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ABSTRACT 
The separation of light harvesting and charge generation offers several advantages in the 
design of organic photovoltaics and organic solar concentrators for the ultimate end goal 
of achieving a lower cost solar electric conversion. In this work, we explore two new 
device architectures.  

In antenna organic solar cells, we utilize external energy transfer mediated by surface 
plasmon polaritons to increase the efficiency of existing organic photovoltaic devices 
limited in performance by the exciton diffusion bottleneck. This unique architecture is 
analyzed for its functionality and the efficiencies of each added step is quantified. 
Although the introduction of additional energy transduction will ultimately introduce 
more losses, bypassing the exciton diffusion bottleneck offers the potential for increased 
efficiency through judicious device design. 

We also seek to enable the use of high efficiency inorganic solar cells in organic solar 
concentrators which aim to exploit high performance of the PV cells in low cost, non-
tracking configurations. By utilizing thin films of organic chromophores on high 
refractive index glass substrates, we are able to apply the recent advances of organic 
optoelectonics to the fluorescent concentrator platform, including near field energy 
transfer, solid state solvation, and phosphorescence. By reducing self-absorption losses, 
we demonstrate optical flux gains an order of magnitude greater than previously 
published results and thereby reduce the effective cost of inorganic solar cells by at least 
a factor of ten. Combined with the potential for low cost solution processing, the high 
flux gains and power efficiencies realized here should enable a new source of 
inexpensive solar power. 

Thesis Supervisor: Marc A. Baldo 
Title: Associate Professor of Electrical Engineering and Computer Science 
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Chapter 1 The Solar Motivation 

1.1 Solar power 

Global energy demand is projected to double by mid-century.1 Incremental improvement 

in existing energy infrastructures and technologies will not satisfy these needs in a 

sustainable way. Procuring adequate energy supplies without large carbon dioxide 

emissions is one of society’s most pressing challenges. Without viable pathways for 

addressing these demands, the world’s economic, technological, and political horizons 

will be severely limited. Solar power is unique in that it could singly supply the enormous 

power requirements of mankind without widespread degradation to the global 

environment.  

 Sunlight is by far the largest of all carbon-neutral energy sources. More energy 

from sunlight strikes the Earth in one hour (4.3 × 1020 J) than all the energy consumed on 

the planet in a year (4.1 × 1020 J).2 It also has a successful track record; through 

photosynthesis, it has powered the earth for billions of years and is responsible for our 

atmosphere and all forms of life. Annual worldwide solar energy conversion in 

photosynthetic bacteria and plants corresponds to ten times the amount used by all of 

mankind. Drawing energy from the sun does not deplete its energy potential, which will 

continue over astronomical timescales. The sun is a remote fusion reactor and, through 

the solar cycle, runs without our need to maintain its operation, infrastructure, or waste 
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products. In addition, the sun is unique in that it is a widely distributed resource, available 

to all and blind to geographical and geological luck. Unlike other energy supplies, it 

cannot be hoarded, traded, or used to extort. Solar power single handedly possesses the 

long term potential to provide enough energy to power all of humanity with reasonable 

amounts of infrastructure.†   

 

1.2 Solar electricity 

Energy is consumed by humanity in multiple forms, but one of the most useful and 

portable is electricity. This work is primarily concerned with the transduction of light to 

electrical power though the photovoltaic (PV) effect in semiconductors. Edmund 

Becquerel discovered the PV effect in the mid-nineteenth century, when he observed that 

a voltage and a current were produced when a silver chloride electrode immersed in an 

electrolyte and connected to another metal electrode was illuminated with light.3 The 

birth of the modern era of PV solar cells occurred in 1954 as Bell Labs demonstrated 

solar cells based on p-n junctions in silicon.4  

 Although substantial gains in solar cell technical performance have been achieved 

in the past fifty years, widespread adoption of solar cells remains limited by their high 

cost per Watt of generated power ($/WP). Power conversion efficiencies in well 

engineered systems have reached 80-90% of their thermodynamic limits.5 The primary 

                                                 
† A note on land use:  For latitudes in the United States, a 10% efficient solar energy “farm” covering 1.6% 
of the U.S. land area would meet the entirety of domestic energy needs. For comparison, the required land 
area is about ten times the area of all single-family residential rooftops and is comparable with the land area 
covered by national highways.2 
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challenge is achieving high efficiencies in cost competitive systems. Their cost per Watt 

must be reduced by a factor of three to ten to compete with fossil and nuclear electricity.  

 The disparity in cost between solar electricity and its alternatives has largely 

limited its deployment, although the discrepancy has diminished over time. In 2001, solar 

power accounted for less than 0.1% of global electricity generation and has grown in total 

capacity at a rate of 45% annually over the last decade.6 This is largely due to increases in 

efficiencies and reductions in manufacturing costs, drawing heavily upon the advances of 

the semiconductor industry and catalyzed by government support.  

 In 2006, 2.2 GWP of solar cells were installed.6 This capacity was heavily 

comprised of silicon PV in its several forms; see Figure 1.1. Thin film technologies 

currently account for 8.3% of capacity, but this market share is forecasted to increase to 

20% by 2012 due to polysilicon supply constraints.7 The average module level 

production cost was $2.89/WP. However, solar cells compete on installed system price, 

which includes the balance of systems costs (grid-tie inverter, charge controller, circuit 

breaker, cables, mounting frames, and miscellaneous accessories) and other installation 

costs (real estate, labor, warranties, and maintenance). These extra costs are much larger 

than the module costs, and the average system level price was $7.50/WP.7 
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Figure 1.1 Installed PV capacity by technology in 2006.  

Amorphous silicon is the most mature of thin film technologies. Over the last several years, 

cadmium telluride has rapidly grown in importance and will soon overtake amorphous silicon in 

capacity and is forecasted to approach 20% of total PV capacity market share around 2012. As of 

2007, there were 24 companies actively pursuing amorphous silicon technology, 7 pursuing 

cadmium telluride, and 16 pursuing cadmium indium gallium selenide. 7 Market segmentation 

from Solarbuzz6. 

 

 These high prices partially reflect the very high demand for solar electricity 

coinciding with polysilicon supply shortages. Prices are expected to decrease over the 

next few years as polysilicon supplies increase, independent of technical and 

manufacturing improvements. But they provide a comparison point for how far solar 

costs need to decrease. To be competitive with electricity across large parts of the United 

States, system level prices need to drop below $1/WP,8 indicating that an order of 

magnitude levels of cost reductions are needed. Although significant cost reductions can 

occur through scaling9 and incremental technical improvements, there is much need for 

technological paradigm shifts to make solar economical. 

 There are two major new technology shifts that have the potential for significant 

cost reductions: thin film and concentrator solar cells. Recent technical advances show 
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great promise and their relative importance should grow in the coming years. To motivate 

the work described in this thesis, we will review the cost models for these two 

technologies. They are useful in highlighting the technological improvements that 

perhaps hold the greatest potential real world impact. Together, they represent two 

methods for decreasing the most expensive components of the solar module: high-quality 

semiconductors. 

 

1.3 Thin film solar cells 

The great promise of thin films is that they are comprised mostly of low cost materials 

(glass, metal, plastic) and very little high-cost semiconductor. If semiconductor active 

layers thicknesses can be reduced to microns, large areas can be coated with very little 

material. A micron of semiconductor over 1 m2 is possible with about 5 g of material. 

Even if the starting material is expensive, ($1,000-5,000/kg), this may translate to $0.03-

0.15/WP. This idea, although simple, has been frustrated by the absence of 

semiconductors that both work at high enough efficiency and are manufacturable cheaply 

at large scales at high yield.  

 The two major thin film solar cell technologies that are promising candidates for 

achieving low cost solar are cadmium telluride (CdTe) and cadmium indium gallium 

selenide (CIGS). There are numerous companies pursuing the development and 

commercialization of each. They are typically possess lower conversion efficiencies (9-

13%) than their crystalline silicon counterparts (12-18%), but their primarily advantage is 

that they are manufacturable with lower cost processing (chemical vapor deposition or 

printing) using much less material (≈1 micron active layers instead of hundreds of 
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micron-thick wafers) deposited on low cost substrates (glass or plastic). Their lower 

conversion efficiency can be competitive in the important $/WP metric if their 

manufacturing costs are low. 

 First Solar is has been very successful in commercializing their cadmium telluride 

thin film technology at a cost less than half ($1.25/WP) of the market average for 

crystalline silicon ($2.89/WP), which comprises over 92% of the market. This significant 

achievement has catalyzed their rapid growth, with analysts forecasting their market 

share to increase from 2.5% to 10% in ~3 years.10 

 A detailed cost model was published by Zweibel at the U.S. National Renewable 

Energy Laboratory outlining the production level materials cost breakdown for First 

Solar’s cadmium telluride manufacturing process in 2000;11,12 see Table 1.1. It is useful 

in that it demonstrates where the major costs reside and how proposed technical 

alternatives will affect those costs. In addition to these direct costs, indirect 

manufacturing costs can be substantial, including capital, labor, factory rent, overhead, 

utilities, R&D, and maintenance. 

 An interesting characteristic of this model is that the manufacturers of cadmium 

telluride solar cells have managed to reduce the cost of the expensive semiconductors to 

only roughly 10% of the total materials cost, comparable in magnitude to the shipping 

carton or encapsulant. Even if First Solar were able to eliminate this cost entirely, the 

relative module cost decrease would be approximately 4%. We also note that the cost of 

the transparent conductor that serves as a top electrode is 50% more expensive than the 

active semiconductors and presents a target for elimination. We can conclude that any 

alternative technology that is equivalent excepting a semiconductor substitution has little 
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to gain from an uncertain and risky development cycle. In fact, only a significant 

technological change, such as elimination of the transparent conductor or dramatically 

cheaper manufacturing technology, hold substantial promise for  significant cost 

reductions.  

 The other primary conclusion one can draw is the importance of power 

conversion efficiency. At an end user system price of $7.5/WP (margins included), a 1% 

absolute increase in efficiency translates to system level price decrease of $0.40-0.70/WP, 

far greater than the cost decrease of roughly $0.05/WP gained from changing the 

semiconductor material. Thus, any technological alternative that sacrifices efficiency will 

be hard pressed to compete economically with CdTe solar cells. 



23 

 

Material Cost 
($/m2) 

Cost 
($/WP) Comments 

Glass/TCO 11 0.11 Superstrate version. Substrate glass 
would require metal coating 

Modularization parts 6 0.06 Receptacle, plug, electrical connector, 
inserts, glass primer, metal tape 

Panelization 5 0.05 Strut and bold (to connect to BOS 
structures) 

Back glass or metal 5 0.05 For encapsulation 

EVA 4 0.04 Either front of back pottant for 
encapsulation 

Most expensive semi-
conductor (Te, Ga, In, Ge) 3 0.03 Depends on form of feedstock pre-

processed forms are more expensive 
Shipping carton 2 0.02 Depends on quantities 
Other active materials 
(semiconductors, metals) 2 0.02 Depends on form of feedstock pre-

processed forms are more expensive 
Waste processing 1 0.01  

Other process expendables 1.6 0.016 Hepafilters, chemicals, buff wheels, 
rubbing compound, detergent 

Bypass diode 0.3 0.003 May not be required 
Urethane (potting) 1 0.01 May not be required 
Al target 0.3 0.003 Back contact 
Miscellaneous 1.8 0.018 Numerous, inexpensive items 
    
Total 44 0.44  
 

Table 1.1 Module component materials cost for thin film cadmium telluride systems.  

These are direct costs; other indirect manufacturing costs are not included. To translate costs per 

area to cost per generated Watt, a power conversion efficiency of 10% is assumed. 

 

 

1.4 Concentrator photovoltaics 

Concentrators utilize optical systems to focus sunlight onto solar cells, allowing for a 

reduction in the cell area required for generating a given amount of power. Concentrated 

photovoltaics (CPV) can significantly reduce electricity cost by replacing expensive PV 
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converter area with a less expensive optical collector. CPV also provides the opportunity 

to use very high efficiency solar cells that would otherwise be prohibitively expensive. 

High efficiency solar cells typically utilize more exotic materials (gallium, indium, 

arsenic, germanium) in stacked (multijunction) geometries to extract more electrical 

power out of each spectral band of light. 

 These solar cells are expensive because of the methods used to manufacture them 

(metalorganic chemical vapor deposition) and their scarce material inputs. For instance, 

in 2007 Spectrolab set record efficiencies in a triple junction concentrator device grown 

on germanium.13 However, germanium is scarce; if the entire US germanium reservoir14 

of 400,000 kg were depleted for the manufacturing of germanium wafers to amount to 

200 MWP.15 Cells of this type are only commercially tenable under very high optical 

concentration, since the level of concentration dilutes their cost. 

 Large CPV systems exist only as pilot installations. However, some authors have 

estimated the total plant capital cost and levelized cost of electricity for mature 

technologies and large scale production. We reproduce the major costs from Swanson in 

Table 1.2.16  These costs are significantly less than current system prices, but the relative 

costs between technologies are useful for comparison. 
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Table 1.2 Cost breakdown for a 100 kWP-10 MWP concentrator photovoltaics installation. 

Specific assumption in this analysis are listed in reference 16. Major assumptions include: high 

direct solar insolation (Albuquerque) and the availability of full time maintenance staff. GaAs and 

Si dish is a point focus parabolic dish system. GaAs and Si 2-axis are point focus Fresnel 

concentrators. Thin film assume costs that are approximately 50% lower than current production. 

 

 There are two major cost components that exist of CPV systems that are absent or 

significantly diminished compared to thin film PV: tracking and operations and 

maintenance (O&M) costs. To achieve high concentration, it is necessary to track the sun 
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throughout the day (see Section 3.1 for discussion). These mechanical systems are large 

and need to be maintained. In addition, high concentration systems must be actively 

cooled to dissipate additional thermal loading associated with higher photon fluxes and 

higher currents. O&M costs are four times higher for CPV versus thin film systems, and a 

tracking system can total up to 75% of the module cost. The values in Table 1.2 are 

estimates of the eventual system cost of economically relevant system, not of current 

prices. For instance, in a recent survey of two axis trackers in Photon International,17 

costs of a wide range of systems fell between $200-300/m2, substantially higher than $35-

67/m2. These high accessory costs of CPV systems have frustrated wide scale 

deployment of CPV electricity generation. 

 

1.5 Photosynthesis 

This thesis began with a motivation for solar power referring to the photosynthesis 

precedent: it has powered the earth for billions of years at energy levels exceeding human 

energy consumption by an order of magnitude. Solar photovoltaics are, in essence, a type 

of artificial photosynthesis stopped short. Instead of proceeding directly to the production 

of organic matter, the intermediate products of electrons are harvested directly for human 

use. To motivate the novel architectures explored in Chapters 2 and 3 of this work, we 

continue with a brief summary of the events and structures of the primary reactions of 

photosynthesis. 

Photosynthesis efficiently converts solar to electrical energy, which then drives a 

series of chemical reactions. This ubiquitous, time-tested energy transduction method is 

the source of all current biomass and fossil fuels relied upon today and sustains life on 
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Earth. Photosynthetic plants and bacteria utilize organic molecules similar to those used 

in organic PV to fix more than 100 Gtons of carbon annually, equivalent to 100 TW, a 

feat accomplished without high temperature processing or huge initial energetic 

expenditures. From a manufacturing standpoint, the utilization of photosynthetic 

organism represents the ultimate in low cost processing. A field of soybeans, for 

example, can be grown at very low cost but contains the equivalent of several times its 

area worth of PV cells.‡ However, as with more mature silicon technologies, the cost of 

raw material may not be the main determinant of end energy cost. 18-22 

The characteristic of photosynthesis that interests us most here is the architectural 

organization of components. In contrast to the conventional photovoltaics, the 

architecture of photosynthesis employs separate components for light absorption and 

charge generation, allowing these two functions to be optimized independently. Overall, 

photosynthesis can be divided into at least three distinct phases: (1) light absorption and 

energy transport by antenna systems, (2) energy collection and charge separation in 

reaction centers, and (3) stabilization by secondary reactions for use in the synthesis of 

sugars. The first two components are the biological equivalent of a PV cell, albeit with a 

                                                 
‡ Agricultural Production of Solar Cell Raw Materials. Organic semiconductor PV utilizes materials most similar to 
photosynthesis, where the organic materials commonly consist of thin, amorphous films. I assume that photosynthetic 
pigment molecules, mainly chlorophyll, would take on this role in photosynthetic PV in an identical role. The total 
number of chlorophyll molecules can be calculated by assuming a molecular density in the thin film and a film 
thickness. The molecular density of bacteriochlorophyll c in the chlorosomes of green photosynthetic bacteria is 2 x 
1021 cm-3.19 This is nearly identical to the molecular density of copper phthalocyanine molecules in thin films, justifying 
the validity of this assumption.20 Assuming an active film thickness of 1 µm, 2 x 1017 chlorophyll molecules are needed 
per square cm of PV cells. To determine chlorophyll production rates, switchgrass (Panacum virgatum L.) was chosen 
as the model organism. Switchgrass grows quickly as is currently being investigated as a biofuel energy crop for co-
firing fuel in coal plants and for cellulosic ethanol biofuel production.18 The dry matter yield of switchgrass is assumed 
to be 15 x 106  g per hectare per year.18 I then assume that 80% of this weight originates from grass leaves. The specific 
leaf weight (dry matter weight per surface area of exposed leaf) of switchgrass is roughly 40 g/m2.17 The number of 
chlorophyll molecules per unit of exposed leaf surface area is roughly 3 x 1016 per cm2.21  

These growth rates result in 3 x 105 m2 of PV raw material per field (8 hectare) annually. Stated as the ratio 
of land necessary for production, agricultural methods could produce enough raw materials to make five times its area 
annually in solar cells.  
 



28 

very different architecture; see Figure 1.2. We continue with a brief description of these 

two components. 

 

 

 

Figure 1.2 Molecular machinery of photosynthesis.  

This simplified representation illustrates the spatial distribution of the light harvesting antenna 

and reaction center, the sites of photon absorption and exciton dissociation, respectively. The 

reaction center is remarkably preserved across all photosynthetic organisms, but there are diverse 

structural variations in the light harvesting antenna corresponding to the wide variation in light 

conditions in the many ecological niches these organisms occupy. After Purves, et al.23 

 

1.5.1 Photosynthetic antenna complexes 

All photosynthetic organisms contain light-gathering antenna systems; as such, they are 

remarkably diverse. Antenna types can be divided into several categories: (1) light 

harvesting complexes of purple bacteria, (2) light harvesting complexes of plants and 

algae, (3) phycobilisomes of cyanobacteria and red algae, (4) peridinin-chlorophyll 

proteins of dinoflagellate algae, and (5) chlorosomes of green bacteria.24   
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Antennas contain high concentrations of pigment molecules, including 

chlorophylls, bilins, carotenoids, and their derivatives. Photons captured by these 

pigments generate excitons, the products of absorbed light, that are energetically funneled 

the charge generation complexes. For example, phycobilisomes possess pigments at the 

periphery of the complex that absorb at higher energies than those at the core; these 

unique structures are discussed in Section 3.13. These excitons eventually reach the 

reaction center, where they can be changed into separate charges. 

 

1.5.2 Photosynthetic reaction centers 

In photosynthesis, the role of the pn interface is performed by the reaction center. The 

dissociation of excitonic energy states and formation of separated charges occurs at the 

reaction center via a series of electron transfer reactions. The reaction center is a 

membrane-bound, multi-subunit, pigment-protein complex which incorporates 

chlorophyll derivatives and other electron transfer cofactors such as quinones. The 

pigments and cofactors are held together by van der Waals interactions with the protein 

matrix; their positioning and orientations are important in facilitating electron transfer.  

The ultimate collection point for excitons from neighboring antenna complexes is 

a chlorophyll dimer in the reaction center known as the special pair. This is the lowest 

energy site in the photosynthetic optical circuit. It is also the primary electron donor for 

the subsequent electron transfer cascade that carries the electron across the membrane 

while the hole remains at the special pair, thereby separating the exciton into isolated 

charges; see Figure 1.3. Recombination, or the back transfer of the electron to the special 

pair, is prevented by the electron transfer cascade which occurs in a series of very fast (1-
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100 ps) electron transfer reactions, rapidly separating the charges to ~3 nm and strongly 

reducing the rate of recombination. Exciton dissociation in reaction centers thus proceeds 

with high efficiency; the quantum yield of products to photons is nearly unity.25 The 

potential of the separated charges varies from approximately 0.5 V in primitive purple 

bacteria, to approximately 1.1 V in more advanced systems26. The secondary reactions 

that follow stabilize the oxidized and reduced species, yielding a chemical potential 

across the photosynthetic membrane that can then be used to drive cellular metabolism.  

 

 

Figure 1.3 Structure of the reaction center complex of Rhodobacter spaeroides.  

(A) Entire complex, including the L, M, and H cofactors. (B) Cofactors only. The special pair is 

the primary electron donor of the electron transfer cascade, illustrated by the arrow.  Figure 

produced from the Protein Data Bank file 1AIJ using Visual Molecular Dynamics.27 
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Unlike antenna complexes, reaction center complexes are remarkably well 

preserved across plants and photosynthetic bacteria. All reaction centers follow the above 

described general structure of electron transfer cofactors embedded in a protein matrix. In 

plants and cyanobacteria, two special reaction centers called photosystems I and II 

operate in tandem to split water and create molecular oxygen, a highly energetic reaction 

since water is an extremely poor electron donor. Oxygen produced by photosynthesis is 

the source of oxygen in the atmosphere and fundamentally affected the development of 

life on Earth.  

 

1.6 Conclusions 

We can draw several major conclusions from the preceding sections.  

 

1. Thin film inorganic solar cells can be made inexpensively, since the amount of 

expensive semiconductors has been reduced to a level where continued reduction 

provides little economic incentive. Reducing semiconductor cost is a futile aim. 

2. Efficiency is vitally important in cost reduction. Any sacrifice in efficiency comes 

with high economic penalty. 

3. Very high efficiencies are possible in concentrator systems, but the additional 

components that accompany high concentration make overall systems 

economically unattractive at present. Like thin films, the amount of expensive 

semiconductor is decreased, but the cost reductions of high concentration are 

attractive.  
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4. In photosynthesis, the processes of light absorption and charge generation are 

separated. The photosystem architecture allows independent optimization of light 

absorption and charge generation. 

 

The two device architectures explored in this thesis address these conclusions. We apply 

the photosystem architecture to improve the efficiency of thin film organic PV cells and 

solar concentrators, using 1) antenna organic solar cells, and 2) organic solar 

concentrators, respectively. 

 

1.7 Antenna organic solar cells 

The high costs of solar electricity is due in part to the expensive equipment and energy 

hungry processes required in the manufacture of conventional semiconductor-based 

photovoltaic (PV) cells.28 On the other hand, PV cells made from organic semiconductors 

such as films of molecules or polymers hold the promise of low cost production. Organic 

semiconductors can be deposited in thin film heterostructures to form solar cells that 

function similar to their conventional counterparts. Kim, et al have demonstrated tandem 

organic polymer solar cells with power conversion efficiencies of 6.4%,29 and Xue, et al 

demonstrated tandem small molecule organic solar cells of 5.0%.30 These laboratory 

record setting devices are far too low for commercial application.  Even if they could be 

manufactured for free, their low efficiencies would still set a lower bound on the system 

cost because of non-module system costs. 

 There are several reasons why organic solar cell efficiency is low, but the work 

here is motivated by an inherent tradeoff made to maximize light absorption and free 
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charge creation. The inability of organic semiconductors to transport excitons, the bound 

pre-charge precursors, over long distances to a heterojunction interface for charge 

creation limits overall device thickness.  Although organic materials can have very high 

absorption coefficients, the thickness limit set by the low exciton diffusion length is too 

low for complete light absorption. This design tradeoff limits performance and is called 

the exciton diffusion bottleneck.31 See Section 2.2 for an in-depth discussion of this 

bottleneck.  

 While researchers have adopted several techniques to bypass this bottleneck, this 

thesis is concerned with a novel biomimetic method to spatially separate the functions of 

light absorption and charge generation into two different physical components (see 

Figure 1.4). Light energy is directly absorbed in an external ‘antenna’ layer adjacent to 

the metal film that forms the electrode of the solar cell. The light energy is then 

transferred across the metal electrode by guided energy transfer mediated by surface 

plasmon polaritons to an organic heterojunction, where charge separation and current 

collection occurs, completing the photovoltaic transduction.  
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Figure 1.4  Structural comparison between conventional organic (A) and antenna organic 

PV (B).   

The key structural differences of the proposed antenna organic PV configuration include the use 

of the glass as a substrate instead of superstrate and the absence of the expensive transparent 

conductive layer. 

 
 

 External energy transfer necessarily adds another step to photovoltaic conversion, 

but it uncouples the competing processes of light absorption and charge generation, 

similar to the spatial compartmentalization that occurs in photosynthesis. By separating 

these processes, each component can be optimized separately and the strict requirements 

of high optical and electrical performance can reside in materials well suited to perform 

each, as finding materials that can adequately perform both are difficult to design. By 

separating these functions, we desire to increase efficiencies such that the low cost 

manufacturing processes will enable very low cost, high efficiency organic solar cells. In 
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this thesis, this novel device architecture is investigated to assess its operational 

feasibility, and the efficiency of its sub-processes is quantified. 

 

1.8 Organic solar concentrators 

We also explore a second novel solar energy conversion device called the organic solar 

concentrator. Similar to antenna organic solar cells, we split the processes of light 

absorption and charge generation into two separate components. However, we now 

transfer energy between the two via waveguided photons. These photons can travel over 

longer distances than surface plasmon polaritons, so we can additionally configure the 

two components such that light is concentrated. That is, the size of the light collection 

element is much larger than the charge creation element. If the size difference is large 

enough, high efficiency solar cells can be used for the charge creation element (see 

Figure 1.5). 

 To efficiently concentrate light, we utilize thin films of organic chromophores as 

an ‘antenna’ to absorb and re-emit waveguided photons. These chromophores must be 

highly efficiency emitters and be transparent to their own radiation. 
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Figure 1.5 Structural comparison between antenna organic PV (A) and organic solar 

concentrators (B).  

While the antenna layer in the organic solar concentrator is distributed over the whole collection 

face, the charge generation resides at the edges and covers far less area. As opposed to 

conventional fluorescent concentrators, organic solar concentrators utilize a thin, index matched 

chromophore film, enabling energy transfer from closely spaced emitters. Dashed lines represent 

light eventually lost and not available for conversion, including facial emission and self-

absorption. Since there are no metals over the collection area, non-absorbed light can be 

transmitted through the whole structure. 
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 This architecture is especially promising, as it can operate without tracking or 

cooling, two major costs in other concentrator systems. If the optical concentration can be 

made very high, we are able to utilize very high efficiency solar cells, as the 

concentration ratio effectively diminishes the amount of solar cells needed. We again 

utilize the biomimetic spatial compartmentalization approach to design high system 

efficiencies with high optical concentration ratios, which have the potential to result in 

total systems with low cost per Watt. In this thesis, this novel device architecture is 

investigated to assess its operational feasibility, and its overall efficiency is quantified.  

 

1.9 Outline  

In Chapter 2 of this thesis, we will explore the application of photosynthetic antenna 

architectures to organic PV. After an overview of organic materials characteristics 

(Section 2.1) and organic solar cell device physics (Section 2.2), we discuss the antenna 

architecture in detail and consider its benefits and drawbacks in Section 2.3. We continue 

in Section 2.5 with an overview of energy transfer mechanisms, including investigations 

of direct surface plasmon excitation of organic heterojunction bilayer devices.   

To properly assess the technical feasibility of antenna organic solar cells, we 

would like to know the efficiency of the newly introduced process of antenna energy 

transfer. In Section 2.6, we consider the theoretical models of exciton coupling to guided 

modes in multilayer stacks, building off the framework laid by Chance, Prock, and 

Silbey.32 We then seek to directly measure dipole transport efficiency across a thin silver 

layer that doubles as the organic superlattice photodetector cathode in Section 2.7. 
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After quantifying energy transfer, we integrate the processes in the design, 

fabrication, and measurement of antenna organic solar cells (Section 2.8). The dual 

requirements of strong absorption and photoluminescence efficiency are crucial to 

increased device performance; in Section 2.9, we describe ways in which absorption can 

be augmented by enclosing the antenna in a cavity resonator and describe initial 

demonstrations of performance.  Finally, we speculate on efficiency limits as we 

conclude the topic in Section 2.10. 

In Chapter 3, we consider energy transfer in organic solar concentrators. We 

review the characteristics of concentrator systems and discuss the features of active 

optical concentration. We discuss the constraints of tracking and cooling for both passive 

and active concentrators in Section 3.1 and Section 3.2, respectively.  We explore the 

thermodynamic limits of optical concentration in Section 3.3. The stringent requirement 

of dye self-transparency has frustrated demonstrations of high efficiency systems in the 

past. In Section 3.4, we introduce methods to greatly reduce self-absorption and increase 

conversion efficiencies. After self absorption, the next biggest loss in well designed 

organic solar concentrators is from imperfect confinement of emitted light. In Section 

3.5, we discuss this loss and suggest methods for reduction.  Thermal limits on optical 

concentration for both passive systems and organic solar concentrators are discussed in 

Section 3.6. Chromophore stability is a crucial factor in understanding the practical 

utilization of fluorescent concentrators. Literature on the lifetime of the dyes utilized in 

this work when used in organic light emitting diodes is reviewed in Section 3.7. To 

improve performance, we apply the advances of organic optoelectronics to the organic 

solar concentrators. We review the physics of these advances in Sections 3.8. 
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In Sections 3.9 through 3.11, we describe several concentrators in multiple 

geometries and their discuss performance limiting processes. In Section 3.12, we adapt 

the analytical treatment of Batchelder and Zewail in understanding these devices as a 

function of optical concentration levels. In Section 3.14, we explore the theoretical and 

practical performance limits of each device configuration. We finish with a discussion on 

costs, which sets practical thresholds on how high the optical concentration must be. 

We end in Chapter 4 with a summary and discussion of the prospects for organic 

materials in solar electricity generation.  
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Chapter 2 Antenna Organic Solar Cells 

 

2.1 Organic materials 

There is widespread interest in organic semiconducting materials for their potential for 

low cost, ease of processing, and compatibility with flexible substrates. Many of these 

materials are compatible with high throughput web processing. The printing, paint, and 

packaging industries routinely spray-coat, stamp, and evaporate molecular and polymeric 

materials onto flexible plastics and foils.28 If similar web-based processing is realized for 

organic PV cells, organic devices need only reach performance levels commensurate to 

inorganic PV technologies to decrease the cost per Watt of PV power. In addition, large 

scale chemical synthesis capabilities exist to reform petrochemical products into an 

abundant raw material stream. Two classes of suitable molecular PV materials, the 

phthalocyanine33 and perylene34 pigments,  are currently produced in quantities 

exceeding 80,000,00035 kg and 1,500,00034 kg annually.  

These characteristics are ideal for a PV device, and as such, many researchers are 

actively pursuing a variety of devices with organic components.31,36-39 The major classes 

of devices are dye sensitized solar cells,40-45 organic/inorganic hybrid cells,46-48 and 
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organic PV cells based on a heterojunction between polymeric29 or small molecule 

molecular weight materials.49  

 This chapter is concerned with small molecular weight organic solar cells. The 

design of these cells needs is inherently different from inorganic cells,36 due to the 

differences in physical properties and processes between organic and inorganic 

semiconductors. For example, light absorption in an organic material results in the 

creation of an exciton, or bound electron–hole pair, as opposed to the creation of free 

charges that typically result from absorption in inorganic solids. This is due to the weak, 

non-covalent, van der Waals interactions between molecules which hold the solid 

together which result in low intermolecular orbital overlap and low dielectric constants. 

In addition, organic semiconductors have low charge carrier mobilities (typically 10-5 –

10-1 cm2/Vs) and short exciton diffusion lengths (LD ≈ 4–50 nm).  Many organic 

materials have high absorption coefficients (α > 105 cm-1), so layer thicknesses can be 

kept thin to reduce materials utilization.  

 

2.2 Organic solar cells 

We begin by briefly reviewing the processes and structures commonly used in organic 

semiconductor heterostructure PV. For an in depth review of these devices, see Peumans, 

2003.49 Similar to their inorganic counterparts, organic PV devices are comprised of 

donor and acceptor semiconducting regions sandwiched between conducting electrodes. 

Usually, these materials are different semiconductors, as reliable doping to control 

majority carrier type is difficult to achieve. 
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The sequence of processes yielding light to electrical energy transduction in 

organic PV can be divided into four phases, as summarized in Figure 2.1. In the first, 

upon optical excitation in one or both organic materials, localized Frenkel or charge 

transfer excitons are generated.50,51 These tightly-bound, charge-neutral species diffuse 

until they recombine or dissociate. Excitons that reach an interface between the donor and 

acceptor layers will dissociate if the energetic offsets favor the process. For large offsets, 

dissociation occurs over time scales of a few hundred femtoseconds52 and results in free 

electrons in the lowest unoccupied molecular orbital of the electron transport material and 

free holes in the highest occupied molecular orbital of the hole transport material. These 

free carriers diffuse out towards the contact and are available to perform electrical work. 
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Figure 2.1 Summary of processes in organic PV leading to energy conversion.   

(A) Optical absorption in one or more active semiconducting layers creates an exciton, an 

electron-hole pair localized on a single molecule. (B) Excitons diffuse in the thickness of the film. 

(C) Those that reach the interface between the donor and acceptor layers can dissociate. In this 

example, an excited molecule in the donor hole transport material reduces an nearby acceptor 

molecule in the adjacent electron transport material. (D) The separated free electrons and holes 

diffuse out towards the metal electrodes, completing the energy transduction process. 

 

 

The useful thickness of an organic PV cell is restricted to the distance that 

excitons can travel before recombining, typically on the order of 10 nm.49 Within this 

region the internal quantum efficiency (the ratio of charge extracted to absorbed photons) 

can be 100%. But the quantum efficiency drops dramatically in thicker devices due to 

exciton recombination losses.31  Thus, despite optical absorption coefficients exceeding 

105 cm-1 averaged over the visible spectrum, organic PV is limited by an inability to 
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absorb enough light. Several classes of solar cells have emerged whose device 

architectures address this concern, including dye-sensitized nanostructured oxide cells,44 

bulk organic heterojunction cells,53,54 and organic-inorganic hybrid composites.47,55,56 

These approaches share the characteristic of increased surface area of the exciton 

dissociation interface, increasing the useful thickness of the cell by decreasing the 

distance between exciton generation and dissociation. However, the necessity for 

continuous pathways within the two phases can hinder charge collection and limit 

performance57. 

 

2.3 The antenna architecture 

The low cost production potential of organic solar cells is promising, but low power 

conversion efficiencies have limited the practical application of organic technology, in 

part due to the exciton diffusion bottleneck.  A unique approach that addresses this 

bottleneck exists in photosynthetic bacteria and plants, another much older and more 

sophisticated, example of organic electronics. In photosynthesis, light absorption and 

photochemical electron transfer occur in spatially distinct molecular components referred 

to as light harvesting antenna complexes and reaction centers25. In contrast, absorption, 

exciton dissociation and charge extraction all occur in the organic semiconductors that 

comprise the active donor and acceptor layers in organic PV. This characteristic frustrates 

materials selection for organic PV, as the organic semiconductors must simultaneously 

satisfy several constraints: (1) strong broadband optical absorption with an extinction 

coefficient of at least 105 cm-1 across the visible spectrum, (2) efficient long range 

exciton transport, (3) optimal energy level alignment for rapid exciton dissociation 
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efficiency, and (4) high electron and hole mobilities and continuous charge pathways to 

the two electrodes to minimize recombination losses. 

Akin to photosynthesis, organic PV may benefit from separating the functions of 

light absorption and exciton dissociation into two spatially distinct structures, allowing 

individual optimization of each. We demonstrate separation of optical and electrical 

functions by utilizing guided wave mediated energy transfer across thin metal films. In 

such a device, energy transduction proceeds by photon absorption in an ‘artificial 

antenna’. Excited molecular dipoles in the antenna either radiate into waveguide modes 

or non-radiatively couple to surface plasmon polariton (SPP) modes in the multilayer 

structure. By externalizing light absorption in a thick antenna, the reaction center 

component of the device can be sufficiently thin to yield devices with near unity internal 

quantum efficiencies58.  

A major advantage of coupling into guided modes is that these modes are 

absorbed even in very thin organic PV cells, optimized for maximum internal quantum 

efficiency. Guided modes propagate in the plane of the device, parallel to the charge 

generation interface. The dimensions of the cell in this plane are on the order of 10-2 m, 

rather than ~10-7 m perpendicular to the interface. The maximum distance of interaction 

between a reaction center and a guided mode is thus the distance that these modes travel 

at visible frequencies. For both SPPs and waveguide modes, they can be several orders of 

magnitude greater than the thickness of the reaction center, increasing the likelihood they 

will be absorbed; see Figure 2.2. Energy which propagates in these guided modes is 

absorbed in the ‘artificial reaction center’ of the PV, after which the processes of exciton 

diffusion, dissociation, and charge collection occur as before. 
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Figure 2.2 PV device excitation routes.  

Excitation of solar cells under normal (perpendicular) (A) and parallel surface mode excitation 

(B). The interaction distance of the electromagnetic fields and the absorbing artificial reaction 

center ratio between the two is several orders of magnitude. For very thin PV, high absorption 

and no transmission is preferred. 

 
 
 

There are several advantages to the biomimetic approach of separating light 

absorption and exciton dissociation in organic PV: 

1. By decoupling the optical and electrical components of the solar cell, the artificial 

reaction center can be made thinner than the exciton diffusion length, ensuring that 

all excitons are generated close to the location of exciton dissociation. The efficiency 

of this process should approach unity, resulting in internal quantum efficiencies 

approaching unity as well, as the efficiency of charge transfer and charge collection 

is known to be highly efficient.54,59 

2. Molecular excitonic states exhibit highly structured absorption spectra. Thus, to 

increase the photocurrent in organic PV, one must choose a combination of active 
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materials that absorb evenly across the visible spectrum. In contrast, separating the 

optical and electrical functions allows the reaction center to be optimized at a single 

peak wavelength corresponding to the emission of the antenna. 

3. Since the light absorbing antenna layer no longer needs to transport charge, new 

classes of solar cell materials can be used. The ideal antenna layer should be highly 

absorptive and have a high efficiency for photoluminescence (PL) such that 

reemission is strong. Candidate materials include those which absorb strongly like J-

aggregates, nanometallic particles, quantum dots, and photosynthetic complexes that 

possess high quantum photoluminescent efficiency such as phycobilisomes from 

cyanobacteria and red algae. While quantum dots and nanometallic particles have 

been embedded as active layer of solar cells previously to increase absorption,60,61 

their poor charge transport characteristics have decreased overall device 

performance. 

4. The energetic funneling that biological antennas like cholorosomes employ can be 

utilized in mixed antenna layers. In mixed layers, light can be absorbed in a host 

material and energy is funneled to a less absorptive, highly luminescent material for 

reemission into the bound modes. 

 

To properly assess the technical feasibility of antenna organic solar cells, we 

would like to know the efficiency of the newly introduced process of antenna energy 

transfer. Photocurrent that originates from the antenna will result from the sequential 

completion of three processes: 

 IQEET
Antenna
ABSEQE ηηηη ⋅⋅=Δ  (1) 
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where Antenna
ABSη  is the absorption efficiency of the antenna layer, ETη  is the energy transfer 

efficiency across the silver electrode and is dependent on the photoluminescence 

efficiency of the antenna molecules, and IQEη  is the internal quantum efficiency of the 

artificial reaction center.  Quantification of ETη  involves 1) assessing the efficiency of 

antenna excitation of guided modes and 2) assessing the efficiency of guided mode 

excitation of the modified organic solar cell. 

 To quantify ETη , we may first start with a simpler system with the antenna 

removed, as in Figure 1.4a. By directly illuminating the structure with SPPs, we can 

attribute all current to having originated from the plasmon excitation. After the plasmon 

excitation efficiency (step 2) has been assessed, we can theoretically investigate the 

efficiency of antenna excitation of guided modes (step 1). Together, these should allow 

us to conclude if the overall architecture is technically feasible. 

 Before exploring the SPP excitation efficiency, we proceed with a discussion of 

the physics of SPPs. 

 

2.4 Surface plasmon polaritons physics 

Surface plasmon polaritons (SPPs) are a unique class of waves associated with interfaces 

between metals and dielectrics. They are comprised of a coupled oscillation of an 

electromagnetic field and surface charges at a metal-dielectric interface. SPPs propagate 

along the interface with electromagnetic fields, energy, and charges highly localized 

within the interface area. Their properties depend strongly on characteristics of both the 

metal (complex dielectric function, corrugations, roughness) and the dielectric (refractive 
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index). In the absence of the adjacent artificial reaction center, SPPs are internally 

damped by joule heating in the metal film. Recent advancements in the ability to control 

the structure of metals on the nanometer scale have spurred great interest in SPPs in the 

last decade. Their unique properties are of wide interest in many fields and are being 

explored for their potential in optics, magneto-optic data storage, microscopy, and 

sensors.  

The existence of SPPs can be straightforwardly derived from Maxwell’s equations 

and the application of appropriate boundary conditions. They are transverse magnetic in 

character and the existence of surface charge requires an electric field normal to the 

surface. Since these surface waves propagate along the interface, there is also an electric 

field in the propagation direction; see Figure 2.3. The high density of charges at the 

interfaces leads to a field enhancement at the interface which decays exponentially into 

the space normal to the surface. This field is referred to as evanescent, reflecting the 

bound, non-radiative nature of SPPs which restricts power from propagating away from 

the interface; see Figure 2.4. The field lines associated with SPPs are transverse magnetic 

and both transverse and longitudinal in electric describing the fluctuations in surface 

charge density, where the decay length into the metal is the classical skin depth. 
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Figure 2.3 Surface plasmon polariton field orientations.  

SPPs exhibit magnetic fields that are transverse in character, and the generation of surface charge 

requires an electric field normal to the surface (after Barnes, et al.62). 

 

 

Figure 2.4 Surface plasmon polariton field magnitudes.  

SPPs are evanescent waves localized at the interface between a noble metal and a dielectric. The 

electric field drops sharply in the metal layer with the classical skin depth. In a device structure, 

spatial overlap between the electric field and absorptive materials are an avenue for energy 

transfer. Figure from Barnes, et al.62 
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The electromagnetic field of the SPPs excite electron-hole pairs at the Fermi level 

of the silver; the following de-excitation produces phonons and thus heating. The 

propagation length of SPPs on a metal-dielectric interface is given by:63 
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For visible wavelengths, the internal damping of SPPs is least for the noble metals and 

minimum for silver; Ag
SPPδ  at 530 nm is approximately 30 μm; see Figure 2.5.  
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Figure 2.5 SPP propagation lengths on silver thin films.  

At visible wavelengths, silver exhibits lowest losses when localized at an air interface. These 

lengths are calculated using the optical constants from Johnson and Christy.64 

 

 

 The frequency ω of SPP longitudinal oscillations is tied to its in-plane wave 

vector magnitude kx by a dispersion relation ω(kx), described by 



53 

 

1
' 2

'
m d

SPP x
m d

c k ε εω
ε ε

−
⎛ ⎞

= ⋅ ⎜ ⎟+⎝ ⎠  (3) 

where dε  and mε  are the permittivities in the dielectric and metal, respectively. This 

relation is plotted in Figure 2.6, which illustrates the polaritonic nature SPPs. At low 

frequencies, the SPP dispersion approaches that of photons that reside in the dielectric, 

characterized by the light line: 
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At these low frequencies, the SPP has the character of an evanescent photon and surface 

charge oscillations are weak. At very high frequencies, the SPP has the character of a 

plasma oscillation in a free electron gas, which is independent of wave vector: 
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where Pω  is the plasma frequency. 
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Figure 2.6 SPP dispersion relation.  

The polaritonic nature of SPPs gives them the hybrid characteristics between photons and bulk 

plasmons. For smooth interfaces, neither photons nor plasmons can couple to SPPs, as the dual 

conservation requirements of energy and momentum cannot be satisfied. However, photons in a 

higher index medium (n2) exhibit dispersion that allows scattering. k represents wavevector 

magnitude. The conservation of in-plane momentum (k0 sinθ) must be conserved for coupling to 

occur. This value can be adjusted by altering the angle of incidence, θ. 

 

 

 The dispersion relation of SPPs intersects neither the photon or plasmon 

dispersions. At low frequencies, additional momentum associated with the oscillating 

electrons in an SPP which moves its dispersion to the right of photons. At high 

frequencies, the magnitude of electron oscillations in an SPP is always less than that of a 

pure plasma wave. To scatter between SPPs and either photons or plasmons, the dual 

conservation conditions for energy and in plane momentum must be satisfied. In the 

absence of other interactions, it is impossible to scatter from SPP to either photon or 

plasmon, and vice versa.  
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 This characteristic necessitates the use of a special experimental configuration to 

excite SPPs, the Krestchmann geometry,65 where the metal layer is a thin film adjacent to 

a second dielectric media with a index of refraction higher than the first; see Figure 2.7. 

Light incident from the second dielectric may interact with the first dielectric under the 

condition of total internal reflection, where an evanescent photon permeates the 

multilayered structure. As the angle of incidence of the incident light is varied, a 

resonance condition occurs where the dual conservation conditions are fulfilled and an 

SPP will propagate at the interface with the lower index medium, the only interface that 

can support SPP modes.  

 

 

Figure 2.7 Kretschmann experimental configuration.  

In this geometry, light is incident through medium 2, whose refractive index is greater than 

medium 1, which can support the propagation of SPPs. The evanescent wave permeates through 

the thin metal layers when the angle of incidence is greater than the angle of total internal 

reflection, allowing scattering with SPPs. 
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2.5 Organic solar cell SPP excitation efficiency 

The direct sensing of surface plasmon resonance via the transduction of the surface wave 

electric field enhancement in solar cells is a direct demonstration of the utility of SPP in 

the excitation of photovoltaic devices.  

In addition to characterizing organic solar cells, surface plasmon resonances 

(SPRs) are commonly used in the real-time detection of chemical and biomolecular 

interactions at metal interfaces.66 The main SPR detection methods are based on either 

the direct measurement of the amplitude or momentum of the reflected optical wave near 

resonance. Both techniques interrogate the reflected wave using an external photodiode 

element or array. This section describes an integrated SPR detector using an organic 

photodetector whose upper electrode composes the active sensing element. Integration 

offers the benefits of miniaturization, and may have other wide commercial applications, 

including industrial process control, environmental testing, point of care diagnostics, and 

food safety.  

Photocurrent enhancements in organic Schottky photodiodes under surface 

plasmon polariton (SPP) excitation have been previously demonstrated,67,68 but typical 

external quantum efficiencies peaked at 0.05%.68 We can detect the resonant change in 

total absorption within a thin film organic double heterojunction photovoltaic cell, 

illuminated with λ = 532 nm excitation in the Kretschmann geometry under attenuated 

total reflection. Light incident on the structure from the optically dense glass prism can 

excite SPPs at the silver cathode-air interface on the opposite side of the stack. 

To measure the efficiency of SPP excitation, thin film double heterostructure 

organic photodiodes were fabricated on cleaned glass substrates. Commercially available 
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organic layers were purified by thermal gradient sublimation. Films were deposited at 

room temperature at high vacuum (~10-6 Torr) in the following order: 235Å silver, 190Å 

of the donor-like copper phthalocyanine (CuPC) and 200Å of the acceptor-like fullerene 

(C60). Next, a 85Å thick layer of bathocuproine (BCP) was grown; BCP has been 

previously shown to function as an exciton blocking, electron transport layer solar cells.69 

This layer was followed by a 285Å thick layer of silver shadow-masked to define 

cathodes of area 1.4 x 10-2 cm2.  

Light was coupled to the diode via a hemicylindrical prism attached to the glass 

substrate with index matching fluid; see Figure 2.8. The prism and photodiode were 

mounted on a computer controlled rotating stage and illuminated with p-polarized light of 

wavelength λ = 532 nm with an incident power intensity of 50 μW. The intensity of the 

reflected beam is monitored with a Si photodetector. The measured photocurrent in air at 

zero bias is measured with a Keithley sourcemeter. Spectral external quantum efficiency 

measurements were made by using a xenon lamp with monochromator, chopped at ~90 

Hz and measured with a lock-in amplifier. Light intensity was measured with a calibrated 

silicon photodiode. The indices of refraction and extinction coefficients of all modeled 

thin films were derived from measurements using an Aquila reflection-transmission thin 

film spectrophotometer. Because Ag penetrates the thin BCP layer during deposition,70,71 

the optical constants of the cathode were obtained from a BCP/Ag bilayer. 
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Figure 2.8 Kretschmann experimental configuration. 

Monochromatic p-polarized laser light of wavelength 532 nm is incident on a prism coupled to 

the glass substrate through index matching fluid. The prism acts to retain a normal incidence 

coupling from air to glass. As θi increases the onset of total internal reflection precedes an 

immediate dip in reflected light intensity and increase in monitored photocurrent at SPP 

resonance. The only interface that can support SPPs in this geometry is at the Ag cathode-air 

interface. The device structure investigated was glass / Ag (235Å) / CuPC (190Å) / C60 (200Å) / 

BCP (75Å) / Ag (285Å). 

 

 

We employ a plane wave matrix formulism to calculate the magnitude of the 

electric fields throughout the thickness of the device.72 The electric field in any layer j, is 

given for TM polarization by:  
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where kx is the wavevector in the plane of the interfaces of the structure, calculated from 

the incident beam. Imposition of boundary conditions at each interface leads to a set of 

equations for the coefficients Aj that are solved using simple matrix methods. The 

magnetic fields in the structure can be calculated using the usual relation for 
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electromagnetic waves. This enables the calculation of the Poynting vector in each layer 

of the structure.  

On the right side of the Figure 2.9a (negative distance from the prism-air 

interface), reflective interference controls the shape of the field magnitude. At surface 

plasmon resonance, the reflected field drops and a localized enhancement on the opposite 

side of the device is evident, and, more importantly, the field inside the organic 

heterostructure dramatically increases, coinciding with increased optical absorption. 

The modeled total electric field intensity throughout the thickness dimension is 

shown in Figure 2.9b for θi at 30o and 47o. The field enhancement at the Ag-air interface 

is consistent with the SP propagation and is the only possible mode excitable through the 

prism coupled Kretschmann geometry. For incident radiation with 532=λ  nm, 

absorption is primarily in the CuPc layer. Total absorption is calculable by integrating the 

divergence of the Poynting vector S
r

 across the thickness of interest. At SPR, over 80% 

of absorbed light is absorbed in the CuPc layer.  However, the CuPc layer is 400Å from 

the Ag-air interface. A stronger field enhancement is possible with decreasing distance 

from the SP supporting interface and will result in greater absorption. 
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Figure 2.9 Magnitude of the electric field in surface plasmon excited photodiode  

A pronounced enhancement at the silver-air interface indicates plasmon resonance. In (B), the 

field lines at SPP resonance are compared to 30o incidence. At resonance, the fields in the 

absorbing artificial reaction center (CuPC and C60) are also enhanced, leading to an increase in 

external quantum efficiency. 
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In Figure 2.10a, we plot the measured reflected light intensity (reflectivity, R) 

versus incident illumination angle, θi, for p-polarized incident light. The mixed 

transversal and longitudinal electromagnetic field carried by SPPs can only be excited by 

p-polarized light and as such, only the p-polarized reflectivity exhibits a sudden decrease 

corresponding to SPP excitation at the condition of momentum conservation.63 As θi 

increases, two features are observed: the increase at 44o, which corresponds to the onset 

of total internal reflection; and a decrease at 52º, which corresponds to destructive 

interference of backscattered light back into the glass hemicylinder given evanescent 

excitation of a SPP at the Ag cathode-air interface. This back scattered light is 180o out of 

phase with the incident light; at resonance this backscattered light can destructively 

interfere with the incoming wave resulting in the sharp drop in reflectivity observed SPR. 

Besides the back-radiation damping of SPs at the Ag-air interface, the surface 

wave vector of the SPP can linearly combine with the vectors which compose the Fourier 

spectrum of the rough surface. These scattering events allow the non-radiative SPPs to 

forward scatter photons in the dielectric (air) at the interface of field enhancement. The 

correlation between surface roughness and directional light emission has been measured 

by several authors73-75. According to Tajima et al, the efficiency of light emission from 

films of 15Å rms roughness is about 10%. This value is adequately describes the 

deviation from the measured and modeled reflectivity for θi > θSPR .  
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Figure 2.10 Direct SPP excitation optical spectra 

(A) The measured (■) and modeled (solid line) reflectivity spectra sharply increase at o40=iθ  

corresponding to the onset of total internal reflection from the stack.  As iθ  increases the 

reflectivity sharply drops, reaching a minimum at surface plasmon resonance when o52=iθ . (B) 

The angular positions of maximum and minimum reflectivity align with the measured (●) and 

modeled (solid line) minimum and maximum external quantum efficiencies. At resonance, 

%12=EQEη , reaching twice the efficiency of off resonance excitation at o30=iθ . The modeled 

internal quantum efficiency decreases slightly under plasmon illumination from 14% to 13%.  (C) 

Modeled optical absorption in all device layers increases by a factor of three at resonance. 
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In Figure 2.10b, the external quantum efficiency, EQEη , is plotted versus θi. The 

resonance dip in reflectivity correlates to a peak in quantum efficiency of 12%, double 

that at plane wave illumination. Disparities between EQEη and ABSη as a function of θi is 

attributable to two phenomena associated with SPP propagation on metal surfaces. First, 

as the angle of incidence is increased, more light energy is guided into SPP modes. At 

plasmon resonance, energy dissipation reaches a maximum, resulting in a decrease in 

internal QE. Second, light emission associated with propagating SPPs results in the 

outcoupling of useful energy. Both phenomena compete with light absorption in the 

artificial reaction center and constitute loss.  

 In Figure 2.10c, we plot the modeled absorption in each layer of the detector. To 

estimate the optical absorption within each layer of the SPP detector, we employ the 

plane wave matrix formulism to calculate the magnitude of the electromagnetic fields 

throughout the thickness of the device.72 At low angles of incidence, SPRi θθ < ,  

photocurrent is primarily limited by low light absorption. For instance, at o30=iθ , the 

absorption within the active organic layers, CuPC and C60, %10=Org
ABSη . At SPR, 

absorption in the complete stack, Total
ABSη , increases by more than a factor of three to 83%, 

and the absorption within the active layers is %30=Org
ABSη . The increase in Org

ABSη  by a 

factor of three at SPR mirrors the factor of three increase in EQEη ,  confirming that SPP 

detection is mediated by an increase in absorption. The ratio Total
ABS

Org
ABS ηη  decreases by 2% 

in resonance, indicating that there is a negligible increase in the fraction of energy lost to 

joule heating and roughness induced scattering under SPP excitation.   
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 To confirm the modeling results, EQEη  of this device is plotted in Figure 2.11 as a 

function of wavelength at normal incidence. Below λ = 525 nm, photocurrent is primarily 

generated in the C60 layer, while the CuPC layer primarily absorbs above λ = 525 nm. At 

λ = 532 nm, the extinction coefficients of C60 and CuPC are approximately equal at 

k = 0.10 and 0.08, respectively, as modeled from the reflectivity-transmission spectra; for 

derived n and k, see Figure 2.12.  

 

 

Figure 2.11 External quantum efficiency spectra 

The measured (■) and modeled (line) external quantum efficiency versus wavelength for this 

device. The angular dependent quantum efficiency was interrogated at 532=λ  nm, where light 

absorption occurs nearly equally in CuPC and C60. 
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Figure 2.12 Optical constancies of C60 and CuPC.  

The refractive indices (A) and extinction coefficients (B) for the CuPC and C60 were used in 

device modeling. The values were modeled from thin film reflectance-transmittance 

spetrophotometry. 

 

 To model the photocurrent spectrum of Figure 2.11, we fit the exciton diffusion 

lengths by 70=CuPc
DL  Å and 10060 =C

DL  Å, similar to previously reported values of 

30100 ± Å for CuPC,49 and 141 Å for C60.
76 The fit is confirmed by comparison of the 

measured and modeled ( )θR  and ( )θηEQE  spectra, as plotted in Figure 2.10a and Figure 

2.10b. The modeling accurately predicts the angular location and intensity of SPR for 

both ( )θR  and ( )θηEQE  to within o50.  and 1%, respectively.   

 We modeled the BCP/Ag cathode bilayer as a single homogenous film. Seumori 

et al previously observed deep penetration of evaporation metal on amorphous organic 

films70 and Rand et al examined solar cells where silver penetration into very thin BCP 
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yielded trap states and lowered the barrier to electron extraction.71 These observations 

suggest that the BCP cannot be optically modeled as a uniform film; consistent with our 

findings. We evaporated a bilayer film of BCP and Ag with thicknesses identical to those 

in the solar cell and measured its absorption spectrum to derive its optical characteristics. 

The silver penetration into the BCP layer results in a film bilayer that is more absorptive 

(see Figure 2.13), independent of whether excitation is via SPPs or photons, suggesting 

that the reduction of metal penetration by alternative electrode deposition methods may 

increase the internal quantum efficiency in organic PV. 
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Figure 2.13 Silver penetration into BCP.  

(A) The BCP-Ag bilayer was modeled as a single layer with the optical characteristics as shown 

(line). For comparison, the values as reported by Johnson & Christy are also shown (■).64 (B) The 

propagation length, SPPδ , which characterizes its propagation loss at a simple metal-air interface, 

is an order of magnitude smaller for the BCP/Ag bilayer at 532=λ  nm. 
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Figure 2.14 Silver penetration optical effects 

(A) The measured spectral absorption at o30=iθ  of a 270 Å film of Ag on a 100 Å film of BCP 

on glass (●) is substantially greater than that of a 270 Å film of Ag deposited directly on glass 

(■). Absorption is calculated from 1 – R – T, and cannot be distinguished from scattering. But 

when we assume scattering is negligible the determination of n and k yields an accurate model of 

the experimental photocurrent spectrum; see Figure 2.11. (B) The modeled angular absorption 

when 532=λ  nm is also greater for the Ag/BCP bilayer (red) compared to Ag only (black). In 

this simulation, light is incident from the glass. 

 

 

 Finally, the performance limits of the SPP detector may be assessed from the 

modeled internal quantum efficiency of the device, defined by the relation  

IQEABSEQE ηηη ⋅=  and shown in Figure 2.10b. IQEη  incorporates all losses that can occur 

in photocurrent generation subsequent to light absorption in the stack, including exciton 

losses during diffusion, and insufficient charge collection. Small deviations in ηIQE are 

expected near total internal reflection due to spatial modulation of the optical field within 

the detector, which in turn varies the relative absorption of CuPC and C60. But the main 

conclusion is that the organic SPP detector is primarily limited by exciton diffusion 
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losses which yield an internal quantum efficiency of only 13% near resonance. This may 

be due in part to photo oxidation of C60.69 To increase the sensitivity, the active absorbing 

layers can be made thinner, which has previously been shown to significantly increase 

IQEη  by increasing the probability of exciton dissociation at the active interface.58 In 

addition, the relative enhancement in detection efficiency compared to the plane wave 

excitation will also increase. Thus, we expect that higher sensitivities are possible given 

device structure optimization. 

The efficient excitation of organic photodiodes via photon-launched surface 

plasmon polaritons demonstrates that the efficiency of artificial reaction centers is 

enhanced when the incident radiation is coupled into a guided SPP mode. The 

enhancement of efficiency is most pronounced for thin reaction centers, with low exciton 

diffusion losses and low optical absorption, but very high internal quantum efficiency.  

We have reported a photocurrent increase of ~ 200% under resonance, but further 

optimization is possible. In absorption limited devices, the thickness of the active 

absorbing layers can be made thinner, which has previously been shown to significantly 

increase IQEη  by increasing the probability of exciton dissociation at the active 

interface58. Active semiconductor layers with thicknesses greater than the exciton 

diffusion length lowers dissociation efficiency. In addition, positioning the active 

absorbing organic semiconductor closer to the interface supporting SPPs should increase 

coupling into these modes. The peak external quantum efficiency of 12% represents a 

factor of 240 improvement in quantum efficiency over previous results. SPP excitation in 

the Kretschmann configuration resulting in internal QEs that are independent of 
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excitation method suggests SPP excitation of artificial reaction centers can proceed with 

high efficiency.  

 

2.6 Energy transfer from antenna excitons to surface mode 

The oscillating electric field of the radiative dipole at an excited molecule in the antenna 

layer can be damped by several mechanisms, resulting in energy transfer. These 

mechanisms are: (1) non radiative decay into phonons, (2) radiation of photons into free 

space modes not guided within the PV, (3) radiation into dielectric waveguide modes in 

the antenna/PV stack, and (4) non-radiative energy transfer into surface plasmon 

polariton modes at the adjacent metal interface. Photons in waveguide modes interact 

with the absorbing active layers in the artificial reaction center identically to normal light 

illumination. 

Non-radiative decay is minimized in efficient antenna dye molecules. Thus, 

radiation into free space modes is the dominant process for an isolated oscillating dipole 

on an efficient dye molecule. But within a multilayer stack composed of metals and 

dielectrics, this process can be minimized. The rate of photon emission is described by 

Fermi’s golden rule and depends on photonic mode density. For example, near a metal 

film, photonic mode density drops dramatically as visible light is strongly absorbed by 

free charges in the metal. Energetic transfer from excited molecules to SPP modes can 

occur with high efficiency  to metallic slabs77,78 and thin films.79 The theoretical basis for 

dipole coupling to modes in a multilayer stack is well understood32 and agrees well with 

experiments.80 
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The near field of the dipole is composed of an infinite sum of plane waves; it 

therefore contains components of a large range of wavevectors. Thus, the near field of the 

dipole has dispersion like this horizontal line, which can couple to photon modes in the 

various layers of the structure, plasmon modes, and waveguide modes; see Figure 2.15. 

The relative efficiency of coupling to each mode depends on its mode density and is 

governed by Fermi’s golden rule.78 

 

 

Figure 2.15 Dispersion relation, including excitons 

Unlike photons, excitons can couple to photons (both in guided and unguided) and SPPs due to its 

broad range of accessible wavevectors in its near field. The dipole coupling rate will depend on 

local photonic mode density and relative orientation as dictated by Fermi’s golden rule. 

 
   

Within a multilayer stack energy transfer to guided electromagnetic modes is 

preferred. The stack acts as a waveguide since its refractive index, n ~ 2, higher than air 

or the glass substrate. To examine dipole coupling to thin silver films comprising the 

cathode of an organic PV, we use the method of Chance et al.32 to simulate classical 

damping of an oscillating charge distribution near a multilayer stack to investigate energy 
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transfer to our artificial reaction center. Energy transfer is calculated directly from the 

Poynting vector.81  

We model energy transfer within a multilayer organic PV following the 

demonstration in Celebi et al,81 using dyadic Green’s functions.  To examine and 

quantify the efficiency of energy transfer within a multilayer organic PV stack, antenna 

excitons are modeled as oscillating charge dipoles and the efficiency of energy transfer 

from the antenna to the PV charge generating layers is found by evaluating the Poynting 

vector, P. For each radiating dipole, total energy transfer to the charge generating organic 

semiconductors is found by calculating ΔP within the photovoltaic charge generating 

layers.  

Our prototype structure is a photovoltaic similar to a standard small molecular 

weight organic bilayer heterojunction cell:82 glass/ Ag (400 Å)/ copper phthalocyanine 

(CuPC, 180 Å)/ CuPC:3,4,9,10 perylenetetracarboxylic bisbenzimidazole (PTCBI, 1:1, 

180 Å)/ PTCBI (180 Å)/ bathocuproine (BCP, 100 Å)/ Ag (130 Å) / Antenna (1070 Å). 

We employ aluminum tris(8-hydroxyquinoline) (AlQ3) as the antenna material. The 

dipole was located in the middle of the antenna layer for these calculations. 

The coupling probability density of antenna excitons is shown in Figure 2.16 as a 

function of distance to the antenna-silver layer interface and the parallel component of 

the wavevector, u, normalized by the wavevector of an unconfined photon in the antenna 

layer. Normalized wavevectors with u < 1 correspond to radiative modes; u > 1 

corresponds to non-radiative energy transfer. Since the energy coupling is dependent on 

the transition dipole orientation with respect to the plane of the interface, we consider the 

cases of perpendicular (Figure 2.16a) and parallel (Figure 2.16b) orientation separately. 
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In an isotropic film, the transition dipoles are 1/3 perpendicular and 2/3 parallel. At a 

given dipole distance, integration of the energy dissipation across wavevectors u yields 

unity.  
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Figure 2.16 Exciton coupling fraction for (A) perpendicular and (B), parallel orientated 

dipoles with respect to the device plane 

Modeling the exciton by a dipole, the probability of coupling is greatest for perpendicularly 

oriented dipoles into modes with u>1, corresponding to SPPs. Coupling to dielectric waveguide 

modes with u<1 is strongest for dipoles oriented parallel to the Ag-antenna interface. Coupling 

fractions are plotted on a logarithmic scale to facilitate visual interpretation. Contours are added 

(for u > 1 only, dotted lines on colorbar) to emphasize peaks in coupling fraction at u ≈ 1.8 and 

u ≈ 1.1. (C) The transverse magnetic (Hy) mode profile at u = 1.8 confirms that the SPP is 

localized at the antenna/photovoltaic interfaces and has significant overlap with the photovoltaic 

active semiconductor layers. (D) The SPP peak at u = 1.1 is localized at the glass/photovoltaic 

interface. The mode profiles were calculated by artificially setting absorption losses to zero in 

each layer, and calculating the stationary states of the stack. 



75 

One distinct SPP mode is evident in the calculations of exciton decay with a 

normalized propagation constant of u = 1.8, corresponding to localization at the antenna-

silver interface (Figure 2.16c). A second mode with much weaker overlap with antenna 

excitons is also visible at u = 1.1, corresponding to the localization at the glass-silver 

interface (Figure 2.16d). Coupling to SPPs is especially strong approaching the thin silver 

electrode. For dipoles oriented parallel to the interface, both dielectric waveguide and 

SPP modes are significant, with radiation into dielectric waveguide modes dominant far 

from the antenna-silver interface. Total energy transfer as a function of dipole location 

and orientation is shown in Figure 2.17. For these calculations, we assume that the AlQ3 

antenna is doped with a randomly-oriented fluorescent dye with a free space 

photoluminescent (PL) efficiency of 70% and an emission wavelength of λ = 615 nm 

where CuPC absorbs strongly.  

 

Figure 2.17 Antenna energy transfer to organic layers 

Close to the AlQ3-Ag interface, stronger energy coupling across the metal film occurs for 

perpendicularly oriented dipoles (■) due to their stronger emission into SPP modes. Over the first 

1000 Å, the mean exciton coupling fraction to the organic layers is 52% for an isotropic 

distribution of dipoles. 
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In this PV stack, the average efficiency of energy transfer to the PV is 52% over 

the thickness of the antenna layer. Consistent with calculations of exciton coupling 

fractions in Figure 2.16, we find that energy transfer occurs predominantly via Förster 

coupling to the photovoltaic, mediated by the non radiative SPP mode localized at the top 

silver electrode. If the silver electrode separating the PV and antenna is thick, the SPP is 

confined to either the antenna or the PV. When the cathode is thin, the SPP mode extends 

into both the antenna and PV, and can mediate the transfer of energy.  Consequently, the 

efficiency of energy transfer is maximized for thinner top silver contacts. In Figure 2.17, 

we observe that energy coupling via SPPs effectively increases the length of Förster 

energy transfer to ~ 1000 Å.  

 

2.7 Experimental investigation of antenna organic 
photodetectors 

To directly measure the efficiency of energy transfer from an antenna layer to an organic 

photodiode, ηET, we fabricate an organic superlattice photodetector; see Figure 2.18. 

While energy transfer from external antennae has been proposed before83, this work 

describes the first successful application to a photovoltaic device and quantification of 

energy transfer quantum efficiency. 
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Figure 2.18 Structural configuration for antenna superlattice photodetectors 

For measurement of energy transfer efficiency, high internal quantum efficiency superlattice 

photodetectors are used with the structure: glass/ ITO (1100Å)/ 20 alternating layers of CuPC and 

3,4,9,10-perylenetetracarboxylic bisbenzimidazole (PTCBI) (each layer 15Å)/ BCP(85Å)/ Ag 

(205Å)/ 5,10,15,20-tetrakis(pentafluorophenyl)porphyrin (H2TFPP) (850Å). The 

photoluminescent (PL) efficiency of the H2TFPP antenna is tuned by adding 4,4'-Bis(N-

carbazolyl)-1,1'-biphenyl (CBP) at varying concentrations. The devices are illuminated from the 

antenna side. 

 

 

Under an applied bias, the organic superlattice photodetector is expected to 

exhibit an internal quantum efficiency close to 100% for excitation by SPP-modes.84 We 

assume ηIQE = 100% which gives a lower bound for ηET. The antenna material in this 

device is tetrakis(pentafluorophenyl)porphyrin (H2TFPP). It is chosen for its combination 

of moderate PL efficiency (ηPL = 2-3%) and high absorption coefficient (α = 106 cm-1 at 

λ = 400nm) that allows nearly 100% of incident radiation to be absorbed in the absence 

of a cavity within the ~100 nm range of SPP-mediated energy transfer.  
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External quantum efficiency measurements were made at a reverse bias of 3.5V. 

The measured absorption and PL efficiency of the H2TFPP antenna is used to determine 

ηET from the increase in external quantum efficiency, ΔηEQE, i.e. ηET = ΔηEQE/ηABS/ηPL. 

Four H2TFPP antennas were fabricated with varying PL efficiencies by blending H2TFPP 

with different concentrations of CBP. The addition of CBP reduces concentration 

quenching. To eliminate energy transfer altogether, additional devices were fabricated 

with non-functional antennas comprised of H2TFPP codeposited with 3.5% of CuPC. 

Using the quenched antenna as the baseline, and noting that the absorption of H2FTPP is 

ηABS = 75% for λ ≤ 450 nm, we obtain ηET = (51±10)%, substantially higher than the 

resonant antenna result; see the inset of Figure 2.19. Note that the overall change in 

quantum efficiency is lower, however, due to the weak ηPL of H2TFPP. 
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Figure 2.19 Measurement of energy transfer efficiency using superlattice organic 

photodetectors 

(Top) Measurement of external quantum efficiency of devices with different antenna 

compositions: 3.5% CuPC in H2TFPP ηPL = 0% (solid), 100% H2TFPP ηPL = (2.4±0.2)% (long 

dashed), 90:10 H2TFPP:CBP ηPL = (2.5±0.3)% (short dashed), 70:30 H2TFPP:CBP 

ηPL = (3.4±0.3)% (dotted). (Bottom) Absorption spectra of different antenna layers on glass. 

(Inset) Calculation of energy transfer efficiency lower bound normalized by the PL efficiencies 

of the various antennas yields ηET = (51±10)%. 

 

2.8 Experimental investigation of antenna organic solar cells 

While the introduction of the antenna necessarily adds a step into the energy transduction 

process, it can be successfully employed in spectral regions where the absorption fraction 

of a PV cell drops below ηET.  The magnitude of energy transfer is approximately 

proportional to the free space photoluminescence (PL) efficiency of the antenna layer. 

Therefore, to test the activity of the antenna while avoiding interference effects due to 
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changes in device structure we fabricate identical photovoltaic cells with antennas of 

varying photoluminescence efficiency. 

The optical characteristics of four antenna layers on bare glass are shown in 

Figure 2.20. In Figure 2.20a, the absorption of all layers are spectrally similar, with 

maximum absorption nearly identical at λ = 430 nm, corresponding to the Soret band 

absorption in the tetraphenyl porphyrin macrocycle centered at λ = 420 nm. The four 

remaining peaks at λ = 511, 540, 591, and 642 nm correspond to Q-band transitions. In 

addition, a single peak in the CuPc doped film at λ = 680 nm corresponds to the strong 

Q-band transition of the phthalocyanines.  
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Figure 2.20 Optical characteristics of antenna layers 

(A) The absorption of four 700 Å films deposited on bare glass under s-polarized illumination 

with o30=iθ  shows similar light extinction for all antenna layers. Maximum absorption occurs 

near λ = 430 nm, corresponding to the Soret band absorption in fluorinated tetraphenyl porphyrin. 

The peaks at λ > 500 nm correspond to Q-band transitions. Absorption in the H2TFPP:CuPc film 

(♦) exhibits an additional peak at λ = 680 nm corresponding to the strong Q-band transition of 

the CuPc. (B) The photoluminescence of each film under unpolarized illumination at λ = 408 nm 

show maximum emission at λ = 713 nm, with two higher energy peaks at λ = 644 and 665 nm. 

The efficiency of re-emission is tuned by the incorporation of either a strong quencher (CuPc, ♦) 

or transparent, inert spacer molecule (CBP, ● and ■) to reduce the effect of H2TFPP 

luminescence concentration quenching. The PL efficiencies of the four antenna layers are 0%, 

2.4%, 3.5%, and 4.3% for H2TFPP:CuPc, H2TFPP, H2TFPP:CBP(15%), and H2TFPP:CBP(25%) 

films, respectively. 

 

 

In Figure 2.20b, the three prominent emission peaks of H2TFPP are visible at 

λ = 644, 665, and 713 nm. Photoluminescence (PL) of H2TFPP molecules in solid films 

are limited by concentration quenching. We adjust the molecular concentration by co-

depositing CBP as an inert, transparent filler material. The PL efficiency is positively 

correlated with increased intermolecular spacing consistent with concentration quenching 
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limited emission. For quenched films, H2TFPP excitons undergo intermolecular Förster 

energy transfer (see Section 3.8.1 for discussion of Förster transfer) to CuPc which 

absorbs strongly between λ = 550 and 750 nm. To quantify the PL efficiency, the spectra 

were compared to a layer of aluminum tris(8-hydroxyquinoline) (AlQ3) whose quantum 

efficiency has been previously measured.85 Using AlQ3 as a reference film, the PL 

efficiencies of the four antenna layers are 0%, 2.4%, 3.5%, and 4.3% for H2TFPP:CuPc, 

H2TFPP, H2TFPP:CBP(15%), and H2TFPP:CBP(25%) films, respectively. 

The external quantum efficiencies of these devices as a function of wavelength 

are shown in Figure 2.21. In Figure 2.21a, all devices exhibit similar external quantum 

efficiencies outside the region of strong antenna absorption for λ > 450 nm, indicating 

that interference effects do not cause differences in quantum efficiency. However, over 

the region of 350 < λ < 430 nm, where H2TFPP absorption is the strongest, the devices 

with functioning antenna layers exhibit increased external quantum efficiency. This 

increase in photodiode performance due to energy coupling is highlighted in Figure 2.21, 

where the increases in photocurrent relative to devices with non-emissive antennas are 

plotted. The maxima of increased photocurrent spectrally match the extinction coefficient 

of H2TFPP and correlate with photoluminescence efficiency, consistent with our 

description of energy transfer. 
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Figure 2.21 External quantum efficiency for antenna device 

(A) Devices with functional (reemitting) H2TFPP antenna layers exhibit (B) an increase in 

external quantum efficiency over the wavelength range where H2TFPP absorption occurs 

(extinction coefficient of H2TFPP: ▲). The photocurrent spectra are identical outside the spectral 

range where H2TFPP absorbs. The structure of the diodes is glass/ Ag(180 Å)/ CuPc(245 Å)/ 

C60(170 Å)/ BCP(85 Å)/ Ag(145 Å)/ H2TFPP:X(700 Å). Functional antennas are either undoped 

(red) or employ the inert spacer molecule (X = CBP, green and blue), whereas nonfunctional 

antennas employ the quencher X = CuPc, black).  Additional photocurrent due to energy transfer 

occurs strongly at the H2TFPP Soret band maxima at λ = 425 nm and its Q-bands at 644 and 665 

nm. 

 

 

The increase in external quantum efficiency, EQEηΔ , originates in sequential 

completion of three processes: 

 IQEET
Antenna
ABSEQE ηηηη ⋅⋅=Δ  (7) 

where Antenna
ABSη  is the normalized absorption in the antenna layer, ETη  is the energy 

transfer efficiency across the silver electrode and is dependent to the PL efficiency of the 

antenna molecules, and IQEη  is the internal quantum efficiency of the artificial reaction 
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center. The maximum energy transfer efficiency occurs where absorption is maximum. 

Using a transfer matrix formulism49, we calculate absorption in the antenna layer and find 

=Antenna
ABSη  60% for all antenna compositions at λ = 430 nm, consistent with separate 

measurements of films on bare glass in Figure 2.21a.  

The IQEET ηη ⋅  product represents a lower bound for total energy coupling 

efficiency across the silver film, ETη .  IQEET ηη ⋅  is greatest for the H2TFPP:CBP(25%) 

antenna at 3.1%.  This value is primarily limited by the relatively low quantum efficiency 

of reemission. If the efficiency of energy transfer is assumed to be a linear function of the 

free space photoluminescence efficiency, the ratio PLIQEET ηηη ⋅  for the 

H2TFPP:CBP(25%) device is 72.1%, consistent with a modeled PLET ηη of 108% when 

1<IQEη  and noting that the emission efficiency is enhanced over the free space 

condition. Other H2TFPP based antennas yield similar values for PLIQEET ηηη ⋅ .  

H2TFPP molecules absorb strongly but reemit with low efficiency. We also 

investigated antenna PVs with antenna films made from aluminum tris(8-

hydroxyquinoline) (AlQ3) doped with the laser dye 4-dicyanomethylene-2-methyl-6-(p-

dimethylaminostyryl)-4H-pyran (DCM) and bilayer reaction centers based on CuPc and 

3,4,9,10-perylenetetracarboxylicbis-benzimidazole (PTCBI). AlQ3:DCM layers absorb 

less light but emit with higher solid state quantum yield.  

We have measured reflection and transmission to calculate total absorption in the 

device with AlQ3:CuPC antenna at the measured fluorescence maximum of DCM at λ  = 

615 nm and calculate ηIQE =5%. These values result in a total energy coupling efficiency 

across the silver film of ηEnergyTransfer= 46%, similar to the porphyrin antenna devices. The 
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overall gain in ηEQE is limited by low absorption in the antenna layer. These devices show 

significantly lower relative increases in photocurrent in the emissive versus non-emissive 

case, as there is a significant baseline photocurrent resulting from direct transmission 

through the antenna film. These devices demonstrate that energy transfer is not unique to 

the H2FTPP system.  

 

 

Figure 2.22 External quantum efficiency for antenna device 

(A) Devices with external AlQ3 functional antenna layers (dotted) exhibit an increase in external 

quantum efficiency over the wavelength range where AlQ3 absorption occurs (dashed). The 

photocurrent spectra are identical outside the spectral range where AlQ3 absorbs. (B) The change 

in external quantum efficiency correlates well with AlQ3 absorption. 

 

2.9 Cavity antenna organic solar cells 

Efficient SPP-mediated energy transfer requires highly efficient photoluminescent (PL) 

antenna materials. Unfortunately, the PL efficiency of highly absorptive organic 

semiconductors is typically diminished by intermolecular energy transfer known as 

concentration quenching. To exploit less absorptive materials with higher PL efficiencies, 
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ηPL, we enclose the antenna within a resonant cavity. As shown in Figure 2.23a, the 

resonant antenna is employed in place of the silver mirror on the back of the cell. Off 

resonance the antenna acts as a mirror, but near the resonant wavelength the antenna 

absorption is significantly enhanced, and energy is fed back into the PV cell via SPP-

mediated energy transfer. Thus, the resonant antenna structure supplements the 

performance of the PV cell at resonance, with no degradation off-resonance.  

 

 

Figure 2.23 Structure and absorption characteristics of cavity antenna solar cells 

(A) Devices with resonant antenna cavities have the structure: glass/ Ag (200 Å)/ CuPC (200Å)/ 

C60 (250Å)/ BCP (85Å)/ Ag (200Å)/ antenna / Ag (600Å). The tris(8-hydroxyquinoline) 

aluminum (AlQ3)-based antenna is 700Å thick. To tune the PL efficiency of the AlQ3 antenna we 

introduce either CuPC or 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran 

(DCM) at 1% weight ratio. To highlight the effect of the AlQ3 antenna effect the C60 thickness is 

reduced to 30Å. (For devices with thicker C60 layers see Reference 86.) The devices are 

illuminated from the glass side. (B) Absorption in all device layers with illumination from glass 

side and an AlQ3-based antenna thickness of 700Å. The tuned cavity results in significantly 

increased absorption in the antenna layer. 
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We couple resonant antennas to phthalocyanine-based PV cells, which exhibit a 

gap in their absorption spectra between the Q and Soret bands. To help fill this gap, we 

use rubrene, a common organic light emitting device material, which has an absorption 

coefficient of α ~ 104 cm-1 at λ ~ 550nm. Rubrene functions as the Förster energy 

transfer donor for the laser dye 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-

tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB), which has high photoluminescence 

efficiency; ηPL = (90±10)%.   

To tune the resonant antenna PV shown in Figure 2.23a, we calculate the 

expected optical absorption in each layer.49 A 1250Å-thick film of 30% rubrene and 2% 

DCJTB in transparent carbazole biphenyl (CBP) tunes the cavity close to the λ ~ 500 nm 

absorption peak of rubrene. The wavevector dependence of energy transfer from the 

antenna to the PV is shown in Figure 2.24a. Energy transfer occurs predominantly via 

non-radiative coupling, mediated by SPP modes with u > 1. Near the cathode, ηET = 54%, 

but the efficiency decreases beyond ~85nm. Averaged over the antenna, ηET = 31%. 
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Figure 2.24 Spectral dependence of energy transfer for dipoles oriented perpendicular (A) 

and parallel (B) to the device plane 

Coupling is greatest for perpendicularly oriented dipoles into modes with u>1, corresponding to 

SPPs. Coupling to dielectric waveguide modes with u<1 is also strong for dipoles oriented 

parallel to the Ag-antenna interface. Coupling is strongest to the CuPC layer. 

 

 

To demonstrate the potential improvement possible using an external resonant 

antenna in conventional C60/CuPC PV cells, we compare a control device without the 

antenna to devices with an antenna composed of 30% rubrene and 2% DCJTB in CBP. 

Quenched antennas were also fabricated with the addition of 2% of the quenching 

material CuPC instead of DCJTB.  External quantum efficiency measurements were 

made using a xenon lamp with monochromator, chopped at f = 90 Hz, and measured 

using a lock-in amplifier. Light intensity was measured with a calibrated silicon 

photodiode. The external quantum efficiencies of these devices as a function of 

wavelength are shown in Figure 2.25 and compared to the reflectivity of the antenna 

cavity.  The absorption of the antenna (from Figure 2.23b) and the internal quantum 

efficiency at the PL maximum of DCJTB, ηIQE = (30±10)% at λ = 640nm, is used to 
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determine ηET. This yields ηET = (25±10)%, consistent with the calculated result of 

ηET = 31%. As illustrated, with improved energy transfer, the efficiency in the spectral 

gap between absorption peaks could be significantly improved. The absorption modeling 

also demonstrates that the improved quantum efficiency outside the region where the 

resonant cavity absorbs is due to reflectivity changes that modify the electric field profile 

within the device.   

 

Figure 2.25 External quantum efficiency (EQE) for resonant antenna devices 

Devices with functional external rubrene-based antenna layers exhibit an increase in EQE over 

the wavelength range where rubrene absorption occurs and the cavity reflectivity decreases. 

Functional antennas (□) employ the laser dye, DCJTB, whereas nonfunctional antennas (○) 

employ the quencher CuPC. The functional antenna shows a significant performance 

enhancement versus both the quenched antenna and devices fabricated without any antenna (Δ). 

Comparison with modeling (—) indicates that the energy transfer efficiency is approximately 

25%. We also show the expected EQE for energy transfer efficiencies of 0%, 50%, and 75%. 
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2.10 Antenna PV outlook 

On the basis of these results, we anticipate that energy coupling from external antenna 

layers into thin film photovoltaics provides a flexible route towards achieving high 

efficiency devices. Initial devices exhibit energy coupling of at least 30-50%, 

demonstrating plasmon mediated coupling is a viable and efficient method for optical 

pumping of solar cells. Although the introduction of the antenna adds a step into the 

energy transduction process, the decoupling of photon absorption and exciton 

dissociation can be exploited to increase overall absorption and internal efficiency 

separately through judicious device and process design. Due to increased photocurrent 

alone, this device architecture enables an increase of approximately 50% for identical PV 

materials.  

The reaction center is freed from the constraint of broadband optical absorption, 

offering the opportunity to design an artificial reaction center on the basis of high internal 

quantum efficiency, low series resistance, and stability, negating the necessity for 

disordered bulk heterojunctions and thick resistive layers to achieve high external 

quantum efficiency.  

Since the optically absorbent component need not conduct excitons or charge, 

new antenna materials are possible, including J-aggregates, quantum dots, and 

biomaterials, including photosynthetic antennas. Antenna materials should be chosen for 

high optical absorption and photoluminescent efficiency. With mixed antenna material 

and undergo cascade exothermic energy transfer, the photoluminescence requirements is 

moved to the terminal emitter and weak absorption can be mitigated by using many 

materials and the long spatial diffusion requirements can be relaxed; see Figure 2.26. 
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With graded dipole orientation control, overall antenna thickness can be reduced and 

energy transfer efficiencies can be increased. 

 

 

Figure 2.26 Idealized antenna configuration 

To increase conversion efficiency in the antenna structure, it is desirable to have maximal optical 

absorption across the visible. This can be achieved if light collection is spatially separated from 

emission. To further increase the efficiency of each, the antenna materials can be oriented for 

maximal overlap with incoming or outgoing modes. An energy gradient with decreasing distance 

will make light collection more efficient, similar to exothermic energy coupling in biological light 

harvesting antennas (See Section 1.5.1).  

 

 

Separation of the functions of light absorption and exciton dissociation constitutes 

a significant photosynthetic redesign, unaccompanied by the limitations of traditional 

organic PV. Initial device performances are modest yet promising. The separation of 

optical and electrical functionalities discussed here represents a completely synthetic 

implementation where the active materials of the artificial antenna and reaction center are 

amorphous films of pigment semiconductors. However, it is possible to construct devices 
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where one or both components are biological in origin. The excellent absorption 

characteristics of chlorosomes and charge separation characteristics of reaction centers 

are tempting, the tradeoff between performance and stability may dictate which type of 

devices yield high performance and reliability. 
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Chapter 3 Organic Solar Concentrators 

 

3.1 Solar concentrators 

Concentrators operate by partially separating the functions of light collection and charge 

generation. They accomplish this by using an optical system to concentrate sunlight onto 

solar cells, allowing for a reduction in the cell area required for generating a given 

amount of power. Concentrators can significantly reduce electricity cost by replacing 

expensive PV converter area with a less expensive optical collector, which also provides 

the opportunity to use very high performance solar cells that would otherwise be 

prohibitively expensive. 

Conventional concentrators use reflection or refraction to focus light and are 

referred to as geometric or passive concentrators. High photon flux carries with it extra 

considerations:  

1. As photons with energies greater than the electrical bandgap thermalize after 

absorption, high optical concentration of broadband light will result in 

increased heating. Since solar cell conversion efficiency drops as its 
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temperature increases, cooling is usually employed to manage these increased 

thermal loads, adding complexity, capital, and operations/maintenance costs. 

Cell packaging to accommodate the cooling system also complicates solar cell 

and module design. Typical normalized efficiency temperature degradation 

coefficients are 0.2-0.4%/oC.87 

2. The level of concentration is limited by the sine brightness equation to 

21 sinC θ≤  where θ  is the acceptance angle of the optical collector.88 For 

very high concentration levels (>500),  θ  becomes vanishingly small (see 

Figure 3.1 and Section 3.3.1). Practically, these means the collector must track 

the sun, adding complexity, capital, and operations/maintenance costs.  
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Figure 3.1 Maximum concentration versus acceptance angle 

Under geometric concentration, optical flux is conserved. As the beam area is decreased after 

passing through the concentrator, the angular divergence increases. Concentration is achieved by 

trading angle for beam area. High passive optical concentration is only possible by restricting the 

angle of acceptance, so only direct rays can be collected and the light source must be 

mechanically tracked to maintain line of sight. 
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3. The electrical current that passes through the solar cell increases linearly with 

light flux. Thermal power dissipated through joule heating grows as the square 

of the current, the electrical resistance to current flow must be reduced as 

much as possible to manage resistive heating. Very low resistance solar cells 

are expensive to produce, adding to overall system cost. 

4. Unlike flat solar modules, large tracking systems will shadow each other 

during parts of the day if not placed far apart. Since each system must be 

surrounded by a buffer zone, real estate costs increase the system price. 

 

Concentrating systems are not well suited to the current solar electric market that 

typically serves small loads.  Because they require maintenance, increased land use, and 

can operate at very high temperatures, they are better suited for large utility scale 

applications with dedicated oversight. Utility scale installations must generate electricity 

at much lower costs than residential rooftop systems due to the differential rate structure 

that exists in most markets. For these reasons, costs are too high to compete with wind or 

conventionally generated electricity and solar utilities have not surpassed pilot status. 

Although there are many variations of optical collectors that mitigate some of these strict 

requirements, they typically do so by trading some of the major benefits, and they too are 

not economically competitive. 
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3.2 Fluorescent concentrators 

In 1976, Weber and Lambe proposed a new type of concentrator that utilized the 

sequential absorption and emission of light into confined modes of a simple light guide to 

focus light.89,90  These active, fluorescent concentrators can collect both diffuse and direct 

radiation to levels above those dictated by the sine brightness equation. 

In its initial design, a plastic or dielectric material is doped with an organic dye or 

fluorescent inorganic molecule. Light is absorbed at one energy and is re-emitted at a 

lower energy. A portion of the light is trapped in the plate via total internal reflection and 

is collected at the edge exit apertures; see Figure 3.2.  

 

 

Figure 3.2 Structural configuration of a fluorescent concentrator 

Active chromophores are dispersed in a macroscopic host matrix. For high efficiency, the 

substrate must be transparent to directly incident and emitted light. One or more edge faces is 

covered with either solar cells or mirrors. Dashed lines represent light eventually lost due to 

waveguide outcoupling or self-absorption. 

 

 

The process is quantum and does not rely on geometric optics. The absorbing 

molecules operate as optical heat pumps, where thermal energy is dissipated to increase 

the chemical potential of photons in other modes. Because of this, the maximum levels of 
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concentration are limited by the thermodynamics of Boson gases, dependent on the 

Stokes shift; see Section 3.3.2.88 The energy difference between absorption and emission 

isolates the guided photon population from the unguided incident photons. High optical is 

possible without tracking and light absorption occurs from both direct and diffuse 

radiation. 

 Fluorescent concentrators possess many favorable characteristics: 

1. Energy is dissipated in each chromophore prior to emission. If the emitted 

photons possess energy nearly equal to the bandgap at the edge mounted solar 

cell, the cell will experience significantly lower thermal heating (see Section 

3.6). Thus even at very high concentration levels, passive cooling through the 

module housing is possible. 

2. Unlike passive concentrators, the angular acceptance of fluorescent collectors 

is limited by reflective entry and not conservation of light flux. In principle, 

very high concentration levels are possible without mechanical tracking. 

3. Fluorescent concentrators can be configured in a flat plate geometry, so large 

inter-module spacing is not required, decreasing real estate costs. The flat 

panel shape is also identical to existing modules, which should ease adoption 

into solar markets. 

4. The collector is compatible with low cost processing techniques like casting 

and molding and vastly simpler than PV cells. The only components are the 

waveguide, the dyes and a package. No conductive electrodes are required on 

the collector. This is important because the transparent conductive electrode is 

one of the most expensive component in thin film PV cells; see Section 1.3.91 
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The collector also does not require potentially scarce materials such as 

indium, gallium, or tellurium. 

5. Localized dark spots on solar module can permanently damage individual 

solar cells in a series connection.92 The photocurrent generated from non-

shaded cells is forced through the dark devices like a current source. In the 

absence of local current generation, this current can only be accommodated by 

developing a large reverse bias (breakdown) voltage. Thus the shaded device 

will act a power sink for all illuminated devices and will rapidly heat and 

potentially fail. This process is alleviated by including bypass diodes placed to 

sink this excess power; although they preserve system integrity, conversion 

efficiency significantly drops. Since directionality is scrambled in fluorescent 

concentrators, they are intrinsically immune to localized dark spots. 

6. Fluorescent concentrators are inherently tolerant of defects because of the 

many parallel paths available between luminescent dyes and the encircling PV 

cells. In contrast, short or open circuit failures in PV arrays can be fatal and 

render the whole device unusable.  

 

There was great interest in fluorescent collectors in the late 1970s and early 

1980s, but initial demonstrations were low efficiency and operated at very low optical 

flux gains, where the flux gain is the optical concentration corrected by the decrease in 

power conversion efficiency. The best reported system was from the California Institute 

of Technology which operated at a geometric gain of 68 and an efficiency of 1.3%, 
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resulting in a flux gain of 5.1.93,94 Several dozen papers have been published since, but no 

significant breakthroughs have been reported. 

Conversion efficiency and optical concentration are severely limited by the 

process of self-absorption, whereupon a ground state chromophore absorbs a photon en 

route to the exit aperture.  No existing dyes simultaneously satisfied the strict 

requirements of chromophore self-transparency, high quantum yield of emission, and 

excellent stability. The prospects of solving these issues appeared grim, and most reviews 

and textbooks on photovoltaic concentrators neglect to mention the existence of 

fluorescent concentrators. 

 

3.3 Thermodynamic concentration limits of solar 
concentrators 

The limits of optical concentration are ultimately set by thermodynamics and can be 

derived from considerations of entropy and energy conservation and are different for 

elastic and inelastic processes.  

3.3.1 Inelastic processes 

This derivation closely follows that of Smestad et al 1990.88 Considering an optical 

transformer with entrance aperture A1 and exit aperture A2, light enters the system with an 

angular spread defined by ±θ1 and exits with spread ±θ2.; see Figure 3.3. Photons pass 

through the system inelastically; that is, they leave the aperture unchanged in energy. The 

radiance of the light, L, is the flux per unit solid angle, Ω, per unit projected angle. 
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Figure 3.3 Optical transformer 

The apertures has entrance areas A1 and A2, with angular spreads θ1 and θ2. 

 

The flux incident on the top aperture from a Lambertian source is then given by the 

integral of the radiance times the area and projected solid angle, or  

 1 2
1 1 1 1 1 1 1 10

cos 2 sin cos sinL A d L A d L A
θ

θ π θ θ θ π θΦ = Ω = =∫ ∫  (8) 

and similarly for the flux leaving the exit aperture. The concentration is given by ratio of 

the illuminations of the exit and entrance apertures, or  
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For a passive, geometrical concentrator where the optical system does not affect the 

energy of each photon, flux and radiance are conserved throughout the transformer. This 

means that as the beam area is decreased, the divergence, is increased to compensate. Put 

another way, area is traded for angle to achieve optical concentration. The maximum 

concentration is then given by  



101 

 
2

2
2 2

1 1

sin 1
sin sin

G θ
θ θ

= =  (10) 

where the maximum occurs when output aperture is fully divergent. If the concentrator is 

made of medium with refractive index n, then the concentration limit is increased by the 

factor n2.  

To reach high concentration levels (>500),  θ  becomes vanishingly small; this is 

only possible by orienting the optical system directly at the sun as it transmits the sky, 

adding complexity, capital, and operations/maintenance costs. 

3.3.2 Elastic processes 

Fluorescent concentrators are elastic systems, as vibrational relaxation of the absorbing 

chromophores decreases the energy of the emitted photon and the conservation of 

radiance no longer holds. The above derivation must be generalized to find the 

thermodynamic concentration limit. This section closely follows the treatment of 

Yablonovitch (1980).95  

The entropy change associated with the loss of a photon from the incident Bose 

field is  

 
2 2

2

8log 1 nS k
c B

π υ⎛ ⎞
Δ = − +⎜ ⎟

⎝ ⎠
 (11) 

where υ is the frequency, n is the refractive index, k is the Boltzmann constant, and B is 

the brightness of the incident field in units of photons per unit area, bandwidth, time, and 

solid angle 4π. The entropy increase in the field inside the fluorescent collector is then  

 ( )2 2
1 22

2
2

8log 1
hnS k

c B T
υ υπ υ −⎛ ⎞

Δ = + +⎜ ⎟
⎝ ⎠

 (12) 
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where additional term is the thermal dissipation of the Stokes shift, υ1- υ2 at temperature 

T. According to the second law of thermodynamics, the change in entropy of the input 

and output fields must be greater than zero, so: 

 ( )2 2 2 2
1 21 2

2 2
1 2

8 8log 1 1
hn nk

c B c B T
υ υπ υ π υ −⎛ ⎞ ⎛ ⎞

+ + ≤⎜ ⎟ ⎜ ⎟
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 (13) 

Under terrestrial condition, this inequality may be simplified find:  
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Accordingly, fluorescent concentrators are not dependent on incident angular range and 

tracking is not required. The ultimate concentration limit is sensitively linked to the 

Stokes shift.  

 Light transport losses are also sensitively linked to the Stokes shift through the 

process of self absorption. The strict requirements of dye self-transparency have 

historically limited actual performance to at least two orders of magnitude lower than the 

thermodynamic limit.  

3.4 Organic Solar Concentrators 

The strict requirements of dye self transparency can be addressed if the physical structure 

of fluorescent concentrators is redesigned. In this work, we construct organic solar 

concentrators (OSCs) by depositing a thin film of dye molecules onto a clear substrate; 

see Figure 3.16a. If the refractive index of the coating and substrate match, the coated and 

cast structures are optically equivalent to guided light. However, the thin film geometry 

allows greater control over the microscopic separation between dye molecules, and we 

are able to apply the recent advances of organic optoelectronics to fluorescent collectors. 
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Notably, we employ Förster energy transfer,96 solid state solvation,97 and 

phosphorescence98 to relax the constraints on the active optical materials. Thin film 

organic semiconductor technology allows us to precisely control intermolecular energy 

transfer using low-cost fabrication processes.  

 We continue with brief discussions of OSC trapping efficiency and thermally-set 

concentration limits, and review Förster energy transfer, solid state solvation, and 

phosphorescence.  

3.5 OSC loss processes 

In a simple cladding-core-cladding multimode waveguide populated with isotropically 

distributed electromagnetic radiators, the solid angle trapped by total internal reflection is 
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Normalizing by the full 4π solid angle gives the trapping efficiency, ηtrap 
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Equation 1 is plotted in Figure 3.4 when nclad = 1. For the simple air-clad glass 

waveguide, with a core refractive indices of ncore = 1.5, approximately 75% of the re-

emitted photons will be trapped. To maximize ηtrap in this simple structure, it is desirable 

to make ncore  as high as possible. 
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Figure 3.4 Confinement efficiency in a simple air-clad core structure 

A high index medium surrounded by low index media will preferentially guide light. For 

isotropically emitting radiators, the index mismatch between core and cladding should be as high 

as possible to maximize the confined luminescence fraction.  

 

In OSCs, it is desired to have light guided in the coating-substrate system, which 

requires an index of refraction matching between coating and substrate. If 

coating substraten n> , the probability of light trapping in the coating,  coating guidingη , can be high: 

 

2

 21 substrate
coating guiding

coating

n
n

η = − . (17) 

See Figure 3.5. For light guided in the coating layer, the self transparency requirements 

are increased by a factor of the ratio of coating to substrate thickness, substrate coatingt t . For  

substratet = 1 mm and coatingt = 1 μm, this ratio is 103, so all coating-guided light is 

immediately lost. 
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Figure 3.5 Organic trapping efficiency 

In an OSC, it is desirable to guide light in the composite substrate-coating system as opposed to 

only the coating, which exhibits much higher loss, 1-ηcoating guiding. For a coating of index 1.75 and 

substrate of 1.5, over 50% of trapped light is trapped in the film and lost for collection. 

 

 

To decrease trapping losses and coating guiding, the preceding discussion 

suggests that substraten  should be as high as possible, and substrate coating claddingn n n≥ ≥ , if 

possible. In this work, only systems of this type are explored. 

Although not explored here, there are two methods one can employ to increase 

trapη : 

1. Like electromagnetic antennas, molecular antennas have directionality. If many 

microscopic dipoles are isotropically distributed, the macroscopic emission 

profile will be isotropic. However, for static, aligned emitters, strong 
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directionality will increase trapη ,99 increasing OSC optical quantum efficiency, 

OQEη  . 

2. Wavelength dependent omnidirectional reflectors100 would enable ηtrap = 100%. 

For instance, the transmission characteristic of a 19-layer stack of zinc 

selenide/cryolite films is shown in Figure 3.6b. To increase OSC OQEη , the mirror 

must be transparent to light coupled into the guide and perfectly reflective for 

guided light. For example, the mirror shown in Figure 3.6b exhibits transmission 

below the λ = 600 nm cutoff and complete reflectivity above that wavelength. 
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Figure 3.6 Omnidirectional reflectors for OSCs 

(A) A schematic implementation of an omnidirectional reflector. (B) One of the first examples101 

employed a 19 layer stack of Na3AlF6/ZnSe. The materials were chosen for their relatively large 

index contrast. Note the absence of transmission between λ= 600 and 800 nm. Although this 

stack is an excellent reflector for emitted light between λ= 600 and 800 nm, its non-unity 

transmission for light of λ< 600 nm will significantly diminish total collector performance. 
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3.6 Thermal model 

To investigate the thermal performance of OSCs under solar illumination, we investigate 

a simple heat transfer model here. In conventional single junction solar cell, photons with 

energy less than the bandgap, GE , are transmitted though the device and are lost. Photons 

with energy greater than the bandgap are absorbed and the difference heats the device; 

see Figure 3.7. By integrating the AM1.5G solar spectrum and assuming perfect charge 

generation and current collection, we can calculate the maximum possible power and 

minimum thermal conversion efficiency. These results are shown as a function of 

bandgap energy in Figure 3.8. 

 

 

Figure 3.7 Light interaction with a semiconductor 

Photons with energies less than Eg are not absorbed and are transmitted through the material. 

Photons with energies greater than Eg are absorbed but the difference is converted to heat. 

Although the chromophores considered here do not exhibit band transport, similar thermalization 

principles apply where the Eg is the energy difference between the lowest unoccupied  and 

highest unoccupied molecular orbitals. 
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Figure 3.8 Power flow and maximum optical concentration in a single junction solar cell.  

In (A), perfect electrical energy conversion is assumed (dark blue). Under these conditions, 

thermal heating is least (black). Light is incident with the power spectrum of the sun (red). The 

minimum possible thermal load sets the maximum possible optical concentration (B) if thermal 

power sinking is assumed.  In practice, the thermal load is higher and maximum concentration 

limits are lower. 

 

 

 The ratio of the electrical power harvested by the solar cell, Pelectrical, and the 

incident optical power, Poptical, is the power conversion efficiency. The shape matches the 

single junction conversion efficiency limit calculated by Shockley and Queisser,102 with 

an optimum bandgap of  ≈1.3 eV. Transmitted optical power approaches 100% for large 

GE , while absorbed power approaches 100% for low GE . Most single junction solar cells 

have bandgaps within 0.3 eV of the optimum value.§ In this range, solar cells must 

dissipate at least 30-50 mW/cm2 of thermal power, Pthermal. 87 

                                                 
§ Silicon: 1.12 eV; CdTe: 1.5 eV; CIGS: 1.1 eV; GaAs: 1.4 eV; amorphous Si: 1.6 eV; InP: 1.3 eV100 
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 Actual thermal dissipation requirements depend on local solar insolation levels, 

ambient temperature, and convective wind velocity. However, we can estimate the 

maximum optical concentration levels using the standard AM1.5G spectra and assume 

heat dissipation limits. If cell temperature is not adequately controlled, the normalized 

efficiency degradation is approximately 0.2-0.4%/oC.103 

 The thermal dissipation requirements under non-concentrated illumination are 

manageable, although it is preferable to operate cells as low temperature as possible. 

Under optical concentration, the thermal resistance to heat conduction from the cell is 

highly dependent on cell geometry.  Practical (both measured and modeled) concentration 

limits for linear arrays of single junction solar cells is 10-20 suns equivalent (1-

2 W/cm2).103-107 This coincides well with the simple model explored here which 

calculates upper limits; see Figure 3.8b.  

 The tracking requirements of 1-D linear arrays are relaxed, but Figure 3.8b makes 

evident that very low concentration limits are possible when constrained by passive 

cooling. Since OSCs remove excess energy from photons that would otherwise heat the 

solar cell under direct illumination, the maximum optical concentration levels set by 

thermal constraints are higher. To investigate this, a simple thermal model is explored for 

an OSC. The AM1.5G spectrum is completely absorbed by the chromophore layer from 

0 < λ < λabs, see Figure 3.9. Photons are emitted with unity efficiency at λemission to be 

absorbed by the solar cell. All photons are absorbed; as before, the excess energy heats 

the cell. The total thermal power remained after electrical conversion is calculated as a 

function of λabs and λemission for two solar cells of interest, GaInP and GaAs, whose 

bandgaps are 1.7 eV and 1.4 eV, respectively. The relative amount of thermal energy 
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removed from each photon incident on the solar cell is 

( ) ( )( )PV emission abs emission PV absλ λ λ λ λ λ⋅ − ⋅ − . For typical values of λabs = 500 nm, λemission = 650 

nm, and λPV = 730 nm, this reduction is 73%. 

 

 

Figure 3.9 Thermal model parameters 

In the simple model investigated here, light is collected from 0 < λ < λabs and emitted at λemission 

for collection at a solar cell which has unity external quantum efficiency for λ < λPV.  

 

 

 The results for GaInP are shown in Figure 3.10 and GaAs in Figure 3.11. For all 

values of λabs and λemission, the thermal power load is 10-100 times lower than the direct 

illumination case, indicating that the thermally set maximal concentration levels are 

approximately 100 times higher. The plots are overlaid with contours to illustrate λabs and 

λemission values that result in concentration levels of 200, 400, 600, and 900 times solar 

irradiance. These levels represent upper bounds since the model is simplistic. Since the 

since the model predicts (within a factor of two) the direct illumination concentration 

limit, the relative difference should be valid. Practically, the concentration limits set by 

self-absorption will limit optical concentration before thermal dissipation requirements 
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become an issue. These results also indicate that simple, passive mounting on metal strips 

are adequate thermal sinks for all concentration levels of interest.103 

 

 

Figure 3.10 Thermal power loads and concentration limits for an OSC coupled to a GaInP 

PV 

Thermal load increase as emission wavelength decrease (photon energy increases) and as OSC 

absorption cutoff wavelength increases (increasing collected photon number). Since the emission 

wavelength is constrained to be greater than the absorption cutoff wavelength, the upper left 

region is blank. Assuming a thermal power dissipation limit for a linear PV array of 1 W/cm2, 

contours of maximum concentration are overlaid that are two orders of magnitude higher than 

direct incidence without wavelength conversion. 
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Figure 3.11 Thermal power loads and concentration limits for an OSC coupled to a GaAs 

PV 

Thermal loads are similar in shape but higher in magnitude for GaAs cells compared to GaInP 

(Figure 3.10). To reach similar optical concentration, light emission must be pushed towards the 

infrared. 

 

3.7 Dye stability 

Photovoltaic modules have typical lifetimes of 20-30 years. OSCs must exhibit excellent 

stability to be commercially viable. The most likely candidate for failure is the organic 

dye, which will typically fail through loss of photoluminescence yield, then photo-

bleaching (loss of absorption). The German chemical company BASF has developed a 

class of fluorescent concentrator dyes designed for very long lifetimes based on perylene 

derivatives. These dyes have been investigated by the ECN in the Netherlands and un-

encapsulated dyes cast in polymethyl methacrylate and variants have been measured with 

system lifetimes of roughly four years.108,109 Besides photostability, the dyes must be 
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chemically nonreactive with any stabilizers, fire retardants, and any other additives mixed 

in with the polymer sheets. 

 The organic dye molecules we investigate in this study were originally developed 

for organic light emitting diodes (OLEDs). Since the original fluorescent concentrator 

studies there has been significant investment in the research and development of OLEDs, 

resulting in devices that exhibit half-lives exceeding 300,000 hours, or thirty years.110 

Progress in OLED stability has been achieved through advances in dye molecule design 

and packaging. Both of these technologies are directly applicable to OSCs. Indeed, in this 

work we employ two dyes 4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-

tetramethyljulolidyl-9-enyl)-4H-pyran111 (DCJTB) and platinum 

tetraphenyltetrabenzoporphyrin112 (Pt(TPBP)) which have exhibited stabilities exceeding 

1,000,000 and 100,000 hours in OLEDs, respectively.113,114 Since they are thermally 

deposited onto glass, they do not interact with the substrate. We also note that OLED 

device stability requirements are more stringent. In OLEDs, electrical current is passed 

through the molecules and the films can reach high concentrations of triplet species 

which are highly reactive with oxygen. The quoted lifetimes were measured in systems 

packaged with steel backing, attached by epoxy. The failure modes of material utilized in 

OSCs must be evaluated carefully. External light filtering to remove especially harmful 

light is possible, although device efficiency will be sacrificed. 
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3.8 Thin film organic optoelectonics for OSCs 

Fluorescent concentrators were initially proposed in 1976,90 but demonstrations of high 

power conversion efficiencies has been especially frustrated by high self-absorption 

losses. Recent advances in organic optoelectronics gained in the development of organic 

semiconductor light emitting devices are directly applicable to OSCs. We discuss the 

relevant physical processes and their benefits in the Sections 3.8.1-3.8.3 . 

 

3.8.1 Förster energy transfer 

Förster recognized in 1959 that direct long range energy transfer could occur between 

two molecules if the emission spectrum of the donor molecule overlaps the absorption 

spectrum of the acceptor molecule.96 This energy transfer couples the transition dipoles 

of neighboring molecules, can operate on the length scale of several nanometers, and 

occurs without the emission of a photon into the far field. Where strong overlap occurs, 

this process dominates others and will occur before radiative recombination and far field 

light emission.   

The energy transfer process can be used to enhance the wavelength shift between 

self absorption and emission. In particular, Förster energy transfer, which couples the 

transition dipoles of neighboring molecules, can be exploited to couple a dye with short 

wavelength absorption to a dye with longer wavelength absorption. This process is 

schematically illustrated in Figure 3.12. Energy transfer that occurs without photon 

emission offers several advantages: 
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1. The waveguide must be transparent to emitted light to reduce self-absorption 

losses. Reducing the dye concentration is a simple way to do this, but 

absorption is lost. Energy transfer allows high concentrations of absorbers to 

be used with lower concentrations of emitters. The increased self-transparency 

will reduce transport losses and enable higher optical concentrations at the 

waveguide edges. 

2. The strict requirements of high photoluminescence efficiency, PLη , can be 

moved to the terminal emitter. Each emission process incurs with it additional 

losses associated with non-unity PLη .  Since energy transfer effectively 

competes with non-radiative recombination, low PLη  dye materials can be 

used to optically pump the emitting material with high efficiency. 

3. Each emission event carries with it potential losses up to 1- trapη . Removal of 

non-essential emission is preferred. 

4. As dyes degrade in performance, PLη  typically precedes photo-bleaching; 

strict stability requirements can be eased for donor molecules. 
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Figure 3.12 Spatial and energetic representation of Förster energy transfer 

(A) In a pure film, absorption and emission of light is performed by the same molecular species. 

(B,C) When a second, lower energy dye is added, the host material can transfer energy to it 

without emission of a photon, introducing a substantial energy shift between absorption and 

emission. Near field energy transfer effectively competes with direct radiative recombination 

within the Forster transfer sphere.  

 

 

Figure 3.12 suggests two ways in which energy transfer is possible. Since near 

field energy transfer requires intermolecular distances of several nanometers, these can be 

controlled through either physical linkages or high packing density. We employ thin, 

homogenous coatings to control dye spacing though film composition control.  

 

3.8.2 Solid state solvation 

The excited state of many organic dyes is highly polar. If such dyes are surrounded by a 

polar dielectric that stabilizes the excited state, the emission of the dye may be red-

shifted. The Stokes shift will increase if the excited state is more polar than the ground 

state. This energy shift will similarly reduce the overlap between absorption and 
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emission, increasing the light transport efficiency. This effect is employed in organic light 

emitting diodes to adjust emission color.97 

 

 

Figure 3.13 Energy level representation of solid state solvation 

Although a stable charge dipole may exist in the neutral ground state due to non uniform electron 

density on a molecule, the charge separation that occurs after light absorption will typically 

increase its magnitude. If surrounded by a polar host matrix, additional nuclear or vibrational 

relaxation may occur to achieve a lowest energy state. This additional energy relaxation will 

result in emission that is red-shifted compared to the non polar host matrix case. The shift may 

increase dye self transparency. 

 
 

 

3.8.3 Phosphorescence 

The absorption of a photon by a dye molecule promotes an electron from the highest 

occupied molecular orbital (HOMO) to the lowest unoccupied molecular orbital 

(LUMO). Considering only the electrons in these frontier molecular orbitals, the excited 

state, or exciton, may be simplified to a two-electron system. Consequently, it may take 

one of four possible spin states: three “triplet” states with total spin 1, and one “singlet” 

state with total spin 0. For fluorescent molecules, only the singlet exciton state has a 

strongly allowed radiative transition to the ground state. 
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The exchange energy separating the fluorescent singlet state from the triplet is 

typically 0.7 eV. Because many excitons are generated in the triplet state in organic light 

emitting devices,98,115 there has been much effort recently directed at the synthesis of 

efficient triplet emitters. Such dyes are known as organic phosphors, because the 

emission is typically only weakly allowed and therefore somewhat slower than 

fluorescence. The advantage of phosphors in OSCs is that the triplet state is only weakly 

absorptive, so they typically exhibit huge Stokes shifts and weak self absorption; see 

Figure 3.14. 

.  

 

Figure 3.14 Phosphorescence 

The energy level difference between excited singlet and triplet excitons arises from the exchange 

energy. This energy reduction shifts emission further to the red, increasing dye self transparency. 

 

 

An example of the benefit of phosphorescence in reducing self absorption is 

shown in Figure 3.15. Here we first show the absorption and fluorescence of the classic 

fluorescent laser dye coumarin6 (C6).116 It is then compared to a synthetic variant that 

couples the dye with the heavy metal atom Ir. Spin orbit coupling induced by the 

presence of Ir enhances phosphorescence from C6 without noticeably altering the 

absorption spectrum. The phosphorescent variant has substantially lower self-absorption. 
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Figure 3.15 Phosphorescence to increase dye self-transparency 

The heavy metal effect on the classic laser dye C6. Note the dramatic decrease in self-absorption. 

From Lamansky, et al.116 

 

 

Organic phosphors offer a number of benefits: 

1. Spin orbit coupling of heavy metal atoms, such as Pt and Ir, leads to short 

phosphorescent lifetimes (< 100 μs) and high phosphorescence efficiencies, 

enhancing photostability. 

2. The large exchange energies in organic phosphors enable strong, narrow 

emission at near infrared wavelengths, leading to broadband spectral 

collection across the visible wavelengths. 

3. Direct excitation of triplet states are undesirable, or self transparency will be 

compromised. Some organic phosphors exhibit weak triplet absorption 

coefficients, allowing high optical concentration. 
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4. Its desirable to utilize films with high chromophore loading, but low 

intermolecular spacing often leads to concentration quenching. Many 

phosphorescent compounds show marked self quenching at doping levels of 

10% and higher, enabling optically dense thin films.  

 

3.9 Device architectures 

OSCs utilizing the above design elements were explored in several device architectures. 

In its simplest format, a single high refractive index waveguide is coated with micron-

thick films of co-deposited organic materials. A silver mirror is placed behind the OSC, 

separated by an air gap; see Figure 3.16a. To obtain the highest power conversion 

efficiencies we construct tandem OSCs.89 Incident solar radiation first encounters an OSC 

employing a short wavelength dye. Longer wavelengths are transmitted through the first 

OSC and absorbed by a longer wavelength dye in a second OSC (Figure 3.16b). Stacked 

solar cells allow more electrical power to be extracted from each photon compared to the 

single junction case.117 However, the technical constraints of current matching, lattice 

matching, spectral fluctuations, and the requirement of additional tunnel junctions 

complicate the manufacturing and design of multijunction solar cells.118 In comparison, 

the integration of two or more OSCs avoids these constraints. The bandgaps of the solar 

cells coupled to each of the OSCs are chosen such that absorption of guided radiation is 

complete, yet the energy shift is low to increase conversion efficiency and minimize 

heating. 

A third configuration is possible whereupon the solar radiation transmitted 

through the top OSC can be gathered by a bottom PV cell (Figure 3.16c) or used to heat 
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water in a hybrid PV thermal system.89 In this configuration, the OSC operates to 

improve the efficiency of an existing thin film PV system, potentially reducing total 

system cost.  
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Figure 3.16 Physical configuration of Organic Solar Concentrators (OSCs) 
(A) OSCs consist of a thin film of organic dyes deposited on high refractive index glass 
substrates. The dyes absorb incident solar radiation and re-emit it at a lower energy. 
Approximately 80% of the re-emitted photons are trapped within the waveguide by total internal 
reflection for ultimate collection by a PV device mounted on the substrate edges. Photon loss 
(dashed lines) occurs via non-trapped emission or absorption by other dyes. (B) Light transmitted 
through the first OSC can be captured and collected by a second OSC whose dyes absorb and 
emit light at lower energies for electrical conversion at a second, lower bandgap PV device. 
Confinement losses in the top OSC can be reduced if downward emitted light is collected in the 
bottom OSC.  In each case, a mirror placed at the bottom of the stack increases absorption by 
allowing a second pass through the OSC. (C) The bottom OSC can be replaced by a low cost PV 
cell or used to heat water in a hybrid PV thermal system. All three configurations are explored in 
this work. 
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3.10 Materials for OSCs 

Chromophore self transparency is the primary loss factor preventing high optical 

concentration in OSCs. Thin films of several microns absorb incoming radiation in the 

vertical dimension, but horizontal guided transport must occur over length scales of tens 

of centimeters. This sets steep requirements for very low overlap between absorption and 

emission spectra.  

We quantify self absorption losses using the self absorption ratio, S, between the 

peak absorption of a given material and its absorption at its emissive wavelength. 

Previously, Batchelder and Zewail evaluated the spectral properties of 18 laser dyes for 

suitability for fluorescent concentrators.93,94 They found DCM (4-dicyanomethylene-2-

methyl-6-(p-dimethylaminostyryl)-4H-pyran) to have the highest photoluminescence 

efficiency and best spectral characteristics, with a Stokes shift of 150 nm, corresponding 

to S = 25; see Figure 3.17. When doped into polymethyl methacrylate planar guides in the 

device structure shown in Figure 3.2, they measured power conversion efficiencies of 

1.3% at optical concentration levels of G = 68. 
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Figure 3.17 Optical absorption and emission spectra of DCM 

The high photoluminescence efficiency of DCM made it an attractive candidate material for 

fluorescent collectors, despite its large overlap between absorption and emission, with a self 

absorption ratio of S=25. 

 

 

We implemented Förster energy transfer to improve the performance of Zewail’s 

DCM-based concentrator. In the new low-self absorption concentrator, DCM is employed 

in much lower concentrations. Optical absorption is instead performed by two common 

OLED materials, tris(8-hydroxyquinoline) aluminum (AlQ3) and rubrene. Both materials 

are fluorescent at high concentrations and are therefore capable of energy transfer to a 

low density of DCM. Because Förster energy transfer is a short range (~3-4 nm) 

interaction, all the dyes are co-evaporated in a thin film. Earlier concentrators were made 

by diffusing dyes within a polymer substrate.93,94 However, the low dye density in such 

devices precludes the use of Förster transfer to minimize self absorption. In this work, we 

study several new dyes, including DCJTB (4-(dicyanomethylene)-2-t-butyl-6-(1,1,7,7-

tetramethyljulolidyl-9-enyl)-4H-pyran), a modern variant of DCM.  
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To control the concentration of DCJTB, it was co-deposited with the host material 

tris(8-hydroxyquinoline) aluminum (AlQ3), which forms stable amorphous films.119 The 

self absorption ratio is enhanced when AlQ3 is used as the host, because both AlQ3 and 

DCJTB are polar molecules. The polar environment red-shifts the DCJTB 

photoluminescence (PL) via the solid state solvation effect, which is employed in OLEDs 

to adjust the emission color.97  

Förster energy transfer is used to reduce the required concentration, and hence the 

self absorption of the emissive dye. For example, in the rubrene-based OSC of Figure 

3.18a, we employ rubrene and DCJTB in a 30:1 ratio. Förster energy transfer from 

rubrene to DCJTB increases the self absorption ratio of the rubrene-based OSC relative to 

the DCJTB-based OSC. Rubrene is non polar, however, and together with a slight 

reduction in the DCJTB concentration, this causes the DCJTB PL to shift approximately 

20 nm back towards the blue. We also build OSCs using Pt(II)-

tetraphenyltetrabenzoporphyrin (Pt(TPBP)), which is phosphorescent in the infrared at 

λ = 770 nm with a PL efficiency of approximately 50%. It emits from a weakly-allowed 

triplet state relaxation. Compared to conventional fluorescent dyes, an advantage of 

phosphorescent dyes is that the emissive state is only weakly absorptive. Thus, phosphors 

typically exhibit large Stokes shifts, eliminating the need for Förster transfer to a longer 

wavelength terminal dye. Indeed, the self absorption ratio for the Pt(TPBP)-based OSC is 

approximately S = 500; see Figure 3.18b. To fill the gap in the Pt(TPBP) absorption 

spectrum between the Soret band at λ = 430 nm and the Q band at λ = 611 nm, we add 

DCJTB, which efficiently transfers energy to Pt(TPBP).  
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Figure 3.18 Normalized absorption and emission spectra of OSC films 

(A) The ratio between the peak absorption coefficient and the absorption coefficient at the 

emission wavelength provides a measure of the self absorption in an OSC film.  The self 

absorption ratio in a DCJTB-based OSC is S = 80 (dotted lines). A larger self absorption ratio of 

S = 220 is obtained in a rubrene-based OSC (solid lines). The self absorption ratio increases 

because the amount of DCJTB is reduced by a factor of three. Its absorption is replaced by 

rubrene, which then transfers energy to DCJTB. Inset: DCJTB chemical structure. (B) 

Phosphorescence is another method to reduce self-absorption. The self absorption ratio in a 

Pt(TPBP)-based OSC is S = 500. Inset: Pt(TPBP) chemical structure. 

 

 

Organic solar concentrators (OSCs) were fabricated using vacuum (< 3 × 10-6 

Torr) thermal evaporation. Film thickness and deposition rates were controlled using 

quartz crystal monitors. The DCJTB-based OSC is a 5.7-μm-thick film of 2% DCJTB in 

AlQ3. The rubrene-based OSC is a 1.6-μm-thick film of 30% rubrene and 1.0% DCJTB 

in AlQ3. The Pt(TPBP)-based OSC is a 5.9-μm-thick film of 2% DCJTB and 4% 

Pt(TPBP) in AlQ3. The rubrene, DCJTB and Pt(TPBP) concentrations within AlQ3 were 

chosen to minimize concentration quenching of their photoluminescent efficiencies.120 
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The thickness of each OSC was adjusted to obtain the desired optical absorption. The 

absorption spectra were measured with an Aquila spectrophotometer.  

 

3.11 Optical quantum efficiency spectra 

The optical quantum efficiency (OQE), defined as the fraction of incident photons 

emitted from the edges of the OSC substrates, was determined within an integrating 

sphere. Devices were fabricated on glass with refractive index n = 1.82. We distinguish 

between edge and facial emission by selectively blocking edge emission from some 

samples using black tape and permanent black marker. The excitation source for all 

experiments was a Xenon lamp coupled into a monochromator and chopped at 90 Hz, 

yielding an optical intensity at the sample of approximately 5 mW/cm2. All OSCs were 

backed by a silvered mirror separated by an air gap. The tandem OSC was backed by a 

single mirror behind the bottom collector. Photoluminescence was detected 

synchronously using a calibrated Si photodetector mounted directly on an integrating 

sphere. 

The ratio of the area of the concentrator to the area of the PV cell is the geometric 

gain, G, also known as the geometric concentration factor. The OQEs of the single 

waveguide OSCs at low geometric gain (G = 3) are compared in Figure 3.19a. For the 

two dye fluorescent system (red), AlQ3 absorbs and DCJTB both absorbs and emits. In 

the three dye fluorescent system (blue), the absorption function of DCJTB is replaced by 

rubrene, lowering the self absorption but also reducing the spectral bandwidth. For the 

phosphorescent system (green), AlQ3 and DCJTB absorb and PtTPTBP both absorbs and 

emits.  
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A tandem waveguide OSC was constructed using the rubrene-based OSC on top 

to collect blue and green light and the Pt(TPBP)-based OSC on the bottom to collect red 

light. Together, this tandem OSC combines higher efficiency collection in the blue and 

green with lower efficiency performance further into the red, as shown in Figure 3.19b.  

 

 

Figure 3.19 Optical quantum efficiency (OQE) spectra at a geometric gain of G = 3. 

The OQE is the fraction of incident photons that are emitted from the edges of the substrate. In 

(A) we plot the OQE spectra of the DCJTB, rubrene and Pt(TPBP)-based single waveguide 

OSCs. The DCJTB-based OSC is a 5.7-μm-thick film of 2% DCJTB in AlQ3. The rubrene-based 

OSC is a 1.6-μm-thick film of 30% rubrene and 1% DCJTB in AlQ3. The Pt(TPBP)-based OSC 

is a 5.9-μm-thick film of 2% DCJTB and 4% Pt(TPBP) in AlQ3.  (B) In the tandem configuration 

light is incident first on the rubrene-based OSC (blue). This filters the incident light incident on 

the second, mirror-backed, Pt(TPBP)-based OSC (green). The composite OQE is shown in black. 

 

Power conversion efficiencies were obtained by integrating the product of the 

OQE, AM1.5G spectrum, and solar cell external quantum efficiency. OSCs with 

emission from DCJTB are paired with GaInP solar cells;121 those with emission from 

Pt(TPBP) are paired with GaAs.122 We assume ideal optical coupling to an attached solar 



129 

cell. We also consider the use of CdTe or Cu(In,Ga)Se2 solar cells to absorb the long 

wavelength radiation transmitted through a rubrene-based OSC. Table 3.1 summarizes 

the PV quantum efficiency (ηQ), open circuit voltage (VOC), fill factor (FF), PV power 

conversion efficiency (ηPV) of each solar cell. The power efficiencies of tandem OSCs 

were calculated by filtering the AM1.5G spectrum with the direct transmission function 

of the top OSC. We confirmed that facial emission is evenly distributed between the top 

and bottom face by collecting facial photoluminescence with a Si detector. Light emitted 

through the bottom face of the top OSC can be absorbed by the bottom OSC; these 

incident photons are included in the tandem power conversion efficiency calculation. 

The DCJTB-rubrene-AlQ3 OSC has ηPCE = 5.5%, while for DCJTB in AlQ3 

alone , ηPCE = 5.9%. The efficiency of the tandem OSC peaks at 6.8%. We also calculate 

the power efficiency of tandem systems consisting of a top rubrene-based OSC whose 

transmission is incident on a CdTe or Cu(In,Ga)Se2 (CIGS) PV cell.123,124 The OSC is 

predicted to increase the efficiency of in-production CdTe and CIGS cells from 9.6% and 

13.1% to 11.9% and 14.5%, respectively; see Figure 3.20. 
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Figure 3.20 Hybrid OSC thin film PV system quantum efficiency 

In-production thin film topped with the rubrene based OSC (OQE in blue) described in this work 

show increased power conversion efficiency compared to the direct illumination case. Direct 

incidence is filtered by the transmission function of the OSC (green), reducing its effective 

external quantum efficiency (from red to black). The performance increase is larger for the 

cadmium telluride cell since it suffers from poor performance at blue wavelengths. 
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Table 3.1 Inorganic solar cell parameters 

The electrical performance of the solar cells used in the OSC power conversion efficiency 

calculations.  GaInP and GaAs solar cells were used because their absorption cutoff is closely 

matched to the emission spectrum of the OSC terminal emitters.  The CdTe and Cu(In,Ga)Se2 

thin film PVs used in modeling the OSC-thin film tandem devices are commercially available.   

 

3.12 Performance versus optical concentration 

The external quantum efficiency (EQE) is the number of harvested electrons per incident 

photon and includes the coupling losses at the PV interface and the quantum efficiency of 

the PV. EQE was measured as a function of geometric gain, G, at λ = 534 nm for the 

fluorescent devices and λ = 620 nm for the phosphorescent devices. OSCs used in the 

external quantum efficiency measurements were fabricated on glass with refractive index 

n = 1.72.  The current was measured with an attached, 125 mm × 8 mm PV cell 

manufactured by Sunpower with ηQ > 0.85. The OSC was excited at normal incidence 

along a line bisecting the glass substrate and perpendicular to the attached PV cell. The 

measured photocurrent was then corrected for the solid angle to determine the external 

quantum efficiency as a function of G. The correction factor, g, as a function of distance, 

d, from the PV is derived from geometrical considerations: 

PV ηQ VOC FF ηPV (%) Reference 

GaInP 0.83 1.34 0.83 18.1 121 

GaAs 0.91 1.02 0.87 25.1 122 

CdTe 0.83 0.79 0.62 9.6 123 

Cu(In,Ga)Se2 0.82 0.59 0.67 13.1 124 
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 ( )1tan 2g L dπ −=  (18) 
where L is the length of the OSC substrate. 

To compare the measured external quantum efficiency (EQE) data to theory, we 

follow the treatment of Batchelder, et al. 94: 

 
( )1

1
PL trap

EQE Q abs
PL trap

r
r

η η
η η η

η η
⋅ −

= ⋅
− ⋅ ⋅

 (19) 

where r is the average probability that an emitted photon will be reabsorbed, ηabs is the 

fraction of incident photons that are absorbed, ηPL is the photoluminescent yield of the 

OSC, and ηtrap is the OSC trapping efficiency. Under the condition of isotropically 

oriented emitters in the organic layer, the efficiency of waveguide trapping is  

 
2

21 clad
trap

core

n
n

η = −  (20) 

where the waveguide core and cladding refractive indices are ncore and nclad, respectively. 

For air cladding and an organic thin film refractive index of ncore = 1.7, ηtrap ≈ 80%. The 

only variable in Equation (19) that varies with geometric gain is r. We use a simplified 

calculation for r that accounts for the square geometry of our samples and uses the self-

absorption ratio outlined in the text. The self-absorption probability, r, is a function of the 

overlap between the normalized emission spectrum of the dye f(λ) and the absorption 

coefficient of the dye α(λ). The absorption coefficient must be scaled by the 

concentration of the dye within the waveguide. We express the concentration as the 

effective thickness of the dye layer, t, divided by the total thickness of the waveguide, t0, 

which is assumed to be index-matched to the dye layer. For a dye molecule in the center 

of a square OSC with length L, the self absorption probability is given by 
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where θ is the azimuth defined relative to the normal of the OSC plane, φ is the zenith 

coordinate, and ( )1sincrit clad coren nθ −=  is the total internal reflection cutoff. Noting that 

G = L/4t0, yields 
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Next, we approximate the emission spectrum by a single wavelength 

 ( ) ( )PLf λ δ λ λ= −  (23) 
which yields 
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where A is the single pass peak absorbance of the OSC. The self absorption ratio is 

S = αmax/αPL, where αmax is the absorption coefficient at the peak absorption wavelength, 

and αPL is the absorption coefficient at the emission wavelength λPL. Equation (24) is 

most accurate for low self absorption since it does not model the progressive red shift in 

the waveguided light due to self absorption. Many OSCs, however, will likely operate 

with only weak self absorption. Under this condition, Equation (24) provides a 

convenient design tool since it expresses self absorption losses in terms of the 

macroscopic OSC specifications G, S and A. More accurate models are also available; see 

References 94,125-127. 
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 We used Equation (24) to model the G dependence of the DCJTB, rubrene and 

Pt(TPBP)-based OSCs in Figure 3.21a of the text with the parameters listed in Table 2. 

The quantum efficiency of the Sunpower Si solar cell including coupling losses was 

measured to be ηQ = 0.85. The trapping efficiency was measured in the integrating sphere 

by distinguishing between facial and edge emission using black tape and permanent 

marker to blacken the substrate edges. The measured trapping efficiency was consistently 

lower than predicted by Equation (20), suggesting that photon re-emission within the 

OSC is not isotropic. The self absorption ratio was used as a fit parameter and compared 

to the data in Figure 3.18 of the text. Overall the agreement is very good given the 

assumption of monochromatic emission in Equation (23).  

 

 

 
Table 3.2 Theoretical model fit parameters 

To compare measured EQE to theory, Eqns (19) and (24) were solved using these input 

parameters. The quantum efficiency of the Sunpower cell including the coupling loss was taken 

to be ηQ = 0.85. 

 

 

Figure 3.21a shows the dependence of the EQE with G for each of the films, 

measured at λ = 534 nm for the fluorescent systems, and λ = 620 nm for the 

OSC ηabs ηPL ηtrap S (fit) S (measured) 

DCJTB 0.88 0.71 0.68 150 80 

rubrene 0.90 0.77 0.73 250 220 

Pt(TPBP) 0.92 0.46 0.72 1500 500 
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phosphorescent system. The DCJTB-based OSC shows the strongest self absorption. The 

self absorption is lower in the rubrene-based OSC, consistent with the spectroscopic data 

in Figure 3.18a.  The results are summarized in Table 3.3. 

 

 

Figure 3.21 OSC efficiency and flux gain as a function of geometric gain 

(A) With increasing G, photons must take a longer path to the edge-attached PV, increasing the 

probability of self-absorption losses. The fit lines are theoretical fits using S as in input parameter. 

(B) The flux gain increases with G, but reaches a maximum when the benefit of additional G is 

cancelled by self absorption losses. Near field energy transfer and phosphorescence substantially 

improve the flux gain relative to the DCJTB-based OSC. 

  

 

The Pt(TPBP)-based OSC shows no observable self absorption loss for G < 50. 

The data matches the theoretical performance93,94 assuming self absorption ratios of 

S = 150, S = 250 and S = 1500, for DCJTB, rubrene and Pt(TPBP)-based OSCs, 

respectively.  
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OSC 

Power conversion 

efficiency at G = 3, 50 

Flux gain at 

G = 50 

Projected maximum 

flux gain 

DCJTB 5.9%,    4.0% 9 12 ± 2 at G = 80 

rubrene 5.5%,    4.7% 11 17 ± 2 at G = 125 

Pt(TPBP) 4.1%,    4.1% 7 46 ± 15 at G = 630 

Tandem OSC 6.8%,    6.1% - - 

Tandem OSC-CdTe PV 11.9%,    11.1% 11 17 at G = 125 

Tandem OSC-CIGS PV 14.5%,   13.8% 11 17 at G = 125 

    

Table 3.3 Performance of OSCs 

The rubrene and Pt(TPBP)-based OSCs demonstrate the best preservation of power efficiency at 

high G. Their benefits are combined in the Tandem OSC. The highest efficiencies are obtained 

from combinations of the rubrene-based OSC with CdTe or CIGS PV cells. The baseline 

efficiencies of the production CdTe and CIGS cells are 9.6% and 13.1%, respectively.123,124 

 
 

3.13 Biological OSCs 

Naturally occurring photosynthetic antennas possess many favorable characteristics for 

OSC collector materials. Over two billion years of evolutionary adaptation have 

optimized the functionality of these antennas:  

1. They position dense chromophore arrays in proteinaceous scaffolds with sub-

nanometer precision, controlling both relative concentrations and orientations. As 

a result, they can exhibit broad spectral harvesting and high efficiency energy 

transfer efficiencies. Compared to the amorphous films describe in the work 

above, photosynthetic antennas are well designed molecular machinery. 
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2. Through spatial control of multiple chromophore types, antennas can 

exothermically funnel excitons over large distances (~50 nm) with quantum 

efficiencies of 95% through an energy cascade.24 By controlling energy flow, 

antennas can use multiple components optimized for their specific functions, like 

high photoluminescence efficiency. 

 

These characteristics have found use of one class of antennas, the phycobilisomes 

of red algae and cyanobacteria, as fluorescent markers.128 Their energy cascade structure 

is well suited for high self-transparency. Their structure is schematically represented in   

Figure 3.22. Phycoerythrins (PE) at the periphery absorb light and funnel it to 

allophcocyanin (APC) proteins at the core, which are less in number. The absorption and 

emission of PE is shown in Figure 3.22b. When isolated, they have considerable self 

overlap between absorption and emission, an undesirable trait for OSCs. But when 

present in their full complex, light absorbed by PEs are funneled to APCs, whose spectra 

is also shown in Figure 3.22b. The Stokes shift increases by approximately 125 nm. 
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Figure 3.22 Phycobilisome structure and optical spectra 

(A) Phycobilisomes in hemispherical in a core-periphery structure. Light is absorbed by 

phycoerythrin proteins and exothermically funneled to the reaction center, which sits below 

allophcocyanin. (B) Isolated phycoerythrin absorb light (blue) and undergo emission (green) with 

minimal energy shift. If excitons are funneled to APC, emission is bathochromically shifted by 

approximately 125 nm, considerably lowering the probability of self-absorption by decreasing the 

overlap of absorption and emission spectra. 

 

3.14 OSC performance limits 
 

3.14.1 Single OSC 

We can construct a simple model for a tandem guide OSC performance potential by 

idealizing absorption, photoluminescence efficiencies, and self-absorption losses into the 

single product of optical quantum efficiency (OQE). The power conversion efficiency of 

a single OSC coupled to a GaInP cell is shown in Figure 3.23 as a function of cutoff 

absorption wavelength, λtop, and OQE. The conversion efficiency increases as OQE 

increases and as λtop approaches the absorption cutoff of GaInP, eventually approaching 
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the values of bare GaInP. We can see that losses from λtop decreasing by 50 nm are 

similar to decreases in OQE by 20%. 

 

 

Figure 3.23 Single OSC performance limit 

In this calculation, the OSC is coupled to a GaInP with an open circuit voltage of VOC=1.34 V, a 

fill factor FF=0.9, and quantum efficiency at the emission wavelength of ηEQE=0.9. 

 

 

3.14.2 Dual guide OSC 

To understand losses inherent to the tandem OSC, the conversion efficiency of a system 

of two single junction conventional solar cells is shown in Figure 3.24 as a function of 

the cutoff wavelengths λtop and λbot. The current and voltages were modeled using the 

method of Green,129 excepting that the currents passing through each junction were not 

constrained to match. A system comprised of these two cells is not realizable in practice, 

as current matching is always required. The system peaks at an efficiency of 45% for a 
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top cell with that absorbs all of the visible and a bottom cell cutting off in the near 

infrared at approximately 1100 nm. 

 

 

Figure 3.24 Tandem double junction PV efficiency limits 

In this calculation, two stacked solar cells covert light to current with unity quantum efficiency; 

their currents are not constrained to match. The maximum power conversion efficiency as a 

function of cutoff absorption wavelengths is shown. For cutoff wavelengths of 700 and 1200 nm, 

efficiencies of approximately 45% are possible. In practice the two cells are serially constrained 

to pass equal currents; realizable efficiencies are lower. 

 

 

We desire to know the efficiency limits effect of dual guide OSCs. We first 

idealize OQE as unity and assume a 100 nm Stokes shift between the absorption and 

emission peaks of the chromophores in each guide. For high optical concentration, a 

100 nm shift or more is required. As illustrated in Figure 3.25, the efficiency landscape 

changes little in shape, but the maximum efficiency has been diminished by 
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approximately 8%. The effect of imperfect OQE is found by direct multiplication by the 

scale. For a more realistic value of 75%, the maximum conversion efficiency is about 

25%, a full 20% absolute lower than the dual solar cells comparison case.  

 

 

Figure 3.25 Tandem OSC conversion efficiency limits 

The two OSCs operate at unity optical quantum efficiency and coupling to the solar cell is 100%. 

A rigid wavelength shift of 100 nm is assumed for each guide to lower self-absorption.  

 

 

3.14.3 Hybrid OSC- thin film PV 

In a hybrid OSC-thin film PV system, sunlight incident on the bottom cell is filtered 

though the top OSC. To maximize total conversion efficiency, we desire to choose the 

bottom semiconductor to extract maximum electrical power from the filtered spectrum. 

Treating the top OSC as a long pass filter on the AM1.5G spectrum, we generate design 

curves showing the ideal bottom PV bandgap as a function of top OSC absorption cutoff. 
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These curves are shown in Figure 3.26. As the cutoff wavelength increases, the bandgap 

yielding maximum conversion efficiency shifts to the lower energies. For direct 

incidence, we see that cadmium telluride (CdTe) solar cells possess the nearly ideal 

bandgap for maximum possible efficiency. As the light is filtered through the OSC, the 

PV bandgap of maximum possible conversion decreases in energy and silicon and 

cadmium indium gallium selenide (CIGS) are better suited. 

 

 

Figure 3.26 Hybrid OSC-thin film PV bandgap selection curves 

As the incident AM1.5G solar spectrum is long pass filtered by a top OSC, the bandgap that 

results in maximum conversion efficiency for the thin film alone shifts to lower energies.  In 

direct sunlight, cadmium telluride is nearly ideal, but for a realistic OSC absorption cutoff of 650-

700 nm, cadmium indium gallium selenide or silicon has a higher conversion limit. 
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 These curves are useful as design guides. We can further calculate the maximum 

possible conversion efficiency as a function of λtop and λbot; the result is shown in Figure 

3.27. Efficiency peaks at roughly 38%, in between the maxima for the dual solar cell and 

dual OSC cases. 

 

 

Figure 3.27 Hybrid OSC-thin film PV cutoff absorption wavelength selection curves 

For the hybrid system, the maximum possible is between the dual junction PV and dual guide 

OSC cases. 

 
 

 

 It is worthwhile to consider the maximum system ηPCE as the top OSC is matched 

with an existing in-production thin film PV device. We set the top OSC to be coupled to a 

GaInP solar cell. The result, as a function of λtop and OQE, is shown in Figure 3.28a and 

Figure 3.29a for CdTe from First Solar and CIGS from Shell Solar, respectively. The 

relative proportion of power conversion between the top OSCs and bottom PV devices 
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can be understood from Figure 3.28b and Figure 3.29b. In each case, the bottom PV cell 

performance steadily diminishes as the top OSC shadows the device completely. 
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Figure 3.28 Hybrid OSC-production CdTe performance expectation.   

(A) The more practical case of a top OSC coupled to GaInP over an in-production cadmium 

telluride cell is dependent on both OSC absorption cutoff wavelength and OSC optical quantum 

efficiency. A decrease in OQE by 30% is equivalent to sacrificing 125 nm of absorption. In this 

calculation, the thin film performance parameters are shown in Table 3.1 and the GaInP 

parameters are listed in the caption of Figure 3.23. (B) The conversion efficiency of the bottom 

CdTe cell alone steadily diminishes as the top OSC absorbs more light. 
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Figure 3.29 Hybrid OSC-production CIGS performance expectation 

(A) System power conversion efficiency. Thin film performance parameters are shown in Table 

3.1. (B) Conversion efficiency of the bottom CIGS cell alone. 
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 The device configuration of an OSC coupled to GaInP provides an attractive route 

to increasing efficiencies of existing low cost thin film solar cells. 

 

3.15 OSC costs 

The cost of a PV concentrator measured in cost per peak Watt generated, ($/Wp)conc, is 

determined by its flux gain, which is equal to the geometric gain corrected for efficiency 

losses in the concentrator, i.e. conc PVF Gη η=  and  

 ( ) ( )collector cost 1$ $p pconc PV
conc

W W
L Fη

= + , (25) 

where L is the solar intensity, ($/Wp)PV is the cost of the PV cell, and the power 

efficiencies of the concentrator and PV are ηconc and ηPV, respectively.93,94 Thus, the 

design of a solar concentrator requires: (i) minimizing the collector cost, (ii) maximizing 

ηconc (to defray the collector cost) and (iii) maximizing Gηconc (to defray the PV cost). To 

compete with conventional power generation, ($/Wp)conc must be < $1/WP.8  In the 

sections that follow, we address the projected costs of the solar cells and collector. 

 

3.15.1 Solar cell costs 

The ideal cells for the OSCs considered in this work are single junction GaInP cells. 

These are not produced in large quantities so manufacturing costs are uncertain. 

However, we can begin an analysis by using costs for the more complex triple junction 

solar cells designed for high concentration (500-1500x) systems. 
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Emcore recently contracted the supply of the largest single order for triple 

junction solar cells (where the top cell in the stack was GaInP) at a cost of approximately 

$8/cm2 for 0.1 MWP.130 The devices are 37% efficient, translating to 

( )$ $218 /p PPV
W W= .  

Since light is being downconverted in an OSC to a narrow range of wavelengths, 

commercially available multijunction cells are not a good fit to receive the concentrated 

light. The current matching requirements of multijunction cells make their design highly 

dependent on incident spectral load. However, we can use the multijunction price as a 

proxy to evaluate the required flux gains to make an OSC system commercially viable. If 

the cells cannot cost more than 30% of the module cost, then this treatments dictates 

F>700. 

The flux gain threshold for commercial viability set by solar cell costs is too high. 

This is in part due to the market niche that triple junction solar cells occupy. The Emcore 

cells considered here are operated at G=1100 and F=1360 and are well suited for 

operation in 2 axis parabolic dish concentrators. For very high F, the cell efficiency 

affects the system costs more strongly than cell cost, and there is little incentive to make 

the cells less expensive, especially if efficiency were to decrease.  

Middle range concentrator PV systems, such as the kind considered here, are 

conspicuously absent from the market, as is the strong motivation to reduce cell costs. A 

major fraction of costs of these cells resides in the germanium wafer. Lattice matched 

semiconductors and substrates are used to reduce defect density and trapping centers. 

Commercially available triple junction cells utilize germanium (Ge) and gallium arsenide 

(GaAs) cells, which has 4% lattice mismatch to silicon.131 If high efficiencies were 
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possible, Si wafers are preferred for their larger size (up to 12” diameter), greater 

technical maturity, and lower cost per unit area. 

Several academic groups and companies are pursuing techniques to replace 

expensive GaAs or Ge wafer with silicon for photovoltaics and integrated optoelectonics 

applications through a number of approaches, including hydrophobic direct wafer 

bonding,132 graded SiGe buffer layers,131 epitaxial necking133 or aspect ratio trapping,134 

cycle thermal annealing,135  epitaxial lateral overgrowth,136 and strained layer 

superlattices.137 However, defect densities are far greater than single crystal wafers. 

If we assume that OSCs are possible with F=200 and the solar cell cannot be 

greater than 30% of total system cost, then the cells are constrained to cost no more than 

$60/WP. With an assumed cell conversion efficiency of 18%, this translates to $1.80/cm2, 

a reduction in cost of 78% compared to the triple junction on Ge cells. With wafer 

substitution, this is entirely achievable, especially if the current 4” wafers could be 

increased such that the fixed costs associated with metalorganic chemical vapor 

deposition epitaxial growth can be distributed over larger areas and manufacturing 

throughput increases. In fact, much lower costs are possible; Algora138 suggests wafer 

replacement could reduce triple junction cell costs to €2/cm2, so single junction GaInP 

cells should be much less expensive, as far fewer layers are needed and the design 

constraints of very low series resistance, current matching, and high quantum efficiencies 

across the solar spectrum are eliminated or relaxed.  

For a hybrid OSC-thin film PV device configuration, modularization costs can be 

shared and further diluted by the higher efficiencies. To fully achieve a low cost system, 
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the collector cost must also be low. Two main costs in the collector are materials 

(substrate and chromophores) and processing. 

 

3.15.2 Collector costs: materials 

There are two approaches to consider dye materials costs. We can take representative 

costs for emissive organic chromophores used in organic light emitting diode (OLED) 

displays, which have similar performance requirements to OSCs. Alternatively, we can 

consider costs for existing OSC compatible materials that other groups are considering 

for fluorescent concentrators that do not employ thin films, which are employed in other 

industries in large volumes. 

 The OLED display industry is growing quickly. Sony recently started shipping 

11” displays, so commercial production exists. Estimates for emissive materials costs are 

roughly $500/g.139 If coating requirements are 0.1 g/m2 and 100% materials use 

efficiency is assumed, for a 10% efficient OSC, these emitters would cost $0.5/WP. 

 The perylene dye class of is an ideal candidate for fluorescent concentrator 

materials for its excellent stability, absorption characteristics, and optical tenability,108,109 

and are available from several major chemical companies in quantities exceeding 

1,500,000 kg annually.34 At these much larger volumes, materials cost approximately 

$50/kg. After thermal purification process, these costs could increase by a factor of ten; 

even so, this is 1000 times less expensive than OLED materials.  

 Materials for OSCs will likely lie somewhere in between. Existing perylene dyes 

may need to be modified and more expensive, lower yield variants may be needed. But 

low cost OSC materials appear feasible. 
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3.15.3 Collector costs: processing 

Thermal evaporation is used in OLED display manufacturing and can be made on 

Generation 5 glass (1.1 x 1.3 m). These machines are very expensive, but like triple 

junction PVs, OLEDs are complex multilayer stacks and simple single thick layers with 

relaxed thickness control requirements could easily lead to a 75% decrease in cost. A 

conservative estimate used in OLED manufacturing is that per unit area, materials and 

processing costs are nearly the same. These numbers suggest that manufacturing costs of 

$0.12/WP are possible for thermal evaporation. These costs are manageable, but they can 

potentially be reduced if solution based processing is possible. 
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Chapter 4 Conclusions and Outlook 

The thesis of this work is that the separation of light harvesting and charge generation 

offers several advantages in the design of organic photovoltaics and organic solar 

concentrators for the ultimate end goal of achieving a lower cost solar electric 

conversion. This path is motivated by 1) the existence of cadmium telluride thin film 

technology, which has succeeded in drastically reducing semiconductor cost, 2) the desire 

for very high conversion efficiencies, and 3) utilizing existing high efficiency PV cells in 

a more economic configuration. 

 We traveled down this path using organic materials, whose optical characteristics 

and manufacturing compatibility are especially attractive for low cost systems. In Chapter 

2, we sought to increase the efficiency of existing organic photovoltaic devices by 

utilizing external energy transfer from an adjacent organic antenna film. This unique 

architecture was analyzed for its functionality and the efficiencies of each added step was 

quantified. Although the introduction of additional energy transduction will ultimately 

introduce more losses, bypassing the exciton diffusion bottleneck offered the potential for 

increased efficiency through judicious device and process design. 
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The organic charge generating reaction center is freed from the constraint of 

broadband optical absorption, offering the opportunity to design an artificial reaction 

center on the basis of high internal quantum efficiency, low series resistance, and 

stability, negating the necessity for disordered bulk heterojunctions and thick resistive 

layers to achieve high external quantum efficiency.  

 Since the optically absorbent component need not conduct excitons or charge, 

new antenna materials are possible, including J-aggregates, quantum dots, and 

biomaterials, including photosynthetic antennas. Antenna materials should be chosen for 

high optical absorption and photoluminescent efficiency. With mixed antenna material 

and undergo cascade exothermic energy transfer, the photoluminescence requirements is 

moved to the terminal emitter and weak absorption can be mitigated by using many 

materials and the long spatial diffusion requirements can be relaxed. 

 We also sought to enable the use of high efficiency inorganic solar cells in 

organic solar concentrators, which aim to exploit high performance of the PV cells in low 

cost, non-tracking configurations. By utilizing thin films of organic chromophores on 

high refractive index glass substrates, we were able to apply the recent advances of 

organic optoelectonics to the fluorescent concentrator platform, including near field 

energy transfer, solid state solvation, and phosphorescence. By reducing self-absorption 

losses, we demonstrated optical flux gains an order of magnitude greater than previously 

published results and thereby reduce the effective cost of inorganic solar cells by at least 

a factor of ten. Combined with the potential for low cost solution processing, the high 

flux gains and power efficiencies realized here should enable a new source of 

inexpensive solar power.  
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 Appendix 

Non-emissive molecular structures 
 

 

A, copper phthalocyanine (CuPC)140 
B, carbazole biphenyl (CBP)141 
C, buckminister fullerene (C60)49 
D, 3,4,9,10-perylenetetracarboxylicbis-benzimidazole (PTCBI)49 
E, bathocuproine (BCP)49 
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Emissive molecular structures  
 

 
 
A, tetrakis(pentafluorophenyl)porphyrin (H2FTPP) 
B, Pt(II)-tetraphenyltetrabenzoporphyrin (Pt(TPTBP))142 
C, tris-(8-hydroxyquinoline) aluminium (AlQ3)140 
D, 5,6,11,12-tetraphenylnaphthacene, (rubrene)143 
E, 4-dicyanomethylene-2-t-butyl-6-(1,1,7,7-tetramethyljulolidyl-9-enyl)-4H-pyran (DCJTB)144 
F, 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM)145 
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