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Figure 1: Left: Image from a standard lens showing limited depth ofifielith only the rightmost subject in focus. Center: Inponirour
lattice-focal lens. The defocus kernel of this lens is desigto preserve high frequencies over a wide depth rangehtRAn all-focused
image processed from the lattice-focal lens input. Sineeldgfocus kernel preserves high frequencies, we achievedargstoration over the

full depth range.

Abstract

Depth of field (DOF), the range of scene depths that appeap sha
in a photograph, poses a fundamental tradeoff in photograph
wide apertures are important to reduce imaging noise, leytalso
increase defocus blur. Recent advances in computatiorsging
modify the acquisition process to extend the DOF througtodec
volution. Because deconvolution quality is a tight funntiaf the
frequency power spectrum of the defocus kernel, desigrshigih
spectra are desirable. In this paper we study how to desfgctisk

extended-DOF systems, and show an upper bound on the maximal

power spectrum that can be achieved. We analyze defocusl&ern
in the 4D light field space and show that in the frequency damai
only a low-dimensional 3D manifold contributes to focus. ush
to maximize the defocus spectrum, imaging systems shouid co
centrate their limited energy on this manifold. We reviewesal
computational imaging systems and show either that thaycspe-
ergy outside the focal manifold or do not achieve a high spect
over the DOF. Guided by this analysis we introduce the kettocal
lens, which concentrates energy at the low-dimensionall fo@an-
ifold and achieves a higher power spectrum than previouiges
We have built a prototype lattice-focal lens and presentreded
depth of field results.

Keywords: Computational camera, depth of field, light field,
Fourier analysis.

1 Introduction

Depth of field, the depth range over which objects in a phatoigr
appear acceptably sharp, presents an important trade@ffsds
gather more light than a pinhole, which is critical to reduncése,
but this comes at the expense of defocus outside the focaépla
While some defocus can be removed computationally usingrdec
volution, the results depend heavily on the informationspreed
by the blur, as characterized by the frequency power spactru
of the defocus kernel. Recent advances in computationaj-ima
ing [Dowski and Cathey 1995; Levin et al. 2007; Veeraraghava
et al. 2007; Hausler 1972; Nagahara et al. 2008] modify thegen
acquisition process to enable extended depth of field thrcugh

a deconvolution approach.

Computational imaging systems can dramatically extendhdep
field, but little is known about the maximal frequency magdé

response that can be achieved. In this paper, we use a standar
computational photography tool, the light field, e.g., [bgwand
Hanrahan 1996; Ng 2005; Levin et al. 2008a], to address tlsese
sues. Using arguments of conservation of energy and takiig i
account the finite size of the aperture, we present boundéen t
power spectrum of all defocus kernels.

Furthermore, a dimensionality gap has been observed betihiee
4D light field and the space of 2D images over the 1D set of gepth
[Gu et al. 1997; Ng 2005]. In the frequency domain, only a 3D
{nanifold contributes to standard photographs, which spoads

o focal optical conditions. Given the above bounds, we show that
it is desirable to avoid spending power in the oth@éwcal regions

of the light field spectrum. We review existing camera designd
find that some spend significant power in these afocal regvainise
others do not achieve a high spectrum over the depth range.

Our analysis leads to the development of the lattice-fomas+—a
novel design which allows for improved image reconstructidt
is designed to concentrate energy at the focal manifoldefigint
field spectrum, and achieves defocus kernels with high spethe
design is a simple arrangement of lens patches with diffdosal
powers, but the patches’ size and powers are carefullyetbrivhe
defocus kernels of a lattice-focal lens are high over a wigleth
range, but they are not depth invariant. This both requinesean-
ables coarse depth estimation. We have constructed aypetahd
demonstrate encouraging extended depth of field results.

1.1 Depth of field evaluation

To facilitate equal comparison across designs all systemsalo-
cated a fixed time budget and maximal aperture width, andehenc
can collect an equal amount of photons. All systems are éggec
to cover an equal depth randec [dmin, dmax -

Similar to previous work, we focus on Lambertian scenes and a
sume locally constant depth. The observed imBgef an ob-
ject at depthd is then described as a convolutiBn= @y ® | + N,
wherel is the ideally sharp image\l is the imaging noise, and
@y is the defocus kernel, commonly referred to as the pointagbre
function (PSF). The defocus P3f is often analyzed in terms of
its Fourier transformg, known as the optical transfer function
(pTF). In theAfrequeAncy domain, convolution is a multiptioa
B(w) = @y(w)! (w) + N(w) where hats denote Fourier transforms.
In a nutshell, deblurring divides every spatial frequengyhe ker-



nel spectrum, so the information preserved at a spatialiéecy w
depends strongly on the kernel spectrumgif( w)| is low, noise is
amplified and image reconstruction is degraded. To captaees
with a given depth rangé € [dmin, dmay, we want PSFgy whose
modulation transfer function (MTH)}M is as high as possible for
every spatial frequenay, over the full depth range. Noise is absent
from the equations in the rest of this paper, because whateise

is introduced by the sensor gets amplified as a monotoniditmc

of [ @ (w)|-

In this paper, we focus on the stability of the deblurringgerss to
noise and evaluate imaging systems according to the spbetya
achieve over a specified depth range. We note, however, toat m
approaches such as coded apertures and our new lattiddensa
involve a depth-dependent P8k and require a challenging depth
identification stage. On the positive side, such systempubu
coarse depth map of the scene in addition to the all-focusadé.
In contrast, designs like wavefront coding and focus swes lan
important advantage: their blur kernel is invariant to tept

While the tools derived here apply to many computationaleras,
our focus is on designs capturing only a single input image. |
appendix B we present one possible extension to multiplesorea
ment strategies like the focal stack and the plenoptic camer

1.2 Related work

Depth of field is traditionally increased by reducing the raypre,

but this unfortunately lowers the light collected and irases noise.
Alternatively, a focal stack [Horn 1968; Hasinoff and Kukibs
2008] captures a sequence of images with narrow depth of field
but varying focus, which can be merged for extended deptlelaf fi
[Ogden et al. 1985; Agarwala et al. 2004]. Our new latticeafo
lens can be thought of as capturing all the images from a apeci
focal stack, shifted and summed together in a single photo.

New designs have achieved improved frequency responsthesge
with a depth invariant PSFs, allowing for deconvolution heitit
depth estimation. Wavefront coding achieves this with dacaop-
tical element [Dowski and Cathey 1995]. Others use a logergph
[George and Chi 2003] and focus sweep approaches modifpthe f
cus configuration continuously during the exposure [Hausd&'2;
Nagahara et al. 2008].

In contrast, coded aperture approaches [Veeraraghavan?€03;
Levin et al. 2007] make the defocus blur more discriminatve
depth variations. Having identified the defocus diametler, tan
be partially removed via deconvolution. One disadvantdgdis
design is that some light rays are blocked. A more serioub-pro
lem is that the lens is still focused only at one particulgstbeand
objects located away from the focus depth are still heaviiyrbd.

Other designs [Ben-Eliezer et al. 2005] divide the apeiitutgesub-
squares consisting of standard lenses, similar to oucdaftical
lens. But while these methods involve redundant focal lesygiur
analysis lets us optimize the combination of different fquavers
for improved depth of field.

We build on previous analysis of cameras and defocus in figlt
space [Ng 2005; Adams and Levoy 2007; Levin et al. 2008a]. A
related representation in the Fourier optics literaturdhnésAmbi-
guity function [Rihaczek 1969; Papoulis 1974; Brenner £1883;
FitzGerrell et al. 1997], allowing a simultaneous analysislefo-
cus over a continuous depth range.

2 Background on defocus in light field space

Our main analysis is based on geometric optics and the liglt, fi
but appendix C provides complementary derivations using\ea-
tics. We first review how the light field can be used to analyze-<c
eras [Ng 2005; Levin et al. 2008a]. It is a 4D functiéfx,y, u, V)
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Figure 2: Integration surfaces in flatland. Top: Ray mapping dia-
grams. Middle: The corresponding light field and integratsur-
face ¢u). Bottom: The lens spectrukn The blue/red slices rep-
resent OTF-slices of the blue/red objects respectivelg Vrtical
yellow slices represerty, slices discussed in Sec. 3. Left: Stan-
dard lens focused at the blue object. Right: Wavefront apdin

u,v aperture plane coordinates

X,y spatial coordinates (at focus plane)
Wyy spatial frequencies

Q max spatial frequency

P(X,Y) point spread function (PSF)

P(ay, wy) optical transfer function (OTF)
If(x7y7u7v) 4D lens kernel

K(ax, wy, wy,wy) | 4D lens spectrum

A aperture width

eA hole/subsquare width

a(wyy), Blaxy) | bounded multiplicative factors (Egs. (43,11))

Table 1: Notation.

describing radiance for all rays in a scene, where a ray ianpar
eterized by its intersections with two parallel planes, ukxplane
and thexy-plane [Levoy and Hanrahan 1996]. Figure 2 shows a 2D
flatland scene and its corresponding 2D light field. We assiinme
camera aperture is positioned on theplane, andky is a plane in
the scene (e.g., the focal plane of a standard lexg)are spatial
coordinates and the v coordinates denote the viewpoint direction.

An important property is that the light rays emerging fromiaeg
physical point correspond to a 2D plane in 4D of the form

X=SU+(1—-s)px, y=5v+(1—-9)py ., 1)
whose slope encodes the object’s depth:
s=(d—do)/d, )

whered is the object depth andy the distance between the; xy
planes. The offsetpy and py characterize the location of the scene
point within the plane at deptth

Each sensor element gathers light over its 2D area and the@b a
ture. This is a 4D integral over a set of rays, and under fid¢or



optics (paraxial optics), it can be modeled as a convolutjbly
2005; Levin et al. 2008a]. A shift-invariant kerriék, y, u, v) deter-
mines which rays are summed for each element, as governée by t
lens. Before applying imaging noise, the value recordedsanaor
element is then:

B00.y0) = ][ K~ yo ~¥. ~u, ~v)¢(x y.u.v) dxdydud.
o ®3)
For most designs, the 4D kernel is effectively non-zero aly 2D

integration surface because the pixel area is small cordgarthe
aperture. That is, the 4D kernel is of the form

= O(x—x(U,v),y = &y(U,V))R(U/AR(V/A) - (4)

whereR is a rect functiond denotes a Dirac delta, amdu,v) —
(x,y) is a 2D— 2D surface describing the ray mapping at the lens’s
aperture, which we assume to be square and of AizéA. The
surfacec is shown in black in the middle row of Figure 2.

K(X,y,u,V)

For example, a standard lens focuses rays emerging fromna poi
at the focus depth and the integration surfade linearc(u,v) =
(susv). The integration slope corresponds to the slope of the fo-
cusing distance (Fig. 2, left). When integrating a lightdiefith the
same slope (blue object in Fig. 2), all rays contributing seasor
element come from the same 3D point. In contrast, when thexbbj
is misfocused (e.g., red/green objects), values from plalcene
points get averaged, causing defocus. Wavefront codingvfRio
and Cathey 1995] involves a cubic lens. Since refractiorfise-
tion of the surface normal, the kernel is a parabolic surfaegin

et al. 2008b; Zhang and Levoy 2009] (Fig. 2, right) defined by

c(u,v) = (a?,av?) . (5)

Finally, the kernel of the focus sweep is not a 2D surface et t
integral of standard lens kernels with different slopegstis.

Consider a Lambertian scene with locally constant depttinelfo-
cal scene depth, or slope, is known, the noise-free defddusage

B can be expressed as a convolution of an ideal sharp imagé
aPSFgs: B=@g®|. As demonstrated in [Levin et al. 2008c], for a
given slopesthis PSF is fully determined by projecting the 4D lens
kernelk along the slops:

@cy) = [ koxyusxv-+sydudv. (6)
That is, we simply integrate over all rays y,u+ sx v+ sy) corre-
sponding to a given point in the-plane (see Eq. 1).

For example, we have seen that the 4D kekrifet a standard lens is
planar. If the slopes of an object and the orientation of this planar
k coincide, the object is in focus and the projected RSk an
impulse. For a different slope the projected PSF is a box,fdied
the width of this box depends on the difference between theesl
of the object and that d€. For wavefront coding, the parabolic 4D
kernel has an equal projection in all directions, explainivhy the
resulting PSF is invariant to object depth [Levin et al. 200Bhang
and Levoy 2009].

Now that we have expressed defocus as a convolution, we can
analyze it in the frequency domain. Lietay, wy, wy, w,) denote

the 4D lens spectrum, the Fourier transform of the 4D lenadter
k(x,y,u,v). Figure 2 visualizes lenses specfera'n flatland for a

standard and wavefront coding lenses. As the BSIS obtained
from k by projection (Eq. (6)), by the Fourier slice theorem, the
OTF (optical transfer functior‘zi)S is a slice of the 4D lens spectrum
kin the orthogonal direction [Ng 2005; Levin et al. 2008c]:

By, wy) = Ko, @y, —say, —sw)) . @)
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Figure 3: Layout of the 4D lens spectrum, highlighting the focal

manifold. Each subplot representsca, y,-slice, l}%‘m(mj,(w).
The outer axes vary the spatial frequernmy, y,, i.e., the slicing
position. The inner axes of each subplot, i.e., of each sliagy
wyy- The entries ok along each focal segment are color coded, so
that the 2D set of points sharing the same color correspoadst
OTF with a given depth/slope (e.g., the red points define an ol
the slope s= —1). This illustrates the dimensionality gap: the set of
entries contributing to an OTF at any physical depth occspirly

a 1D segment in each 2B y,-slice. In the flatland case (Fig. 2),
eachay, y,-slice corresponds to a vertical column.

Below we refer to slices of this form @TF-slices because they
directly provide the OTF, describing the frequency respaihge to
defocus at a given depth. OTF-slices in flatland are illtstian
the last row of Figure 2 (dashed red/blue). These are slatitess
whose slope is orthogonal to the object slope in the prirgat field
domain. Low spectrum values kileads to low magnitudes in the
OTF for the corresponding depth. In particular, for a staddiens,
only the OTF-slice corresponding to the focusing distamiesiied
blue, Fig. 2 left) has high values.

Notations and assumptions: All systems in this paper are allo-
cated a fixed exposure time, w.l.o.g. 1. The aperture si2edis\.

A denotes a pixel width back-projected onto the foxgbplane.
In the frequency domain we deal with the rargeQ, Q], where
Q=1/(2D). axy,w,y are shortcuts for the 2D vectofsx, wy),
(e, wy). Table 1 summarizes notations.

We seek to capture a fixed depth rafdin, dmax. To simplify the
light field parameterization, we select the location of xigeolane
according to the harmonic mealy = %‘?ﬂz, corresponding to
the point at which one would focus a standard lens to equdkze
focus diameter at both ends of the depth range, e.g., [H&sind
Kutulakos 2008]. This maps the depth range to the symméeatpes

range[—S/2,5/2], whereS= M (Eg. (2)). Under this pa-
rameterization the defocus diameter (onxiplane) of slopescan

be expressed simply #gs|.

We also assume that scene radiance is fairly constant oserath
row solid angle subtended by the camera aperture. This qégum
is violated by highly specular objects or at occlusion baries.

3 Frequency analysis of depth of field

We now analyze the requirements, strategies, and limitepfid
of field extension. We show that a key factor for depth of field
optimization is the presence ofidmensionality gajn the 4D light
field: only a manifold of the 4D spectrum, which we céikcal,



contributes to focusing at physical depths. Furthermore stow
that the energy in a 4D lens spectrum is bounded. This sugtiest
to optimize depth of field, most energy should be concerdrate
the focal manifold. We discuss existing lens designs and/shat

many of them spend energy outside the focal manifold. In See

propose a novel design which significantly reduces thislprob

3.1 The dimensionality gap

As described above, scene depth corresponds to sliogtae light
field. It has, however, been observed that the 4D light fielsl ha
a dimensionality gapin that most slopes do not correspond to a
physical depth [Gu et al. 1997; Ng 2005]. Indeed, the setldfal
planesx= syu+ px, y = s+ py described by their slop®, s, and
offset px, py is 4D. In contrast, the set corresponding to real depth,
i.e., wheres= g, = sy, is only 3D, as described by Eqg. (1). This
makes sense because scene points are 3D. The dimensigaality
is a property of the 4D light field, and does not exist for the 2D
light field in flatland. The other slopes whesg # s, are afocal
and represent rays from astigmatic refractive or reflectivéaces,
which are surfaces with anisotropic curvature [Adams angbie
2007], e.g., the reflection from a cylindrical mirror. Singe con-
sider scenes which are sufficiently Lambertian over thetaper
afocal light field orientations hold no interesting infortioa.

The dimensionality gap is particularly clear in the Fourda-
main [Ng 2005]. Consider the 4D lens spectrﬁmand examine
the 2D slicesR%AyO(mJ,ax,), in which the the spatial frequencies
Wy, Wy, are held constant (Fig. 3). We call thesg, y,-slices In
flatland, wy, y,-slices are vertical slices (yellow in Fig. 2). Follow-
ing Eq. (7), we note that the set of entries in eﬁgt(}yo participat-
ing in the OTF for any depth is restricted to a 1D line:

K o (— S0, =S, 8)

for which wy = —swy,, wy = —swy,. For a fixed slope rangeec
[—S/2,S/2] the set of entries participating in any Ok is a 1D
segment. These segments, which we refer téoaal segmenis
are highlighted in Figure 3. The rest of the spectruafacal This
property is especially important, because itimplies thast entries
of k do not contribute to an OTF at any depth

As an example, Figure 4(b-e) shows the 2D families of@Dy,-
slices for a variety of cameras. A standard lens has a higionse
for an isolated point in each slice, corresponding to thei$oty
distance. In contrast, wavefront coding (Fig. 4(e)) hascader
response that spans more of the focal segment, but also lower t
afocal region. While the spectrum of the focus sweep (Fid))4$

on the focal segment, its magnitude is lower magnitude thanaf

a standard lens.

3.2 Upper bound on the defocus MTF

In this section we derive a bound on the defocus MTF. As intro-
duced earlier, we pose depth of field extension as maximittiag
MTFs |@s(wxy)| over all slopes € [—S/2,S/2] and over all spatial
frequenciesuy. Since the OTFs are slices from the 4D lens spec-
trum k (Eq. (7)), this is equivalent to maximizing the spectrum on
the focal segments &

We first derive the available energy budget, using a direetresion
of the 1D case [FitzGerrell et al. 1997; Levin et al. 2008c].

Claim 1 For an aperture of size A A and exposure length the
total energy in eachw, y,-slice is bounded by A

//\ﬁ«»@‘yo(%w)lzdandngz. 9)

The proof, provided in appendix A, follows from the finite anmb

of light passing through a bounded aperture over a fixed expos
As a consequence of Parseval's theorem, this energy buuget t
applies to everywy, y,-slice k%_yO. While Claim 1 involves geo-
metric optics, similar bounds can be obtained with Fourjgics
using slices of the ambiguity function [Rihaczek 1969; Giezrell

et al. 1997]. In appendix C we derive an analogous bound under
Fourier optics, with a small difference—the budget is nogem
equal across spatial frequencies, but decreases withfthection-
limited MTF.

As in the 1D space-time case [Levin et al. 2008c], optimalstror
case performance can be realized by spreading the energgtbud
uniformly over the range of slopes. The key difference is traper

is the dimensionality gap. As shown in Figure 3, the OiEsover
only a 1D line segment, and most entries inw@y.y,-slice R%_yo

do not contribute to any OTF. Therefore, the energy budgatish
be spread evenly over the 1D focal segment only.

Given a power budget for eadly, y,-slice, the upper bound for
the defocus MTF concentrates this budget on the 1D focal segm
only. Distributing energy over the focal manifold requicssition,
however, because the segment effectively has non-zerkndgs
due to its finite support in the primal domain. If a 1D focal semt
had zero thickness, its spectrum values could be made &nfiiie
still obeying the norm constraints of Claim 1. As we show hglo
since the primal support d&fis finite (k admits no light outside the
aperture), the spectrum must be finite as well, so the 1D foem
ment must have non-zero thickness. Slices from this idesdtspm
are visualized in Figure 4(a).

Claim 2 The worst-case defocus MTF for the rarfjgeS/2,S/2] is
bounded. For every spatial frequenay,y:

. ~ 2 E(W,V)A:g
se[—QQS/z]‘%(M’%)‘ = SR (10
where the factor
Y (_ mm@uwb) "
PlOw) = madlad Jah ' 3 madadlah) P

is in the range[ 242, 1] ~ [0.93,1].

Proof: For eacrmq,,yo-s,liceR(%_y0 the 1D focal segment is of length
Sy, y,|- We first show that the focal segment norm is bounded by

A3, and then the worst-case optimal strategy is to spread tigeiu
evenly over the segment.

To simplify notations, we consider the casg = 0 since the gen-
eral proof is similar after a basis change. For this casel Ehfocal
segment is a horizontal line of the forkg, , (cu,0), shown in the

central row of Figure 3. For a fixed value af, this line is the
Fourier transform of:

/// K(X, Y, u,v)e~ 27U WX+ 07+ 0V) gxdy .

By showing that the total power of Eq. (12) is bounded®y Par-
seval’'s theorem gives us the same bound for the focal segment

(12)

Since the exposure time is assumed to be 1, we collect uniggne
through every, v point lying within the clear apertute

//k(x,y,u,v)dxdy:{ é

1if an amplitude mask is placed at the aperture (e.g., a copeduae)
the energy will be reduced and the upper bound still holds.

Ul < A2, M < A/2

otherwise (13)




Camera type Squared MTF
- 3
a. Upper bound |@s(wey)? < aAT.y\
b. Standard lens |@(axy) 2 = Alsin@(A(s— so)w)sin@(A(s— so)wy)
c. Coded aperture | E[|@(axy)[?] ~ #sincz(eA(s—so)wx)sin(?(sA(s—so)m,)
d. Focus swee |@s(ey)]? ~ Aaluy )2
- P B(axy)|” ~ FoyZ
) - 2. R

e. Wavefront coding  |@(wyy)|* ~ Frodioy]

~ - . A8Bpaxy)
f. Lattice-focal E[|@s(wy)?] =~ mey\

Table 2: Squared MTFs of computational imaging designs. See
Table 1 for notation. The optimal spectrum bound falldiotarly
as a function of spatial frequency, yet existing designé siscthe
focus sweep and wavefront coding fall gffadraticallyand do not
utilize the full budget. The new lattice-focal lens derivrchis
paper achieves a higher spectrum, closer to the upper bound.

A phase change to the integral in Eqg. (13) does not increase it
magnitude, therefore, for every spatial frequengyy,,

‘// k(X Y, u,v)e‘Zi”(‘*’*o”“*/oy)dxd% <1. (14)

Using Eqg. (14) and the fact that the aperture is witilong on the
v-axis, we obtain:

o . 2
‘/// K(X,Y, u,v)efz'”%”oy*o"dxdyd* <A?. (15)

On theu-axis, the aperture has width as well. By integrating
Eq. (15) overu we see the power is bounded A¥:

/ ’/// Koxyuve? "(%”%”d)‘dydrdu <A (16)

Since the left-hand side of Eq. (15) is the power spectrum of
k%AyO(qu,O), by applying Parseval's theorem we see that the to-

tal power over the focal segment is bounded®Syas well:
[ g (2,0) P, < A°. (17)

Since the focal segment norm is bounded®8y and since we aim

The MTFs for the previous designs shown in Figure 5 are lohaar t
the upper bound. We have analytically computed spectrahfeset
designs. The derivation is provided in appendix A and suriredr
in Table 2. We observe that no existing spectrum reachespiberu
bound. Below we review the results in Table 2b-e and provitees
intuitive arguments. In the next section we introduce a nesigh
whose spectrum is higher than all known designs, but stébdwwt
fully meet the bound.

Standard lens:  For a standard lens focused at depjhwe see
in Figure 4(b) high frequency content near the isolated tgoin

Kasgy (—S0ti, —Soty, ), Which correspond to the in-focus depth

@,. The spectrum falls off rapidly away from these points, with
a sinc whose width is inversely proportional to the apertiven
the deviation between the focus slope and the object skypes|

is large, this sinc severely attenuates high frequencies.

Coded aperture:  The coded aperture [Levin et al. 2007; Veer-
araghavan et al. 2007] incorporates a pattern blocking fligys.
The integration surface is linear, like that of a standand J&ut has
holes at the blocked areas. Compared to the sinc of a staagard
ture, the coded aperture camera has a broader spectrund(&)ig.
but is still far from the bound. To see why, assume w.l.o.cat th
the lens is focused & = 0. The primal integration surface lies
on thex = 0,y = 0 plane and is constant over altyy. Indeed,
all wy, y,-slices in Figure 4(c) are equal. Since the union of focal
segment orientations from alk, y,-slices covers the plane, to guar-
antee worst-case performance, the coded aperture spestiautd
be spread over the entire 2D plane of eagly,-slice. This implies
significant energy away from focal segments.

Focus sweep:  For a focus sweep camera [Hausler 1972; Naga-
hara et al. 2008], the focus distance is varied continuodshng
exposure and the 4D lens spectrum is the average of starsheek!
spectra over a range of slopgqFigs. 4(d) and 5(d)). In contrast to
the isolated points covered by a static lens, this spreagtggover
the entire focal segment, since the focus varies during xgo
This design does not spend budget away from the focal segohent
interest. However, as discussed in appendix A, since thekdemel
describing a focus sweep camera is not a Dirac delta, phaselea
lation occurs between different focus settings and the madmis
lower than the upper bound (Fig. 4(a)).

Wavefront coding:  The integration surface of a wavefront
coding lens [Dowski and Cathey 1995] is a separable 2D
parabola [Levin et al. 2008b; Zhang and Levoy 2009]. The spec
trum is a separable extension of that of the 1D parabola f{Letal.
2008c]. However, while the 1D parabola achieves an optinoasty
case spectrum, this is no longer the case for a 2D parabolB,in 4
and the wavefront coding spectrum (Table 2e, Figs. 4(e) éey 5
is lower than the bound. They,y,-slices in Figure 4(e) reveal

to maximize the worst-case magnitude, the best we can do is towhy. Due to the separability, energy is spread uniformlyhimithe

spread the budget uniformly over the len§thy, y,| focal segment,
which bounds the worst MTF power B2 /S/ay,|. In the general
case, Eq. (16) is bounded By wy,)A® rather thamA®, and Eq. (10)
follows. []

3.3 Analysis of existing designs

We analyze the spectra of existing imaging designs withqaar
attention paid to the spectrum on the focal manifold sinde the
portion of the spectrum that contributes to focus at physiepths.

Figure 4 visualizesuy, y,-slices through a 4D lens spectryk for
recent imaging systems. Figure 5 shows the correspondingsMT
(OTF-slices) at a few depths. A low spectrum value at a paint o
the focal segment leads to low spectrum content at the OTReof t
corresponding depth. Examining Figures 4 and 5, we seedha s
designs spend a significant portion of the budget on afogabms.

minimal rectangle bounding the focal segment. For anotkeer p
spective, consider the wavefront coding integration serfa the
primal domain, which is a separable parabgla,v) = (aw?,aV?).
A local planar approximation to that surface around an apert

pointug, vg is of the formc(u,v) = (syu,syv), for sy = % = 2alp,

Sy = ‘;—ff = 2avp. Forug # vp the lens is locally astigmatic, and
as discussed in Sec. 3.1, this isafocal surface. Thus, the only
focal part of the wavefront coding lens is the narrow strignalits
diagonal, wherely = vp.

Still, the wavefront coding spectrum is superior to that ofled
apertures at low-to-mid frequencies. It spreads budgstwithin
the minimal rectangle bounding the focal segment, but nao tipe
maximal cutoff spatial frequency. The wavefront codingcspen
and that of a focus sweep are equaldk| = |wy|. However, the
wavefront coding spectrum is significantly improved fax| — 0



(a) upper bound (b) standard lens, focuses)at 0.5 (c) coded aperture, focusedsat= 0
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Figure 4: 4D lens spectrum for different optical designs. Each subisl@an wy, y,-slice as described in Figure 3. In the flatland case of
Figure 2, theseuy, y,-slices correspond to vertical columns. An ideal desigrs{auld account for the dimensionality gap and spend energy
only on the focal segments. Yet, this bound is not reachechipyexristing design. A standard lens (b) devotes energy ondygoint in
each subplot. A coded aperture (c) is more broadband, bugpestrum is constant over all, y,-slices, so it cannot cover only the focal
segment in eachy, y,-slice. The focus sweep camera (d) covers only the focalessigirbut has reduced energy due to phase cancellations
and does not achieve the bound. A wavefront coding lens &parable in they,, w, directions and spends significant energy on afocal
areas. Our new lattice-focal lens (f) is an improvement awdsting designs, and spreads energy budget over the fegaients. Note that

all subplots show the numerical simulation of particulars@g instances, with parameters for each design tuned talépth range (see
Sec. 5.1), approximating the analytic spectra in Table 2 ifitensity scale is constant for all subplots.
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boind 5205 50 sweep  coding  focal the central row and column of Figure 4(e).

In appendix B we also analyze the plenoptic camera and the fo-
cal stack imaging models. Note that despite all the sincepagt
mentioned so far, the derivation in this section and the kitians

in Figures 4 and 5 model pure geometric optics. Diffractiod a

Talx

0.5 wave optics effects are also discussed in appendix C. In cassis
Fourier optics models lead to small adjustments to the spéat
Table 2, and the spectra are scaled by the diffraction-@id/@TF.
0 v
‘% Having reviewed several previous computational imaging ap
" | e proaches to extending depth of field, we conclude that nottecof
_05 g spends the energy budget in an optimal way. In a standardhens

entire aperture area is focal, but light is focused only framsin-
v gle depth. A wavefront coding lens attempts to cover a futitde
range, but at the expense that most aperture area is afoctie |
next section we propose a new lens design, the lattice-feaal
with the best attributes of both—all aperture area is fogat, it
Figure 5. Spectra of OTF-slices for different optical designs over focuses light from multiple depths. This lets our new degjgh
a set of depths. The subplots represent the MTF of a givenimgpag  closer to the upper bound compared to existing imaging Byste
system for slope gs(wy, wy)|, where the subplot axes areyy.
These OTF-slices are the 2D analog of the slanted red and blue 4 The lattice-focal lens
slices in Figure 2. Our new lattice-focal lens design begirapgi-
mates the ideal spectrum upper bound. Note that all subplatsy Motivated by the previous discussion, we propose a new desig
the numerical simulation of particular design instance#hvpa- which we call the lattice-focal lens. The spectrum it achgeis
rameters for each design tuned to the depth range (see SB¢. 5. higher than previous designs but still lower than the upmemb.
approximating the analytic spectra in Table 2. In this design, the aperture is divided intge? subsquares of
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Figure6: Left: Ray mapping for a lattice-focal lens in flatland. The
aperture is divided into three color-coded sections, eacli§ed on

a different depth. Right: In the 2D light field the integratisurface

is a set of slanted segments, shown with correspondingsolor

-~ el

(a) Lattice-focal lens (b) PSFs

u- plane

Lattice-Focus

(aperture plane)

sensor plane

Figure 7: (a) Toy lattice-focal lens design with only 4 subsquares.
(b) The PSFg in the primal domain, at two different depths. Each
subsquare (color-coded) corresponds to a box in the PSFwidité

of each box is a function of the deviation between the sullsqua
focal depth and the object depth.

size €A x €A each (for 0< € < 1). Each subsquare is a fo-
cal element cropped from a standard lens focused at some slop
€ [-S/2,5/2]. That s, the integration surface is defined as:

c(u,v) = (SJ u, Sjv) for (u,v) G\Nj ) (18)
whereW, denotes the area of theth subsquare. Figure 6 visu-
alizes the integration surface of a lattice-focal lens, posed of
linear surfaces with different slopes (compare with Figiréeft).
Figure 7 illustrates a toy four-element lattice-focal lamsl its PSF
for two different depths. In the primal domain, the PSF is jpesu
position of scaled and shifted boxes corresponding to thiews
aperture subsquares. For this example, one of the subsgadee
cused at the correct depth for each scene depth, so the PSiBtson
of an impulse plus three defocused boxes. The box width isexfu
tion of the deviation between the lens focal depth and theabbj
depth.

The OTF@(ay, wy) of a lattice-focal lens is a sum of sincs corre-
sponding to the different subsquares:

)3 22T Vx Yy D sinc(eAax(sj — §)) sinc(eAwy(sj —9)) -
]

(19)
For a subsquare centered at aperture paimntv;), (YjxVjy) =
(uj(sj —s),Vj(sj —s)) denotes the phase shift of tfieh subsquare,
corresponding to its translated center. The 4D spectrunsofgie
aperture subsquare is a sinc around one point in the focalesgg
Koy, (—Sj ko, —Sj iy,). However since each subsquare is focused
at a different slope; the summed spectra cover the focal segment
(Figure 4(f)). In contrast to the spectrum for wavefrontiogg the
lattice-focal spectrum does not spend much budget away finem
focal manifold. This follows from the fact that the subscqualopes
in Eq. (18) are set to be equalirandv, therefore the entire aperture
area isfocal.

The lattice-focal design resembles the focus sweep in tb#i b
distribute focus over the DOF—focus sweep over time, and the
lattice-focal design over aperture area. The crucial diffee is
that since each lattice-focal subsquarsngllerthan the full aper-

0 0

(a) Lattice-focal lens (b) Discrete focus sweep

Figure 8: Focus sweep vs. the lattice-focal lens. (a) Lattice-focal
lens whose aperture is divided inBodifferently-focused bins. (b)
Discrete focus sweep, dividing the integration time Bitons, each
focusing on a different depth (note that an actual focus gveaen-
era varies focus continuously). Depth ranges with defocarsdter
below a threshold are colored. While in both cases each hite
1/3 of the energy, the sub-apertures for the lattice-focal lares
narrower than the full aperture used by the focus sweep, déme
effective DOF for each of the lattice-focal bins is larger.

ture, its effective DOF is larger than the DOF for the full epe
ture (Figure 8). As shown in Fig. 4(d,f) and Fig. 5(d,f), the
lattice-focal lens achieves significantly higher spechantfocus
sweep. Mathematically, by discretizing the exposure tirmte N
bins, each bin of the focus sweep (focused at skypeontributes

AWzsino(A(s— Sj)wx)singA(s— sj)wy) to the OTF. By contrast, by
dividing the aperture int® bins, each bin of the lattice-focal lens
contributesAWZsino(AN*l/Z(s— sj)@x)sing AN~ Y2(s—sj)ay). In
both cases each bin collectgN of the total energy (and the sincs’
height isAz/N), but the lattice-focal sinc is wider. While coin-
cidental phase alignments may narrow the sincs, thesenadigts
occur in isolation and do not persist across all depths drapatial
frequencies. Therefore, the lattice-focal lens has a higbectrum
when integrating oves;.

The wy, y,-slices in Figure 4(f), and the OTF-slices in Figure 5(f)
suggest that the lattice-focal lens achieves a higher sparatom-
pared to previous designs. In the rest of this section weldgan
analytic, average-case approximation for the latticedfepectrum,
which enables order-of-magnitude comparison to othegdssiwe
then discuss the effect of window sizeand show it is a critical pa-
rameter of the construction, and implies a major differdveteveen
our design and previous multi-focus designs [George an@@08;
Ben-Eliezer et al. 2005].

Spectrum of the lattice-focal lens: The spectrum of a particu-
lar lattice focal lens can be computed numerically (Eg. x18nd
Figures 4 and 5 plot such a numerical evaluation. However, to
allow an asymptotic order-of-magnitude comparison betweas
designs we compute the expected spectrum over random shafice
the slopes; and subsquare centefis;, v;) in Eq. (18) (note that to
simplify the proof, the subsquares in a generic randontkdibcal
are allowed to overlap and to leave gaps in the aperture.d&@an
sufficiently many subsquares, the law of large numbers eppind

a sample lattice-focal lens resembles the expected spectilhile
this analysis confers insight, the expected spectrum dhoat be
confused with the spectrum of a particular lattice-focalksle The
spectrum of any particular lattice-focal instance is natado the
expected one.

Claim 3 Consider a lattice-focal lens whose subsquare slopes
in Eq. (18) are sampled uniformly from the ran¢eS/2,S/2],
and subsquares centers sampled uniformly over the apeare@



[~A/2,A/2] x [-A/2,A/2). For |a|,|wy| > (eSA L, the expected
power spectrum asymptotically approaches

eA3

mﬁ(“&,y) ;

Ell @, ) [?] = (20)

wheref is defined in Eq. (11).

Proof: Let s denote a particular scene depth of interest anaigiet
denote the OTF of thé-th subsq_uare focused at slogg so that

the lattice-focal OTF isps = 5 @. For a subsquare size oA x
€A, the aperture area is covered by= 1/€2 subsquares. Since

them random variablegyd are drawn independently from the same
distribution, it follows that

El|@/% = mE[|@ 2]+ m(m— 1)|E[@d] % (1)

The second term in Eq. (21) is positive, and one can show it is
small relative to the first term. For simplicity we make thenco

servative approximation [F|?] ~ mE[|@!|?], and show how to

compute B @!|?] below. Note that the exact lattice-focal spectrum
(Eq. (19), and the right-hand side of Eq. (21)) involvesrifgeence
from the phase of each subsquare. An advantage of our apmexi

tion mEH@ 2] is that it bypasses the need to model phase precisely.

Recall that the PSF from each subsquare is a box filter andThie O
is a sinc. If thej-th subsquare is focusedst

(@ () [? = e*Asin (eAax(s—s)))siné (eAwy(s—s))) . (22)

Since the subsquare slopes are drawn uniformly ffei®/2,S/2],
the expected spectrum is obtained by averaging Eq. (22)spver

E[|@[? = iSA‘l 755//22 sin@ (eAax(sj —9)) sinc (eAwy (s —9)) ds; .
(23)

To compute this integral we make use of the following idgntior
a 2D vector = (rq,r2),

B(rl)

24

/ siné(r1t)sinc®(rot)dt =
If —S/2 < s< S/2andSis large, we can assume that the integration

boundaries of Eq. (23) are sufficiently lafgend asymptotically
approximate Eg. (23) with the unbounded integration of 24):(

. aps s/2
B[R = % S/zsincz (eAwx(sj —9)) sin (eAwy (s —9)) ds;
eApd S/2+s ]
== 75/2+Ssmcz (eAws)) siné (eAays;) ds;
_ EA%B(axy)
Slaxyl

(25)

Eqg. (20) now follows from Eq. (25), after multiplying by theim-
ber of subsquares) = S% ]

Note that the approximation in Eq. (25) is reasonable|dai, |wy| >
(SeA)~L. The approximation is crude at the low frequencies but besom
accurate at higher frequencies, for which the MTF appraathe desired
fall off. Furthermore, note that at the exact integratiorurimbaries ¢ =
+5/2) one gets only half of the contrast. Thus, in practice, droeilsl setS
a bit higher than the actual depth range to be covered.
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Figure 9: The lattice-focal lens with varying window sizes. Left:
Wy yo-Slice atay = 0.9Q, wy = —0.9Q, through theexpectedspec-
trum. Middle: wy, y,-slice from aparticularlattice-focal lens in-
stance. Right: The defocus diameter over the depth of fighe T
expected spectrum improves when the windows number isagduc
but every particular lattice-focal lens becomes underdah@and
does not cover the full depth range.

Optimal subsquare size: ~ According to Claim 3, the expected
power spectrum of a lattice-focal lens increases with windae

€ (Fig. 9). For larger subsquares the sinc blur around theraent
focal segment is narrower, so more energy is concentratetieon
focal segment. However, it is clear that we cannot makebitrar-

ily large. When the number of subsquares is small, the egdect
power spectrum is high, but there are not enough samples/&r co
the full focal segment (Figure 9(a)). On the other hand, wihen
number of subsquares is too large, every subsquare has wpde s
port around the main focal segment, leading to lower enengye
focal segment (Fig. 9(c)).

Posed another way, each subsquare is focused at a diffevient p
in the depth range, and provides reasonable coverage @/sulth
range of depths for which it achieves a defocus diameter sxf le
than 1 pixel (Fig. 9, rightmost column). The subsquaresirage-
ment is undersampled if the minimum defocus diameter foresom
depth range is above 1 pixel, and redundant when the sutesjuar
effective depth coverage overlap. In the optimal arrangeraach
depth is covered by exactly one subsquare.

We derive the minimal number of windows providing full cosge
of the depth of field, resulting in an optimed.

Claim 4 The maximal subsquare size which allows full spectrum
coverage is

£ = (AxD) /3. (26)

Proof: If the spacing between spatial samplesAighe maxi-
mal frequency we need to be concerned witl)i8/2 = S/(44).
For window sizes we obtain Y&2 subsquares. If the slopes of
the subsquares are equally spaced over the rerg§£2,S/2], the
spacing between samples in the frequency domain=sQSe2.
Using subsquares of widteA, we convolve the samples with
singeAwy)sinaeAwy). For full coverage, we thus requigA <
1/1, implying:

£ < (AX) Y3, (27)



If we plug the optimak™ from Eq. (26) into Eq. (20) we conclude
that the expected power spectrum of a lattice-focal lenk wjtti-
mal window size is:

A8/3

SERYEPW (28)

Ellgs(we wy)[*) ~ (axy) -

Discussion of lens spectra: The lattice-focal lens with an op-
timal window size achieves the highest power spectrum (les-
est to the upper bound) among all computational imaginggdssi
listed in Table 2. While the squared MTFs for wavefront cgdin
and focus sweep fall offjuadratically as a function ofcyy, for
the lattice-focal lens the squared MTF only falls tiffearly. Fur-
thermore, while the squared MTFs for wavefront coding arodi$o

sweep scale withA2, for the lattice-focal lens the squared MTF

scales withA®/3. Still, there exists a gap ¢AXR)Y/3 between the
power spectrum of the lattice-focal lens and the upper bound
should be noted that the advantage of the lattice-focai$ems/mp-

totic and is most effective for large depth of field ranges.eWthe

depth range of interest is small the difference is less aeahte, as
demonstrated below.

Compact support in other designs: From the above discus-
sion, the aperture area should be divided more or less gqu&dl
elements focused at different depths. However, beyondl egea

Large depth rangeS(= 2) Small depth rangeS(= 0.1)
Wavefront coding Lattice-focal Wavefront coding Lattifoeal

Figure12: wy, y,-slice (atwy, = 0.9Q, wy, = —0.9Q) for two depth
ranges defined by slope bounds-& (left) and S= 0.1 (right). For
the smaller range, the difference between the focal segamehthe
full bounding square is lower, and the spectra for wavefimoding
and the lattice-focal lens are more similar.

followed by wavefront coding, then focus sweep. Note thatesi
we use a square aperture, several imaging systems have orore h
zontal and vertical frequency content. This leads to haoitloand
vertical structure in the reconstructions of Figure 10 tipatarly
noticeable in the standard lens and the wavefront codingtses

In Figure 11 we simulate the effect of varying the depth rarfidge
planar object was positioned si= —0.5, and the camera parame-
ters were adjusted to cover a narrow depth raBge0.1 (Fig. 11,
top row) and a wider rang8= 2 (Fig. 11, second row). When the
focus sweep, wavefront coding and lattice-focal lens ajested
to a narrower depth range their performance significantpyrawves,

we also want the aperture regions focused at each depth to besince they now distribute the same budget over a narroweeran

grouped together. Eq. (20) indicates that the expected pspee-
trum is higher if we use few wide windows, rather than manylsma
ones. This can shed some light on earlier multi-focus dssigor
example, [George and Chi 2003] use annular focus rings, Beia-[
Eliezer et al. 2005] use multiplexed subsquares, but meltipn-
adjacent subsquares are assigned the same focal lengthothin b
cases, the support of the aperture area focused at eachisieth
at all compact, leading to sub-optimal MTFs.

5 Experiments

We first perform a synthetic comparison between extendethadp
field approaches. We then describe a prototype construcfitre
lattice-focal lens and demonstrate real extended-DOF ésiag

5.1 Simulation

We start with a synthetic simulation using spatially-ingat first
order (paraxial) optics. The OTFs in this simulation are patad
numerically with precision, and do not rely on the approxierfar-
mulas in Table 2 .

Our simulation useé& = 100\ and considers two depth of field
ranges given by =2 andS= 0.1. Assuming a planar scene,
we synthetically convolved an image with the PSF of eachgtlesi
adding i.i.d. Gaussian noise with standard deviatips: 0.004.
Non-blind deconvolution was performed using Wiener fiigrand
the results are visualized in Figures 10 and 11. We set tleepiae
rameters of each design to best match the depth range—for-exa
ple, we adjust the parabola widéH(in Eq. (5)), and select the opti-
mal subsquare size of the lattice-focal lens. The standeddaded
lenses were focused at the middle of the depth rangg,-al.

In Figure 10 we simulate the effect of varying the depth ofdbe
ject. Using cameras tuned for depth rar§e- 2, we positioned
the planar object &= 0 (Fig. 10, top row) and= —0.9 (Fig. 10,
bottom row). As expected, higher spectra improve the vigual-
ity of the deconvolution. Standard and coded lenses obtaiale
lent reconstructions when the object is positioned at thegslope
s= 0, but away from the focus depth the image deconvolution can-
not recover much information. Focus sweep, wavefront apeimd
the lattice-focal lens achieve uniform reconstructionligyacross
depth. The best reconstruction is obtained by our latioaifPSF,

The difference between the designs becomes more criticah wie
depth range is large. Figure 12 visualizeag,y,-slice for bothS
values. ForS= 0.1, the length of the focal segment is so short
that there is little difference between the segment andoitsding
square. Thus, with a smaller depth range the wavefront gddims
incurs less of penalty for spending its budget on afocabregi

Mapping slope ranges to physical distances: Assume that the
camera has sensor resolutidg = 0.007mm, and that we use an
f = 85mm focal length lens focused at demih= 70cm. This
depth also specifies the location of thdight field plane. The DOF

is defined by the rangilmin, dmay corresponding to slopesS/2.
From Eq. (2), the depth range can be expressedhb A + S/2),
yielding a DOF of [35,c0]cm for S= 2 and [66.2,74.3]cm for
S=0.1. The pixel size in the light field i& = Ag/M, where

M = f/(do — f) = 0.13 is the magnification. We set the effective
aperture sizéA to 100 = 100Qg/M = 50.6mm, which corre-
sponds tof /1.68. The subsquares number and focal lengths are
selected such that for each point in the depth range, thesg-is
actly one subsquare achieving defocus diameter of lessdhan
pixel. The subsquare number is given by Eq. (26), in this simu
lation m = 100 aperture subsquares wish= 2, andm = 16 sub-
squares witts= 0.1. To set the focal lengths of each subsquare we
selectm equally spaced slopes in the rangg—S/2,5/2]. A slope

sj is mapped to a physical depth according to Eq. (2). To make
the j-th subsquare focus at depiﬁwe select its focal lengtl; ac-
cording to the Gaussian lens formula/f] = 1/d; + 1/ds (where

ds denotes the sensor-to-lens distance).

5.2 Implementation

Hardware construction: To demonstrate our design we have
built a prototype lattice-focal lens. Our construction \pdes a
proof of concept showing that a lattice-focal lens can belémp
mented in practice and lead to reasonably good results, \eowe
it is not an optimized or fully-characterized system.

As shown in Figure 13, our lattice-focal lens mounts to a main
lens using the standard threaded interface for a lens filtez.sub-
squares of the lattice-focal lens were cut from BK7 sphéplzmo-
convex lens elements using a computer-controlled saw. queerss
are of size 3 x 5.5mm and thickness 3mm. By attaching our



Depth range

Depth range

atticd-focal

Focus sweep

Wavefront coding
— -

Figure 10: Synthetic comparison of image reconstruction at diffemdsject depths Top row: object depth=50, Bottom row: object depth
s= —0.9 Standard and coded lenses produce high quality reconstrudor an object at the focus depth, but a very poor one awamfr
the focus depth. Focus sweep, wavefront coding and theddtical lens perform equally across depth. The highestityualconstruction

produced by our lattice-focal lens.
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Figure 11: Synthetic comparison of image reconstruction when camararpeters are adjusted for different depth ranges. Top noavrow
depth range bounded by=50.1, Bottom row: wider range bounded by-S2. Most designs improve when they attempt to cover a narrower
range. The difference between the designs is more dradticge depth ranges.

lattice-focal lens to a high-quality main lens (Canon 85nin2[f),
we reduce aberrations. Since most of the focusing is aathibye
the main lens, our new elements require low focal powerscand
respond to very low-curvature surfaces with limited alt@re (in
our prototype, the subsquare focal lengths varied from 1&®to).

In theory the lattice-focal element should be placed in thag of
the main lens aperture or at one of its images, e.g., there@rar
exit pupils. To avoid disassembling the main lens to acdesset
planes, we note that a sufficiently narrow stop in front of ritein
lens redefines a new aperture plane. This lets us attachttioeta
focal lens at the front, where the stop required to define aapzw-
ture still let us use 60% of the lens diameter.

The minimal subsquare size is limited by diffraction. Siree
normal lens starts being diffraction-limited around B2 aper-

ture [Goodman 1968], we can fit about 100 subsquares within an Calibration:

Given a fixed budget ofm subsquares of a given width, we can
invert the arguments in Sec. 4 and determine the DOF it can
cover in the optimal way. As discussed at the end of Sec. 5.1
and illustrated in Figure 9(b), for every point in the optima
DOF, there is exactly one subsquare achieving defocus diam-
eter of less than 1 pixel. This constraint also determines th
focal length for each of these subsquares. For our prototype
we focused the main lens at 180cm and chose subsquare focal
lengths covering a depth range [60,180cm. Given the limited
availability of commercial plano-convex elements, oursyuares’
coverage was not perfectly uniform, and we used focal length
10000,5000,4000,3000,2500,2000,1750,1500,1300,1200mm,
plus one flat subsquare (infinity focal length). However, éor
custom-manufactured lens this would not be a limitation.

To calibrate the lattice-focal lens, we used a planar

f/1.2 aperture. To simplify the construction, however, our pro- white noise scene and captured a stack of 30 images for eiffer
totype included only 12 subsquares. The DOF this allowedus t depths of the scene. Given a blurred and sharp pair of inB3gég
cover was small and, as discussed in Sec. 5.1, in this ramge th at depthd, we solved for the kerney minimizing gy ® lq — Bgy|.

lattice-focal lens advantage over wavefront coding istiahi Still,
our prototype demonstrates the effectiveness of our approa

We show the recovered PSF at 3 depths in Figure 13. As distusse
in Sec. 4, the PSF is a superposition of boxes of varying skags
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Figure 14: Comparison between a lattice-focal lens and a standard, leath for a narrow aperture (f16) and for the same aperture size
as our lattice-focal lens prototype (#). All photos were captured with equal exposure time, so {6 fmage is very noisy. The standard
f /4image is focused at the white book, but elsewhere producefoaused image. The lattice-focal output is sharper oveetitire scene.
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Figure 13: Our prototype lattice-focal lens and PSFs calibrated at
three depths. The prototype attaches to the main lens likara s
dard lens filter. The PSFs are a sum of box filters from theréifite
subsquares, where the exact box width is a function of thiatilewv
between the subsquare focal depth and the object depth.

the exact arrangement of boxes varies with depth. For casgrar
we did the same calibration using a standard lens as well.

Depth estimation: ~ Given the calibrated per-depth PSFs, we de-
blur an image using sparse deconvolution [Levin et al. 200%]s
algorithm computes the latent imaggeas

lg =argmingy @1 B+ [p(gai(1)) +p(gi(1))] . (29)

wheregy i, gy, denote horizontal and vertical derivatives of tkib
pixel, p is a robust function, and is a weighting coefficient.

Since the PSF varies over depth, rough depth estimationisresl
for deblurring. If an image region is deconvolved with a P8F ¢
responding to the incorrect depth, the result will incluéteging
artifacts. To estimate depth, we start by deconvolving thire
image with the stack of all depth-varying PSFs, and obtaitaeks
of candidate deconvolved imagék;}. Since deconvolution with

the wrong PSF leads to convolution error, we can locally sstioe
explanation provided by PSg; around pixei as:

Ei(d) = [Bi —Bail®+ A [p(9ki(la)) +p(ayi(la)] . (30)
whereBy = @y ® 143. We regularize the local depth scores using

a Markov random field (MRF), then generate an all-focus image
using the Photomontage algorithm of Agarwala et al. [2004].

Results:  In Figure 14 we compare the reconstruction using our
lattice-focal lens with a standard lens focused at the reiddlthe
depth range (i.e., the white book). Using a narrow aperttif&g),

the standard lens produces a very noisy image, since we keld e
posure time constant over all conditions. Using the sametage
size as our prototypef (4), the standard lens resolves a sharp im-
age of the white book, but the rest of the scene is defocused. F
the purpose of comparison, we specified the depth layersatignu
and deconvolved both the standard and lattice-focal imagts
PSFs corresponding to the true depth. Because the specfrum o
the lattice-focal lens is higher than a standard lens a¢hesdepth
range, greater detail can be resolved after deconvolution.

Figure 15 shows all-focus images and depth maps captured usi
our lattice-focal lens. More results are available orflinsSince
the MRF of Agarwala et al. [2004] seeks invisible seams, dye
transitions usually happen at low-texture regions and htiteaac-
tual contours. Despite the MRF's preference for piecewimastant
depth structures we handle continuous depth variatiorsh@sgn in
the rightmost column of Figure 15.

The results in Figure 15 were obtained fully automaticatipw-
ever, depth estimation can fail, especially next to ocolugiound-
aries, which present a general problem for all computationa
extended-DOF systems [Dowski and Cathey 1995; Nagahata et a
2008; Levin et al. 2007; Veeraraghavan et al. 2007]. Whilgrecp

pled solution to this problem is beyond the scope of this papest
artifacts can be eliminated with simple manual layer refieemn

3Note that despite the discussion in [Levin et al. 2009], welesna
MAP, . approach that scores a depthbased on the bedy explanation
alone. The reason this approach works here is that a dellaretjon is ab-
sent from the search space, and there is a roughly equal eadfisolutions
around all PSFgy.

“www.wisdom.weizmann.ac.il/levina/papers/lattice
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Figure 15: Partially defocused images from a standard lens, compaitidam all-focused image and depth map produced by the &ftical

lens.
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Figure 16: Synthetic refocusing using the coarse depth map estimatkdhe lattice-focal lens.

Relying on depth estimation to decode animage from a lafticel
lens is a disadvantage compared to depth-invariant saokjtiout it
also allows coarse depth recovery. In Figure 16 we used tighro
depth map to synthetically refocus a scene post exposure.

6 Discussion

This paper analyzes extended depth of field systems in light fi
space. We show that while effective extended DOF systenis see
high spectrum content, the maximal possible spectrum isdbed
The dimensionality gap between the 4D light field and the 3&affo
manifold is a key design factor, and to maximize spectrunteran
lenses should concentrate their energy in the focal mahdbthe
light field spectrum. We analyze existing computational dmg
designs and show that some do not follow this principle, ebth-
ers do not achieve a high spectrum over the depth range. Ghide
this analysis we propose the lattice-focal lens, accogriiin the
dimensionality gap. This allows us to achieve defocus PSHs w
higher spectra compared to previous designs.

However, the lattice-focal lens does not fully achieve tippar
bound. One open question is whether better designs existheh
the upper bound could be tighter, or both. Our intuition it ttne
upper bound could be tighter. The proof of Claim 2 is based on
the assumption that akx A primal support is devoted to every fre-
guency point. However, the fact that the integration serfaas to
“cover” a full family of slopes implies that the aperture areas

to be divided between all slopes. Thus the primal supportiohe
slope is much smaller thaly which implies a wider frequency sup-

port around the focal segment, reducing the height of thetapa
on the focal segment itself.

We have focused on spectra magnitude, which dominates the de
convolution quality. However, the accuracy of depth estiamais
important as well. Wavefront coding and focus sweep cantaes

an important advantage that they bypass the need to estileatte.

On the other hand, the lattice-focal lens has the benefitolexing

a rough depth map in addition to an all-focused image. Onedut
research question is whether the higher spectrum of thedétical

lens can also be achieved with a depth-invariant design.
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Appendix A: Spectra derivations
Below we complete the budget and spectra derivation of Sec. 3

Claim 5 For an aperture of size A A and exposure length the
total energy in eactwy, y,-slice is bounded by A

// [Keg 0 (61, ) [Pdcdeny < AZ . (31)



Proof: The proof reviews the budget proof in [Levin et al. 2008c].
Note thatke, , (au, ) is the 2D Fourier transform of:

// K(x, Y, u, v)e~ 2Tl DX+ oY) dxdly (32)

For every clear aperture poif] <A/2, |v| <A/2:

o _ 2 2
’// k(x7y7u,v)e’z'”(%”“*/oy)dxM < ‘//k(x,y., u.,v)dxd% <1.

(33)
Where the first inequality follows from the fact that a phalsarge
does not increase magnitude, and the second inequaligw®ll
from the unit energy through every clear aperture point @dse
Egs. (13) and (14)).

Since the aperture sizeA€, the total norm is bounded H?:

2
//‘//k(x,y, u,v)e*Zi"(“’*o”“*/oy)dxM dudv< A?2.  (34)

By Parseval’'s theorem, the square integral is the same idubk
and the primal domains, thus:

// [Kag 5 (0, ) [Pdcnidaa, < A? . (35)

[

Standard lens:

shift (resulting from the translation of the subsquare egnt

k) (@, @y, wu, ay) = e2A%e~ 2@+ sing(e Ay )Sino( €AW, ) -
(39)

As in the proof of Claim 3, we note that[lg] affects very low
frequencies only, so we use Eq. (21) to approximate

ek~ SEIRP (40)
e2n4
— Tsinc?-(erou)sinc?(eAw\,) , (41)

where the number of subsquares jg4 and the factor 12 repre-
sents the probability of a blocked subsquare. By selectin@BF-
slice, Eq. (38) follows]]

Eq. (41) suggests that, ignoring diffraction, the senseatiapres-
olution implies a tradeoff in selecting the optimal holeesizIf
we use small holes, the power spectrum of the aperture isrwide
and wider spectrum implies that more budget is spread aveewy fr
the main focal segment (indeed Eqg. (38) shows that the exgect
spectrum is multiplied by and decreases whemis small). On
the other hand, the expected power spectrunk ¢dlls off like
sin(eAwy)sinc(eAw,). That is, since the lens is focused only
at a single depth, to have spectral content at slopes comds

to other depths, the spectrum of the aperture must be suffigie
wide, implying that a small hole sizeis needed.

Focus sweep:

: -1
Claim 6 The power spectrum of a standard lens focused at depth C1aim 8 For |a, lay| > (SA 7, the power spectrum of the focus

So with aperture A< A is

|s(w, wy)[? = A*sinc(A(s— sp) wi)SiNC (A(s—so)wy) - (36)

Proof: A lens focused at slopg) is modeled by a linear integration
surfacec(u,Vv) = (sou,SV). If the surface were infinite, the Fourier
transform would be an impulse @, = —Sp, W, = —Sowy. Given
the finite aperture we need to convolve that with a sinc, and th

k(wx, @y, @, a) = A%SingA(w, — Soax))SiNA(w, — 50('%/)23;7)
Eq. (36) follows by selecting an OTF-slidg.

The wy, y,-slices in Figure 4(b) reveals a sinc around the point

Wy = —Sux, wy = —Swy. Note that reducing the aperture size
A increases the sinc width and minimizes defocus blur. Howeve
given a fixed exposure length it also reduces the amountiufdigj-
lected, which reduces the MTF. Indeed, the sinc height in(&&).
decreases for smallérvalues.

Coded aperture:
lens, w.l.0.g. focused at sloge= 0. We construct a coded aperture
by dividing the aperture into squares of sez&x €A and randomly
blocking each subsquare with probability2l The expected power
spectrum can then be computed analytically.

Claim 7 For alens focused aps= 0, the expected power spectrum
of a random coded aperture with holes s&Zex A is

- g2p%
El|@s(@ey)[?] = ——sinc(eAsw)sinc’ (eAswy) . (38)

Proof: We express = y kI wherekl is the 4D spectrum of an
individual subsquare. For an unblocked hole centerag at we

can expres&i analytically as the transform of a box times a phase

A coded aperture is constructed with a standard

sweep camera asymptotically approaches

132 ~ A2a(axy)?
SPlonyl?

where a(|awyy|) is a bounded multiplicative factor in the range

1.V

(42)

[yl

a(jaxy|) = —F—"——~ - (43)
195D = S [y
Proof: The spectrum of a standard lens focused at stgpe
A?singAux(so — 5))SiNAay(so —9)) - (44)

The spectrum of a focus sweep is obtained by averaging Ej. (44
oversy. To compute this integral we make use of the following
identity: for a 2D vector = [r1,r2],

/0o sing(rit)sind(rat)dt = a(lrl) . (45)

J- Irl

If —S/2 < s< S/2 andSlarge enough we use Eq. (45) and get:

. A2 S22 .
®laxy) = 5 75/25|nC(A(@((SO_s))smc(A(’%’(sO_s))dS)
A2 S/2+s )
= 3 75/2+Ssmo(Aa&so)smc(Aag,so)dso
Al
Sy

Taking the power of Eq. (46) provides Eq. (4@).

5The approximation is reasonable fos|,|w| > (SA™2.



Figure 4(d) displayswy, y,-slices from the power spectrum of a  for example, [Levin et al. 2009]):
focus sweep camera. On one hand, this spectrum is concen-

trated around the main focal segment, with the same narralthwi . . 1 - N A s (wy))?
achieved by the upper bound in Fig. 4(a). However, the mageit ~ les{@xy) = argminy PWJ’(‘L&.y)' (Wy) = Bjaxy) "+ — 5
of the focus sweep is significantly lower. In fact, the totadigy at J
every wy, y,-slice is much lower than the budget of Claim 5, that is: % 5| (bj(aky)*éj (6ky) o
” 2 2 O Arilgay)lP+E 2
//Ik%.yo(an,m/)\ dayday, < A®. (47) e

One can also compute the expected reconstruction erroe¢tag

To understand why, recall that the upper bound in Claim 5 is 0b 51 gver a||f(&b<y) nj samples from the prior):

tained by noting that whexr y are integrated, the magnitude of the

projection integral is bounded by 1 (Eg. (33)). And indeetiew L L 1

the 4D lens kernel is a delta function ofv, that integral is equal - ~ 2 ~ 2

to 1. By contrast, the effective 4D kernel for a focus sweap-ca Efllestwcy) —{ay) 7] = (? Z |93 (oey) |+ F) - (53)

era is the average of standard-lens 4D kernels over all deattd ]

therefore is not a delta function. When such a non-deltagkasn

multiplied by a wave of the forne=2mM®Xt®) interference and  Eq. (53) states that the reconstruction error is a functidhesum

phase cancelations significantly reduce the magnitudeeointie- of power spectra of the individual OTFs. In the following Bra

gral, and Eq. (33) is far below 1. sis we evaluate two multiple measurement configuratiorsfabal
stack and the plenoptic camera, by examining the summedrpowe

spectrumy g1

Note that this suggests how to merge multiple independert- me
Claim 9 For a slope sc [-S/2,S/2], the power spectrum of a  surements of theamespatial frequency, and should not be con-

Wavefront coding:

wavefront coding lens asymptotically approaches fused with summing multiple elements of a single measurémen
All other cameras considered in the main body of this papee kha
| . ( )|2 A2 48) single measurement per spatial frequency.
% o‘b(7 % IV
YT o)

Focal stack:  With additive noise and Wiener filtering, the recon-
struction error for a focal stack depends on the summed pepem-
tra of all images in the stack. Suppose we divide exposure itito

N bins and spread the focus setting of all time bins evenly ther
depth range. The OTF of a time bjrfocused at slops; is

Proof: A wavefront coding lens is a cubic refractive element (as
reported in [Dowski and Cathey 1995]). From Snell’s law, the
integration surface is determined by the lens normal. Theze
the integration surface is a separable parabflav) = (al?,av). R A2

The parabola widtta can be set such that the parabola slope cov- @s(wxy) = ~-sinc(Aax(sj —s)) sinc(Awy(sj —9)) - (54)
ers the slope range of interdstS/2,S/2|, implying a = S/(2A). N

The power spectrum of a 1D parabola as computed in [Levin et al By substitutinge — 1 into Eq. (25), and multiplying by /N2 to

2008c] is . ) A account for the shorter exposure, the integration over@fess;
k(ax, wu)|* ~ g O)w<s/2/w, - (49) provides
Say| w‘ 3
- 1 A
2] _
The 2D parabola case is a separable extension: Elles(wy)l] = {2 SRR (55)
K 2. A2 5 5 50 Since we havé\ such bins, the total sum is
k(oo @y, au, )| ” ~ Flonay] Cul<s/201 Ol <7210 - (50) o
@s(y) P = = : (56)
If se [-S/2,5/2], we can slice Eq. (50) to get Eq. (48). Z IS N Saxy|

) ) ) Note that the number of birfd does not cancel out in the integra-
Appendix B: Cameras with multiple measure- tion. By adjusting Claim 4, the minimal number of bins regair
ments to cover the depth range without aliasingNs= A, resulting in

summed power spectrum of

Many imaging models in the literature, like a focal stack,aor - 2 A2

plenoptic camera involve multiple measurements per pixealyz- Z |@1.s(aky)|” = W : (57)
ing these cameras requires additional assumptions absutoise J o

model. One possible analysis is described below.

As we have seen in Eq. (53), the reconstruction error is atifumc
We consider additive Gaussian noise at the sensor and Wiener  of the summed power spectrum. From Eq. (57) the summed power

construction, with a Gaussian zero-mean prior on the sighiat spectrum of a focal stack is lower than the focus sweep spactr

is, we assumé\ different measurements of each spatial image fre- of A?/(S|axy|?), since|axy| < Q. Thus, under additive noise,

guency, and denote the measuremjesas the reconstruction error of a focus sweep camera which messu
R . R different focus depths simultaneously is better than tlalfetack
Bj(wxy) = @ (awxy)l (wyy) +nj . (51) approach which measures each focus depth separately.

We denote the noise variance by, and the signall(wy) variance Plenoptic camera: ~ The MTF of a plenoptic camera cannot be

with crf,xby. The N-measurement Wiener estima};@t(aky) is (see, compared directly to the other cameras because the imagidgim



is different and involves tradeoffs between spatial andibrges-
olution. As a result, assumptions about the sensor layotef

plenoptic camera must also be made. One possible analysis is

described below, which concludes that reconstructionrdmoa
plenoptic camera is higher than for a lattice-focal lensuitively,
the plenoptic camera captures the entire 4D light field amtde
spends energy away from the focal manifold.

Assume other cameras ubkksensor elements. To keep the same

spatial resolution in the final image we assume the plenoptitera
hasN lenslets and ,152 elements below each lenslet, resulting i

N/&? sensor elements in total. We assume the lens is focused at the,

middle of the depth range, at slogg= 0.

The OTF from thej-th directional view is:

@ (axy) = VO D) £2A25ing e Asiay) Sing(eAS,) , (58)
where(yj x, yj.y) denotes the phase shift of tieh view.

Recall that the reconstruction error in Eq. (53) is a funcd the

sum of power spectra of the individual OTFs. For the case of a

plenoptic camera,

3 191 (axy)|? = e2A%sin¢ (eAsuy)sinc (eAswy)  (59)
]

since there are/E? terms in the sum.

This suggests that there is a tradeoff in the number of dineakt
views: more directional views increase the noise contidiouand
the reconstruction error. By contrast, if we do not divide tlrec-
tional views finely enough we have defocus in the depth range.

To avoid defocus over the depth range, the worst-case Sapel
the worst-case frequen€y should be included in the first sinc lobe,
hence

£< pes (60)
This implies that
. 5 A2
ZWJ’(‘W,Y)‘ < 307 (61)
T

at all spatial frequenciesyy, and the plenoptic camera will have
increased noise contribution compared to most single-oneaent
cameras we have analyzed.

Appendix C: Fourier optics derivation

Our goal in this appendix is to derive an analogy to the lighidfi
results, while modeling wave optics effects and not onlyngetnic
optics. We use a traditional optics representation- then@figlistri-
bution [Wigner 1932], and build on the tight relation betwéight
fields and Wigner distribution derived by Zhang and Levoyd2j0

We will show that an analogy to the budget bounds exist, bitewh
the geometric optics bound allocates an equal budget apall s
tial frequencies, Fourier optics implies that the boundpdras the
diffraction limited OTF. Yet, if the system dimensions aspkwell
above the diffraction limit, the approximation provided thg geo-
metric model is reasonable enough.

In our derivation we consider a lens with Arxx A aperture and focal

This lens is then expressed as

RAUR(AV)e T (63)

whereR is a rect function and is the wavelength. A general re-
fractive element is expressed relative to this lens as

R(AUR(AV)e ™ e é(u,v) (64)

n Whereg(u,v) is the aberration, or the deviation from a normal lens

behavior. We also denote bja(u,v) = R(AU)R(AV)¢$ (u,v) the
berration multiplied by the aperture.

In our derivation we study the classical ambiguity functidine
Fourier dual of the Wigner distribution. The ambiguity ftioa
of ¢a is defined as

A (U, Sy, Sy) = / Euy(ty, tp) @2 Sl dydt,.  (65)
where
Suv(ti,t2) = Pa(ta +U/2,t2 +V/2)PA(th —u/2,t —v/2).  (66)
We now define a 4D analog of the 4D lens spectrum as

wherep = Ado.

It is well known in optics that OTFs can be obtained as slicesf
the ambiguity function [Brenner et al. 1983]. Below we pawia
revised derivation of this result adjusted to our ngtatiﬂmat is, we
show that the Fourier optics OTF is a slice throu?@xactlyAin the
same way that the geometric optics OTF is a slice thrdugiive
later show that we can place upper bounds on the norkimthe
same way we have specified bounds the nori of

Claim 10 Consider an object at depthacand its light field slope
S = (da —do)/da. The Fourier optics OTFRgs(wyy) is a slice

throughk:

Gu(exy) = K(x, @y, —Stx, —Say). (68)

Proof: If we are imaging an on axis point at distard:g the wave-
front reaching the lens is

. 2
ézn%é"uﬁf

(69)

The wavefront leaving the lens is a product of the lens wighwave
reaching the lens.

length f, we denote the distance from the lens to the camera sensor

by d; and the focus depth Igy. By the Gaussian lens formula,

1 1 1

A wavefront reaching a poiri(,y') on the image plane (the image
plane is located at distancle from the lens) is thus the product of
the wave leaving the lens with a spherical wavefront cedtaite



(X,y',d;), which reduces to

h(x,y

://¢A(u7v)eiin#ei2"e\ae'"uﬁ;2 e'2nd' ln%dudv
— d2m(di+0a)/A TG~ A+d>/2
//.¢A(U,V)ein(1/da+1/di—1/f)U2A+v2 71271*’% doge

_1 g2n(d+da)/A g

2

J[ oatuve ™5

s X utyv
e 2™5e dudv
(70)
where! follows from the Gaussian lens formuldd, +1/d; = 1/,

implying that the spherical wave coefficient above can beesged
as YA(1/da+1/di—1/f)=1/A(1/da—1/do) = —S/p.

Now let
P2
l.,US(U,V) = qu(u,V)e L (71)
and letWs denote its Fourier transform. Then

X )/ iT-cons
h()(,)/):qu(/\—di,A—di)e' t (72)

To mapx to the spatial coordinates in the rest of this document, we

note that we used coordinates onXyelane, and not on the image.
That is, we need to divide by the magnification fadibe= d;/do,
and transfer to the coordinate system X' /M,y =y /M. That is:

Wy <§, X) ei-const (73)

hs(x,y) = hs(X' /M.y /M) = 212

The incoherent PSF is now equal to

@s(x) = |hs(x)[? = |Ws(x/p)[? (74)

The OTFgs can thus be obtained from the auto correlation/of

scaling the coordinates kg, which reduces to the definition &fin
Eq. (67), since:

oy, )
= // Y(ti+pax/2,t+pwy/2) Y (L — pox/2,t — pay/2)dtydt

= // &y, (11, 1) @2 LT AL gty ity
= / / ‘ Epaa,, (11, p) @2 AT AL dty ity

— K(ox, 6,y @)- -

[

We now letJZ(w, wy) denote the diffraction limited OTF of the
system

(W, @) = Nayp (@) Aayp(@y) (76)
where/A(w/c) is a widthc tent function, and we use the shortcut
notation/A¢(w) = A(w/c).

The previous claim states that the Fourier optics OTF is @sli
through the ambiguity function. The radars literature Hae de-
rived the energy of slices via the ambiguity function [Ribelc

1969], which can be translated to energy boundf;,,g,;ﬂr_b0 [FitzGer-

rell et al. 1997]. We provide a revised derivation of thisutesad-
justed to our notation. In an analogy to the geometric ojutérs/a-

tion, the norm of awy, y,-slice throughk is bounded. However,
the more accurate Fourier optics bound is no longer equakacr
spatial frequencies, it is falling off like the diffractidimited OTF

S (wy,, wy,). This result also suggests that if the system dimen-
sions are kept well above the diffraction limit, the approation
provided by the geometric model is reasonable enough.

Claim 11 For every spatial frequencyy, y, the norm of awy, y,-

slice k(%y is bounded by the aperture area times the diffraction
limited OTF:

J[ g 2 < P28 (0, c3,). (77)

Proof: We have seen in the proof of Claim 10 that

k%yo(% w) / / Eugy, (1 1) @2 AT AL Gt dty . (78)

That is,ﬁ(%_yO is the Fourier transform of%y[). Therefore we can

use Parseval's theorem to bound the norrﬁ@g‘yo:

//'ﬁ%-vo(%vwvﬂzd%dm,
- / / | €, (t1:t2) Ptz dlty
< / R(A(ty + pax, /2))R(AL — Pt /2)

R(A(t2 + pay,/2))R(A(t2 — pay, /2))di dt;
:Az/\%(%)/\g(‘%)

= A2 (6, W)-

(79)

[

We have seen that using the Fourier optics model, the budgeith
is decreasing as the diffraction limited OTF. To understamd spe-
cific computational imaging designs are affected, we brieflyew

the spectrums derivation in the previous section and desdhe
required adjustments for the Fourier optics model. In atraltsfor

most cases Fourier optics implies that the results in Talsleo?ild

be multiplied by the diffraction limit OTF anél — AA ﬁ%). For

designs with holes (coded aperture and lattice-focal Jehs)hole
size reduces the diffraction limit argh — eAA (2). Therefore,

if the aperture and hole sizes are kept well agbove the diftrac
limit, the approximation provided by the geometric opticsdal is

good enough.

The simplest case is that of a standard lens. The diffradiinon
ited OTF of a squared aperture is derived in many Fouriercspti
textbooks, e.g., [Goodman 1968]. We briefly review this i fibl-
lowing claim.

Claim 12 The Fourier optics squared MTF of a standard lens fo-
cused atgis

@(@@)? = AN (@)siné (A (w)(s— o) o)

A2 (@)siné (AAs (@y)(s—s0)a) . (80)

Proof: The derivation above considered a reference lens with focal
length f focused at deptldl,, and with sensor to lens distande



such that 1f = 1/do +1/d;. We now consider another lens with
focal lengthfa. We maintain the lens to sensor distamke This
lens is then focused at depth such that Yfa = 1/dy + 1/d;. If

5o is the light field slope at that depth thefi= do(1/do — 1/da) =
do(1/f —1/f4). The aberratio for this lens is

o (u,v) = e—inuzjvz (1/fa-1/f) _ efinsouzgvz -

and&uy(t1,t2) = R(AA(U) B)R(AA(v) % )e 12mo(lutaY) Taking the
Fourier transform o€ and adjusting the coordinate system provides
k:

K(ax, Wy, Wy, W) = AZ/\/B« (a&)sinC(A/\g (ax) (@ — Swa))

Eq. (80) now follows by taking a, y,-slice througH:<. (]

Claim 13 For a lens focused ats 0, the expected Fourier optics
squared MTF of a random coded aperture with hole si&e €A is

(@ @)? = AN (@sinG (AN s () (s—so)ux)

P
Ny (@)siné (AN (@) (s~ %)) - (83)
Proof: Referring to the notation in the proof of Claim 9, we need

to computeE|K!|2. Based on Claim 12, the expected MTF of an
€A x A aperture hole is

ERE = e (@osind (sAnas (@) (@ — w0
Nop (@)sin (EA/\%A () (o —0)) . (84)

(the fact that the holes can be off-centered only affectptase of

focal lens with holes sizeA x €A is

iy (00 ) P~ A2, (020 () %) gg)
P P aw)/(#y‘
where
Wy = (Nea (@) Nea (@) ) (90)

Proof: The squared MTF for a sublens focused at slojze

()P = AN (@gsind (AN (60 (s so)ex)

N (@)sin€ (£ARz (@)(5— o)) .(91)

As in the proof of Claim 3, the expected squared MTF of a lattic
focal lens is obtained by averaging Eq. (91) oseUsing Eqg. (24),
this converges to

~ 2 _ 3A372 2 B((’X(y)
[ 0 )~ NG (0N () g

Multiplying Eq. (92) by the number of subsquareg4 produces
Eq. (89).[]

The Fourier optics OTF of a wavefront coding lens can be cdatbu
as well, and we refer the reader to [Zhang and Levoy 2009; Riows
and Cathey 1995] for derivation.

(92)

References

ADAMS, A., AND LEVOY, M. 2007. General linear cameras with
finite aperture. IEEGSR

AGARWALA, A., DONTCHEVA, M., AGRAWALA, M., DRUCKER,
S., COLBURN, A., CURLESS B., SALESIN, D., AND COHEN,
M. 2004. Interactive digital photomontage. S\ GGRAPH

KJ but that phase cancels as we measure only the power spectrum)BEN-ELIEZER, E., ZALEVSKY, Z., MAROM, E., AND KON-

We now multiply Eq. (84) by the windows numbeye? and take
an OTF-slice, to get Eq. (83)]

Claim 14 The Fourier optics squared MTF of a focus sweep cam-
erais

- 2 A2p2 2 a?(agy)
s (o0, )| = A /\g(f*&)/\%(%)m (85)
where
Wy = (An (@)@ s (@) ). (86)

Proof: Based on Claim 12, the OTF at slop&s
A?A s (@sinc( A (@) (s—so)ex)

Na(ay)sinc(Ahs (@) (s—so)y) . (87)

B o) =

The OTF of a focus sweep camera is obtained by averaging Ep. (8
overs. Using Eq. (45), this conve2rges to

0 Ay (3013 ) G

Eq. (85) follows by taking the square of Eq. (8@.

(88)

Claim 15 The expected Fourier optics squared MTF of a lattice-

FORTI, N. 2005. Experimental realization of an imaging system
with an extended depth of field\pplied Optics2792—-2798.

BRENNER, K., LOHMANN, A., AND CASTENEDA, J. O. 1983.
The ambiguity function as a polar display of the OTpt. Com-
mun. 44 323-326.

Dowskl, E., AND CATHEY, W. 1995. Extended depth of field
through wavefront codingApplied Optics 341859-1866.

FITZGERRELL, A. R., Dowskl, E.,AND CATHEY, W. 1997. De-
focus transfer function for circularly symmetric pupil&pplied
Optics 36 5796-5804.

GEORGE N., AND CHI, W. 2003. Computational imaging with the
logarithmic asphere: theory. Opt. Soc. Am. A 2@260-2273.

GOODMAN, J. W. 1968.Introduction to Fourier OpticsMcGraw-
Hill Book Company.

GuU, X., GORTLER, S. J.,AND COHEN, M. F. 1997. Polyhedral
geometry and the two-plane parameterizationEGSR

HASINOFF, S.,AND KUTULAKOS, K. 2008. Light-efficient pho-
tography. INECCV.

HAUSLER, G. 1972. A method to increase the depth of focus by
two step image processin@ptics Communications8842.

HoRN, B. K. P. 1968. Focusing. Tech. Rep. AIM-160, Mas-
sachusetts Institute of Technology.



LEVIN, A., FERGUS R., DURAND, F.,AND FREEMAN, W. 2007.
Image and depth from a conventional camera with a coded aper-
ture. SIGGRAPH

LEVIN, A., FREEMAN, W., AND DURAND, F. 2008. Understand-
ing camera trade-offs through a Bayesian analysis of ligid fi
projections. INRECCV.

LEVIN, A., FREEMAN, W., AND DURAND, F. 2008. Understand-
ing camera trade-offs through a Bayesian analysis of ligid fi
projections.MIT CSAIL TR 2008-049

LEVIN, A., SAND, P., HO, T. S., DURAND, F.,AND FREEMAN,
W. T. 2008. Motion invariant photographglGGRAPH

LEVIN, A., WEISS, Y., DURAND, F.,AND FREEMAN, W. 2009.
Understanding and evaluating blind deconvolution along.
In CVPR

LEVOY, M., AND HANRAHAN, P. M. 1996. Light field rendering.
In SIGGRAPH

NAGAHARA, H., KUTHIRUMMAL, S., ZHou, C., AND NAYAR,
S. 2008. Flexible Depth of Field Photography.HECV.

NG, R. 2005. Fourier slice photograph$IGGRAPH

OGDEN, J., ADELSON, E., BERGEN, J. R.,AND BURT, P. 1985.
Pyramid-based computer graphi€®CA Engineer 305, 4-15.

PapouLls, A. 1974. Ambiguity function in fourier opticslournal
of the Optical Society of America A 6479—-788.

RIHACZEK, A. W. 1969. Principles of high-resolution radar
McGraw-Hill.

VEERARAGHAVAN, A., RASKAR, R., AGRAWAL, A., MOHAN,
A., AND TuMBLIN, J. 2007. Dappled photography: Mask-
enhanced cameras for heterodyned light fields and coded aper
ture refocusingSIGGRAPH

WIGNER, E. 1932. On the quantum correction for thermodynamic
equilibrium. Phys. Rev. 4% (Jun), 749-759.

ZHANG, Z., AND LEVOY, M. 2009. Wigner distributions and how
they relate to the light field. ICCP.






