image plane,
then the displacement field V d(s) is given by:

v (s) == (COSU.-l
d -SInO'

sinO" J[X(S)] + [d1 ]
cos 0" - 1 y(s) d2

(4)

vd(s) is also given by a scaling and rotation of the projected image curve
(x(s), y(s)). In this case, the scale factor k is given by:

The angle of rotation a between the image curve (x( s), y(s)) and the
corresponding curve in velocity space, is given by:,

k = J(cos (1 - 1)2 + sin2
(1 = J2(1 - cos 0')

sin (J (1
tan Q = = - cot( - )

cosu - 1 2

12
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For sn1all (J, k ~ (J and Q Rj ±90o• As before, an additional translation
cOD1ponent sirnply translates the curve in velocity space.

For rigid rnotion in the image plane, a sirnple scheme can be used to construct
the velocity field. If we know the true direction of velocity for two points on
the contour, we can compute the direction of velocity everywhere as follows: (1)
construct the lines perpendieular to the direction of velocity at the two known
points, (2) compute the intersection of these two lines, (3) from every point Pi
along the contour, construct the line to the intersection point; the true direction
of velocity is perpendicular to this line. In Figure 10, we derive the direction at P2,
given known directions at Pl and Pa·

Figure 10. Construction of the velocity field for rigid motion in the image plane

This construction is simply locating the point about which the motion can
be described as pure rotation. For pure translation, the two lines, from points of
known direction of velocity, will be parallel, so the direction of motion everywhere
will be equal to the direction of motion of the known points. Certainly, if we knew
both the direction and rnagnitude of velocity at two points along the contour, we
could compute the global motion parameters, and hence direction and magnitude
of velocity everywhere. However, from the direction of velocity alone at two points
on the curve, we can compute the direction of velocity everywhere. If we then know
the magnitude of the perpendicular cornponents of velocity along the curve, we can
compute both direction and magnitude of velocity along the curve.

There are at least two sources for points of known velocity direction in the
image. First, identifiable features, such as terminations, may be tracked in two
dimensions. Second, for points at which the perpendicular component of velocity is
zero, velocity is constrained to lie along the tangent to the curve. For the case of
a smooth, rigid, closed curve moving in the image plane, there must exist a~ least
two points on the curve for which the perpendicular component of velocity is zero.
Suppose we focused our "Velocity field computation at the locations of zero-crossings
derived from the image. Since zero-crossing contours are generally closed (except
at image boundaries), there will usually be sufficient constraint from the image to
solve for the velocity field, in the simple case of rigid motion in the image plane.

4.3. The Smoothness Constraint

In this section we will derive a different type of constraint on the velocity field,
which will allow us to analyze the projected motion of three-dimensional objects
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(1)

allowed to rnove freely in space, and defofln over time. The specific analysis will
aSS11me tllat we have rneasured the perpendicula,f conlponents of velocity along
contours in the image. However, tIle general constraint that we present may be
utilized in other motion lllcasurement schemes as well.

The expression (2) related V(s) to the global motion parameters wand D, and
the sllape of the curve C == (x(s), y(s), z(s)). The relationsllip between V(s) and C
is quite simple. If we map the projected two-dimensional velocity vectors along the
curve to a common origin in velocity space, their endpoints map out a scaled, 900

rotation of the projected iInage curve (x(s), y(s)), with an additional distortion along

one direction. This distortion is directed perpendicular to the axis n = [nt, n2, of,
and is scaled by the z cornponent of the curve, z(s). This relationship implies, for
example, that if we have a smooth eUf"t'{e in Illotion, it must generate a smoothly
varying velocity field. The real vvorld consists predominantly of solid objects, whose
surfaces are generally smooth compared \~ith their distance from the viewer. Thus,
intuitively, we seek a velocity field which is consistent wit}1 the constraints we derive
from the c}langing image, and Wllich varies smoothly. A single solution might be
obtained by finding the velocity field which varies as little as possible. A similar
argument was used by lIarn arld Scrlunck [35] to motivate the use of a smoothness
corlstraint for the optical flow computation. In our case, we seek a smooth velocity
field along a contour.

To achieve this, we need some means of measuring the variation in velocity
along a contour. There are various ways in which this could be done. For example,
we could measure the change in direction of velocity as we trace along tIle COIltour.
Total variatioIl of the velocity field could tllen be defined as the total change in
direction over the entire contour.. A second definition involves measuring the change
in rnagnitude of velocity along the contour. Tllis leads to a velocity field solution for
which speed is as uIliform as possible along the contour. F'inally, we could measure

the change in the full velocity vector, a~ls), incorporating both the direction and
magnitude of velocity.

In order to define the variatIon of the velocity field more formally, first recall
the decomposition of velocity into components tangent and perpendicular to the
curve:

uT (s), ul. (s) and v-l (s) can be measured directly from the changing image. vT (s)
is unknown, and must be recovered in order to compute the velocity field V(s).
Aside from knowing vl.(s) everywhere along the curve, there may also be points at
which the direction and magnitude of velocity, and hence both vl.(s) and vT(s),

are known. In addition, the direction of velocity alone, and hence the ratio ~tf:~,
may be known at points on the curve, for example, where v.-l(Si) = 0 (Section 4.2).

We can now consider a more formal means for measuring the variation in the
velocity field. Matherrlatically, this can be accomplished by defining a functional
8, which maps the space of all possible vector fields (along the contour), V, into
the real numbers: 8:V ~ ~. This functional should be such that the smaller the
variation in the velocity field, the smaller the real number assigned to it. Two
cand'idate velocity fields may then be compared, by comparing their corresponding
real numbers. This raises the question of what fUIlctional should be used to meaSl1re
the variation of a velocity field. In the remainder of this seetioIl, we will evaluate
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a set of possible functionals, ba,sed on the three measures of variation that we
previou sly presented inforrnally: (1) variation in V(s), (2) variation in the direction
of velocity, and (3) variation in the magnitude of velocity, all with respect to the
curve.

(1) Variation in V(s)

A scalar measure of the local variation of V( s) with respect to the curve is given by

Ia~;s) I, shown in Figure lla. Two nearby velocity vectors along the image curve are

translated to a common origin in velocity space, where the vector a~;s) is shown
with a dotted arrow. For convenience of not!1tion, we will omit the argument to

c

(a)

(b)

Figure 11. Measuring variation in the velocity field (a) Change in the full velocity
vector (b) Change in direction of velocity

V(s), writing 1~y I. A measure of the total variation of the velocity field along the
curve may then be given by the functional:

JBV
8(V) = 1a;lds
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We 111ay also consider variations on this functional, involving higher order derivatives,
or higher pOVlers, such as:

or

(2) Variation in Direction

Let the direction of velocity be given by the angle tp, measured in the clockwise

direction from the horizontal, as shown in Figure lla. In Figure llb, ~~, for two
nearby velocity vectors along tIle image curve, is sIlown in velocity space. Total
variation of direction along the curve could be given by functionals such as the
following:

J 8cp
8(V) == I--Idsas

or variations involving higher order derivatives, or higher powers.

(3) Variation in Magnitude

Finally, we could measure the change in magnitude of velocity alone, using
functionals such as:

8(V) = J81VI dsas
Again, we could also consider v~riations on this measure.

The functional that we use to measure snloothness may also incorporate a
measure of the velocity field itself, rather than strictly utilizing changes in the
velocity field along the curve. For example, ,ve could irlcorporate a term which is
a function of IVI. This might be useful if we sought a velocity field wllich also
exhibits the least total motion. In addition, the functional could become arbitrarily

complex in its combination of I~y" I~~ I, 81~1, or higher order derivatives.

We have at least three means of evaluating these measures of smoothness.
From a mathematical 'point of view, there should exist a unique velocity field
which minimizes our particular measure of smoothness; this requirement imposes
a set of mathematical constraints on our functional. Second, the velocity field
computation should yield physically plausible solutions. Finally, if we suggest that
such a smoothness constraiIlt underlies the motion computation in the, human
visual system, this miIlimization should yield a velocity field consistent with human
motion perception. .

An examination of these smoothness measures from a physical and mathematical
point of view suggests that a measure involving the full velocity vector, such as

8(V) = J Iiff 1
2ds, is most appropriate for the velocity field computation [37]. Of

particular importance are the mathematical properties of this fun'ctional. It can
be shown that, given a simple condition on tIle constraints that we derive from
the image, there exists a unique velocity field which satisfies our constraints, and

minimizes J I~ 1
2ds. This condition is almost always satisfied by our initial motion

measurements. To obtain this result, we take advantage of the analysis used by
Grimson [70] for evaluating'possible functionals for performing surface interpolation
frOITl stereo data. The basic mathematical question is, w}lat conditions on the form
of the functional, and tlle structure of the space of velocity fields, are needed to
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guarantee the existence of a unique solution? These conditiollS are. captured by the
~ followin.g theorenl (see also [71]):

Theorem: Stlppose there exists a complete semi-norm e on a space of functions
H, and that e satisfies the parallelogram law. Then; every none'mpty closed
convex set E C H contains a unique element v of minimal norm; up to an
element of the null space. Thus} the fa1Y1:ily of minimlal functions is

{v + sis E S} .

where
s = {v - w IwEE} n )j

and )j is the null space of the functional

}./ = {u r 8(u) = OJ.

It can be shown that the functional {f I~y12ds} t is a complete semi--norm, which
satisfies the parallelogram law. Second, the space of all possible velocity fields,
which satisfy the constraints derived from the image, is convex. It then follows
from tlle above tlleorem that this space contains a unique element of minimal norm,
up to an element of tile null space. Since our smoothness measure is non-negative,

minimizing {J I~YI2ds}! is equivalent to minimizing I 1~12ds.

The null space in this case is the set of COIlstant velocity fields, since
II~YI2ds = 0 implies I~YI = 0 everywhere, which implies V(s) constant. Suppose

we have a point (X(Si), Y(Si)) on the curve, where vl..(Si) is known. This measurement
constrains tIle velocity V( Si) to lie along a line parallel to the tangent of the curve
at this point, as shown in Figure 12. Suppose \ve have a velocity field which is

(a)

(b)
Figure 12. Uniqueness of the velocity field. (a) Constraint provided by a single
measurement (b) The constraint imposed by two measurements

consistent with this llleasure. We can now only add a uniform translation component
along the direction of this line, and still obtain a velocity field consistent with
this local measure. If v-.L(s) is known at a second point (X(Si),Y(Si)), for which the
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direction of the tangent is different (see Figure 12b), then we can only add a u11iform
translation. compOflent along this second direction, and still obtain a velocity field
corlsistent with vJ-(sf). flowever, we cannot add a uIliforrrl translation to the entire
velocity field, which is consistent with both local measurements. TI1US, we corlclude
the following: If v-.L( s) is known at two points, fOf Wllich the orientation of the
CUfve is different, then there exists a unique velocity field \vhicll satis.fies the known

velocity constraints and minimizes I I ~': 1
2ds. An extended straight line will not

yield Ineasurements for two different orientatio11s, but in all other cases, there will
be sufficient information along a contour to guarantee a unique solution to the
velocity field.

We can apply the constraint of least variation and compute a projected
two-dimensional velocity field for any three-dimensional surface, whether rigid or
non-rigid, undergoing general motion in space. If we measure the variation in
the full velocity vector along a contour in tIle image, 11sing a functional such as

II~':12ds, we are guaranteed that there exists a unique solution to the velocity
field computation that minirrlizes tllis variation. While it is not yet clear that the

general smoothness constraint, or the particular measure II ~': 12ds, is the most
appropriate for the motion computation, it is important that this nleasure satisfies
certain essential mathematical requirements, that the other measures do not. For
example, the use of a functional incorporating only a measure of velocity direction,
which will attempt to make the local velocity vectors as parallel as possible, does
not yield functionaIs which are semi-norms, and consequently, does not lead to a
unique velocity field solution. For a scheme to underly the motion computation in
the human visual system, it is essential that it be mathematically well-founded.

We should note that an advantage to applying the smoothness constraint along
contours is that the minimization of variation in the velocity field is performed
along one-dimension, rather thaIl over two dimensions, as in tIle case of Horn and
Se-hunck's computation of the optical flow [35]. Secondly, to apply the smoothness
constraint over an area of the image, it is necessary to specify a neighborhood
size, within which constraints will be combined, and smoothrless imposed on the
velocity field. Unless we can define surface boundaries prior to the velocity field
computation, specifying an appropriate area of the image can be difficult. In
general, the extent of contours is more highly correlated with siIlgle surfaces. The
smoothness constraint can be applied to single contours, reducing the problem
of integrating motion measurements across object boundaries. Finally, there exist
several standard algorithms for the solutioIl of optimization problems such as this
(see, e.g. [37]).

4.4. Deriving Additional Constraints from the Image

In the previous section, we used two sources of constraint on the velocity field
computation. From the image, ""I·le utilized a single curve at a particular moment in
time, together with the instantaIleous measurements of the perpendicular component
of velocity along the curve. As a second source of constraint, we computed the
velocity field consisent with these image constraints, which exhibited the least
variation along the curve. Additional constraints can be derived from the image if
we do not restrict ourselves to the use of instantaneous measuremerlts; for example,
we may utilize a second curve·, at some time later. If the time interval is small,
then the displacement of points along the curve will also be smalL We can then
require that each point OIl· the first curve project to a point on the second, with
a velocity consistent with the instantaneous perpendicular component of velocity
v-l(s); this assumes that velocity is constant over the time interval separating the
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two curves. In addition, we could still compute the velocity field which exhibits the
least variation.

This approach may yield a simpler, more robust algorithm for the velocity
field cOlnputation, because it utilizes more constraint from the image. However, it
has the disadvantage that we may not be able to obtain the theoretical uniqueness
results that were possible when we considered the perpendicular components of
velocity as a sole source of constraint. A simple example, in whicrl the velocity
field solution is Tlot unique is shown in Figure 13. Suppose we are given the initial
constraints shown in Figure 13a. The arrows indicate the perpendicular components
of velocity along the first curve, and the dotted line indicates the second curve.
There are two velocity field solutions consistent with these constraints, shown in
Figures 13b and c, corresponding to the two directions of rotation of the circle.
Both velocity fields exhibit the same total variation. In general, theoretical results
on uniqueness may be IIlore difficult to obtain for this approach to the ·velocity field
cornputation. The use of instantaneous motion measurements alone, together with
the additional smoothness constraint, as discussed in Section 4.3, would yield the
velocity field given by the vectors in Figure 13a, correspollding to pure expansion .
of the circle. The additional constraint of the second curve leads to a different
solution ..

•

......-- .....
". ",,/ '"/ ,

/ ,
I \

I \
I \

I ', I

\ I
\ I
\ I
\ /

, /1
" ;I'' ..... _---."".",

(a)

/
I

I

l,
I

\
\
\ ,,

"

I
1
I
I

I
I

/

",,,,.. ......-- .....,
;I' "'-

/ "/ ,
/ \

I \
I \
r }
\
\
\
\ ,

(c)

Figure 13. Ambiguity of the velocity field. (a) The initial constraints (b) Rotation of
the circle to the left (c) Rotation to the right

The availability of the second curve may simplify the velocity field computation
in the following way. TIle perpendicular component of velocity, measured at a
point p on the first curve, constrains the velocity vector at p to project to a point
along the line l in the second frame, shown in Figure 14. If in addition, p must
project to a point q on ·the second curve, possible candidates for q may be given by
the intersection of l with the second curve. In practice, there will be error in the
measurement of v.l(s), and vl-(s) may not be constant over small time intervals.
As a consequence, we should consider a band in the second frame, to which p must
project. Candidates for q are then given by the intersection of this band with the
second curve, shown in Figure 14. If the curve has fairly high local curvature, or
undergoes rotation, then this intersection alone provides considerable constraint on
the velocity field. However, in the worst case of an extended line undergoing pure
translation, the second curve offers limited additional constraint. The computation
of a precise velocity field requires further analysis of constraints derived from the
image, together with additional assumptions. We are presently exploring algorithms
which utilize the smoothness constraint for this subsequent computation.

19



' ••1,~

Figure 14. Use of the constraint provided by a second curve

4.5. Summary

We llave considered various additional constraints which Inay be used in the
computation of the velocity field from initial motion measurements derived from
the changing image. These constraints rallge from the restricted- assumption of
pure translation to the general constraint of smoothness of the velocity field, which
allows for the arbitrary Illovement of rigid or non-rigid objects in space. The use of
different constraints results in considerable variation in the classes of motion which
rna)' be analyzed, the type of algorithm, and the extent of theoretical analysis
required to formulate a well-defined computational problem. In analyzing these
constraints, we have so far restricted ourselves to addressing purely computational
issues. In the next section] we discuss implications for the biological computation of
motion. If the human visual system does in fact compute a detailed velocity field,
it is likely to use as much constraint as possible from the changing image, together
with the least restrictive additional constraints as necessary, to compute a unique
velocity field.

5. Some Implications Concerning the Biological CODlputation of Motion

In this section, we summarize the above discussion by presenting a list of the basic
proposals that have been made for the computation of motion. In addition, we
discuss some of the implications of these proposals for the human visual system.

(i) An underlying assumption of this work is that the local velocity field is explicitly
computed and represented. -For the human visual system, the idea that there exists
an explicit computation of motion, which is different from the description of motion
that could be provided by initial motion detectors, ca~ be motivated by simple
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examples. In Figure 15, we show a circle and square undergoing pure translation.
Initial Illation n1easurerneIlts provide tIle component of Inotion in the direction
perpendicular to the local orientation of intensity changes in the image, shown.
in Figure 15a. Our perception of the IIlovement of the figures is pure translation,
indicated by the set of velocity vectors in Figure ISb. A third example is that of
the rotating and translating curve of Figure 9. While it is not clear whether we
are capable of explicitly representing the local velocity field around the contour,
we do perceive the movement as the rotation and translatioIl of a rigid curve. Such
an interpretation is not explicit in the initial motion measurements. For tasks such
as the detection of a sudden movement, or separation of objects on the basis of
differential motion, a precise local velocity field may not be necessary. However,
to compute three-dimensional structure from motion, a more detailed cOlnputation
of the velocity field, or an explicit correspondence of elements between frames, is
required.
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Figure 15. Computing the local velocity field. (a) The initial motion measurements;
(b) The velocity field corresponding to translation

(ii) The analysis of motion has been separated into two distinct stages; first, the
measurement of motion, and second, the use of motion for tasks such as object
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segmentation and. structure from IJlotion. This raises the question ofwllether the
interl)retation of three-dimensional structure can influenee the computation of
the two-dimensional velocity field. For example, does the assulnption of rigidity,
examined if1 Ullman's work [13], enter into the velocity field computation?
Psychological experimerlts [13] suggest that the long range motion correspondence
is not influenced by· the intrepreted three-djmensional structure of a single view.
The sh.ort range process may be similar.

(iii) We support the idea that there exists two processes for analyzing motion,
corresponding to Braddick's long range and short range processes. We suggest that
the long raIlge process is based on a token-matching scheme, while the short range
process is intensity-based. If this view is valid, it raises the following questions. How
do the long range and sllort range processes interact? Do subsequent computational
tasks, such as object segmentation or structure froIn motion utilize the results of
one or the other process? The work of Petersik [72] suggests that the long range
process may be crucial to the rec.overy of structl1re from motion. Finally, it is
interesting tl1at neurophysiological studies have revealed many UIlits which are
responsive to, or selective for stimuli undergoing continuous motion. Little is known
about the long range process at the neurophysiological level. One obvious question
is, wllere in the visual system can apparent motion phenomena be observed in the
response of single units? Motion sensitive units (for example in areas VI and STS
or MTof the monkey) could be tested for apparent motion response by flashing
bars at statioIlary locations usirlg relatively wide separations (that is, wider than
the largest size of simple cells at the tested eccentricity). If long range motion
units can be identified, it may become possible to go a step further and investigate
the relationsllip between the psychophysically established correspondence rules and
their neurophysiological correlates.

(iv) We suggest that the initial stage of motion analysis consists of the measurement
of the perpendicular component of velocity along zero-crossing COlltours. This
can be examined through neurophysiological and psychological studies. In regard
to neurophysiology, are the class of directionally-selective simple cells detecting
the motion of zero-crossings in their input from the LGN? This is now under
investigation [Richter, personal communication); initial results tend to support this
claim. Psycl10pllysical experiments can test whether perceived motion is consistent
with the motion of zero-crossings.

(v) We propose that the local motion measurements are then integrated along zero
crossing contours. Again, this may be explored through both neurophysiology and
psychology. If the motion integration problem is fundamental to motion analysis,
one may expect to find neural mechanisms within the visual system that are involved
in this task. Most of the motiorl sensitive units studied so far do not seem suitable
for the integration stage. Motion selective cells in the primary visual cortex of the
cat and the monkey respond primarily to edges and bars. To activate such a unit the
stimulus must have the preferred orientation, and move in the preferred direction.
In contrast, promising candidates for the integration phase would dissociate the
effects of orientation and direction of movement, ideally exhibiting specificity for
direction of motion but not for orientation. Furthermore, the direction specificity
of such a unit is expected to depend on the range of orientations spanned by
the stimulus. There are indications for the possible existence of such units in
the posterior bank of the superior temporal sulcus of the rhesus monkey [73]. For
psychophysical experimentation, there are at least two questions; first, is the motion
that we perceive forced to be consistent· at least with the sign of the local motion
measurements along zero-crossing contours, or can it be overridden, for example, by
the long range process, or by the history of the motion? Second, if the integration
does take place, are .measurements combined over neighborhoods in the image, or
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along contours? Wallach's [74] demonstrations suggest that the integration may
take place along contours.

(vi) ...J\dditional assumptions are required for the motion integration problem.
Regarding the human system,vve may first ask what constraints are derived from
the changing image. Does the human visual systern strictly utilize instantaneous
measurements of velocity, or is a second curve, at some small time interval later,
also used to constrain the velocity field. Do we utilize an additional constraint on
s'moothness of the velocity field, as described here? A constraint such as smoothness
may be the least restrictive constraint which allows objects to move freely in space,
and deform, but which still allows for the computation of a llnique velocity field.
Psychophysical experimentation is necessary to determine whether the velocity field
that we perceive is the smoothest one possible. Both the short arId. long range
processes face the fact that in general, the motion of elenlents is not specified
uniquely by information in the changing image; do the additional assumptions
governing the computation of velocity or correspondence differ in the two processes,
or do they differ only in the constraints that are utilized from the changing image?

(vii) Finally, the motion measurement problem has some implications for the
. interpretation of structure from motion. It has been shown [17] that three

dilnensional shape can be recovered locally, from the instantaneous velocity field.
The interpretation is sensitive, however, to small errors in the measured velocity.
In light of the inherent difficulties in measuring the velocity field precisely, recovery
rnethods that rely solely on the instantaneous velocity field appear unlikely. For
the reliable recovery of three-dimensional structure from motion, processes that
integrate motion over time are probably required.
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