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Abstract

In the first part of this work, we study a long standing open problem on the mixing
time of Kac's random walk on SO(n, R) by random rotations. We obtain an upper
bound mix = O (n2 .5 log n) for the weak convergence which is close to the trivial lower
bound Q (n2 ). This improves the upper bound O (n4 log n) by Diaconis and Saloff-
Coste 1131. The proof is a variation on the coupling technique we develop to bound
the mixing time for compact Markov chains, which is of independent interest.

In the second part, we consider a generalization of the coupon collector's problem
in which coupons are allowed to be collected according to a partial order. Along
with the discrete process, we also study the Poisson version which admits a tractable
parametrization. This allows us to prove convexity of the expected completion time E T
with respect to sample probabilities, which has been an open question for the stan-
dard coupon collector's problem. Since the exact computation of E - is formidable,
we use convexity to establish the upper and the lower bound (these bounds differ by a
log factor). We refine these bounds for special classes of posets. For instance, we show
the cut-off phenomenon for shallow posets that are closely connected to the classical
Dixie Cup problem. We also prove the linear growth of the expectation for posets
whose number of chains grows at most exponentially with respect to the maximal
length of a chain. Examples of these posets are d-dimensional grids, for which the
Poisson process is usually referred as the last passage percolation problem. In addi-
tion, the coupon collector's process on a poset can be used to generate a random linear
extension. We show that for forests of rooted directed trees it is possible to assign
sample probabilities such that the induced distribution over all linear extensions will
be uniform. Finally, we show the connection of the process with some combinatorial
properties of posets.
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Chapter 1

Introduction

1.1 Kac's random walk

The MCMC (Monte Carlo Markov Chain) method has proved extremely powerful

and led to remarkable advances in both theory and practice. Despite a large body of

literature, finding sharp bounds on the mixing time of finite Markov chains remains

technical and exceedingly difficult (see e.g. [5, 26, 36, 43, 44]).

In this paper we study the classical Kac's random walk on SO(n, R) by random

rotations in the basis 2-dimensional planes. Our main result is the O(n2.5 log n) mixing

time upper bound. This is sharper than previous results and within striking distance

from the trivial Q(n 2) lower bound. This random walk arose in Kac's effort to simplify

Boltzmann's proof of the H-theorem 1291 (see also 135]) and Hastings's simulations of

random rotations [201. Most recently, this walk has appeared in the work of Ailon

and Chazelle 1(3 in connection with generating random projections onto subspaces.

Kac's random walk was first rigorously studied by Diaconis and Saloff-Coste 1131

who viewed it as a natural example of a Glauber dynamics on SO(n, R). They used

a modified comparison technique and proved O(n4 log n) upper bound on the mixing

time, by reducing the problem to a problem of a random walk with all rotations,

which was solved earlier by using the character estimates in [421 (see also [401).

In the wake of the pioneer work [131, there has been a flurry of activity in the

subject, aimed especially at finding sharp bounds for the eigenvalues [10, 25, 49].



In [34] Maslin was able to explicitly compute the eigenvalues, but due to the large

multiplicity of the highest eigenvalue this work does not improve the mixing time of

Kac's random walk, in effect showing the limitations of this approach.

It is worth mentioning that there are several notions of the mixing time in this

case, and in contrast with the discrete case, the connections between them are yet

to be completely understood. We use here the mixing time in terms of the Lipschitz

metric for weak convergence, the same as used by Diaconis and Saloff-Coste in [13].

Our approach is based on the coupling technique, a probabilistic approach which

goes back to Doeblin [141 (see also [4, 30, 391). In recent years, this technique has

been further adapted to finite Markov chains, largely on combinatorial objects (see

"path coupling" technique in [9, 16]). In this paper we adapt the coupling technique to

compact Markov chains. While coupling on compact groups has been studied earlier

(see e.g. [301 and references therein), our approach is more general, as we define the

stopping time to be the first time when two random walks are at a certain distance

from each other.

Let us emphasize that while natural in the context, the continuous coupling we

consider does not seem to have known analogues in the context of finite Markov chains

(cf. 15, 441). In conclusion, let us mention that a related approach is used in [211,

which develops a "distance-decreasing" (with good probability) coupling technique.

While the particular coupling construction we employ can also be viewed as distance-

decreasing in a certain precise sense (for the Frobenius distance on matrices), our

setting is more general.

1.2 Coupon collector's process on posets

The classical coupon collector's problem (CCP) is defined as a discrete process of

sampling n distinct coupons. At each step we draw a coupon, and the probability

of drawing coupon i is pi (usually pi = 1). One of the most important quantities

of this process is the number r of coupons needed to be drawn in order to complete

the whole collection, i.e. to sample each coupon at least once. The CCP has a huge



literature. It is a natural framework for many combinatorial questions (e.g. [18, 28]),

randomized algorithms (1371) and other numerous applications ([71).

We consider a generalization of the coupon collector's problem when we are allowed

to collect coupons, that is to add a coupon to the collection, according to some partial

order on them. In other words, the collection can be represented as a partially ordered

set P on n elements, and we are allowed to collect an element i only if all elements

smaller than i in P have been already collected.

Recall that a partially ordered set P = {P, -<} (or poset, for short) is a formal

pair of a set P and a binary relation _ (or -p to avoid confusion) on elements of P

which satisfies the following three properties:

1. reflexivity: for all x E P, x - x,

2. antisymmetry: if x - y and y - x, then x = y,

3. transitivity: if x -< y and y - z, then x - z.

We will also write x >- y to mean y d x, x -- y to mean x -< y and x L y, and

x >- y to mean y -- x. We will say that two elements x and y are comparable if

either x - y or y - x, and incomparable otherwise. As a slight abuse of notation, we

will not distinguish a poset P from its set of elements P, and we will use x E P to

mean x E P.

Example 1.2.1. Let n be a positive integer. Then the set 1, 2,..., n with its usual

order forms a poset. We will denote this poset by S,. Note that any two elements

in Sn are comparable. We will say that S, is totally ordered. An opposite poset to Sn

is a poset on n incomparable elements. We will denote it by I".

Obviously, in the case P = In, we have the classical CCP, since any coupon can

be collected when it is drawn.

Along with this random process, we also study its continuous version in which each

coupon i arrives as a Poisson process with rate pi, and all these Poisson processes are

independent. We will refer to these two versions as discrete and continuous CCP on

posets. For the classical problem, connections between both processes were studied



in 1221. The following lemma shows that the two versions for the same poset are also

closely related (all statements on the CCP given in this section will be proved in

Chapter 3).

Lemma 1.2.2. Let TC and TD denote stopping times of collecting all elements in

poset P for the continuous and discrete versions respectively. Then

etP (TC > t) = P (To > m). (1.1)
m=0

In particular,

E TC = E TD. (1.2)

For relations between the higher moments, see Corollary 3.4.1.

The usual assumption for the CCP is E=1 pi = 1. However, it is more convenient

to assume that
n

Epi =p<_ 1,
i=1

and if p < 1, at each step we do nothing with probability 1 - p.

We will consider a few simple general properties of the discrete and continuous

processes in Section 3.2. Namely, by comparing processes on different posets and for

different sample probabilities vectors, we will establish stochastic dominance results

(Propositions 3.2.1 and 3.2.3), which, for instance, yield that E T is a decreasing func-

tion of sample probabilities. We will also provide a recursion for E T (Theorem 3.2.6).

This gives a representation of E T in terms of rational functions (Corollary 3.2.7).

Intuitively, the tail probability P (T > t) of the coupon collector's process should

decay exponentially. As the following theorem shows, the rate of the decay depends

only on the minimal sample probability.

Theorem 1.2.3. Let Pmin denote the minimal sample probability, i.e.

Pmin = min pi.
1<i<n



Then

lim - log P (TD > m) = log (1 - pmin) , (1.3)
m-*oo m

lim -log P (Tc > t) = -Pmin, (1.4)
t-oo t

for any poset P on n elements.

A similar result was proved in [33, 45] for the classical coupon collector problem.

The proof of Theorem 1.2.3 involves the reduction of the discrete coupon collector's

process to a Markov chain (for more details, see Corollary 3.3.2). However, it seems

difficult to use this approach to prove other properties of CCP.

Since the expectation E T is a function of a sample probability vector

p (pl= p,...,Pn)
T

and the poset P, this function might be used for exploring the structure of the poset P

itself. Unfortunately, we cannot reconstruct the poset exactly by using the corre-

sponding E T. Indeed, if P = S, with sample probabilities pl,... ,p,, then

1 1
ET= - +... + -

P1 Pn

for any permutation of the n elements. However, knowing E T we can determine for

any two elements whether they are comparable in the poset.

We need a few definitions to state the result. For a poset P we will call a set s of

elements il, i2 , . ,i k a chain, if

il2 -- 2 i - ik-

If any two of these elements are incomparable, we will call s an antichain. Denote

by Ch (P) and ACh (P) be families of chains and antichains of P respectively. For

any subset s of elements of P, let

x (S) (X1, = --, Xn )



be the indicator vector of s such that Xi = 1 if element i belongs to s and Xi = 0

otherwise. For a poset P on n elements, consider the polytope C (P) in Rn given by

the following inequalities:

xi > 0 for all 1 < i < n, (1.5)

X (c) -x 1 for all chains c E Ch (P), (1.6)

where x = (xl,..., xz)T , and "-" stands for the standard scalar product of two vectors.

Such a polytope was first considered in 1481, and it is usually called the chain polytope

of P.

Theorem 1.2.4. Let P and Q be two posets on the same set of n elements, and

let k be positive integer. Then

E Tk (p, ) = E Tk (P, Q) (1.7)

for any p if and only if

C (P) = C (Q).

Thus, the function E Tk (p) completely determines the random process for T.

Stanley ([48]) proved that the vertices of the chain polytope are the indicator

vectors of the poset's antichains. Hence, relation (1.7) implies that posets P and Q

have the same antichains.

Let us call a poset Q the reverse of P, if the poset Q is defined on the same set

of elements, and for any two elements i, j E P we have

i <j in Q if and only if j -~i in P.

Obviously, if c is a chain in P, then it is a chain in Q. Hence, a poset and its reverse

have the same chains, and therefore, their chain polytopes coincide. Thus, we obtain

the following result.



Corollary 1.2.5. If Q is the reverse of 1', then

E Tk (p, P) = E 7k (PQ)

for any positive integer k.

Along with the sample probabilities, it is convenient to consider inverse sample

probabilities ri = , and with some abuse of notation we will write

r= (rl,...,rn)T = P- 1.

In [11], for the classical CCP it has been suggested that if Eijpi = 1 the expec-

tation E T is minimized by the uniform case (all pi are equal). Holst ([231) stated

without proof that for two sample probability vectors p and q we have

ET(p) > TE (q)

if p majorizes q, that is the vectors p and q satisfy the following conditions:

P, Ž qj,

Pl+P2 Ž ql+q 2 ,

Pi+ ...- Pn- qi+-...+qn.,

Pl ÷...+ , = ql±...±qn.

Such a property of ET is called Schur-convexity, and it is much weaker than convex-

ity of symmetric functions. The complete proof of Schur-convexity for the classical

problem is given, for example, in [45]. In [11] it was checked that EET is a convex

function of sample probabilities when n < 6. It turns out that E T is convex for any

poset. More rigorously, we have the following result.

Theorem 1.2.6. For any poset P on n elements, the expected stopping time EET



to complete the collection is a convex function of p. Also, E r is a convex function

of r. In addition, for the continuous version, all moments of T, i.e. E T-c for positive

integer k, are convex functions both of p and r.

Theorem 1.2.6 can be used to prove a useful upper bound for E T. Denote by Hm

the m-th harmonic number, i.e.

111 1
Hm= -+ -t +...+I--. (1.8)

1 2 3 m

Theorem 1.2.7. Let

L:=L (p, ) = max X(c).r, (1.9)
cECh(P)

and M be the maximum size of antichains in P. Then

L < El (p, P) <_ L HM. (1.10)

In Theorem 3.9.3 we will give a generalization of (1.10) for higher moments.

It is not difficult to show that the average number of steps in order to collect all

elements from a chain c = (il -< ... -< ik) is

1 1-- +... + -- = rl +...+rk = X (C)" r.
Pi Pk

Thus, we can say that L is the expected number of steps to collect all elements from

the chain c that maximizes X (c) - r. Since we have to complete every chain c from

the poset in order to collect all coupons, this explains the lower bound in (1.10). The

upper bound is similar to the classical CCP with equal sample probabilities. In this

case L = 1, where p is the sample probability, and E T =1 -H.

Since the maximum size of an antichain in a poset does not exceed the number

of elements in the poset, the bounds in (1.10) differ by an O (log n) factor. However,

for some posets we can improve the upper bound.

Let

Pi= {j E P j i or i -< j}



be the set of all elements of P that are comparable with or equal to i, and let #7i

denote the size of Pi. We will denote by 1 the vector whose entries are equal to 1.

Theorem 1.2.8. Let P be a poset on n elements, such that #Pi < k for all i E P

and some k. If all sample probabilities are equal to p, and k < log n, then

1 1
Slog n < E-r (p 1, P) < - (log n + k log log n + 3k). (1.11)
p p

Moreover, if we have a sequence of posets pl, 72,... for which

k=o ( logn
log log n '

then

v'r= o (E7T) , (1.12)

and we have a sharp cut-off for this sequence.

The formal definition of a sharp cut-off (or a cut-off) is the following. We will

say that a sequence I1, 6, ... of non-negative random variables has a sharp cut-off if

for any E > 0 there is a sequence of intervals

(a•, be), (a", be),...

such that for any integer k > 0 we have

P (ýkE (a, b)) > - E, and lim k• = 0.k-+oo E Gk

Roughly speaking, with high probability random variable (k assumes its values on an

interval whose length is small in comparison with the magnitude of E Gk. Chebyshev's

inequality (for instance, [15, 181) implies that condition (1.12) is sufficient for a cut-off.

If P consists of m incomparable chains of length k, then the coupon collector's

process behaves in the same way as the Dixie Cup problem (completing k identical

collections of m elements each) considered by Erd5s and R~nyi 1171. For p = I, they



proved the following fact.

Theorem 1.2.9 (Erd6s, R~nyi). Let Tk (m) be the stopping time when we complete k

identical collections of m elements each when the sample probabilities are all equal

to 1•. Then:

E Tk (m) = m (log m + (k - 1) log logm + C - log (k - 1)! + o (1)), (1.13)

lim P (r (m) > m (logm + (k - 1) loglogm + z)) = exp -) (1.14)m-0oo (k - 1)!
where C denotes the Euler constant.

Obviously, in this specific case, expression (1.13) agrees with (1.11), and (1.14)

implies (1.12).

The continuous version of CCP has a connection to percolation problems. Let

R (ni, n 2,. .. , nk)

be the poset whose elements are integer vectors x = (x 1, x 2 ,..., xk) T such that

1 xi < ni, for all 1 < i < k,

and y -< x if and only if

yi X zi, for all 1 < i < k.

Let us consider the continuous process on the poset

Rn = R' (aln, a2n, . .. , akn) ,

where al,...,an are kept constant and all the sample probabilities equal 1. The

quantity T in the case k = 2 is commonly known as the last passage and has been



thoroughly studied (see, for instance, [271).

Inequality (1.10) implies that

(al + a2 + . + an)n < ET (1, 7Z,) _ (a + 2 a2 + .. + a,) nlogn.

In Section 3.7 (Corollary 3.7.3) we will prove the following bound on E T which gives

us the existence of
1

limr -- Er (1,7n).
n-oo n

We will call the chain c of poset P maximal if there is no chain c' of P which

contains c as a subset. Let also MCh (P) denote the set of all maximal chains of the

poset P.

Theorem 1.2.10. Let f stand for the maximal length of a chain in P. Denote by (*

the root of the equation

log # MCh (P)S- log ( = 1 +, L>1. (1.15)

Then
1 1 (*- E -r (p +1,p) -- (*£+
p p

Recall that a linear extension of a poset P on n elements is an order preserving

bijection f: P -- Sý , i.e.

i -<j in P f (i) -< f (j).

In other words, a linear extension is a way to complete the partial order to a total

order. Note that the order in which we collect the elements of the poset P always

gives a linear extension of P. Moreover, a sample probability vector p induces some

distribution over the set of linear extensions. Therefore, the coupon collector's process

can be used to generate a random linear extension of P.

Theorem 1.2.11. Let U (i) stand for the set of elements in poset P that succeed or



equal i, i.e.

U (i) = {j E P I i - j}.

If P is a forest of rooted directed trees, then there is a sample probability vector p

such that the induced distribution over all linear extensions is uniform. A possible

choice of vector p is

pi = A. #U (i)

for all i E P, where

iGP )-1

Throughout the proofs, we will see that the continuous CCP has a strong connec-

tion with the integral

I(t,a)= al...an fp exp(a- x)dsxl...dxn,

where P is a poset on elements sl, 2, ... , sn, and a is an n-dimensional real vector:

a=(a, a2, ... , an)

For instance, Lemma 3.4.4 states that

P (rc (P, P) < t) = (-1)n . I (t, -p).

It turns out that the coefficients of the power series expansion of I (t, a) have a

combinatorial interpretation. Let m be an n-dimensional vector

m= (m, m2,..., m,)

with non-negative integer entries, and let

Iml = mi + ... + m,.



For any such a vector m, let us consider maps f: 6Slmi -P that satisfy the following

property

f (i) -< f (j) in P i -j in Simlj

and map exactly mi elements of SIml to si for all 1 < i < n. Denote the number of

these maps by

e (m) = e (m, m 2 ,..., mn).

Theorem 1.2.12. For any finite poset P we have

a. .. an, exp (a - x) dx... dxn = e (m) a"a ... a (1.16)
tC(P) m imi

Here the summation is taken over all vectors m with positive integer entries.

See also Section 3.10 for combinatorial applications of e (m).



Chapter 2

Convergence of Kac's random walk

2.1 Weak convergence of Kac's random walk on

group SO (n, R)

2.1.1 Main result

We will consider the following discrete time random walk on SO (n, R). At each step

we pick a pair of coordinates (i, j) such that 1 < i < j 5 n, and an angle ¢ uniformly

distributed on [0, 27r). Define an elementary rotation matrix R,j (4):

I

1 ... ... 0

0 ... cosq ... -sine ... 0

0 ... sine ... cos ... 0

10 0 1

19

I \

R2,3 _

. . . . . . . . .



which differs from the identity matrix only in four entries with coordinates (i, i), (j, i),

(i, j) and (j, j). Kac's random walk {Ak} on SO (n, R) is then defined as follows:

Ak+1 Ri,j (q) Ak, for all k > 0,

where A 0 = I is the identity matrix. More generally, we can assume that A 0 is chosen

from any fixed initial distribution Po on SO (n, R1) as the upper bound below remains

valid in this case.

We endow the group SO (n, R) with the Frobenius norm (also called the Hilbert-

Schmidt norm), denoted II -|IF and defined for any real n x n matrix M = (mij) as

follows:

11MlF = /j Tr (MMT ) = j i02, (2.1)
1l< i,jn 1<i<n

where ai are the singular values of M. This defines the Frobenius distance |IA - BIIF

between every two n x n matrices A and B.

Let Lip (K) be a set of all real-valued functions on SO (n, R) such that

IIllfL = sup If () - f (Y)I < K.X0Y Ix - YlIF -

We define the distance p (P, Q) for two probability laws P and Q on SO (n, R) as

follows:

P (P, Q) = sup f f d(P - Q) f E Lip(1)}.

It is well known (see e.g. 115, §11]) that p metrizes the weak convergence of probability

laws.'

Theorem 2.1.1 (Main Theorem). Let Pt be the distribution of the Kac's random

walk after t steps, and let U be the uniform distribution on SO (n, R). Then, for

every e > 0 there exists

t = O (n2.5log n

1Instead of condition 1 lflL < 1, it is common ([13, 15]) to bound IIf IL + Ilfll in order to metrize
the weak convergence. However, in our case all Lipschitz functions are bounded because SO (n, R)
is compact in l-11F-



such that

p (Pt, U) < E.

Thus, there exists a positive constant c, for which we have

p (Pt, U) < nexp c(-c .5

The proof of this theorem uses an explicit construction of a "weak coupling" be-

tween Pt and U, which enables us to bound p (Pt, U) 6 E. Our "coupling lemma" is

described in the next subsection. The proof of the theorem is presented in Section 2.1,

where it is split into a sequence of lemmas. The latter are mostly technical and are

proved in Section 2.3. We conclude with final remarks in Section 2.4.

2.1.2 Coupling lemma

The basic goal of the coupling we construct is to obtain a joint distribution on

SO (n, R) x SO (n, R) such that its marginals are Pt and U, and the distribution

is concentrated near the main diagonal. Lemma 2.1.2 makes this precise in a more

general setting.

Let X C V, where V is a metric space with distance d (-, ). Let xt and yt, where

t > 0, be two Markov processes on X. A coupling is a joint process (xI, y') on X2

such that x' has the same distribution as xt and y' has the same distribution as Yt.

By abuse of notation we will use (xt, Yt) to denote the coupling.

The following lemma is an easy consequence of the Kantorovich-Rubinstein theo-

rem (see 115, §11.8J).

Lemma 2.1.2 (Coupling lemma). Let xt and Yt (t > 0) be two discrete time Markov

processes on X as above, with distributions Pt and Qt after t steps, respectively.

Suppose there exist 6 > 0 and a coupling (xt, yt), such that for the stopping time

T6 = min {t I d (xt, Yt) < 6}



the distance d(xt, Yt) is non-increasing for t > T6 . Then we have

p (Pt, Qt) < 6 + P (Ts > t) - sup d (x, y). (2.2)
z,yEX

It is of interest to compare Lemma 2.1.2 with the standard coupling lemma for

random processes on a finite set. Let us suppose that X is finite, and let the metric d

be discrete, i.e.

1if x y,
d (x, y)= 1-

0, if x = y.

For 6 = 0 inequality (2.2) becomes

p (pt Qt) < P (T6 > t), (2.3)

which is a classical coupling result ([30, §1.2]).

2.1.3 Variations on the theme

Let us mention that the distribution Pt of Kac's random walk does not have a density

with respect to U. To see this, consider the following example.

Example 2.1.3. Let X be the unit square [0, 1] x [0, 1]. A random walk starts off

at a point (x0, yo) in X, and at step k we choose the coordinate x or y, each with

probability , and set it to the random variable Uk. All Uk are independent and

have the uniform distribution U on [0,1]. Then it is not difficult to see that the

distribution pk after k steps (k > 0) is

pk= 2 (6 (Xo) X U + U x 6 (yo)) + 1 2- U x U,

where 6 (.) stands for the one-dimensional 6-distribution.

As we can see, since pk contains 6 (x0 ) and 6 (yo) with tiny strictly positive coef-

ficients, it is not absolutely continuous.

Analogously, observe that after t steps with probability 1/(n)t we rotate in the first



two coordinates only, so the distribution after t steps is not absolutely continuous.

On the other hand, in 113] Diaconis and Saloff-Coste proved a convergence in the total

variation distance with super-exponential mixing time (see also Section 2.4). Namely,

they showed that for

t = (2n)" 2/ 2 log 1

we have

jjPt - UIITV < e

or, equivalently

1pt - UIITV < exp( 2n)t2/2

In the positive direction, our main theorem is robust enough to establish con-

vergence for a number of other matrix distances, such as operator, spectral or trace

norms. For example, we easily obtain

Corollary 2.1.4. Let K > 1 be a fixed constant. Then for every e > 0 and f E

Lip (K) there exists

t = O n2 log Kn

such that

f d (P - U) <.
Proof. The corollary follows from Theorem 2.1.1 and the observation that f/K E

Lip (1). O

More generally, let us give a convergence result in another norm 11II- on n x n

real matrices. Since the norms I1-11 and 11-IIF are both defined on the same finite-

dimensional vector space, there exists a constant Cn > 0 (it might depend on n) such

that

IIx - yll > C, IIx - ylIF for all x, y E M (n, R) .

Corollary 2.1.5. If IlfllL = K with respect to the norm I1 - II, then for e > 0 there

exists

t = O n2.5 1og K
Cne)



I f d (Pt - U) < E.

Therefore, for the norm I1 jj there exists a positive constant c, for which we have

Proof. For all x -7 y we obtain

If (x) - f (y)
IIx - y1

1 If (x)- f (y)
- Cn II - ylF

Hence, f E Lip (K/Cn) with respect to the Frobenius norm.

implies the result.

Now Corollary 2.1.4

such that

p (P, U) < exp 25



2.2 The coupling process

In this section, we construct a coupling process which decreases the Frobenius distance

between two random processes with sufficiently high probability. Formally, we show

that there is a probability measure on SO (n, R) x SO (n, R) with marginals Pt and

U which is concentrated near the main diagonal.

Consider now Kac's random walks {Ak} and {Bk}, the former having the initial

distribution P0 , and the latter being initially uniformly distributed. We will prove

that at each step we are able to choose rotations so that the quantity jIAk - BkllF

is non-increasing whereas the marginal distributions of Ak and Bk remain the same

as we choose the rotations randomly. Define matrices Qk = AkB T , which will play a

crucial role in our construction. The random walk of Qk is induced by random walks

of Ak and Bk. Indeed, if at the k-th step the matrices Ak and Bk are to be rotated

by RA and RB respectively, then

Qk+1 = Ak+lBTk+l

= (RAAk) (RBBk)T

= RA (AkBkT) RB

= RAQkRTB.

In the case of orthogonal matrices, the Frobenius distance can be computed by

the following simple lemma.

Lemma 2.2.1. If A and B are orthogonal n x n matrices, then

IIA - BIIF = V"2n - 2Tr (ABT). (2.4)

Proof. From the definition of the Frobenius norm, we have

11A - B = (A - B) (A - B)
= Tr (AAT - BAT - ABT + BBT).



Since A and B are orthogonal, we get

ATA = BTB = I,

thus,

IIA - B1 = Tr (21) - Tr (BAT + A B T)

- 2n- 2Tr (AB T ),

as desired. O

Lemma 2.2.1 implies that minimizing the Frobenius norm JJAk - BkIIF is equiva-

lent to maximizing the trace Tr (AkBT) - Tr Qk. Therefore, we have to show that

we can increase the trace of Qk by choosing appropriate rotations.

Let RA = ,,j (a) be the rotation by an angle a for the coordinate pair (i,j).

Choose

RB = Ri,j (, (a)) ,

where the angle 3 = 3 (a) will be determined by an explicit construction in the proof

of Lemma 2.2.2. Let

(M)ij Tmii mij

denote the 2 x 2 minor of the matrix M and let

a 'b a' b'
(Qk) ij ) (Qk+l)ij= (C di

Since RA and RB do not change other diagonal elements, the change in trace

Tr Qk+1 - Tr Qk = Tr (Qk+1)ij - Tr (Qk)ij

is determined solely by the traces of the minors (Qk)ij and (Qk+l)ij. The following

lemma allows us to derive a coupling process.



Lemma 2.2.2. For every a E [0, 27r) there exists 1 = / (a) such that the following

inequality holds:

(a' + d') - (a + d) > (b - C)2 . (2.5)
4

Moreover, if a is a random variable with the uniform distribution on [0, 27r), then

P(a) is also distributed uniformly on [0, 2r).

The construction of the angle 3 = 0(a) is the centerpiece of the whole coupling

process. We conjecture that in fact it gives a nearly optimal coupling (see Section 2.4).

Note that Lemma 2.2.2 shows that the efficiency of choosing the rotations depends

solely on Ib - cl, i.e. the entries of Qk - Q'. However, the norm of Qk - QT can be

small whereas the matrix Qk is far from the identity matrix. The following lemma

shows that if at the beginning we are already sufficiently close to the identity matrix I,

then the coupling reduces llQk - IIIF exponentially.

Lemma 2.2.3. Let Qo, Q1,... be a sequence obtained from coupling I and Qo by

choosing rotations at each step as described above. If I[Qo - IlhF < 2, then for 6, e > 0

and
2  4

t > - log
2 62e'

we have

P (IQt - IIIF > 6) < e.

The next lemma allows us to avoid the problem of small Ib - cI entries by adding

intermediate "target matrices".

Lemma 2.2.4. For every matrix Q E SO (n, R) there exists a sequence of orthogonal

n x n matrices Mo0 , M 1,.. . , Me which satisfies the following conditions:

1. Q = Mo and I = Me;

2. h(Mm -Mm+hl1F < 1 for 0 < m <;

3. t < rv/ + 2.



The coupling for (Ak, Bk) is constructed as follows. Set Mo = ATBo, Mt = I.

By Lemma 2.2.4, we can construct a sequence of matrices M 0, M 1,..., Mt of length

O (v-). First, couple matrices AoM 1 and B 0. Namely, at each step, choose the same

coordinate pair (i, j) for RB as for RA, and use the construction from Lemma 2.2.2 to

determine = /3(a). By Lemma 2.2.2, the trace of Qk = AkM1BkT is non-decreasing

as k grows. Make T steps, where the choice of 7 will be made later in such a way

that the distance between AkM1 and Bk becomes smaller than some 6 < 1 with high

probability (the value of 6 will also be specified later). For this stage of the coupling,

Lemma 2.2.3 is applicable since the initial distance between AoM 1 and B 0 is at most 1.

After coupling AoM 1 and B 0, we get a pair (AT, B,). If the distance between

A,M 1 and B, is less than 6, we couple AM 2 and B,, etc. Each time we change the

matrix Mm to Mm+1, the distance between AkMm+l and Bk does not exceed 1+6 < 2.

Therefore, we can use Lemma 2.2.3 to analyze every stage of the coupling process.

Since Mt = I, once we have finished couplings for all matrices Mm, the distance

between Ak and Bk becomes less than 6. From this point on, we always choose the

same rotations for Ak and Bk, which ensures that these random walks stay at the

same distance.

In total, this gives roughly O(n2 5 ) rotations to make two matrices close enough,

roughly O(n2) rotations per matrix Mm. In fact, it is a bit more to account for the

probability of failure at each of the e sequence steps. A rigorous analysis will follow.

Here we state the main lemma on the coupling process..

Lemma 2.2.5. Let

t > 2n2 5 log 62E

for O < 6 < 1 and e > O. Then

P (T6 > t) = P (IIAt - BtIF 6) < E

Lemma 2.2.5 easily implies the main theorem.



Proof. (Theorem 2.1.1) Note that for any x, y E SO (n, R) we have

Ix - YIIF < 2v-.

Now, using Lemmas 2.1.2 and 2.2.5 for 6 = •, c = , we get

p g

p (Pt, U) < + 2 E = E,3 3 '

for

132t = 2n 2 5 log 13
(3 3 n

< 6n2.5 log 10-

O (n25 log ,

as desired. O



2.3 Proofs of results

Proof of Lemma 2.1.2.

Let Mt be a joint distribution of Pt and Qt, and L = supx,,ex d (x, y). For any f E

Lip (1) we have:

fd (Pt - Qt) =i ff(x) - f (y)) dPt (x) dQt

= (f(x) - f (y))dMt(x,y)

< f If(x) - f (y) dMt (x,y)

< df d (x, y) dMt (x, y) + ff
d(x,y)<6 d(x,y)>6

d (x, y) dM t (x, y)

< 6P(d(xt, yt)< 6)+LP(d(xt, yt) 6)

< 6+L.P(d(xt, yt)> 6),

where the probabilities P are taken with respect to measure Mt. From definition of

the stopping time Ts and assuming that the distances do not increase after Ts, we

obtain

P(d(xt, yt) > 6) = P(T6 > t),

and the lemma follows.

Proof of Lemma 2.2.2.

We have

cos aC

sin a

- sin a

COS a
a
c

b
d

cos 0

- sino

sin f

cos

(y)



Therefore,

a' + d' = (a cos a cos/3 - c sin a cos I - b cos a sin 3 + d sin a sin/3)

+ (a sin a sin/3 + c cos a sin / + b sin a cos / + d cos a cos /)

= (a + d) cos (a - ) + (b - c) sin (a - 3) .

Let

r= (a + d)2 + (b - c)2.

If r = 0, then

a' +d' = a+d = b-c = 0,

and the inequality (2.5) holds for all /. In this case we can take any 3 uniformly

distributed on [0, 27r) (for instance, we may choose 0 = a).

Suppose now that r > 0. Let us define an angle 0 so that

a+d b-c
cos 0 - and sin 0 = (2.6)

r r

Finally, let

(=)( = aC- o.

Then we have

a' +d' = (a+d)cos +(b-c)sinO

= r cos 0 • cos 9 + r sin 0- sin 0

= r.

Observe that 0 = a - / depends only on Qk. Therefore, if a has the uniform distri-

bution over [0, 27r), then so does 3.



Without loss of generality we can assume that a2 > d2. Since

c d

is a minor of an orthogonal matrix, we get that Ibl and Icl are bounded from above

by v' 7 -a 2. Indeed, all rows and columns of Qk are of length 1, hence a2 + b2 < 1

and a2 + C2 < 1.

Now we get

r2 (a2 + b2 )+ (c2 + d2 ) + 2 (ad - bc)

< 1+1+2(a2+ -v Vfa2 a)

= 4,

which implies that r < 2. Finally, we have

(a' +d')-(a+d) = r-rcos9
1 + cos 0

> r(1 - cos9) - 2

= 1 (r sin 8) 2

2r

> -(b-c) 2,-4

which completes the proof. O

Frobenius distance via the eigenvalues

Define Sk = Qk - Q', for all k >- 1. In view of Lemma 2.2.2, we need to estimate the

entries of Sk in terms of Qk. The following result expresses the Frobenius norm IISkIIF

via the eigenvalues of Qk.

Let A1, ... , A, be the eigenvalues of an orthogonal n x n matrix Q. The analysis

differs slightly when n is even or odd. Let m = [2J. Recall that if A is an eigenvalue

of Q, then A (the complex conjugate of A) is also an eigenvalue of Q. Therefore, we



can order A1, ... , A, so that for all 1 < i < m we have A2i = A2i-1, and let A, = 1

if n is odd. Denote by xi's and yj's the real and imaginary parts of the eigenvalues,

namely:

A2i-1 = Xi + yi-I1, A2 i = Xi - Yiy-l, where 1 < i < m. (2.7)

Lemma 2.3.1. For any orthogonal n x n matrix Q, the following holds:

JJQ - QT112 = 8 (1 -_ ) . (2.8)
k<sm

In particular, if IIQ - IIFe < 2, then

IQ - QT112 > 8 (1 - XZk) . (2.9)
k<m

Proof. Let vi, v 2, ... , v, be the eigenvectors of Q corresponding to eigenvalues A1,

A2, ... , An. Since Q is orthogonal, then

QTQ = QQT = I,

and all absolute values of Ai are 1, in particular, they are not equal to 0. Then for

any 1 < i < n we have

vi = QTQVi = AiQTVi.

Therefore, vectors vi, v2 , ... , vn are eigenvectors of QT with eigenvalues A1, A2, ,

An. Now we obtain

(Q - QT) vi = (A- -):) vi.

Hence, the matrix S = Q - QT has eigenvalues

±2ylV--T, A2y2V 1, ... , I2ym•-1.



Thus, the singular values of S are

2 Iyl , 2 jyl1, 2 lY2, 21 Y21, 2 ,2 ymI ,2 ym I,

if n = 2m, and

2 lyl, 2 lyll, 2  y21, 2 1y21, ... ,2  yml, 2 Iyml, 0,

if n = 2m + 1. In both cases the square of the Frobenius norm of S can be represented

as follows:

||Sk jF S212y 12
1<i<m

l<i<m

= 8 (
1<i<m

and using (2.7), we conclude with (2.8).

If now 1IQ - I"IF < 2 then relation (2.4) implies

EZ(1
k<m

n - Tr Q
-xk) = 2

<1.

Therefore, for all 1 < k < m we get Xk > 0. Hence

1 - x = (1 - k)(1 + Xk) >1 -Xk,

and (2.9) follows.



Proof of Lemma 2.2.3.

For any n x n orthogonal matrix Q, define

q(Q) := (1-xi)
i<m

n - TrQ
=- 2 (2.10)
1 I- |III- QII 2
4

and let rt = q (Qt).

Applying inequality (2.5) for the coordinate pair (i, j) chosen at step t, we obtain

= (Tr Qt+ -TrQt)

I (Q-j Qj)- 8

where Qt,ij is the ij-th entry of Qt. Since

IIQt - IlF _5 IQo - IIf < 2,

we can get the following upper bound on the expected value of rt+l with respect to

the choice of (i, j):

1
E nt+1 I 7 t- E8

1
7_ • -8

1
4n

< 77t- 17
4n2

2
n2 S (Qtij - tji)2

1<ij<n

IIQ - QTII2

2
W2n

= 1

7t - rlt+1

(Qt,ij - Qt,ji) 2



Induction on t and the fact that 0 = (n - Tr Qo) < 1 give

E 77t < 7o 1 -

< 1- )

< exp n2()

Now, the Markov inequality implies

P (,IQt - Il,F > 6) = P (, > 4

4
T2- -
4 -2t

< exp ( .

Therefore, we have

n2 4

P (IJQt - IFI, > 6 ) < E for t > - log
2 62 6'

which concludes the proof. O

Proof of Lemma 2.2.4.

First, consider the case when all eigenvalues of Mo are different. We will choose all

matrices M 1,..., M so that they have the same eigenvectors v l ,...,vn as Mo has.

Let

exp (nf xi ),..., exp (qm"v-)

denote the eigenvalues of Mm. Without loss of generality, we can assume that all Om

belong to (-7r, 7r) for all m < f and i < n.

Let 0 be a positive number to be chosen later, and let the function fe (x) be defined



x - 0 if x > 0,

0 if lx L<,
x+0 if x < -0.

m+l = fo (OM) for all i < n, m < £.

Note that fo is an odd function; therefore, we have ' + = - +1 l if •m = -_m for

some values of a and b. Hence, all corresponding Mm belong to SO (n, R).

Since all matrices Mm have the same eigenvectors, we obtain that the eigenvalues

of Mm+iMZ are the following:

exp ((0 +1 - 0) v/-, - - - , exp ((nm+1 _ m- ) /---.

Observe that

Ife(xV - x < 0.

Therefore, the real parts of the eigenvalues of Mm+,MT  are at least cos 0.

Thus, by Lemma 2.2.1, we have

IMm - Mm+II F =

Let us choose 0 = 1/Vn. We obtain I M

every i < n we get = 0 if

S=ol--

2n - 2 Tr Mm+1M T

2n - 2ncos 0

2n- 2n (1 -

r - Mm+1, F < 1. On the other hand, for

< v7v-+ 1.

as follows:

fo (x) =

Now let



Indeed, if Oý > 0 for some i, then

¢0 > O+ f > =I 7,

which contradicts the assumption o < 7r. Analogously, ¢• cannot be negative. There-

fore, all eigenvalues of Mt are equal to 1, i.e. M, = I.

In the case when eigenvalues of Mo are not all different, choose any matrix M1

within distance 1 from M0 with distinct eigenvalues. Applying the above construction

to M1 , we get the desired sequence of length at most 7rv-ni + 2. This completes the

construction. O

Proof of Lemma 2.2.5.

Note that for any auxiliary matrix Mk there is a probability of failing to couple two

matrices. Recall that we stop the coupling procedure if we fail at a certain stage.

For each matrix Mk, 1 < k < f, we make 7 = log 6E steps. Then, by

Lemma 2.2.3, we have

P (IIA7Mi - BTII, 6) < .

and

P ArMk - BkT IF 6 IIA(k1)Mk-1 - B(k-1)I < ) <

for all 2 < k < f. Thus, after f7 steps we have:

P (llA&, - Blm-liF, 6) < > P (IjAkrMk - Bk-lIF > 6)
k=1

k=1

Note that < rvx/- + 2. Hence, we can couple Ao and Bo with probability of



success at least 1 - E in at most

t = 2 n2 5 log 13 steps,

which accomplishes the proof of the lemma. O



2.4 Remarks

Our result can be used to show convergence in O (n2.5 log ) steps in the discrepancy

metric D defined as follows:

D (P, Q) = sup IP (B) - Q (B)I,
B

where the supremum is taken over all closed balls B with respect to the Frobenius

metric.

It is unclear whether our results can be used to improve the super-exponential

upper bound on the mixing time for the l£-distance in [13]. As far as we know, there

is no general result establishing a connection in this case.

The main result in [25] (see also 1491) is the O (n3 ) upper bound on the convergence

rate of the entropy. This is related to Kac's original question 129]. We hope that our

results can be used to prove stronger bounds.

In our coupling construction for technical reasons (to avoid a small eigenvalue

problem) we have to choose a O (\'n) sequence of "target matrices" Mi. While this

sequence cannot be easily shortened, we believe that our coupling process is in fact

more efficient than our results suggest.

Recall the basic coupling process we constructed with same pair of coordinates

and p = 0 (a) as in Lemma 2.2.2. We conjecture that in fact this process mixes in

O (n2 log n) time, a result supported by experimental evidence. This would further

improve the upper bound of the mixing time of Kac's walk to nearly match with the

trivial lower bound.

As noted in [131, the study of Kac's random walk is strongly related to study

of random walks on SU (n, C) by random elementary 2-dimensional rotations. In

fact, the technique in 1131 and of this paper can be directly translated to this case.

These walks are closely related and motivated by quantum computing 12, 46], more

specifically by quantum random walks (1].

One can easily modify our coupling construction to obtain an O(n2 log n) upper

bound for the corresponding random walk on the unit sphere Sn-1 C Rn. The im-



provement has to do with a 0(1) sequence of required "target matrices" in this case.

A lower bound Q(n log n) was conjectured in [3, 34]. Moreover, Maslin conjectures

a sharp cutoff in this case 134]. It is also possible that our basic coupling mixes in

O (n log n), but as of now such a result seems infeasible.

The analogue of Kac's random walk on SL (n, Fq) was studied in 138] and is shown

to mix in O (n3 log n) steps. Unfortunately, the stopping time approach in that paper

does not seem to translate to the compact case. It is unclear whether the generalized

coupling approach can be used to improve Pak's bounds.

It seems that the coupling for random walks on compact sets has rarely been used.

Let us mention [411, where an exact coupling was used to bound the mixing time. We

hope our version of the technique will lead to further examples.



Chapter 3

Coupon Collector's Process on Posets

3.1 Overview

In this chapter we will consider in detail the coupon collector's process. The discussion

is organized as follows. In Section 3.2, we prove a few simple and auxiliary results.

In Section 3.3 we will study the tail probabilities. Section 3.4 is devoted to the

proofs of Theorems 1.2.4 and 1.2.6. Inequality (1.10) is proved in Section 3.6, and its

generalization for higher moments is given in Section 3.9. We consider shallow posets,

i.e. the posets in Theorem 1.2.8, and grids R, in Section 3.7. Section 3.8 contains the

proof of Theorem 3.8. Finally, in Section 3.10, we will consider combinatorial aspects

of integrals over chain polytopes.

3.2 Auxiliary properties

3.2.1 Stochastic domination

Let X and Y be real random variables. We will say that X stochastically dominates Y

and write X - Y (not to be confused with the partial order in posets) if for all t E IR:

P (X > t) Ž P (Y > t). (3.1)



Proposition 3.2.1. If, for sample probability vectors p = (p, ... ,Pn)T and q =

(qi, qn)T, we have

Pi - qi for all i,

then, for any poset P on n elements,

r (p,P) - (q,P).

Corollary 3.2.2. The function E Tk (p, .) is decreasing with respect to

positive integer k.

each pi for any

Proof. In order to prove Proposition 3.2.1, note that we can turn the process with

sample probabilities q into another with probabilities p as follows. Whenever we

sample coupon k under q, we accept it with probability ' and reject otherwise.

Obviously, now coupon k will be sampled with probability Pk. Observe that under this

reduction, if within the process governed by p we insert coupon k into the collection,

we can insert this coupon within the process governed by q. Therefore, we have

P (r (q, 7) < t) • P (- (p, P) < t).

To prove Corollary 3.2.2, note that

E r- (p, 7P) = ktk-lP (TC (p, p) > t) dt

> I ktk-lp (Tc (q, P) > t) dt

f= Eh (q, p)

for the continuous version, and

ET (p, P) = S[(m + 1) k P (r, (p, 7) > M)
m=o

S[( + 1 )k - k] P (-r (q, ) > )
mr=O

E 70 (q, P)



for the discrete process. It is not hard to see that if pi < qj for some i, then the

inequalities become strict. O

We will also say that poset Q = (B, -Q) is a subposet of poset P = (A, -<p)

if B C A, and for any two elements i,j E B we have

i -<Qj if i-p j.

Proposition 3.2.3. If Q = (B, -<Q) is a subposet of P = (A, -- p), then

-r(p, 7 (q, &),

provided the sample probabilities of elements in B given

the sample probabilities given by q.

by the vector p coincide with

Corollary 3.2.4. Under the assumptions of Proposition 3.2.3, we have

E Tk (p, p) >- E Tk (q, Q)

for any positive integer k.

Proof. In order to prove Proposition 3.2.3, it remains to note that if at any moment

we can insert coupon k into P, we can insert it into Q. The proof of Corollary 3.2.4

is similar to the proof of Corollary 3.2.2. EO

Example 3.2.5. Since any poset P on n elements is a subposet of Sn (appropriately

ordered), and In is a subposet of P,n, we easily obtain that

T (p, Zn) _ r(p,p) _7- (p,$P) •

3.2.2 Recursion

In this section, we will consider the poset P = (S, -<) on n elements, whose sample

probabilities are given by a vector p. Whenever we deal with posets on subsets of S



with the same partial order -<, we will assume that the sample probability of any

element is the same as its sample probability in P given by p. For the sake of brevity,

we will omit p in notation.

Denote by P \ {i} the poset which is obtained from P by removing the element i.

Let us also say that an element i is a minimal element of P if there is no element j

in P such that j -- i. Then we have the following recursion formula for the CCP on

posets.

Theorem 3.2.6. If elements 1,..., k are all minimal elements of the poset 'P, then

k

E()= 1 pi E ( \ {i}). (3.2)
1• + ... + pk i=1 P1 + *+ Pk

Proof. Let Tj denote the stopping time of picking element i for the first time, and let

t = min Ti.
1<i<k

Then, for the discrete process we have

k

Er(P) = Pr(T = t) [E(T I = t)+ Er(P\{i})]
i=1

k k

= Pr(Ti=t)E(ri I=1t)+ Pr(T=t)ET(P\{i})
i=l i=1

k

= Et+ Pr(-= t)ET(P\{i}).
i=1

It is easy to see that

Pr (Ti = t) =
P1 + ... + Pk

Also the random variable t has the geometric distribution with parameter

pl + ... +Pk-



Thus, its expectation is
1

Et-
P1 +... +Pk

The recursion for the continuous process can be established in a similar way. It

also follows from Lemma 1.2.2. O

Corollary 3.2.7. For a poset P, the expected value E7 (p, P) is a function of n

variables pj, ... ,pn such that

E T (, P) = ,) (3.3)D (pj,... ,p )'

where N and D are both homogeneous polynomials with positive coeficients and deg N =

deg D - 1. Moreover,

D(pi,...,pn)= II X(a) p. (3.4)
aEACh(P)

Proof. Identity (3.2) implies that E (p, P) is a rational function. Thus, there are

polynomials N and D such that (3.3) holds. Also, from (3.2) we have that E T (p, 7)

is homogeneous with degree of homogeneity equal to (-1). Thus,

deg N = deg D - 1.

It remains to note that relation (3.2) implies that

Er (p,)= II p'
A aEA

where the sum is taken over certain sequences A of antichains, and in each sequence A

every antichain appears only once. Therefore, we can choose D as in (3.4). O

Although we can give a short formula for D, we have no nice expression for N.

In particular, for the classical coupon collector's process we obtain the following



Corollary 3.2.8. Let elements of the poset In have equal sample probabilities p. Then

1 1± 1 1
Er (p, In) = - -Hn = - 1 + + ...+ . (3.5)

p p 2 n

Proof. Let En = -E(p,In). Since In \ {i} = In- for any element i E In, we get

from (3.2) that

E=- + P 1= -- +- -E,_-1.
np np np p

Now, using the fact that E1 = i, we easily obtain (3.5) by induction. O

For p = 4, this result was first proved in [18, IX.3].



3.3 Tail probability and the Markov chain approach

This section is devoted to the proof of Theorem 1.2.3. First, we will prove the theorem

for the posets S, and In, and then, by using Example 3.2.5, we will extend it to any

poset on n elements.

Lemma 3.3.1. Theorem 1.2.3 holds for posets S, and n, for any positive integer n.

Proof. Let us assume that all sample probabilities are different. Thus, without loss

of generality we can assume that

0 < p < ... < P <.

First, we consider the discrete process.

collect element i. Then for -n we have

P (TD (In) > m)

and by the inclusion-exclusion principle

Let 7- denote the stopping time when we

Si= 1 · ·)

P (-D (In) > m) =

JE2n,#J>O> mi)i

where 2" stands for the family of all subposets of the set {1,..., n}. It is not hard to

see that
P [Ti> m]i > mi 1-

Finally, we obtainJ

Finally, we obtain

(3.6)P (D (In) > m)= (--1)# 1 --- piP

. JE2
n , # J > O iEJ



Thus, we have

1
lim 1 log P (TD (In) > m)

m-*oo m

Now for any J $ {1} we get

lim1 log P (TD (I,) > m)
- lim (log ( () + log(1 - pi)

m-oo m (1 - p)m

lim log (-1) 1-
m-oo m 1 - pl

JE2
n

+ log(1 - p).

< 1,
1 - pi

hence when m gets large, the sum in the last display tends to 1, and we proved (1.3)

for Tn.

Let us proceed with the proof of (1.3) for Sn. By Lemmas 1.2.2 and 3.4.4, it

suffices to consider the case when the elements are ordered as follows:

1 - 2 - ... -< n.

In the proof we will consider a corresponding Markov chain.

Let state Si for 0 < i < n represent the event when we have collected i elements.

Then, the transition probabilities have to be the following:

p(S • Si) = 1-p i+ ifi<n,

p (S- Sn) = 1,

p(Si -+Si+1) = 1-pi+1.

The initial distribution rwo of the Markov process is given by the vector

(1,...,and for any integer m we have

and for any integer m > 0 we have

7rm = Mm 7r0



where the transition probability matrix M is defined as

0

- P2

0

0

0 0

0 0

• " 1 - pn 0
• - p

pD 1
n -1

In addition,

P (TD (S) m) = (m),+, ,

where (v)i denotes the i-th entry of vector v.

It is not hard to see that the eigenvalues of matrix M are

and each has the unique corresponding eigenvector vi so that

Mvi = ( 1 - p i) v i for all 1 < i < n,

and

Mv = v.

Observe that the vector v represents the stationary distribution (0, 0,... ,0, 1).

Thus, decomposing iro in the eigenbasis, we have

n

7m = v + Z v (1 -p)m
i=1

for some O•1..., 6n.

- pi

M=

r



This implies

P (TD (Sn) > m) =- 1- (7 1 m)n+l

n

= 1 - (v)-, - Z i (vi)n+1 (1 - pi) m

i=1
n

- Z (vi+ (V 1n+ (1 - pO)m
i=1

In order to prove (1.3) for Sn, it remains to show that

01 - (Vl)n+l 0

It is not difficult to see that we can choose v 1 as follows:

V 1
V=

P2-P1

P2-P1 P3-P2

P2-P ... Pn-Pn-1 1--pn

It is also transparent that the first entries of v i for i > 1 are equal to 0. Since (r°o)l =

1, for v i chosen as above we have

/p = 1 and (V )n+l = O.

This finishes the proof of (1.3) for Sn.

In order to prove (1.4), note that in both cases the tail probability can be expressed

as follows:

P (TD (P) > m) =
aEACh(P),#a>O

for some ya indexed by antichains in the poset, and ya 5 0 if a = {1}. From (1.2.2)

iea



P (TC (P) > t)
m=0

aEACh(P),#

aEACh(P),#a>O iEa

ya0 exp -t i
a>0 \ iEa )

Since the minimal value of iEa Pi is achieved only on a = {1}, we have:

P (e-tp >t)
e-tpi S E ya exp - i a pi

aEACh(P),#a>O

as t -- oc, which yields (1.4) for both posets.

If more than one sample probabilities are equal to Pmin, then the lemma follows

from Proposition 3.2.1. E]

In order to prove Theorem 1.2.3, it is enough to note that any n element poset P

is a subposet of S, and _4 is a subposet of P (see Example 3.2.5). Thus, by Propo-

sition 3.2.3 we have

P (TD (In) > m) < P (TD (7) > m) < P (TD (Sn) > m),

and

and Theorem 1.2.3 follows from Lemma 3.3.1.

As an outcome of the proof of Lemma 3.3.1, we obtain the following fact.

Corollary 3.3.2. The discrete coupon collector's process on poset P can be modeled

as a Markov chain whose states correspond to the antichains in P, and each state

represents the set of minimal elements that have not been collected yet. For any

antichain a, let Sa (i) denote the state after adding element i E a to the collection.

we have

P (rc (In) > t) <_ P (TC (P) > t) <_ P (rC (Sn) > t),



Then the transition probabilities of the Markov chain are given as follows:

p(S --+ Sa) = 1 - pi,
iEa

p (Sa - S (i)) = pi for all i E a.

The transition matrix of the Markov chain has # ACh (1P) eigenvalues which are

1 - pi for all a E ACh (P) ,
iEa

and each has a full corresponding eigenspace.

There exist coefficients 7a, which are polynomials in m such that

P (TD (P) > m) = E , 1- Epi ,
aEACh('P),#a>O iEa

P (Tc (P) > t) = ya exp -t pi)
aEACh(P),#a>O \ iEa /

for all t > 0 and integer m > 0 (here the sums are taken over all non-empty an-

tichains of P). Moreover, the coefficient ya corresponding to the second largest eigen-

value (1 - pmin) is positive.

Remark. If

iEai iEa2

for any distinct antichains al and a2, then the coefficients 'y are independent of m and

are some functions of p. The polynomial dependence on m arises when the transition

matrix of the corresponding Markov chain has eigenvalues with multiplicity greater

than 1.



3.4 Continuous version

In this section, we will consider in detail the continuous CCP on an n element poset P

with sample probabilities assigned by a vector p = (Pl,... ,p) T .

3.4.1 Comparison with the discrete version

First, we will prove Lemma 1.2.2, which establishes the connection between the dis-

crete and the continuous version.

Proof. (Lemma 1.2.2) Let

Po = 1- >Zpi.
i=

First, assume that po = 0. Denote by M (t) the number of coupons that have ar-

rived (but not necessarily have been collected) by time t in the continuous process.

Obviously, the quantity M (t) assumes non-negative integer values. Then we have

0o

P (TC > t) = P (M (t) = m) P (Tc > t I M (t) = m).
m=O

Note that if we condition on the coupons that came prior to time t, the event TC > t

will be the same as in the discrete process with the same first coupons. Therefore,

P (TC > t I M (t) = m) = P (TD > ) ).

Also, the arrivals of coupons occur as a Poisson process with rate E•i pi = 1, hence

tm

P (M (t) = m) = e- t
m!

Combining these facts, we get

00

P (c > t)= -tP (=D > m).

m=O

It order to deal with the case Po > 0, let us add a coupon with sample probabil-



ity P0o, and ignore it each time it is drawn. Obviously, the relation (1.1) still holds;

however, the random process on the original coupons is the same.

To conclude the proof of the lemma, observe that

E Tc = P (Tc > t) dt

= .P (TD >m)( e-t dt

Since for any non-negative integer m

/ e-ttmdt = m!, (3.7)

we have
00oo

ETc = P (TD > m) = E'D,
m=0

as desired. EO

Corollary 3.4.1. For any positive integer k we have

k [ k
ETC = E m Er , (3.8)

m=1
k

ET= E (-1)k-m k E T, (3.9)
m=l 1

where [k] and { } stand for the Stirling numbers of the first and the second kind,

respectively.

Proof. We have

E ktk-lp (Tc > t)dt

= P (TD > m) ktk dt .
m=0



Relation (3.7) yields

E Tc = P (-D > m) k ( m!
m=0

= P (-D > m) - kI (m +i).
m=O i=1

It was shown in [19, Chapter 6] that

k-1

k j(m +
i=1

m[ ( +k1)i+ 1 - ) .

Using this, we get

k

P (TD > m)
i=1

m=0

M[AI ((i + l)i+1 -mi

+ 1)i+ 1 i )

k

i= 1: [kIm 'Di=1k

Reverting 
(3.8) we ob 

).

. . . . .. .... o \ v- --/ I . . . . .. - - .. . -- II

3.4.2 Parametrization

One of the advantages of the continuous process is that it admits a simple parametriza-

tion. Denote by •i the stopping time when we add element i to the collection, and

let

xi = Ti - max Tj.j-<i

Note that the stopping times -7 are almost always finite, thus, so are the random

variables xi.

Proposition 3.4.2. For any 1 < i < n, the random variable xi has the exponential

ETC i=
m=0

k

= > (m) ((



distribution with parameter Pi, namely

P (Xi > t) = e-pit

for all t > 0.

Proof. In order to collect element i, we have to collect all the coupons preceding i,

which takes time yi = maxj•i Tj. Then we have to wait until the coupon i comes for

the first time, which takes xi in addition. Note that yi is a stopping time, and the

Poisson process is a strong Markov process. Thus, the quantity

P (xi > tl I yi = t2)

depends on t = t1 - t2 only, and the random variable xi has the exponential distribu-

tion with parameter Pi. O

Knowing the random variables xi, we can easily reconstruct 7i. Indeed, if ele-

ment i is a minimal element in P, then Ti = xi. Therefore, for any element i we can

recursively compute maxj.i Tj and set

,- = xi + max 7j.
j-<i

Proposition 3.4.3. Let Chi (P) denote the set of all chains in P with the maximal

element i. Then

Ti = max x.x (c) , (3.10)
cEChi(P)

and

7 = max x. X(C), (3.11)
cECh(P)

where x = (x 1,... ,Xn)T.

Proof. Let Ch' (P) stand for all chains in the poset P, whose elements strictly precede

element i. Then

Ch (P)= U Ch (p),
j-i57

57



and hence

max x X(c) = xi+ max x X (c)
cEChi(P) ceChW(P)

= xi+max max x.x(c).
j-<i cEChj(P)

Thus, by induction we obtain (3.10).

In order to get (3.11), it remains to note that

Ch (P)= U Chi (P),
iEP

and T = max T,.
iEP

This completes the proof.

Thus, we can use random variables xi in

collector's process. Combining Propositions

fact.

Lemma 3.4.4.

we have

order to analyze the continuous coupon

3.4.2 and 3.4.3, we obtain the following

For any poset P on n elements with a sample probability vector p,

P (TC ) 5 t) = fC(p) Ple-pl' ... e-PnXndxl ... dxn, (3.12)

and

E Tr(p,P) =

for any k > 0.

Proof. Since we are going to deal with the continuous version only, for brevity we will

omit the subscript C. From Proposition 3.4.2, we easily obtain for T = T (p, P)

P (T < t) = f<ple-P1xL ... ppe-Pnxdxl ... dn,

and

E rk = ... j Tk • pie - piz ... pne-Pnxndxl ... dxn.0 0

... pie--Pl ... p•ne - '-Pn "  max x X (c) dx ... dxn (3.13)
0 0 LcECh(P)



Now relation (3.11) leads directly to (3.13).

Also Proposition 3.4.3 implies that condition 7 < t is equivalent to

x.- (c) < t for all chains c E Ch (P).

From the definition of the chain polytope (1.5, 1.6), we get

T < t x E C (P),

and thus, relation (3.12) is proved.

Example 3.4.5. Let us consider the poset 1,. Since all its elements are incomparable,

the poset has n chains, each consisting of a single element. Therefore, the chain

polytope of P is a hypercube given by the following inequalities

0O<xi_<1 for all 1<i<i n.

With this, the relation (3.12) becomes

P (7 (p, P) < t) = ... P.. Pne-plxl ...e-Plldl ... dxn,

= (1 - e-plt ) ... (1 - e-p t).

Thus, the tail probability can be expressed as follows:

P (7c (p, P)) > = e
-
pt + ... + - e -(-p2)t 

n - P- +p)t

+... + (-1)n-1 e-(P+...+P")t,

and we obtain the classical result for the expected value

E TC (P, P) = P (Tc (p, P) > t) dt

1 1
--+ ... +--P
Pi Pn P1 + P2

1 (--1)
n - 1

S- - + ... +
Pn-1 ÷ Pn P1 +... + Pn



A slightly different derivation of this result is given in the proof of Lemma 3.9.1.

3.4.3 Support functions

In order to simplify the calculations and clarify the intuition, we will use support

functions when dealing with

max x x (c).
cEC(P)

Recall that for any convex set B C IR' its support function SpB (x) is defined as

OPB (x) = sup x -y. (3.14)
yEB

Note that if B is a polytope, we can replace sup by max.

Thus, if we consider the polytope A (P) in Rn which is the convex hull of

X (c) for all chains c E Ch (P) ),

then relation (3.13) becomes

0o 0EkT (p,P) = ... plePXl..,pneP'•ZnxfA(p) (X)kdx 1 d l. dxn. (3.15)

The polytope A (P) is usually called the antichain polytope of poset '.

Despite the variety of facts about support functions, we will be mainly interested

in the following properties.

Proposition 3.4.6. Let B and C be bounded convex sets in R'". If B C C then

B (x) < c (x)

for any vector x E R".

Proposition 3.4.7. Let B be a bounded convex set in R•. Then for any vectors x, y E



R' and any non-negative a and 0 we have:

PB (ax) = acB (x), (3.16)

(3.17)aPB (ax + py) < aýPB (x) + OPB (Y) -

Proof. Proposition 3.4.6 and relation (3.16) follow directly from the definition of

convex functions. Thus, it remains to prove (3.17).

Due to (3.4.6), we can assume that a = 0 = 1. We have

SOB(X+y) = supz.(x+y)
zEB

< supz -x + sup z -y
zEB zEB

= PB (X)+(PB (y),

as desired. O

For element i of poset P let Pi be the induced poset on elements which are

comparable with i. Namely, the set of elements of Pi is

{jEPIj-_i or i-ij}

and for any elements jl and j2

jl < j2 in P j, 1< j2 in P.

Lemma 3.4.8. For any element i of an n element poset P, we have

lim [E Tk (p, P) - E rk (p, pi)] = 0, (3.18)
pi--+0

lim E Tk (p, P) = E Tk (p, P \ {i}), (3.19)

where k is positive integer.

Remark. The limit in (3.19) does not make much probabilistic sense in the discrete



version since the sum of all sample probabilities cannot exceed 1. However, consider-

ing E rT as an abstract function of n variables, the limit exists and the relation (3.19)

holds.

Example 3.4.9. Let us consider a poset P on elements a, b, c and d with the following

partial order:

a-.c, b-<c, b-<d.

Let the sample probabilities of these elements be Pa, pb, pc and Pd respectively. It is

not difficult to show (for instance, through (3.2)) that

1 1 1 1 (Pa + Pb Pd) (Pa + Pc +Pd)
E -(p)= --+-+-+--Pa Pb Pc Pd (Pa + Pb) (Pa + Pd) (Pc Pd)

Taking the limit as pa --, 00, we get

1 1 1 1
lim ET(P)= -+--+ --
Paoo pb Pc Pd Pc +Pd

which is equal to E r (P \ {a}).

Also since element c is the only element comparable to a, we have

1 1E (Pa) = -+ -,
Pa Pc

and thus,

lim (7(P) - (Pa)) lim (1  1 (Pa + Pb + Pd) (Pa +Pc + Pd)

Pa--.o pO -o Pd (Pa + Pb) (Pa + Pd) (Pc + Pd)
1 1 (pb +Pd) (Pc +d)

= + - = 0,
pb Pd PbPd (Pc + Pd)

as given by (3.18).

Before we proceed with the proof of Lemma 3.4.8, let us mention the probabilistic

intuition behind it. If pi is large, then in the continuous version the coupon i arrives

much more often than the others. Hence, when it is possible to add the coupon i, i.e.

when all preceding coupons are already in the collection, it takes a small amount of



time in comparison with completing of the rest. Therefore, the process behaves as it

would behave on the poset without element i. If instead pi -+ 0, then all moments

of T will go to infinity, and the bottleneck is the set of elements that are comparable

with i.

Proof. Corollary 3.4.1 yields that it suffices to prove (3.18) and (3.19) for continuous

version. Thus, to simplify notation we will omit the subscript C.

Without loss of generality we can assume that i = n. Let Ao and A, be the convex

hulls of vertices of A (P) whose first coordinate is 0 and 1 respectively. It is not hard

to see that

JA0 = A (p \

A = A (Pn),

thus,

OPA(P) (x) = max (WA (x), A1, (x)). (3.20)

Denote by the prime (') the projection on the first (n - 1) coordinates.

Let

y = pj= , l<j < n,,

and denote for brevity

Y1 n-1) and Yn-1
o,= A' and V-= WA' --. .

0 1Pi Pn-1 Pl Pn-1

Now we obtain

'PA(P) = max (po, W1 + rnYn),

hence (3.13) becomes

E Tk (p, p) = f.. e-Yl- - y max (o, W + rnyn)k dy ... dyn.



Let now Pn -+ oo, or, equivalently, rn -- 0. In this case,

lim E rk (p, p) = ... . - yl - - y max (0o, kkdy 1 ... d
Pn -00 0

Since all vertices of Ao are indicators of chains in P \ {n} and all vertices in A 2 are

chains in P that contain n, it is obvious that

A0d1A,

Therefore, Proposition 3.4.6 gives

WPO Ž 'P17

which implies

lim ]E Tk (P, ) = ... . e-Y1-'-ynY kO
Pn ---10

dyl ... dyn = E Tk (p, P \ n}).

Let now pn -- 0, or rn -- 00. Since all chains in P, contain element n, we have

ETk (p, n)= ]... e-Yl-"-Y (pi + rnyn)k dyl.., dy,

and therefore,

E rk (p, p) - E Tk (p, p,) Sfo>+rnYn e-1-Pn d1 ... dy•

S .. . e-yl-...-yn-1 k

Po- '1)r, dy1 .
.. dy,_ 1.

Using inequality 1 - e- _< • which holds for all real (, we obtain

O ~-1 Pn (Po - )1-exp(o- 1

x(1 - exp (



This leads to

IETk (p, P) - E Tk (P, Pn ) < Pnf .. - yl-...-yn-l1 (0 - 1) dy .. dyn-1

The integral in the last display is finite: it is bounded from above by

f.. e-1-...-Y n-1 +1d...dyn.,1

which is equal to E rk+1 (p, P \ {n}). Thus,

lim [E Tk (p, ) - Ek (P, n)] < 0.

On the other hand, poset Pn is a subposet of 'P, therefore by Corollary 3.2.4

]E k (p, p) - E rk (Ppn) > 0.

This concludes the proof. O

Now we have all ingredients to prove Theorem 1.2.4.

Proof. (Theorem 1.2.4) Due to Corollary 3.4.1, it suffices to prove the theorem for

the continuous version only.

Note that Lemma 3.4.4 shows that if two posets P and Q have the same chain

polytopes, then

Hence we have to show the converse.

In [48], it was proved that the chain polytope of a poset R is the convex hull

of indicators of all antichains of R. Therefore, it suffices to show that if elements i

and j are incomparable in P then they are also incomparable in Q. Let P• and Q'
be induced posets on the elements i and j. Taking the limit of ]E Tr as PM -+ oo



for m f i and m f j, by (3.19) we get

ETcI (P') = ET (Q') (3.21)

for all sample probabilities pi and pj.

If elements i and j in Q' were comparable, we would have

ETi (Q') = PiePx pje (x + xj)k dxidxj

> f pie-Pxjpje - pjxj max (xi, xj)k dxidxj

which contradicts (3.21). Thus, elements i and j are incomparable in Q', and the

theorem follows. O



3.5 Convexity

Theorem 1.2.6 immediately follows from (3.15), because the expression for E Tk in-

volves integration of the support function which is convex (Proposition 3.4.7). A

more detailed proof is the following.

Proof. (Theorem 1.2.6). We will prove the convexity of Er for the continuous process,

which will entail the convexity for the discrete version. First, let us show that E Tk is

a convex function of r for any k > 1.

Let a and b be n-dimensional vectors. With slight abuse of notation, we denote

by {a -b} and {a/b} the vectors

(albj,...,abn) and a,. a)

(b, bn

Then for variables yi = we obtain from (3.13)

E Tk = e-y ... e - y [ max x (c) {y/P} dyl ... dy
o 0 E[Ch(P) dy

- ... e- ... e - y  max X(c) {y-r} dy ... dyn.
0 0 cECh(P)

Now note that for vectors r, r' and 0 < A < 1 we have

max x(c) -{y(Ar+(1 -A)r')} < A max X (c) -{y -r}
cECh(P) cECh(P)

+(1-A) max X(c)- {y r'} .
cECh(P)

Thus, the function

f (r)= max X(c) {y r}
cECh(P)

is convex in r for any vector y. So is function f (r)k, since k > 1, which implies the

convexity of E Tk.



In order to show the convexity with respect to p, it remains to prove that function

g (p)= max X(c) -{y/p}cECh(P)

is convex for any y. In the similar way, we obtain

g(Ap+(1-A) p') = max X(C) (1- )p

cECh(P) {
< A max X (c) + (1 - A) max X (c) -

cECh(P) PJ cECh(P)

= Ag(p) + (1 - A)g(p').
{p'

This accomplishes the proof of Theorem 1.2.6.

Remark 3.5.1. We believe that higher moments for the discrete CCP are also convex.

However, since we do not have any convenient tool to analyze it, this question remains

open.

In [45] it was proved that

P (ro (p, IZ) > m)

is minimized on the sheet P + P2 - ... + Pn = 1 by p = . 1. Although in [7] it

was proved that P (TD (p, Zn) > m) is a Schur-convex function of p, it is not convex.

Moreover, we can easily show that for any poset P containing more than one element

neither of the following quantities

P (TD (p, P ) > m), P (Tc (P,P) > t)

is a convex function of p. The main idea is to take the limit when all but two sample

probabilities tend to infinity. Doing this, we can reduce the problem to posets S2

or 12, and for them we can verify the statement directly.



3.6 Estimates for posets

In this section we will prove Theorem 1.2.7. The lower bound follows easily from

Corollary 3.2.4, and the upper bound is an outcome of convexity and estimates of E T

on the boundary of an appropriate convex set.

Proof. (Theorem 1.2.7) Due to Lemma 1.2.2, we will consider the continuous process

only.

In order to obtain the lower bound, let us consider the chain c' for which

L = x (c') - r.

Obviously, the chain c' is a subposet of P, and therefore,

ET (P) > ET (c') = L.

In order to prove the upper bound, note that condition

max X(c).r= L.
cECh(P)

is equivalent to the following conditions on r = (rl,..., rn):

ri >0 forall 1 <i<i n,

X(c)-r<L foranychain cECh(P).

By the definition of the chain polytope, we get

r E L C (P).

In [481 it was shown that the vertices of the polytope C (P) are indicators of

antichains of P. Therefore, for any r there exist non-negative numbers a, indexed by



antichains that

r = L
aEACh(P)

aa X (a) and

Now with slight abuse of notation, by convexity of ET (Theorem 1.2.6) we have:

E T(r)
( aEACh(P)

< Y CaIEA (L.X(a)).
aEACh(P)

However, the quantity E T (L -x (a)) is easy to compute: this is the expected time of

completing the collection of incomparable elements with equal sample probabilities I.

The number of these elements is the size of antichain a which is at most M, therefore

from Corollary 3.2.8 we obtain

E T (L X (a)) < L HM,

and finally

ET(r) < Y3 E Tr(L -X(a))
aEACh(P)

< Y, aaL Hm
aEACh(P)

= L-HM.

This completes the proof of the theorem.

aeACh(P)
a -= 1.



3.7 Chain bound

In this section, we will consider posets on elements with equal sample probabilities p,

i.e. the probability vector is p. 1.

Lemma 3.7.1. Let Sn denote the completely ordered poset (the chain) on n elements.

Then

P(rD (p 1,Sn) > m) exp (mp + n + nlog -) , (3.22)

P(rc(p 1, S) > t) exp (-tp+n+nlogtLP) (3.23)

for any integer m > 0 and any real t > 0.

Proof. Let us first consider the discrete process. As usual, denote by r- be the stopping

time when we collect element i, and let ro = 0. If now Zx = Ti - Ti- 1 , then

TD= X 1 +•...+Xn,

and x 1,..., x, are independent random variables that have geometric distribution

with parameter p.

For fixed m, consider m i.i.d. random variables yl,..., ym such that

P(yi=l)=p and P(y=0) = 1 - p.

Observe that for the discrete process we have

P (T > k) = P (Yl + . . . + yk <i)

where k < m and i < n. In other words, each random variable yi indicates whether

we add a new coupon (if any) to the collection at step i. Therefore,

P (--D (p - 1, Sn) > m) = P (yl + ... + ym < n).



Applying the Chernoff bound, we get for any 6 > 0

P (Y1 + ... + Ym < (1 M- P)m - - ,

and choosing 6 such that

(1 - 6) mp = n,

we obtain

P (TD (p 1, Sn) > m) < exp(-mp6 - mp (1 - 6) log(1 - 6))

= exp (mp + n - log )

For the continuous version, note that if p' is fixed positive number and p -+ 0, the

random variable 1 -pxl converges in distribution to an exponential random variable

with parameter p'. Therefore, if p -- 0 then in distribution

1p1 " pTD (P -1,Sn) --* TC (P' - 1, Sn) .

This implies

P (-c (p' -1,Sn) > t) < exp -tp' + n + logtp- .

This concludes the proof of the lemma. O

Remark 3.7.2. In the proof, we use the reduction of the random variable 7 to a

sequence of binary i.i.d. random variables, and then apply the Markov inequality to

the moment-generating function of the sequence (this is how the Chernoff inequality

is established). We could also omit the reduction and apply the same procedure to 7

directly. However, in that case it was difficult to choose the value of parameter A in

JE e" to get a useful upper bound.

With Lemma 3.7.1 in hands, we can proceed with the proof of Theorem 1.2.8.

Proof. (Theorem 1.2.8) First, we will prove (1.11). Since expectations of Tc and TD

coincide, we can consider the continuous process only.



If k = 1 then all elements in the poset are incomparable, thus E T (p - 1, P) = 1H,p

and both inequalities hold. Hence, we can assume that k > 1.

Consider a maximal element i in P and the corresponding subposet Pi. Let e be

a linear extension of Pi. Obviously, the poset Pi is a subposet of £. Therefore, from

Proposition 3.2.3 we have

P (7 (p - 1, Pi) > t) • P (7 (p - 1, ) > t)

for any t > 0. However, the poset £ is a chain of length at most k, hence Lemma 3.7.1

yields

P (7 (p - 1, Pi) > t) 5 exp (-tp + k + k log ) .

If M (P) is a set of all maximal elements of P, then

S(p. 1, P)= max 7i = max (p. 1i, P),iEM(-) iEM(P)

and since M (P) contains at most n elements, the union bound gives

P ( (p - 1, P) > t) < nexp (-tp + k + k log .

Let now

f (t) = nexp (-tp + k + k log ,

and let to > 0 be the smallest real such that for all t > to we have

f (t) < 1.

Note that

f I(log n + k) )Pp
= n exp ( - ( log n + k ) k + k lo g log n + k

= exp (k log (1+ logn))

> 2k.



Thus, we have
1

to > - (log n + k).
p

On the other hand, we can show that

1
to < - (log n + k log log n + 2k).

p

Indeed, if t' = (logn + k log log n + 2k), thenP IbI VVlb VIYV)UI~

(-k log log n - k + k log

log n + k log log n + 2k
k )

and inequality f (t') < 1 is equivalent to

log n
e logn > +k log log n + 2.

However, for n > 3 we have

(e - ) log n >

I )V I
log log n + 2,

and the previous inequality follows since k > 2. It remains to note that the func-

tion f (t) is decreasing for t > t', thus for all t > t' we get

f (t) < f (t') < 1.

Now we obtain

E i(p -1,p)

_J 0oP(T(p.1,P) >t)dt+ P (r (p
to

(3.24)

(3.25)

f (t') = exp

< to+ f (to + ) d.
Olo

1, P) > t) dt

(P(7(p-1,P) > t)dt



Observe that

f (to + ) = nexp -top- p+ k + klog (to + •) P

= f(to) exp p + k log to

Inequalities f (to) < 1 and

log = log 1 + <
to to - t o

give

ET(p-1, P) < to +

Using (3.24) and (3.25), we get

to + f 00exp (~p + ) dC
fo to

Finally,

ET (p -1,P) < 1

00 exp ýp + d6.

<P t +fo ( + log n + k)1 -0p k p' dM

< -t'+ exp - pC d k1
= (t' +2).

p

(log n + k log log n + 2k + 2),

which implies the upper bound in (1.11). The lower bound follows from Corollary 3.2.4

and the fact that the poset on n incomparable elements is a subposet of P.

In the similar way we can estimate the second moment of the continuous process:

E r2 (p-1,P) = 2tP (Tc(p1,P) >t)dt

2tP (rc (p 1, P) > t) dt + 2tP (Tc (p - 1, P) > t) dt
0 to

2 t + 2 (to + C) f (to + C) da



We already established that

f (to + () < exp (

and using this, we get

St+ +p (-

P2

Therefore, recalling that k = o

Var TC (p - 1, P)

(E TC (p -1, p))2

(log ogn , we have for n -* 00

p2t9 - log 2 n + 8 + 4pto

log 2 n

(k log log n + 2k) (2 log n + k log log n + 2k)

log2 n

log n + k log log n + 2k + 2

log 2 n

= log log n

log n (
= o(1).

k log log n
log n

+ o0(1) +o(1)

It remains to note that for the discrete process Corollary 3.4.1 implies the following:

Var TD (p - 1, P) = E (p - 1, P) - ET(p 1, P)

= (E (p - 1, P) - E Tc (p - 1, P)) - ETc (p -1,P)

< E T(p ( 1, P) - E Tc(p - 1, P)

= Var Tc (p - 1, P) ,

hence

/VarTD (p- 1, p) = o (E TD (p 1, )),

as desired.

Applying Lemma 3.7.1 for all chains in the poset, we can prove Theorem 1.2.10.

E (p -1,P)



Proof. (Theorem 1.2.10) Again due to (1.2) we can consider the continuous process

only. Using the notation of Section 3.4, denote

T (C) = X(C) x

for any chain c in P. Then we have

r(p.1,P)= max T(C),
cEMCh(P)

and hence by the union bound we obtain

P ((p 1, P) > t)= P (max 7 (c) > t
\cEMCh(P)

E P ( (C) > t)
ceMCh(P)

for any t > 0. Since any chain c has length at most £, we have from Lemma 3.7.1

P (r (c) > t) < exp -pt + £+log t ,

which leads to

P (T (p - 1, P) > t) _ # MCh (P) .exp (-pt + +log p).

For the function

f (t) = # MCh (P) -exp

the equation f (t) = 1 is equivalent to

P - log p log # MCh (P)
1+

(-pt + £+ flog P,



Thus, for all t > (* we have f (t) < 1. Finally, we obtain

= f P (7

0

P o
e< -*

P o

f* +j00

P oo

/ 00(p - 1, P) > t) dt +

f -* +t dt(P
# MCh (P) exp (-£(*

(p exp (-pt + flog

exp (-pt +

P (7 (p - 1, P) > t) dt
2,

£t f* pt- pt + e + e log dt£

pt+ \ dtfý*/
pt dt

The lower bound easily follows from the observation that the longest maximal

chain is a subDoset of P.

Corollary 3.7.3. For any integer k > 0 and any positive a1, ... , ak the limit

1
lim - Ec (p 1,1· (aln,...,akn))

n--+oo n
(3.26)

exists for every p > 0.

Proof. Denote for convenience

Rn = R (aln,..., akn).

First, we will show that the sequence E T (p - 1, •,) is super-additive, namely that

ET (p - 1, Rn+m) > ET (p - 1,7 n) + ET (p . 1, m) (3.27)

for any n and m.

Indeed, let us consider the poset Rn+,m. The quantity in the right-hand side can

ET(p" 1,7P) J P(T(p.1,P) >t)dt0

1
+F~Ii)



be bounded from above by

E (max" X (c)),

where the maximum is taken over all maximal chains which contain the element

([alnJ,..., [aknj).

However, in the left-hand side the maximum is taken over all maximal chains in

poset Rn+m. Therefore, inequality (3.27) holds, and the sequence - E T (p . 1, 1n) is

increasing.

Note that all chains in Rn have the same length which is

Also the number of maximal chains in 1R, is

kn(a1+...+ak-l)

Denote by n the maximal root of

log # MCh (Zn)
S- log = 1 +

Ln

Then the sequence 6 converges to the solution of

6 - log 6 = 1 + k,

Hence by for sufficiently large n there exists a constant A > 0 independent of n such

that

Theorem 1.2.10 implies

Lný + *
S( , )

ET(p. 1,,,))

< AL,.

AL,.



Thus, the sequence - ETr (p - 1, 1R,) is bounded from above and the limit in (3.26)

exists. O

The value of the limit can be computed exactly when k = 2, see [27] for detailed

analysis. In higher dimensions existence of the limit was discovered in many sources

(i.e. [12, 32j), however, its value remains unknown.



3.8 Linear extensions of trees

Let #P denote the number of elements in the poset P and let Lin (P) be the number

of linear extensions of P. Let U (i) stand for the set of elements of P that precede or

equal i. Then the hook-length formula (see, for instance, [471) for forests gives

(#p)!Lin (P) = (#• ). (3.28)

This is the key ingredient for the proof of Theorem 1.2.11.

Proof. (Theorem 1.2.11) Let us consider the sample probability vector p for which

pi = A#U(i), iEP

where

Suppose that poset P has k minimal elements indexed by 1,2,...,k. Then any

linear extension has to begin with one of these elements, and the number of linear

extensions which start with 1 < i < k is

Lin (P\ {i}).

From (3.28) we have
(#P - 1)!

Lin (P \ {i}) = (#- 1)

which gives
Lin (P \ {i}) #U (i) pi

Lin(P \ {j}) #U (j) pj

for all 1 < i < k and 1 < j < k. Thus, we obtain the correct distribution of the first

element in the linear extension.

However, after getting the first element we have to produce the first element of a

linear extension in the remaining forest. By the same argument as above, the vector p



will induce the correct distribution. Finally, the distribution on linear extensions will

be uniform. O

Theorem 1.2.11 might not hold for posets that are not forests. The hook-length

formula for the Young diagrams implies that we will need to change sample probabil-

ities after collecting a few first elements in order to produce the uniform distribution

on the linear extensions.



3.9 Higher moments of the continuous process and

complete homogeneous symmetric polynomials

In some cases, we can compute the moments of the continuous process explicitly.

Recall that the complete homogeneous symmetric polynomial hk ( 1, ... , zn) is defined

as a sum of all different monomials

Zal za2 zan
z1 z2 ...

whose degree al + ... + an is equal to k, i.e.

... z+.+a=k
al +...+an---k

(3.29)

Lemma 3.9.1. For posets Sn and In we have

= k! -hk (rl,.

(-i)#J+1
,#J>o (E,,pi)""

In particular,

E r(pk 1, S,) =
k! k!

" hk(1,1...71) ~P

k!
E c(p - 1, I) =(pk

-hk 1,
1
2''

Since the moments of the continuous CCP are convex (Theorem 1.2.6), we obtain

the following fact.

Corollary 3.9.2. For any non-negative integers n and k the function hk (X,..., xn)

is convex on the domain

{(X,X22,---,Xn) Il X11 O, 2 > 0,...,X 0}.

1)E- (pc P ) = k! -hk , ,

JE2
n

(3.30)

(3.31)

(n+
- )·

(3.32)

(3.33)



Proof. For a chain Sn we obtain:

E 7T (p, Sn) ... p1e-p1 x1 ... pe -Pnx (X +... + x)k dXl... dxn

S... foo( Pie-Pl" ... Pne
- Pnx

n

o00

Sdxnx k! _x .. xann dxj..SE a,!..., an n

al+...an-=k

k! a,!

al +...+an=ka! ... an! pan(1 1
Here all ai are assumed to be non-negative integers, and the summation is taken over

distinct combinations (al,..., an).

In order to get (3.31), note that

ET- (p, I,) I ... pie-Pll ... pnepe-P (max x •) dx... dx

n= (fpie-P xi ...
i=1 0 Spe-Plxl ... pi-le-Pi-xi-10

x pi+le- Pi•+* x i+ ... pne-Pnxn dxl ... dxi-ldxi+l ... d xn

] pi6elxk11 (1 - e-pix) dxd.
i= ntegrating jwith respect to x

Expanding the product and integrating with respect to mi, we have

E T (p, In) = k il#
S JE2(P, -iE

i=1 ) JE2n,iEJ

exp (-xi

= Z p  Z (-1)
i=1 JE2n,iEJ

= k! (-1)
JE2n,#J>O (ZjEJ

j J+ k!

(j.Jp,)+

#J+1

j)k+l Pij,
jEJ

Epj) dxi
jEJ



and (3.31) follows.

Plugging in pi = p, we get

ETk (P - 1, In) k! (--1)#J +
k

JE2n,#J>O (p. #)k

=k! () (-1)i
+ 1

ik

= k! -Hk (n).

Therefore, it remains to show that

Hk (n)= hk (1,
For k = 1 we have

H 1 (n)

n-1

i=

1 1 - (1 - n)d"

Finally, substitution = 1 - C leads to

H, (n) 1 - d
o 1-(

1
1+-+1±-A

- hi (1,

1
n-
n

1

n-1

( n 
( - 1)i

i+1 i+1
i=0

\ --



Let k > 1. In the similar way we obtain

(1i <k
0 d k(f> oIi)n-1

Hk (n =i=0

= o o
f0 0 1k

•1 •·n i=1,,,1 -(1 - 11.. ~k"•n
d~x . .d~k

... dk

If n = 1, then

Hk (1) 1= hk (1)

If n > 1, we have

Hk (n) 1...
--- o

= Hk(n-1)+ o

Integration with respect to ýk gives

Hk (n)= Hk(n- 1)+

= Hk(n- 1)+

0 .d4k-1

1
-Hk-1 (n).
n

However, from the definition of complete symmetric functions we obtain

hk (Z1, .i t , n) = hk (Z,.. . , n-1)+ Znhk-1 (z, -- , zn) . (3.34)

Therefore, quantities Hk (n) and hk (1,..., 1) coincide when either k = 1 or n = 1,

and satisfy the same recurrence. Thus, they are equal, as desired.

The relation (3.32) follows directly from (3.30) and (3.34).

Theorem 3.9.3. For finite poset P and integer k > 1 we have

max hk (Pi,... ,Pim) E 7 (p, P) < Lk . k!Hk (M),
(ij,...,im)ECh(P)

1 n-1
fo : (1 - k1. i 1- )

i=0

... d k

(3.35)

1- (1-- 1... k-1) n
n~ .. .• 4 -11

(in 1)



where M is the maximal size of an antichain in the poset, and

M

i= 1

(-1)i+1
ik (3.36)

Proof. The theorem can be proved in the same way as we established Theorem 1.2.7.

Indeed, let

c = (il, i2, --, im)

be a chain in the poset P. Corollary 3.2.4 gives

Now using Lemma 3.9.1 and taking the maximum over all chains, we obtain the lower

bound.

With notations in the proof of Theorem 1.2.7, we get by Lemma 3.9.1 that

E Tc (L - X (a)) < Lk k!Hk (M),

and convexity gives the upper bound.

--hk 12, ..1 1 1M



3.10 Integration over the chain polytope

3.10.1 Motivation

Let us consider the continuous CCP on the poset P that consists of three elements al,

a2 and a 3 so that

al -- a2 -- a3.

Assuming the corresponding rates to be pi, P2 and p3 respectively, let us com-

pute P (Tc < t). Since the only maximal chain of P is (al, a2, a3), then the chain

polytope of P is given by the following inequalities:

X1 > 0, x2 _ 0, x3 > 0,

x1 + x 2 + x 3 < 1,

where variable xi corresponds to element ai (1 < i < 3). Therefore, formula (3.12)

gives

P (T < t) = f dx fo dx 2  dx 3 P1P2P3 exp (-pIX - p2x 2 - p3x 3)

Evaluating the integral, we get

e-pit 6 29t e--pp ip 2
P ( < t) = - P3 e -P(337)

(P1 - P2) (P1 - P3) (P2 -P) (P2 P3) (P3 - P1)(3 - P2)

The Markov chain approach used in Section 3.3 also gives the same answer. So does

the Brion's formula ([8]) which is a standard tool to integrate exponents of a linear

function over a polytope.

Although relation (3.37) is not complicated, it not trivial why there is no singu-

larity if pi -~ p2. A possible way to cope with these problems is to compute a power

series of P (7 < t) with respect to t. We leave this technical procedure to the reader



and give the final answer

P (7 < t) = pp2P3 3 h (p,P2P3) +- h2 (P2P3) - . , (3.38)

where hk are the complete homogenous symmetric functions introduced in Section 3.9.

Now the problem with singularity is resolved, since each coefficient is symmetric in

variables P, P2,p3, and it is not difficult to prove that the series converges to a Co

function. See formula (3.44) for the generalization of (3.38).

3.10.2 Proofs

As we mentioned in the introduction, representation (3.38) is a consequence of The-

orem 1.2.12. In order to prove it, we need an auxiliary fact.

Lemma 3.10.1. For any n element poset P and n-dimensional vector

m= (ml, m2;, ... , m)

with positive integer entries we have

fc Xi- 1 ... Xn- 1 dx1 .. dx. = (mi - 1)!...(m - 1)! e (). (3.39)
c(,1) Iml!

We postpone the proof of the lemma for a moment, and show how Theorem 1.2.12

follows.

Proof. (Theorem 1.2.12) Relation (3.39) implies

f - tImlI

tc(p - ... (x .) .m.. (mn -1)e (m),



a, ... an (m| - n)! (alxl)m - 1 .. (anXn) m
I

-
n dXl ... dxnJtc(P) (Im| - n)! (mi - 1)!... (m - 1)!.....

Note that

S (m - n)! (alXl)m
- 1 ... (anxn)mn

-l = (axl1 + ... + anxn)kn,

(m(= M - 1)! . .. (m - 1)!ml=k

where the sum is taken over all n-dimensional vectors m with positive integer entries

that add up to k. Taking this sum of both sides in (3.40), we obtain

(alzx +... + anX,)k-n

(k - n)!

tirml
dx• ...dx, = E -e (m) a"" ... am

Iml=k

It is not difficult to see that k is integer and k > n. Thus, taking the summation of

the integrand over all values of k, we have

(ax, +...-n)! = exp (alXl +... + anxn),(k - n)!k=n

and the theorem follows. O

Before we proceed with the proof of Lemma 3.10.1, let us consider the case

mi = m2 = .. .-= mn = 1.

Then formula (3.39) becomes

1 1
dxldx2 ... dxn= -e(1,1,...,1)= -e(1).n! n! (3.41)

1c(P)

From the definition of e (.), we obtain that e (1) is the number of linear extensions

of the poset 'P. Indeed, any map f corresponding to vector 1 is a bijection between

a, ... a tc(P)



elements of S, and P. Thus, map f-1 is an order-preserving bijection from P to S,

therefore, f-1 is a linear extension. Thus, in this case we obtain the result given

in [48] concerning the volume of the chain polytope.

Proof. (Lemma 3.10.1) For the poset P on elements

S1, S2, • .., Sn

and a vector m let us consider a poset pm constructed as follows. The elements

of pm are
12 1 2 m2 1 2 mn

S , s , ..., s , S21, S 2, ..., Sr•2, . . n, S n, .S , .. ,

and

Si - s in Pm si s-< sj in P

for any 1 < i,j < n and 1 < a < mi, 1 < b < mj. In other words, instead of

a single element si we use mi incomparable copies of it with induced partial order.

Note that P m has |ml elements.

Now consider a linear extension of Pm, i.e. a bijection f: pm - Sim5 . Let a

map 7r: pm -- P be defined as follows:

x (sa) = si for all 1 < i < n, 1 < a < mi.

Then f = 7rf- 1 is a map from S-lm to P which maps exactly mi elements of Sjmj to

element si. Also, if x, y E Simi and x -- y, then e-' (x) -1 (y), otherwise £ is not a

linear extension. Thus,

f (x) / f (y),

which means that f does not break the partial order. This shows that any linear

extension £ gives a map f: Siml -- P corresponding to vector m.

Note that -r does not distinguish different copies of the same element in P. Hence

for any map f there are exactly ml!m2!... mn! linear extensions of pm that result



to f. Therefore, the number of linear extensions of Pm is

Then relation (3.41) yields for the volume of the chain polytope

Sin n e(mm.
jC(PM)

(3.42)

Here upper indices indicate the number of corresponding copies of elements in P.

Let for brevity

Xm = (XI ,...,X ,... X,..., Xn mn),

and let

x = (x,...,x,~T  where xi = max zil<a<mi
for all 1 <i <fn.

Note that any chain in pm cannot contain more than one copy of element si. This

shows that

is a chain in Pm if and only if

is a chain in P. Hence,

xm E C (P m ) (3.43)

Now consider i.i.d. random variables

X1 .. , I•,X , ... ,X2M2,. .. ,X,... ,Xmn

4-#: x EC(P) .



that have the uniform distribution on [0, 1], and let

Xi = max X a
1<a<mi

for all 1 < i < n.

Then it is easy to see that

J dx....dx"1...dx ... dxm n = P (X m E C (Pm)),
c(p

m )

where Xm = (Xl,...,X", .... X,... ,X•) . Equivalence (3.43) implies

P (Xm E C (P m )) = P (X E C (P)) ,

where X = (X 1,..., X) T . It remains to note that the density of Xi is

mix i-d-li
MYiXi axi,

therefore

P (X E C (P)) = fc(P)
Plugging this into (3.42), we get

fcp) mlxz-1 dx ... mT xmn - l dx, =

and the lemma follows.

3.10.3 Examples

Totally ordered posets

Let

ml!m2!... M!
Im|!

m xl-ldx "... mTx '-ldxn.



Then for any vector m we obtain

e (m) = 1.

Indeed, the smallest m, elements of Siml should be mapped into si, otherwise we

would break the partial order. Also the next m2 elements should be mapped into s2,

and so on.

Therefore, Theorem 1.2.12 implies

P (Tc (p, S-) < t) = m ,~pl ..
m

Recalling the definition of complete homogeneous symmetric functions, we get

(c (P, S) < ) = P p tn tn+ l  tn+ 2

S(n + 1! (n + 2)!.44)

where hk (p) stands for hk (p1,... ,Pn). Obviously, formula (3.38) is a special case

of (3.44).

Sum of i.i.d. exponential variables

Let now p = p - 1. In the proof of Lemma 3.9.1, we have shown that

hk (1) (n + k -1)

which leads to

(pt) k
P (7 (1, Sn) < t) = Ik (-1)k- hk-n (1)

k=n

= )k-n k - 1
k=n ! n - 1k=n



Expanding the binomial coefficients, we obtain

E \k- (pt) (k- 1)!
k=n( - k! (k - n)!(n -1)!

_ 1 (-1)k-n pt) k
(n - 1)! k=n (k - n)! k

P (t (1, Sn) < t)

Finally, using the fact that

Sptk-ld
0 k-l dý

(pt)k
k

we get

1 Pt ý 00 ( - 1)k-n
P (T(1, S) < t) = n-1 (n- 1)! k n

( n - 1 ) 
n

However, the random variable T (1, S,) can be represented as X 1 + X 2 + ... + X, ,

where Xi are i.i.d. exponential random variables with parameter p. Thus, we obtain

the following classical fact known in the probability theory.

Proposition 3.10.2. For i.i.d. exponential random variables X 1, X2 ,..., X, with

parameter p we have

(3.45)

Sum of i.i.d. geometric random variables

For the discrete coupon collector's process on Sn with sample probabilities given by

vector p - 1 the stopping time TD can be represented as a sum of n i.i.d. random vari-

ables G 1,..., Gn that have the geometric distribution with parameter p. Lemma 1.2.2

and Proposition 3.10.2 lead to the following result.

Proposition 3.10.3. For i.i.d. geometric random variables G1, G2 ,..., Gn with pa-

P(Xl+X2++ .. +X <t) = (nI ,-1e-d.



rameter p we have

if m 2 n,

if rm < n.
(3.46)

Proof. Lemma 1.2.2 gives that -P (TD (p 1, S) < m) is a coefficient against ttm in

the power series of

et P (cr (p -1, Sn) < t) .

Formula (3.44) shows that the smallest power of t in the power series is n, therefore,

P (TD (p 1,Sn) < m) = 0 if m < n.

Let us assume m > n. Expanding et P (Tc (p - 1, Sn) < t), we obtain that

1 1 m (_l)k-n k

P (TD (p -1, Sn) : mTn) = W-n pm (n - 1)! k (k - n)! (m - k)!

By changing the index of summation, we get

m! rm-n (-1)kp k+n
P (7D < m) (n - 1)! (k + n) k! (m -k -n)!

M m-n k n).
(n - 1)! (m -n)! (- k

k=0

Substituting fk+n-1d for k , we have
Subsitutng 0k+n

P (TD < m))
m!

(n - 1)! (m - n)!

=n (n) n-1

This accomplishes the proof for m 2 n.

(n-1

(1 - ()m-n d<

(1)k (m-k

n (M) fp I(1 - m-n <,n o

-

n

N=V

n) kd<



Sequences of elements

Let us consider the discrete coupon collector's process on a poset P on n elements

whose sample probabilities are equal to p = -. Since all sample probabilities add up

to 1, at each step we draw a coupon. Let

C1, C2, . . .· C

be the sequence of coupons drawn at first £ trials. It is not hard to see that we complete

the collection if among these £ elements we can find a subsequence of distinct elements

Cil Ci2 ) . .. Cin

such that

il < i2 < ... < in,

and for any 1 < a < b < n either ci, -< cb or elements cj, and c-b are incomparable. In

other words, we complete the collection if the sequence of the coupon drawn at first £

trials contains at least one linear extension of the poset P as a subsequence. Denote

the number of such sequences by We (P). The choice of the sample probabilities

implies
we (P)P (TD (p. 1,P ) •=- ()

ni

Having this, we can use Theorem 1.2.12 and Lemma 1.2.2 to evaluate W,.

Proposition 3.10.4. For an n element poset we have

(-1)k-nk Ekn - kI if > n,
Wt (P) k=n k (3.47)

0, if f < n.

Here

Ek = (m),
Iml=k



where m are n-dimensional vectors with positive integer entries.

Example 3.10.5. Let us consider a poset P on three

follows:

elements a, b and c ordered as

a - c, b -- c.

The poset P has two

also easy to see that

linear extensions: abc and bac, therefore, e (1, 1, 1) = 2. It is

e (2, 1, 1) =3

e (1, 2, 1) =3

e(1, 1, 2) =2

aabc,

abbc,

abcc,

abac,

babc,

bacc.

baac,

bbac,

Here aabc indicates that the corresponding map

to element a, the third element - to b, and the

Thus, we have

from S 4 maps the first two elements

fourth one is mapped to c.

E3 = e (1, 1, 1) = 2,

E4 = e (2, 1, 1) + e (1, 2, 1)+ e (1, 1, 2) = 8.

Formula (3.47) gives

W4 (P)= (4)E 3 3- ()E 4 = 12E 3 - E 4 = 16,

and the corresponding sequences are (linear extensions are underlined)

abca,

abbc,

cabc,

baac,

abcb,

aabc,

baca,

bbac,

abcc,

acbc,

bacb,

bcac,

abac,

babc,

bacc,

cbac.

Proof. It is obvious that Wj (P) = 0 if e <
elements. Thus, we can assume e > n.

n, since any linear extension consists of n



Plugging ai = -1 into (1.16), we obtain from (3.12) that

tjml (_-1)ml-n
P (T c t)= = Iml! nlmj e (m.

Combining the terms with the same value of Iml, we have

P (c t) = E nk  Ek.
k=n

Taking the coefficient against t' in the power series of etP (Tc < t), by Lemma 1.2.2

we get that
1 (-1)k-n Ek

P (D - ) ~= nk k! (t- k)!'
k=n

This leads to

W ()(-1)k-n nWe (P ) = n' P (7D 5 t) =nk k! ( - k)!
k=n

and the proposition follows. O

Remark 3.10.6. Formula (3.47) looks like a typical Inclusion-Exclusion summation.

However, we do not know how to apply the Inclusion-Exclusion principle in order to

compute We (P) directly.
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