
BBF RFC #31 PoBoL

BBF RFC 31: Provisional BioBrick Language
(PoBoL)

Michal Galdzicki, Deepak Chandran, Alec Nielsen, Jason Morrison, Mackenzie
Cowell, Raik Grünberg, Sean Sleight, Herbert Sauro

15 May 2009

1. Purpose

This BioBricks Foundation Request for Comments (BBF RFC) describes a semantic markup
language for publishing and sharing information about BioBricks on the World Wide Web.
This BBF RFC includes the recommendation for the minimal information expected when
creating a Provisional BioBrick Language (PoBoL) description of BioBricks and for the
implementation of the language using Web Ontology Language (OWL).

2. Relation to other BBF RFCs

BBF RFC 31 UPDATES BBF RFC 30 as it proposes a standard conforming to BBF RFC 30.

3. Copyright Notice

Copyright (C) The BioBricks Foundation (2009). All Rights Reserved.

4. Acknowledgments

This document is the result of discussions from the Standards and Specifications in
Synthetic Biology Workshop held in Seattle April 26-27, 2008. This workshop was sponsored
by the Microsoft Computational Challenges in Synthetic Biology Initiative.

We especially want to thank the participants for their contribution to developing this
standard:
J. Christopher Anderson, Frank Bergmann, Josh Bishop, Michael Blinov, Eric Butterworth,
Javier Carrera, Deepak Chandran, Mackenzie Cowell, John Cumbers, Shivang Dave, Kim de
Mora, Michal Galdzicki, Jonathan Goler, Raik Grüenberg, Jim Haseloff, Brandi House, Mike
Hucka, Kyung Kim, Simon Mercer, Andrew Miller, Jason Morrison, Jean Peccoud, Michael
Pedersen, Sarah Richardson, Guillermo Rodrigo, Vincent Rouilly, Ralph Santos, Herbert
Sauro, Sean Sleight, Lucian Smith, Ingrid Swanson, Alan Villalobos.

5. Table of Contents

1. Purpose... 1
2. Relation to other BBF RFCs ... 1
3. Copyright Notice ... 1
4. Acknowledgments... 1
5. Table of Contents .. 2
6. Motivation... 2
7. Introduction.. 2
8. Background... 3
9. Description ... 3

10.1 Core Data Standard ... 4
10.1.1 Class BioBrick: .. 4
10.1.2 Class BioBrickBasic: ... 5
10.1.3 Class BioBrickComposite:.. 5
10.1.4 Class BioBrickVector: ... 5
10.1.5 Class BioBrickFormat: .. 6
10.1.6 Class DNA: ... 6
10.1.7 Class Sample: ... 6

11. Example BioBrick BBa_I0462.. 7
11.1 Use of PoBoL in an experimental setting ... 8
11.2 Use of PoBoL in a software tool ... 9

12. Validation OWL Syntax.. 11
12.1 Use of OWL syntax for PoBoL ...11

13. Author’s Contact Information.. 12
14. References .. 12
15. Appendix A.. 12

6. Motivation

Computational access to information about biological parts, especially about BioBricks from
the Registry of Standard Biological Parts (http://partsregistry.org), is currently restricted.
Exchange of this information in a common semantic markup language can reduce the
barrier for creating interoperable software to support the information needs of synthetic
biologists. Such markup language standards leverage software implemented by the
community to facilitate reuse of previously generated knowledge across independent
research efforts. To build such a format we propose PoBoL as a starting point for a
community discussion. The ideas proposed here have admitted flaws, and these MUST be
addressed prior to adopting PoBoL for use.

7. Introduction

PoBoL in its current state has been defined using the Web Ontology Language (OWL), a type
of markup language used to model domain knowledge. The choice to use OWL was based

on the theory that formally modeling knowledge in a computable, standardized, and
community supported format will provide a benefit. Use of OWL is suggested by BBF RFC
30, which explains its advantage for an evolving model. BBF RFC 31 attempts to follow the
guidelines set forth in BBF RFC 30 to define the core data model described therein.

PoBoL defines the terminology used specifically when using standardized biological parts
known as BioBricks. These definitions constitute an ontology and therefore the concepts
that are defined within this RFC attempt to formalize this vocabulary by making explicit the
meaning thereof. The purpose of this ontology is the electronic storage and transmission of
information about BioBricks. It is limited in scope to only those ideas thought of as central
to BioBricks. Therefore it leaves out much of the knowledge about biological complexity of
BioBricks and focuses on concepts created to support BioBricks themselves.

All of the PoBoL elements for this project were created using the Protégé Editor and
therefore it follows a typical pattern of development guided by its user interface. However,
the structure of the OWL definitions, examples, and intended use are aimed at independent
users. It is expected that most users will not consume PoBoL using Protégé, but rather by
using third-party applications. These tools SHOULD be developed specifically to leverage the
standard specification of BioBricks information in PoBoL using OWL.

8. Background

A selection of the many features of OWL are used to define PoBoL. Terms used to refer to
their meaning in the OWL syntax specification are italicized in the remainder of this
document to distinguish them. Subsumption is a fundamental method, organizing concepts
into classes and their subclasses. In OWL, subClassOf means that every member of the
subclass is also a member of the class. This implies that a member of a subclass inherits
the properties of the class. This structure allows the organization of concepts into a
hierarchy starting with the general and moving towards more specific distinctions between
types of things.

9. Description

PoBoL is defined in terms of a hierarchy of classes and properties. The classes correspond
to concepts about BioBricks. The properties specify relationships between actual BioBricks,
termed instances. There are five proposed root classes BioBrick, BioBrickFamily,
BioBrickFormat, DNA, and Sample which correspond to five concepts for potential use in the
unambiguous description of information about BioBricks. Each instance of a BioBrick class
refers to an actual BioBrick. The BioBrick class has subclasses, which refer to more specific
concepts of BioBrickBasic, BioBrickComposite, and BioBrickVector. When using PoBoL to
describe data about BioBricks, an instance of one of the subclasses of BioBrick MUST be
created. The BioBrick class MAY be extended if the subclasses described here are not
descriptive enough.

The classes and their properties are shown in Figure 1 and described in more detail in
section 10.1.

10.1 Core Data Standard

Figure 1. PoBoL is described using a UML like diagram. Each class may have many
properties. Each property has a range type and a plurality, such as “exactly one DNA” DNA
[1] or “one or more BioBrick” BioBrick [1..*]. The subsumption hierarchy is depicted using
open arrows, this illustrates how an instance of the child class will inherit all properties of
the parent class. Intended composition of instances is shown using closed arrows.
RDF Namespaces: (default) http://www.biobricks.org/rdf/pobol.owl#; xsd:http://www.w3.org/2001/
XMLSchema#

10.1.1 Class BioBrick:

A root class describing the general concept of BioBrick in terms of properties which MUST be
present at a minimum to describe any BioBrick.

REQUIRED Property: format MUST be associated with one and only one instance of the
BioBrickFormat class. This property refers the BioBrick to a physical composability
standard’s description (see the BioBrickFormat class description for more detail). There can
only be one format property for each BioBrick.

REQUIRED Property: DNASequence MUST have one value of type xsd:string. The DNA
sequence for the BioBrick is specified here. There can only be one DNAsequence property
for each BioBrick.

REQUIRED Property: shortDescription MUST have one and only one value of type xsd:string.
This property is intended to allow free text for users such as a title or name. There MUST be
one and only one shortDescription property for each BioBrick.

RECOMMENDED Property: longDescription MUST have one value of type xsd:string. This
property is intended to allow a longer free text based description for users. There can be
zero or one longDescription property for each BioBrick.

OPTIONAL Property: author MUST have one value value of type xsd:string. This property is
intended to hold the name of the creator of the BioBrick being described. There can be zero
or more author properties for each BioBrick.

OPTIONAL Property: date MUST have one value of type xsd:date. This property is intended
to store the date of the creation of the BioBrick. There can be zero or one date property for
each BioBrick.

OPTIONAL Property: reference MUST have one value of type xsd:string. This property is
intended to store citation for this BioBrick. There can be zero or more reference properties
for each BioBrick.

PoBoL is extensible and therefore the BioBrick class is not limited to only having the
properties listed above. Consequently, to describe characteristics important to goals of
specific users or groups properties MAY be added. The BioBrick class MAY be extended at
any time.

10.1.2 Class BioBrickBasic:

A BioBrick which is not composed of other BioBricks itself. These basic BioBricks are
intended to serve as the unique parts used to make a particular construct. The BioBrickBasic
class is a subclass of the BioBrick class and therefore inherits all of its properties. An
instance of BioBrickBasic is also a BioBrick instance.

MUST NOT have property subPart: This type of BioBrick instance is a BioBrickBasic when it
is not composed of other BioBricks.

MUST be disjoint from BioBrickComposite: PoBoL documents SHALL NOT have instances of
BioBrickBasic which are members of BioBrickComposite.

10.1.3 Class BioBrickComposite:

A BioBrick made from multiple sub part BioBricks. This class is a subclass of the BioBrick
class and therefore inherits all of its properties. An instance of BioBrickComposite is also a
BioBrick instance.

REQUIRED Property: subPart MUST have one or more BioBricks instances as values. There
MUST be one or more subPart properties for each BioBrickComposite.

10.1.4 Class BioBrickVector:

A special BioBrick into which the construct of interest is inserted to be transfected into
cells. This class is a subclass of the BioBrick class. Typically in synthetic biology, vectors are
plasmids used in cell engineering, but could potentially be entire chromosomes. The
BioBrickVector serves to provide information about the entire molecule used to engineer
cells. It inherits the properties of generalized BioBricks and therefore an instance of
BioBrickVector is also a BioBrick instance.

RECOMMENDED Property: isCircular MUST be set using an xsd:boolean value as True or
False. Indicates wether the vector being described is circular or not. There MUST be one and
only one isCircular property for each BioBrickVector.

10.1.5 Class BioBrickFormat:

Describes the sequence features which designate a specific physical composition standard.
Instances of this class MUST be named as specified by BBF RFC 29. These standards, from
the point of view of information about it, is defined by its prefix, suffix, and self scar DNA
sequences.

REQUIRED Property: prefix MUST have one value of type xsd:string. DNA sequence prefix.
There MUST be one and only one prefix property for each BioBrickFormat.

REQUIRED Property: suffix MUST have one value of type xsd:string. DNA sequence suffix.
There MUST be one and only one suffix property for each BioBrickFormat.

REQUIRED Property: selfScar MUST have one value of type xsd:string. DNA sequence which
remains after assembly is complete. There MUST be one and only one selfScar property for
each BioBrickFormat.

10.1.6 Class DNA:

Describes the DNA molecule as a combination of the Vector and the BioBrick insert used
within the construct. It serves as a vehicle relating the abstract description of components
manipulated as BioBricks to the actual continuous DNA molecule, which can be present in a
test tube.

REQUIRED Property: insert MUST have one BioBrickBasic or BioBrickComposite instance as
a value. There MUST be one and only one insert property for each DNA.

REQUIRED Property: vector MUST have one BioBrickVector instance as value. There MUST
be one and only one vector property for each DNA.

10.1.7 Class Sample:

Represents the physical container and the BioBrick DNA that is stored.

REQUIRED Property: contains MUST have a value of instance of the class DNA. There MUST
be one and only one contains property for each Sample.

REQUIRED Property: sampleLabel MUST have one value of type xsd:string listing the exact
text found on the tube itself. Effectively connecting the data record in the computer to
laboratory storage. There MUST be one and only one sampleLabel property for each
Sample.

RECOMMENDED Property: location MUST have one value of type xsd:string describing the
location of the sample within laboratory storage. There can be zero or one location property
for each Sample.

OPTIONAL Property: author MUST have one value value of type xsd:string. This property is
intended to hold the name of person who created the sample in the laboratory. There can
be zero or one author property for each Sample.

OPTIONAL Property: date MUST have one value of type xsd:date. This property is intended
to store the date of the creation of the sample. There MUST be one and only one date
property for each Sample.

11. Example BioBrick BBa_I0462

Publishing BioBricks information using PoBoL allows unambiguous exchange of information.
As an example we demonstrate the markup of BBa_I0462 using PoBoL. Information from
the Registry of Standard Biological Parts (http://partsregistry.org) is used to describe this
simple composite BioBrick coding for a protein generator of the LuxR protein. The entry
used can be found at http://partsregistry.org/Part:BBa_I0462. This BioBrick is composed
of four previously described BioBrick parts: a ribosome binding site (BBa_B0034), the
coding sequence for LuxR (BBa_C0062), and two terminators (BBa_B0010 and BBa_B0012)
(Figure 2). BBa_I0462 and each of its parts conform to BBF Assembly Standard 10 (as
defined in BBF RFC 29). An instance of BBa_I0462, which demonstrates key features of
PoBoL, is displayed below. The PoBoL schema can be found in Appendix A of this document.

@prefix : <http://www.biobricks.org/rdf/pobol.owl#> .
@prefix xsd: <http://www.w3.org/2001/XMLSchema#> .
@prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> .
@base <http://www.biobricks.org/rdf/pobol.owl>

:Assembly_Standard_10_non_coding rdf:type :BioBrickFormat ;
:prefix "GAATTCGCGGCCGCTTCTAGAG"^^xsd:string ;
:suffix "TACTAGTAGCGGCCGCTGCAG"^^xsd:string .

:BBa_I0462 rdf:type :BioBrickComposite ;
:date "2009-04-19"^^xsd:date ;
:author "Caitlin Conboy"^^xsd:string ,

"Jennifer Braff"^^xsd:string ;
:longDescription "Produces LuxR protein which can sense 3OC6HSL in

the media and activate transcription from R0062, the right hand
Lux promoter"^^xsd:string ;

:DNASequence "aaagaggag ... ttctgcgtttata"^^xsd:string ;
:shortDescription "luxR Protein Generator"^^xsd:string ;
:format :Assembly_Standard_10_non_coding ;
:subPart :BBa_B0034 ,

:BBa_C0062 ,
:BBa_B0010 ,
:BBa_B0012 .

:DNA_55 rdf:type :DNA ;
:insert :BBa_I0462 ;
:vector :pSB1A2 .

:Sample_56 rdf:type :Sample ;
:date "2009-04-27"^^xsd:date ;
:author "John smith"^^xsd:string ;
:sampleLabel "Sample 56 E. coli strain MG1655"^^xsd:string ;
:location "Stocks Box 25 D7"^^xsd:string ;
:contains :DNA_55 .

PoBoL instance of BBa_I0462 is expressed using OWL/Turtle syntax, designed to be more
easily read by people in contrast to XML. This is an excerpt and only includes a truncated
DNA sequence, for better visual display. Additionally, the instances of sub parts are not
specified themselves in this excerpt. For a full PoBoL entry using OWL/Turtle and OWL/
XML syntax see Appendix A of this document.

Figure 2. Graphic of BBa_I0462 designed using TinkerCell (www.tinkercell.com) as composed
of BBa_B0034, BBa_C0062, BBa_B0010, and BBa_B0012.

11.1 Use of PoBoL in an experimental setting

A potential use of PoBoL is the storage of relevant wet-lab information in a standardized
format. PoBoL is amenable to the organization of physical samples, documentation of DNA
constructs, and allows for the possibility of manipulation by laboratory automation
equipment.

An instance of the DNA class stores not only the associated BioBrick, but the composition of
an entire vector, including the backbone. This is useful for inferring the plasmid copy
number, the vector's antibiotic resistance, sequencing primers, and other elements relevant
for physical composition, cloning, sequencing, and PCR amplification. The DNA class,
therefore, contains the property insert, which stores a BioBrick part, and the property
vector, which stores relevant information for physical manipulation of the BioBrick.

An instance of the Sample class represents a physical manifestation of DNA, and is used
largely for laboratory documentation, organization, and opens the possibility for laboratory
automation. The properties of a physical sample include a label, location, date, and author.
These properties are derived from being commonly included on containers in laboratory
settings. However, the efficacy of PoBoL allows samples to be sorted and searched
automatically. In addition, the property location SHOULD be included in PoBoL to aid in the
organization of laboratory samples, and to provide laboratory automation equipment the
necessary information needed to locate and manipulate physical samples.

As an example of how PoBoL might be used to aid wet-lab organization, an instance of the
DNA class could have an insert, BBa_I0462, and a vector backbone, pSB1A2. This
information indicates that this plasmid DNA contains a part with some desired functionality
and that the part is present on a backbone vector. For example, the production of luxR
protein which, in the presence of 3OC6HSL, up-regulates expression downstream of the
right hand Lux promoter (BBa_R0062), confers ampicillin resistance, and can be sequenced
using the VF2 and VR primers.

Continuing with the wet-lab example, an instance of the Sample class could represent
physical DNA containing part BBa_I0462 and backbone pSB1A2. Furthermore, properties of
this Sample class instance would indicate that the sample was prepared by John Smith on
April 27, 2009. Additional information could be stored in the sampleLabel property; the label
might indicate the host organism with a sampleLabel value "Sample 56 E. coli strain
MG1655."

The DNA class allows for the storage of pertinent information regarding plasmid
composition. The Sample class allows for documentation of physical samples, including
location, label, date, author and the sample's contents. These classes provide an extra layer
of utility to the PoBoL structure: applicability to wet-lab organization and manipulation.

11.2 Use of PoBoL in a software tool

We demonstrate potential uses of PoBoL by using a specific software example. The
TinkerCell application (www.tinkercell.com) was used to draw the composite part,
BBa_I0462 (Figure 2), is able to model synthetic networks as well as store information
required to assemble the part. However, the software does not have any standard method
to output the part that has been constructed. The following Python script was used inside
this application in order to interrogate the BBa_I0462 part.

>>part = find("BBa_I0462")
>>print annotation(part)
('Caitlin Conboy and Jennifer Braff', '12/04/2003', 'luxR Protein Generator',
'uri', 'reference')

>>print getTextAttribute(part,"format")
Assembly_Standard_10_non_coding

>>print getTextAttribute(part,"type")
composite

>>subparts = getChildren(part)
>>for i in subparts: print getName(i) + " is a " + getFamily(i);
BBa_I0462_B0012 is a Terminator

BBa_I0462_B0010 is a Terminator
BBa_I0462_C0062 is a Coding
BBa_I0462_B0034 is a RBS

>>for i in subparts: print getName(i) + " : "; print annotation(i);
BBa_I0462_B0012 :
('Reshma Shetty', 'NA', 'Transcription terminator for the E.coli RNA
polymerase.', 'uri', 'reference')

BBa_I0462_B0010 :
('Randy Rettberg', '11/19/2003', 'Transcriptional terminator consisting of a 64
bp stem-loop', 'uri', 'reference')

BBa_I0462_C0062 :
('Vinay S Mahajan, Voichita D. Marinescu, Brian Chow, Alexander D Wissner-Gross
and Peter Carr', '2003', 'luxR repressor/activator', 'uri', 'reference')

BBa_I0462_B0034 :
('Vinay S Mahajan, Voichita D. Marinescu, Brian Chow, Alexander D Wissner-Gross
and Peter Carr', '2003', 'RBS based on Elowitz repressilator', 'uri',
'reference')

>>for i in subparts: print getName(i) + " : "; print
getTextAttribute(i,"sequence");
BBa_I0462_B0012 :
tcacactggctcaccttcgggtgggcctttctgcgtttata

BBa_I0462_B0010 :
ccaggcatcaaataaaacgaaaggctcagtcgaaagactgggcctttcgttttatctgttgtttgtcggtgaacgctctc

BBa_I0462_C0062 :
aaagaggag ... ttctgcgtttata

BBa_I0462_B0034 :
aaagaggagaaa

>>print getParameter(subparts[3],"strength")

As the script illustrates, the application contains relevant information about the part.
However, if a user needs to export the data from this application to another, say a sequence
analysis application, then the user would need to do this transfer manually. Manual transfer
can result is loss of information and errors, because the user may only transfer the
information he or she requires. As a result, the information stored with the original software
is lost.

The solution using PoBoL would be as follows:

The Python script would generate the instance of the BioBrickComposite as define above,
immediately under the Example BioBrick section title. The PoBoL file will serve as a link
between two or more software applications, rather than requiring the user to do this
manually. Such automated transfer would be easier for the user and would preserve the
minimum information needed to define a BioBrick. Passing the BioBrick from one application

to another as a PoBoL file would never cause a loss of data in this manner. An application
that can preserve the PoBoL file is guaranteed to provide sufficient information to construct
the part.

Such exchange format between software applications has been employed in related fields,
such as the Systems Biology Markup Language [1] (SBML). It has permitted numerous
software to exchange information between one another without ambiguity. The idea behind
the application of PoBoL is similar, except that it stores part information whereas SBML
stores kinetic model information.

12. Validation OWL Syntax

Pellet 1.5.2 (Clark & Parsia, LLC) was used to perform an independent validation of the OWL
syntax. The output of the run is displayed below.

C:\Documents and
Settings\mgaldzic\Desktop\synBio\pobol\RFC31_pobol\0.5\examples>java -Xss4m
-Xms30m -Xmx200m -jar "C:\Program Files\pellet-1.5.2\lib\pellet.jar" -if
pobol_BBa_I0642.owl

Input file: file:/C:/Documents%20and%20Settings/mgaldzic/Desktop/synBio/
pobol/RFC31_pobol/0.5/examples/pobol_BBa_I0642.owl
OWL Species: DL
DL Expressivity: ALCF(D)
Consistent: Yes
Time: 2485 ms (Loading: 2203 Species Validation: 172 Consistency: 110)

Non OWL-Lite features used:
Disjoint Classes: owl:disjointWith construct is used
DisjointClasses(pobol:BioBrickBasic pobol:BioBrickComposite)
Disjoint Classes: owl:disjointWith construct is used
DisjointClasses(pobol:BioBrickComposite pobol:BioBrickBasic)
Union Class: owl:unionOf construct is used unionOf(pobol:BioBrick
pobol:Sample)
Union Class: owl:unionOf construct is used unionOf(pobol:BioBrickBasic
pobol:BioBrickComposite)

12.1 Use of OWL syntax for PoBoL

As described in RFC30, an OWL-based architecture enables the extension of the PoBoL data model and
facilitates a "rolling standardization" process for these extensions, which enables future expansion in scope of
BioBrick description documents while adhering to a core standard like PoBoL. Additionally, "OWL is a good
citizen of the web" because it supports sharing (in the sense of synchronizing) and interlinking (distributing and
connecting databases) information.

13. Author’s Contact Information

Michal Galdzicki mgaldzic@u.washington.edu
Alec Nielsen alecn@u.washington.edu
Deepak Chandran deepakc@u.washington.edu
Jason Morrison jason.p.morrison@gmail.com
Mackenzie Cowell mac@diybio.org
Raik Grünberg raik.gruenberg@crg.es
Sean Sleight sleight@u.washington.edu
Herbert Sauro hsauro@u.washington.edu

14. References

[1] M. Hucka, A. Finney, HM Sauro, H. Bolouri, JC Doyle, H. Kitano, AP Arkin, BJ Bornstein,
D. Bray, A. Cornish-Bowden, et al. The systems biology markup language (SBML): a
medium for representation and exchange of biochemical network models, 2003

15. Appendix A

Other files associated with this BBF RFC
pobol_BBa_I0642.owl
pobol_BBa_I0642.turtle
pobol.owl
pobol.turtle

	1. Purpose
	2. Relation to other BBF RFCs
	3. Copyright Notice
	4. Acknowledgments
	5. Table of Contents
	6. Motivation
	7. Introduction
	8. Background
	9. Description
	10.1 Core Data Standard
	10.1.1 Class BioBrick:
	10.1.2 Class BioBrickBasic:
	10.1.3 Class BioBrickComposite:
	10.1.4 Class BioBrickVector:
	10.1.5 Class BioBrickFormat:
	10.1.6 Class DNA:
	10.1.7 Class Sample:

	11. Example BioBrick BBa_I0462
	11.1 Use of PoBoL in an experimental setting
	11.2 Use of PoBoL in a software tool

	12. Validation OWL Syntax
	12.1 Use of OWL syntax for PoBoL

	13. Author’s Contact Information
	14. References
	15. Appendix A

