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Abstract

Since the first reports of efficient luminescence and absorption in organic
semiconductors, organic light-emitting devices (OLEDs) and photovoltaics (OPVs) have
attracted increasing interest. Organic semiconductors have proven to be a promising
material set for novel optical and/or electrical devices. Not only do they have the
advantage of tunable properties using chemistry, but organic semiconductors hold the
potential of being fabricated cheaply with low temperature deposition on flexible plastic
substrates, ink jet printing, or roll-to-roll manufacturing. These fabrication techniques are
possible because organic semiconductors are composed of molecules weakly held
together by van der Waals forces rather than covalent bonds. Van der Waals bonding
eliminates the danger of dangling bond traps in amorphous or polycrystalline inorganic
films, but results in narrower electronic bandwidths. Combined with spatial and energetic
disorder due to weak intermolecular interactions, the small bandwidth leads to
localization of charge carriers and electron-hole pairs, called excitons.

Thus, the charge-carrier mobility in organic semiconductors is generally much
smaller than in their covalently-bonded, highly-ordered crystalline semiconductor
counterparts. Indeed, one major barrier to the use of organic semiconductors is their poor
charge transport characteristics. Yet this major component of the operation of disordered
organic semiconductor devices remains incompletely understood.

This thesis analyzes charge transport and injection in organic semiconductor
materials. A first-principles analytic theory that explains the current-voltage
characteristics and charge-carrier mobility for different metal contacts and organic
semiconductor materials over a wide range of temperatures, carrier densities, and electric
field strengths will be developed. Most significantly, the theory will enable predictive
models of organic semiconductor devices based on physical material parameters that may
be determined by experimental measurements or quantum chemical simulations.
Understanding charge transport and injection through these materials is crucial to enable
the rational design for organic device applications, and also contributes to the general
knowledge of the physics of materials characterized by charge localization and energetic
disorder.

Thesis Supervisor: Marc A. Baldo
Title: Professor of Electrical Engineering
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Chapter 1 - Introduction

1.1 Introduction

Organic semiconductors possess advantages over conventional inorganic

semiconductors in certain large area applications, particularly in optoelectronic devices

such as displays and solar cells. Yield concerns typically prohibit the fabrication of large

area electronics on crystalline inorganic semiconductors. Polycrystalline and amorphous

inorganic semiconductors possess defects at boundaries between crystalline grains.

Defects degrade the electronic and optical properties and may be sources of instability if

there are dangling bonds. In contrast, organic semiconductor devices exhibit good optical

properties even when fabricated by low temperature deposition on flexible plastic

substrates, ink jet printing, or roll-to-roll manufacturing.' These inexpensive fabrication

techniques are possible because of the fundamental nature of the solid-state organic

material, which is made up of isolated, individual molecules held together by weak van

der Waals bonds. Unlike their inorganic counterparts, molecular solids are atomically

ordered - there are no dangling bonds. But the weak intermolecular bonds exacerbate

intermolecular disorder that acts to localize electronic states. Importantly, this preserves

the optical properties of individual molecules in the solid state.

Electronic devices based on organic semiconductors, such as organic light-

emitting diodes (OLED), photovoltaics (OPV), and thin film transistors (OTFT) have

attracted considerable interest recently. But perhaps the first commercial use of organic

semiconductors was their application as photoconductors on photocopier and laser printer

drums. In early photocopiers, amorphous Selenium (a-Se) was used as the

photoconductive material. Organic semiconductors were later used because they are non-

toxic, inexpensive to coat on the drum, and have an easily controllable spectral response.

But it was soon evident that that charge transport in organic semiconductors could not be

explained by conventional models. The charge carrier mobility in organic semiconductors

varies by orders of magnitude with changes in charge density, electric field or

temperature. This realization initiated the field of charge transport in organic

semiconductors. In the 1970's, work focused on photoconductive materials such as the



archetype molecularly-doped polymer: a donor-acceptor blend consisting of donor

polyvinylcarbazole (PVK) and acceptor trinitrofluorenone (TNF). These disordered

molecular-doped polymer films, used for xerography, were the first type of structures

used for studying hopping transport in disordered organic systems.2' 3 Although the early

studies made significant progress, predictive models of the charge carrier mobility

remained a distant goal - a situation that has continued to the present day.

1.2 Charge-Carrier Transport in Organic Semiconductors

Bulk organic semiconductors are macroscopic assemblies of molecules or

polymer chains. The constituent molecular components are weakly held together by van

der Waals forces. Consequently, they have narrower electronic bandwidths, and their

charge carriers and electron-hole pairs, called excitons, are localized to a few molecules.

Organic semiconductors are often highly disordered (both spatially and energetically),

especially in the amorphous state, and hence, their charge-carrier mobility is smaller than

their covalently-bonded, highly-ordered crystalline semiconductor counterparts. Due to

the poor mobility, applications for organic semiconductors tend to exploit properties

other than electrical conduction, such as strong optical properties and the feasibility of

large-area fabrication.

A comparison of van der Waals bonded molecular crystals and covalent atomic

crystals is shown in the table below, after Silinsh and Capek.4

Molecular Crystals Covalent Crystals

Weak van der Waals intermolecular Strong covalently bonded interatomic
interactions -10 -3 - 10-2 eV interactions -2 - 4 eV

Charge-carrier and exciton localization Charge-carrier and exciton delocalization
Charge-carrier and exciton energies Single electron approximation

determined by many electron interactions
(e.g., polarization)

Charge-carriers and excitons treated as Charge-carriers are free electrons and holes
polaronic quasi particles

Low charge-carrier mobility (=u 1 High charge-carrier mobility; long mean
cm 2/Vs); small mean free path (on the free path (100 - 1000 times lattice

order of lattice constant) at room constant)
temperature

Large effective mass of charge-carriers Small effective mass (less than mass of
(100 - 1000 times bigger than electron electron)



mass)
Hopping-type charge transport

Frenkel excitons
Low melting and sublimination

temperatures; low mechanical strength;
high compressibility;

Table 1-1:4 Comparison of properties of molecular

(1994). 4

Band-type charge transport
Wannier excitons

High melting and sublimination
temperatures; high mechanical strength;

low compressibility;
and covalent crystals. After Silinsh and Capek

Even though organic semiconductors are typically found in applications that do

not require good electronic properties such as high charge carrier mobility, it is important

to understand charge transport in organic semiconductors because it typically dominates

the behavior of organic semiconductor devices. Models to explain current-voltage

characteristics in organic semiconductor devices traditionally assume that conduction is

either limited by injection or transport in the bulk.

inje~on,

Figure 1-1: Total current is from the charge injection rate from metal contacts into organic

semiconductor and the subsequent bulk transit to the other contact. Most models assume current is

dominated by one of these two mechanisms.

Injection-limited models have conventionally been described under a tunneling 5' 6

or Richardson-Schottky thermionic emission5 approach. Both models have been

successfully employed for inorganic semiconductors. Tunneling and thermionic emission

models have been applied analytically 7 and using Monte Carlo simulations 8, 9 to describe

injection current in organic semiconductors.

u



Bulk transport models are based on the drift equation, J = qnaF , where

ft = (n, F, T) . A space-charge limited current (SCLC) model for a perfect insulator

with no intrinsic carriers or traps and a constant charge-carrier mobility obeys the Mott-

Gurney equation. 1' One set of bulk-limited models concentrates on the charge-carrier

density (n) dependence of the charge-carrier mobility. One type of 'n-model' is the trap-

charge limited conduction (TCLC) model," which is a modification of the SCLC to

include a trap distribution. A charge-density dependence arises because as the charge

concentration is increased, the traps fill up to increase the density of available charge in

the conduction band that can participate in current motion. A second set of bulk-limited

models, the 'F-models', seek to interpret experimental data in terms of an electric-field

dependent charge-carrier mobility. Experimental studies of charge transport in organic

semiconductors have observed that the electric field dependence of mobility follows an

approximate Poole-Frenkel form, log t-vi .3 Experiments support both models. 12

However, it is difficult to explain the temperature, field, and charge density dependence

of mobility with a unified theory.

To summarize, charge-carrier transport in organic semiconductors is still not fully

understood. A comprehensive explanation for mobility and current-voltage characteristics

is needed to optimize general device performance. Not only is a theory for charge

transport in organic semiconductors essential to the rational design of these type of

devices, it will also help contribute to the general understanding of the physics of

materials characterized by charge localization and energetic disorder. This thesis will

present a first-principles analytic theory that will give a unified description of the

temperature, field, charge density, and material properties dependences of charge

transport in solid-state organic semiconductors that can be successfully compared to

experiment.



Chapter 2 - Localization and Transition Rates: From

Microscopic to Macroscopic Models

2.1 Introduction

This chapter begins by defining charge carrier localization and we discuss its

causes. Then, we discuss microscopic transition rates for charge-carriers moving within

an organic semiconductor material lattice. A macroscopic resistor network13 for current

transport is then modeled based on the microscopic behavior.

2.2 Density of States in Disordered Solids

2.2.1 Localized Band-tail States

To describe the density of states in disordered solids, a simple model is used with

the following Hamiltonian: 14, 15

H = ZE j1 )( + fijk )(k (2.1)
j j,k

where 10) is the electronic wavefunction at site j, Ej is the energy of site j, and 8, is

the interaction energy between sites j and k. In an ideal crystalline solid, where all the site

energies are equal, the Hamiltonian describes a single band with abrupt band edges and

bandwidth determined by the interaction energy f .15 In a disordered solid, disorder can

be modeled by assigning random site energies from a probability distribution function

(assigning random values for the diagonal elements, Ej; hence, the name diagonal

disorder). With the inclusion of disorder, the resulting DOS broadens and gains smooth

band-tails at the band edges. The band-tail density of states for a d-dimensional

disordered solid will be an exponential, g(E)=Aexp[B(±(E-E)d/2)] , for a

probability distribution function, P(Ej)= [(Ej - EA)+(E, -EB)] 14 This

distribution function represents a uniformly random two-component (A,B) alloy

(compositional disorder), where EA and EB are the ground state energies of the alloy



components A and B, respectively. An Anderson disorder model of a uniform probability

distribution function, P(E) = --E j  where W is the width of the distribution

and 0 is a step function, also yields an exponential band-tail. 14 This probability

distribution function could represent uniformly varying site energies arising from lattice

disorder (structural disorder), where the range of perturbed energies is modeled to be

limited by width W. Therefore, an exponential is commonly used to describe the band-tail

distribution in disordered materials. Gaussians are also commonly used to represent

random disorder.3 Unfortunately, the actual density of states in organic semiconductors is

difficult to measure. Exponential models of the density of states are commonly employed

in analytic models, whereas Gaussian densities of states are more common in numerical

models. In both cases, however, the width of the distribution is typically a fit parameter,

and it is not certain whether the shape of the distribution is significant within the

operating range of most organic semiconductor devices. Nevertheless, accurate

measurements of the density of states remain an important unsolved problem for organic

semiconductors.

2.2.2 Mott Transition

Various types of distribution functions modeling diagonal disorder in solids result

in a band with band-tails. For charges in the middle of the band far above the band-tail

states, the effect of disorder will be weak, and their electronic wavefunctions will not

decay such that they are localized within a region of space. The states in the middle of the

band are extended, 14 and the states in the band-tails are localized. Mott16 introduced the

concept of mobility edge, the energy level position that separates the localized states from

the extended states. If the Fermi energy is below the mobility edge, the dc conductivity at

T = 0 is zero. Once the Fermi energy passes the mobility edge, Mott16 predicted a

transition from an insulating to a metallic state (metal-insulator transition).

2.2.3 Anderson Transition

As the disorder is increased, the extended states near the band edge will start to

localize and the mobility edges will move further up into the band. Once the disorder is



strong enough such that its width W exceeds the extended states bandwidth, the entire

band will be localized. This transition from a metallic to an insulating system by

increasing disorder is called an Anderson 17 transition. Amorphous organic

semiconductors are believed to have large enough disorder that all the states are localized.

2.3 Localization and Hopping in Organic Semiconductors

2.3.1 Localization Due to Physical Disorder

Organic semiconductor films possess various morphologies that all have some

degree of disorder, with amorphous films being the most disordered and molecular

crystals the most ordered. All organic semiconductors are characterized by weak van der

Waals bonding, which gives them weak intermolecular interactions. This weak coupling

of molecules results in weak interaction energy f to give narrow electronic bandwidths.

For disordered amorphous films, where there is weak conformational, morphological, and

molecular order, there will be dispersion in energy levels of the constituent organic

molecules. This statistical variation of width W in the energy level distribution of the

molecules will overcome the already narrow electronic bands to create Anderson charge

localization. 17

There are several possible physical causes for the energetic disorder in bulk

amorphous films. One source is the random orientation of molecular dipoles in spatially

and geometrically disordered molecular films. The energy of a charged molecule in a

lattice of polar molecules will be affected by the surrounding dipole interactions. In a

physically disordered lattice, the polar molecules are randomly oriented, and charges on

different molecule locations will see different surrounding dipole orientations, and

consequently have different energies.

Following the work of Young, 18 consider a charge sitting on a site in a simple

cubic lattice with lattice spacing ao. The site energies around the charge are located at aon,
where n = ii + jj + kk and i, j, and k are the unit lattice vectors. Each lattice point has a

probabilityf of having a point dipole p. The energy contributed from the dipole on lattice

point n is:1



e 4aqp n2 (2.2)
47wa2 n2

The total energy affecting a charge by the surrounding dipoles is E = e, . Assuming
n

that the average energy from the dipole interactions is zero, the variance in energy with

isotropic and uncorrelated dipole moments is:'

(E 2)= (ee"n16)= (e2)=e 2 a P2 n f (2.3)

The variance in the energetic dipole disorder is then: 18

2 1 q2 p2 1 1 q2p2

2=- r f42 f (16.5323) (2.4)
3 162 e2 a n n 3 16 2s2a4

For Alq3 with a dipole moment of p = 5.3 Debye, the standard deviation of the dipole

disorder is a = 0.13 eV. This disorder width W of 0.13 eV will be sufficient to create

localization. The higher order moments make minor corrections but the second order

moment is dominant, giving an approximate Gaussian distribution of energy states due to

dipole moment disorder. is The higher order moments do affect the tail of the distribution

and a simple Gaussian DOS may not be accurate in heavily dipolar amorphous

materials.1
8-22

2.3.2 Localization Due to Polarization

However, localization does not only occur due to the physical disorder that is

present in amorphous films but it can also manifest itself even in well-ordered molecular

crystals due to polarization. According to the Born-Oppenheimer approximation, the

electronic wavefunction responds instantaneously to changes in nuclear coordinates.

Therefore, any nuclear rearrangement due to polarization or temperature must be

considered because it affects the electronic wavefunction. The localization time is defined

as the length of time a charge resides at a particular site. It is dependent on the physical

disorder, average interaction energy t, and other parameters that may influence a charge

to hop out of a site, such as the electric field and temperature. Anderson' 7 concluded that

at zero applied electric field and zero temperature, if the localization condition is satisfied,

the charge will remain at the lattice site for infinite time. The different polarization



effects (electronic, molecular, lattice polarization) will influence charge hopping if they

occur on times scales shorter than the localization time of the charge.4 The electronic

polarization time is significant because the rearrangement of the electronic wavefunctions

is relatively instantaneous. The molecular and lattice polarization occurs on much slower

time scales and are comparable to localization time of the carriers if the interaction

energy f < 0.1 eV.1

The polarization effects can overcome the weak intermolecular energy to distort

the molecular lattice. This rearrangement of the surrounding molecules lowers the energy

of the charged molecule. The energy required to remove this excess charge will then

exceed the nearest neighbor interaction energy, which leads to self-trapping, or self-

localization.4' 23 If these molecular conformation energy changes are a significant

contribution to the total activation energy barrier for escape, then not only should the

single carrier be considered in a model of charge transport but the surrounding polarized

molecules must be considered as well. The motion of the charge and its surrounding

polarization is then treated as a quasi-particle known as a polaron.'

2.3.3 Hopping Activation Energy

The effect of localization is that the mean free path of charges is typically of the

order of the spacing between adjacent molecular sites, and charges moving through the

disordered lattice are scattered at each molecular site.4 The charge transport mechanism is

therefore hopping of charge carriers from one localized state to another within a lattice of

molecular sites. Hopping transport is a thermally activated process, where the activation

energy, or energy difference of the charge at the initial and final localized state, is

determined by two factors. The first is the statistical variation in site energies due to the

physical disorder of the organic material, where there is variation in lattice energy

contribution to each site because of intermolecular spacing disorder. The second is

intramolecular conformational energy changes due to polarization of a charge to the

surrounding molecules.3 If localization is dominated by molecular conformational

changes, then charge transfer is thermally activated with an activation energy that is

dependent on the active molecular deformations. These models are known as polaron



models. Often, however, energetic disorder is more important in creating localization,

and many models only consider static energetic disorder influence on activation energy.

2.4 Polaron Hopping and Marcus Electron Transfer

The charge and its associated polarization cloud are collectively called a polaron,

and the properties of this quasi-particle polaron are conserved as the polaron moves

through the lattice. The size of the polarization cloud is dependent on the strength of

localization and interaction energy. Holstein24' 25 considered the motion of a polaron in a

lattice where the intermolecular overlap between sites is on the order of or less than the

activation energy required for a charge to move to another lattice site. This small-polaron

model 4-26 is analogous to Marcus theory27, 28 of charge transfer between adjacent donor

and acceptor molecules. Marcus theory deals with the charge transfer mechanism in

solution, where reorganization energy comes from the rearrangement of molecular

geometry (intramolecular vibration) and polarization of the surrounding molecules in

solution (reorientation of dipoles in the solvent) upon addition or removal of an electron

to a molecule. 27 A parallel can be formed for charge transfer in the solid-state, where the

reorganization energy mainly comes from vibrational relaxation and not rotation of

solvent dipoles. Small-polaron models are based on coupling of the charge with low-

frequency phonon modes, with a reorganization energy calculated to be twice that of the

polaron binding energy.24 26

Nuclear rearrangement limits the rate of polaron hopping since from the Born-

Oppenheimer approximation, electronic changes is much faster than molecular

rearrangement. Consequently, charge transfer first requires the surrounding molecules to

relax to the optimal nuclear arrangement and form an activated complex.

2.5 Non-Polaron Hopping Transport in Disordered Solids

2.5.1 Introduction

Transport in disordered organic semiconductors, and disordered solids in general,

is characterized by charge localization and a hopping transport mechanism. Hopping

conduction was first applied to describe the anomalous behavior of transport observed in



doped semiconductors at sufficiently low temperatures. One of the first observations was

made by Hung and Gliessman29 who measured the Hall coefficient and resistivity of

different Germanium samples with different kinds of impurities and concentrations from

room temperature down to liquid helium temperatures. According to conventional

impurity semiconductor conduction theory, as temperature is reduced, the concentration

of the electrons in the conduction band (or holes in the valence band) should decrease,

and the resistivity and Hall coefficient should increase. However, Hung and Gliessman29

found that the resistivity saturates and the Hall coefficient reached a maximum at low

temperatures. These anomalies led them to conclude that a different mechanism of

conduction was taking place at low temperatures.

For low doping concentrations, there is weak overlap and impurity states are

localized. At low temperatures, there will be little thermal excitation to the bands and

most charges will be localized to the impurity states. In this case, band current becomes

negligible, and tunneling conduction of electrons in localized impurity donor states in the

gap becomes the predominant process. This phonon-assisted tunneling conduction

process was suggested by Mott30 and Conwell.31

2.5.2 Master Equation of Hopping Kinetics

In the regime where the hopping mechanism is predominant, transport is

determined by charge-carriers moving from one localized state to another. The hopping

motion of charge-carriers can be described by the kinetic master equation: 32' 33

= I _ WjiPj (t)(l- P (t)) -WjPW (t)(l- P (t)] (2.5)

where iP (t) is the occupational probability of site i at time t and Wij is the transition rate

from site i to site j. Often times, under the condition that the system is close to

equilibrium, a linearization can be made to the master equation. Several approaches to

solve the master equation include the resistor network method, 13 percolation theory, 34

effective medium theory, 35 the continuous-time-random-walk (CTRW) method,36 and the

Green function method.32 Vissenberg presents and discusses these methods used to solve

the linearized master equation.33



2.5.3 Resistor Network Models

Miller and Abrahams 13 developed a model that reduces the incoherent hopping

transitions in a disordered lattice to a random resistor network. Their 13 proposed network

is used to calculate the hopping conductivity G in semiconductors in the presence of a

weak external field. In this hopping transport, the electronic states are localized with the

wavefunctions decaying like exp [-air - R, ] (a is the inverse localization length, Rj is

the spatial position of a site j) and the energy difference between pairs of sites is

AE =IE -EjI>> ,j (8, is interaction energy between sites i and j; Ei and E) is the

energy of sites i and j, respectively). A linearization can be applied for weak-field

transition rates, IFU - Fji o Gi, (p i - p ) (Gi is related to transition rate Fi from site i to

site j; p, and pi, is the potential at sites i and j, respectively). From detailed balance of

rates, the transition rates in the low-field regime is:13

F oc exp[ -2aIR 1 -R,I]exp[-AE/kT], AE >0 (upwardhops) (2.6)
(2.6)F,o exp -2a R -R1 1, AE < 0 (downward hops)

Note that using Miller-Abraham rates assumes that the electron-phonon coupling is weak

enough to have polaronic effects be negligible compared to static disorder in the hopping

process. The activation energy AE will be only dependent on the site energy differences

(caused by static disorder) and not on molecular conformation energies required to form

activated complexes for charge transfer.

From the master equation (Eq. (2.5)), the net steady-state current flow from site i

to site j is:33, 37

Ii = q WP (1 - Pi ) - W, Pi (1 - P )(2.7)

The occupational probabilities of sites is given by the Fermi-Dirac statistics:

1
P = (2.8)

S1+exp[(E, -u, )/kT]

where yj is the non-equilibrium quasi-electrochemical potential at site i. At equilibrium,

the electrochemical potential is given by ui = - qF -r , where #u is the chemical

potential, F is the applied electric field vector, and ri is the position vector of site i. The



non-equilibrium quasi-electrochemical potential deviates from a well-defined equilibrium

electrochemical potential as the temperature is reduced, disorder increases, and the

applied electric field increases. 37 Using Miller-Abrahams hopping rates (Eq. (2.6)), the

net current flow in Eq. (2.7) will be:33, 37

e-2r Ej-Eil (E(-Ej)/2kT (E•_-,j)/kT E j-Ei)/2kTe(E,-/k
e-2 arj e 2kT (e e -e e

= qv (E-/2kT (E-jj)/2kT (-(E)/2k +(E-A) /2k -(E-)2kT + (E -)/2kT (2.9)

where the absolute value in the exponential in the numerator comes from the dependence

on the energy difference between sites i and j. Eq. (2.9) can be rewritten as: 33, 37

exp [-2ar ] exp [- IE -E/2kT sinh [(A - , )/2kT]I. = qvo (2.10)2cosh [(E -A, )/2kT]cosh (Ej -,1 )/2kT]
For small deviations from equilibrium (deviations of non-equilibrium quasi-

electrochemical potential from equilibrium electrochemical potential), the net current can

be linearized:33, 37

_ qvo exp [-2ari ] exp [-IEj - E1/2kT] (2.11)
4kT cosh [(E, - )/2kT] cosh [(E, - uj, )/2kT]

where the approximation sinh [(, -, )/2kT] = (, - p,)/2kT is used. The net current

between the two sites has been linearized to an ohmic current through a resistor with

conductance Gij. Therefore, the hopping conduction between sites in a disordered lattice

can now be treated with a random resistor network. The disordered hopping conductivity

can be found by calculating the conductivity of a random resistor network.

To calculate the conductivity of their network, Miller and Abrahams assumed that

the statistical distribution of resistances in the network of localized impurity states only

depends on the intersite distances, and not the individual site energies. However, it was

later argued that in calculating the total conductivity of their resistor network, the

transport paths in their reduced network may not always represent the true paths carrying

most of the current.38 Since Miller-Abrahams assumed nearest neighbor hops, the
pathway of nearest neighbor hops may reach a site that is isolated far away from any



nearby sites. This difficult path will have little current; and most charges will rather go

through a non-nearest neighbor path that is more optimal.

2.5.4 Variable-Range Hopping (VRH)

The assumption of nearest-neighbor hops may be incorrect for low enough

temperatures where the thermally-activated hopping rates become much smaller than the

spatial tunneling rates. If there is a continuum of localized states, carriers will be able to

choose sites with more favorable energies closer to the Fermi level. Mott pointed out that

if the activation energy to a nearest neighbor site was large, a more favorable hop might

be to a site farther away with a lower activation energy. This tradeoff of energy and

distance for the optimal jump depends on the respective transition rates (energy-

dependent hops and spatial-dependent tunneling rates). Since the energy-dependent

transition is thermally-activated, the optimal hopping distance will depend on

temperature. This mechanism of hopping conduction is called variable-range hopping

(VRH).39

Mott proposed that variable-range hopping conductivity is determined by optimal

hops that maximizes the transition rates over energy and space. Within a sphere of radius

R (the average hopping distance), a charge-carrier at the Fermi level will have at least one

available site to hop to that has an energy within an average range, AE :33

4nR 3  3
1-= g(E F ) A E  AE = (2.12)

3 4xR'g (E,)

where a uniform density of states is assumed in the vicinity of the Fermi energy,

g (E) = g (E,). The conductance can then be written as (using Miller-Abrahams rates):33

G = Go exp[-2aR- 3 (2.13)
4xR3 g(E, )kT (2.13)

Maximizing the conductance, the optimal mean hopping distance is:33

R = (2.14)
= 8 akTg (E,)4

This leads to an optimized hopping rate that is proportional to exp [1/T4]. In general,

the temperature dependence of the hopping conductivity is:33', 38



U= exp  ( (2.15)

where a = 1/(d +1) for a uniform DOS in a d-dimensional system. In general, depending

on the DOS and the dimension of the system, the power exponent a in Eq. (2.15) can

vary from 0 (hopping dominated by spatial dependent transitions) to 1 (hopping

dominated by temperature dependent transitions). 33

For, a three-dimensional variable-range hopping system in a uniform DOS

(uniform around the Fermi energy), the log of the conductivity should scale as T-V4 . The

temperature parameter T1 in Eq. (2.15) is given by:33' 38

Ca3
T Ca = (2.16)

kg(E,)

where C is a dimensionless parameter. The temperature dependence of the conductivity

of amorphous germanium from 60K to 300K was found to be consistent with Mott's

formula.40-44 Similar temperature dependences were well-described by Mott's formula for

amorphous silicon and carbon.42 Mott VRH theory predicts a temperature dependence of

conductivity transition from T -V 4 to T- 1/3 with a dimensionality change from 3D to 2D

hopping.

2.5.5 Percolation Theory

The Miller-Abrahams network model was independently modified with

percolation theory by Ambegaokar et al.,34 Shklovskii and Efros, 45 and Pollak.46

Vissenberg and Matters47 later applied percolation theory to successfully describe

transport in amorphous organic semiconductor thin-film transistors. Percolation paths are

the most optimal paths for current and these paths determine the hopping conductivity of

disordered solids. Percolation theory is based on the principle that the disordered hopping

conductivity is not determined by the rate of average hops, but it is limited by the rate of

the most difficult hops (lowest conductance) in the most conductive path. A review on

applications of percolation theory is given by Sahimi.38

In percolation theory, the random resistor network is first viewed as a system

made up of individual disconnected clusters, whose average size is dependent on a



reference conductance G. For a given reference conductance G, all conductive pathways

between sites with Gi < G are removed from the network, which leaves a collection of

spatially disconnected clusters of high conductivity, G, > G. As this threshold reference

conductance G is decreased, the size of these isolated clusters increases. The critical

percolation conductance is defined as the maximum reference conductance G = G, at the

point when percolation first occurs; meaning, a continuous, infinite cluster (cluster that

spans the whole system) first forms. This infinite cluster will be composed of clusters that

are all connected by critical conductive links with conductance G,. From percolation

theory, the conductivity is limited by these links, and the total conductance of the system

is then equal to Gc. To determine the threshold for percolation, the average number of

bonds per site is calculated. A bond is defined as a link between two sites which have a

conductance Gij > G. As the reference conductance G decreases, the average number of

bonds per site B increases. A large average number of bonds per site indicates a large

average size of a cluster (collection of sites with Gj > G). Therefore, it is assumed that

once the average number of bonds per site B reaches some critical bond number Bc, the

average cluster sizes will be large enough such that they all touch and form a continuous

pathway that spans the whole disordered system (form an infinte cluster). Vissenberg and

Matters47 set the critical bond number to B, = 2.8, which was calculated for a three-

dimensional amorphous system.38' 48

Assuming near equilibrium and describing the transition rates with Miller-

Abrahams hopping rates, from Eq. (2.11), the conductance between sites i and j is given

by:33, 37

G = qvo exp [-2arj Iexp - Ej - E/2kT
4kT cosh [(E - li)/2kT]cosh [(E, - L )/2kT]

where p, and #j are the quasi-electrochemical potentials that deviate from the

equilibrium electrochemical potentials, u - qF -r, where u is the chemical potential, F

is the applied field, and r is the position of the sites. If the most relevant hops in the

critical infinite cluster-binding links involve site energies that are high above the quasi-



electrochemical potential (E - i >> kT ), the conductance in Eq. (2.17) for small applied

electric fields can be approximated in the zero-field limit as:33, 47

G, qkT EexpEi+Ei -E-I+ EFeI2kT (2.18)

where EF is the Fermi energy (or chemical potential/ ). In this case, the conductance

between sites can be written as:33' 47

G=Go exp[-si ] (2.19)

with Go = qvo/kT and: 33, 47

s.. = 2ak + (2.20)2kT

The conductance Gy between sites i and j is now related to sij. At the first formation of an

infinite cluster, the clusters (collection of sites with sj < sc ) will all bond at the critical

conducting link sc. The conductivity of the disordered system is therefore

T = Co exp[-s] , where sc is the critical exponent of the critical conductance when

percolation first occurs (when B = B ).

The average number of bonds B is equal to the density of bonds, Nb, divided by

the density of sites that form bonds, Ns, in the material. At the percolation threshold,

when B = Bc, the density of bonds is given by:47

Nb = jd3rE IfdE ig(Ei) g(Ej)9(s-sij) (2.21)

where r11 is integrated in three dimensions over the entire material, g (E) is the DOS in

the material, and 0 is the Heaviside unit step function. The density of sites that form

bonds at the percolation threshold (B = B,) is given by:47

N, = dEg(E)0(sckT-IE-E, ) (2.22)

Note that E. = EF + sckT is the maximum energy that participates in bond formation.

The maximum energy is obtained in the limit of rj - 0. The maximum distance between

sites that can still form bonds is r. = sc/2a (only downward hops occur between



maximally separated bonded sites). Vissenberg and Matters assumed an exponential DOS

in their material (amorphous organic semiconductors): 47

N

g (E) = kTo
0,

-oo<E<0

E>O

where No is the total density of states (molecular density) per unit volume and To is a

characteristic temperature that determines the width of the exponential distribution. They

defined a charge-carrier occupation 5, which, for low enough temperatures (T < To ) and

charge-carrier concentrations (EF I >> kTo), is given by :47

:8= 1 JdEg(E)f(E, EF)
No

(2.24)

where f (E, EF) is the Fermi-Dirac distribution with Fermi energy EF, and

F(z)- fdyexp[-yl]y -1

Substituting Eqs. (2.20) and (2.23) into Eqs. (2.21) and (2.22), Vissenberg and

Matters obtained: 47

N
NJ

7T1N0( expLE, +sckT] (2.25)

where they assumed that most of the hops take place at the tail of the distribution

(IE, >> kTo) and that the maximum energy hop forming a bond is large (sekT > kTo).

They remarked that their result in Eq. (2.25) is up to a numerical factor in agreement with

previous results49-51 that employed different approaches for variable-range hopping

(VRH) in an exponential band-tail.

Using Eq. (2.25), the conductivity of the disordered system is given by:

-= co0e-' = o 2aT
2aT

rNoS5
STOT(2.26)

Vissenberg and Matters47 noted that their conductivity expression (Eq. (2.26)) has an

Arrhenius-like temperature dependence, a oc exp [-EA/kT], with an activation energy EA

(2.23)

-

BT (1- TITO) F (1+ TITO)

=exp EFF( T (+kT0 TO TO



that has a weak (logarithmic) temperature dependence. Recall earlier that the temperature

dependence of a general hopping conductivity can be described with:38

r(T) oc exp - (2.27)

Depending on the DOS and the dimension of the system, the power exponent a in Eq.

(2.27) can vary from 0 (hopping dominated by spatial dependent transitions) to 1

(hopping dominated by temperature dependent transitions).33

In regards to Eq. (2.27), the temperature dependence (a= 1) is different from

Mott's law for 3D VRH in a constant DOS ( a= 1/4). Vissenberg and Matters47

rationalized that for a constant DOS, hopping high in energy or over large distances play

an equal role (however, the spatial dependence is slightly more important since a = 1/4 is

closer to 0), whereas for an exponential DOS (where there are increasingly more

available states at higher energies), the thermally-activated transition plays a stronger role

than the spatial-dependent transition (hence, a close to 1). They further pointed out that it

has been previously shown that hopping charges in an exponential DOS can be described

as charge motion that is dominated by thermal-activation from the Fermi level to a

particular transport energy level. 52 The Arrhenius activation energy is then simply the

difference between the transport energy level and the Fermi level. Note that for very low

temperatures (sckT < kTo), approximations used to obtain Eq. (2.26) are no longer valid.

In this regime, charges will mainly hop near the Fermi energy. The conductivity should

transition to VRH near the Fermi energy in an approximately constant DOS (small

deviation in energy from Fermi level in exponential DOS).

For very low temperatures, the maximum energy of a site forming a bond

(Em• = EF + skT) is only a small fluctuation about the Fermi energy EF that is smaller

than the width of the exponential DOS (sCkT << kTo). Therefore, most of the charge-

carriers participating in bond formations are at sites with energies near the Fermi energy

and the distribution of these energies (DOS) is approximately constant. The expression

for the critical bond number (Eq. (2.25)) is generalized: 33

Bc =gNTo  sinh (2scT/To)+6s•cT/To E
2aT sinh (sCT/T o) 8 kT] (2.28)



Note that for sckT > kTo , the generalized critical bond number expression (Eq. (2.28))

reduces to Eq. (2.25). 33 However, for very low temperatures (sckT << kTo), the following

conductivity expression is obtained:33

o = uoe-Sc = oo exp Ir5 (2a))3 TBcF(1T/T (+T/ (2.29)
xTNo(

The low-temperature conductivity expression in Eq. (2.29) obeys Mott's 3D variable-

range hopping law in a constant DOS, - exp -(TI/T) 1/4] (see Eq. (2.15)). 33 Mott's

law for 3D VRH in uniform DOS is Eq. (2.15) with a = 1/4 and T, Ca 3/kN (C is a

dimensionless parameter; N is density of states). However, Vissenberg 33 remarks that

from Eq. (2.29):33

T 40B " kTF (1- T/IT) F (I + TT) (2.30)

( k TiNo
Therefore, unlike VRH in a constant DOS (where T, = Ca 3/kN ), the region in the

exponential DOS approximated as constant N = No (T/kToF (1- T/T o )F(1 + T/To )) will

be dependent on temperature and charge-carrier concentration. 33

2.5.6 Transport Energy Level Concept

To simplify the hopping problem theoretically, the mobility-determining hops are

assumed to be the multiple carrier hops around a single critical transport energy level

within the distribution of localized states.5 3 The importance of a particular energy level in

the carrier hop dynamics was recognized by Grtinewald and Thomas, 50 who described an

activation energy of conductivity in a-Si with a variable-range hopping (VRH) model in

an exponential band tail. Monroe also developed a transport energy level concept for an

exponential density of band-tail states.52 Baranovskii et al.53 studied this transport energy

level and found that it is the important energy level that dominates the steady-state and

transient hopping transport phenomena in both equilibrium and non-equilibrium

conditions. This transport level is the optimal energy for hops, and most hopping events

are within its vicinity.



Carrier hopping between localized states is determined by a spatial-dependent

tunneling transition rate and energy-dependent Boltzmann rate (see Eq. (2.6) for Miller-

Abraham rates). Charges in the shallow states can easily hop upwards in energy but they

also have a large number of neighboring sites where they can hop down in energy as well.

In a distribution that decreases rapidly with energy, such as an exponential or Gaussian

DOS, as charges move to lower trap states, hopping downwards in energy becomes

slower because the number of nearby states that are lower in energy decreases

dramatically. At this point, the charges will have to hop to closer sites that are higher in

energy. Therefore, charges in deep states will mostly be dominated by thermal excitations

to higher energies. As charges move up in energy, the hopping down process starts

competing as the number of available states lower in energy increases. Whether thermal

excitations or downward hops dominate is governed by the competition between the

spatial-dependent and energy-dependent transition rates. The energy level at which the

thermal excitation begins to dominate is called the transport energy, Et.52 Above this level,

substantial number of carriers hop downwards (the fastest rate is hops down to states near

E,); and below, most hop upwards (fastest rate is to states near Et). The position of this

transport energy level is a function of the density of states (transport energy will be

higher for steeper DOS) and the temperature. As temperature is decreased, the energy-

dependent Boltzmann transition rates will decrease, and the transport level will move

lower in energy. The transport energy is similar to the mobility edge in that charges are

thermally activated to this energy level and higher, and the current is mainly carried by

charges in the these transport states. Hopping upward and downward events in the

vicinity of the transport energy level is similar to a multiple-trapping mechanism where

the transport energy is the mobility edge. Experimental observations showing evidence of

a disordered hopping mechanism and an existence of well-defined activation energies can

be justified with the transport energy level concept. Conduction is either dominated by

thermal activation to the band edge or by charge hopping within the band-tail states with

a transport energy level.

The transport energy level model was developed considering an exponential band-

tail, however, Baranovskii et al.54 showed that a transport energy level also existed for

density of localized states of the form, g(E)- exp[-(E/E0 )1], with A= 2 and 2= 1/2.



Since a transport energy level existed for both these DOS, it should also exist for any

intermediate DOS from A = 2 to 2= 1/2.54 Therefore, amorphous materials containing

these types of DOS may be theoretically analyzed with the notion of a transport energy

level. Baranovskii and co-workers54-57 used the transport energy level concept to derive

the mobility in a Gaussian DOS representing disordered amorphous organic

semiconductors.



Chapter 3 - Trapped-Charge-Limited Transport in Organic

Semiconductors

3.1 Introduction

This chapter looks at the macroscopic models for charge transport in relatively

ordered organic materials. Models to explain charge transport in organic semiconductor

devices traditionally fall into two regimes of operation. One is injection-limited transport

which supposes that the injection barrier between the electrode and organic is the main

bottleneck for charges to move from one electrode to the other. In this case, the induced

current from an applied voltage is rate limited by the properties of the metal/organic

interface, i.e. the interface barrier height, interfacial doping, cathode material, interfacial

morphology, and etc. The other is a bulk-limited transport model that assumes that the

injection barrier is sufficiently low and that the main bottleneck for transport is the

organic layer itself. In this case, the charge injection rate across the metal/organic

interface is high enough to supply the bulk with an infinite reservoir of carriers. The

induced current from an applied voltage is rate limited by the bulk properties of the

organic semiconductor, i.e. the trap states in the bulk, the mobility, morphology of

organic layer, and etc.

b
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Figure 3-1: Total current is from the charge injection rate from metal contacts into organic

semiconductor and the subsequent bulk transit to the other contact. Most models assume current is

dominated by one of these two mechanisms.



3.2 Transport in Organic Molecular Crystals

Organic molecular crystals first surfaced as an interest with the evidence of

electroluminescence of anthracene crystals. 58' 59 Since molecular crystals cannot be easily

grown into thin films, the molecular crystal layers are relatively thick and transport are

usually limited by the bulk properties of these materials.

Molecular crystals are ordered van der Waals bonded molecules. Similar to

covalent bonded inorganic semiconductors, they may be highly ordered with good

electrical properties. But similar to other van der Waals bonded solids, they have

relatively narrow bandwidths. Molecular crystals are believed to possess some

characteristics of both delocalized band transport and localized hopping.' Since

molecular crystals are somewhat well-ordered, the physical disorder should not play a

significant role in charge localization. Therefore, if localized charge hopping is believed

to operate in organic molecular crystals, the cause should be polaronic effects. When

employing band transport models for molecular crystals, the single electron

approximation is used; whereas, for more disordered transport, polaron effects that

comprises the charge and its associated electronic and molecular polarization clouds are

considered.

The charge-carrier mobility in crystalline naphthalene is observed to increase with

decreasing temperature. 60 This is consistent with band transport because if transport were

from thermally-activated hopping, the mobility would increase with temperature. The

temperature dependence of charge carrier mobility follows a power-law behavior, but

deviates at higher temperatures, suggesting a transition to polaronic effects. 60 Some

research has been done in employing a combination of these two types of transports for

organic molecular crystals.1

3.3 Trap-Free Space Charge Limited (SCL) Conduction

Organic semiconductors have a relatively low density of free carriers (compared

to semiconductors that have narrower bandgaps to allow relatively high density of

carriers in the bands at room temperature). In an undoped organic semiconductor, all the

charges that carry current must be injected. This charge is uncompensated and gives the

organic semiconductor a net charge, known as space charge. Space-charge models for



trap-free insulators, and trapped-charge models with the presence of traps have been

applied to describe current in these materials.61-65

One of the most important models for transport in molecular crystals (wide

bandgap, insulator crystals) is the space-charge limited current (SCLC) model. 10

Assuming that the current is bulk-limited (the injection contact does not limit the current

flow into the bulk) and the current density is determined by the drift current for large

enough fields and mobility (diffusive process can be neglected; diffusion is usually

significant only near the contact):

dn
J = qunF -qD-- = qanF (3.1)

where u is the mobility (v = /F is the drift velocity of the charge-carriers), n the charge

density, and F the applied electric field. When a voltage is applied across a material, an

electric field is established, causing injected space-charge and thermally-excited charges

present in the conduction band to flow from one contact to the other. If current from the

injected charge density is comparable to the intrinsic charge density, the semiconductor

will no longer be quasi-neutral. For large enough biases, most of the charges contributing

to current will be injected space-charge.

A pure molecular crystal will have no intrinsic charges and therefore, the charge

density n that contributes to current (in Eq. (3.1)) are all uncompensated charges injected

from the contacts. Therefore, the cross-over voltage for pure molecular crystals is very

small, and the current-voltage curve is practically all in the space-charge-limited current

regime. The electric field from the injected space charge is given from Poisson's

equation:

VF = (3.2)
e

where e is the dielectric constant of the molecular crystal. Solving Eqs. (3.1) and (3.2)

simultaneously for one dimension and constant mobility, the trap-free space-charge-

limited current is obtained (Mott-Gurney law, Child's Law, SCLC square-law): 1'0 66

9 V2

JscL =- ep (3.3)From Eq. (3.3), space-charge limited current gives a slope of 2 on a log Jd- log V plot.

From Eq. (3.3), space-charge limited current gives a slope of 2 on a log J - log V plot.



3.4 Trapped Charge Limited (TCL) Conduction

3.4.1 Introduction

For a crystalline semiconductor with no traps in the SCLC regime, the injected

space charge will propagate freely with the semiconductor mobility Puo. This is the case

for a trap-free solid. However, if there are traps in the bandgap, some of the injected

carriers will be lost to these traps and only the fraction of them that remain in the

conduction (or valence) band will conduct.64' 65, 67 Since plots of the current-voltage

characteristics of organic semiconductor molecular crystals on log-log scales gave slopes

much larger than 2,68 it has been proposed that the cause for these high slopes was due to

additional trap states that are present in molecular crystals. These trap states will be more

predominant in polycrystalline and amorphous molecular solids.

The trap-charged limited current (TCLC) model assumes current is from the

motion of drifting carriers trapped and thermally released by localized trap states in the

bandgap, and that the frequency of these trapping events is significant enough to limit the

conduction. If there is a sufficient density of deep traps, the presence of these traps can

have a controlling effect on the mobility. The TCLC modell ' , 11 65 is a modification of the

SCLC model that includes a trap distribution. Note that as higher voltages are applied, the

quasi-Fermi level will move closer to the conduction (or valence) band. At the point

where the level passes the energy levels of the traps, the traps will be full and all further

injected charge will be free. The conduction will then transition to the trap-free limit.65

3.4.2 Single Energy Level Trap

A trap state can originate from an impurity or defect. For single energy level trap

states at ET, with density NT, the density of trapped charges is:'

n, = Ne-(ET-EF)/kT (3.4)

where EF is the quasi Fermi level at an applied bias. The density of charges in the

conduction band (or transport energy level) that contribute to the charge motion is:'

no = N ce-(E - E )/kT (3.5)

For current that is dominated by injected charges, the current-voltage characteristics can

be described by the equation:' 0



=( 0 )9 V 2
J = •-• E- (3.6)

where 0 - no/In . The current expression in Eq. (3.6) still has a power-law slope of 2, but

a distribution of trap state energies can yield slopes larger than 2.

3.4.3 Exponential Distribution of Trap States

A distribution of trap states can result from random disorder in the organic

semiconductor. For a distribution of trap states described by an exponential distribution:1

g (E) = NT eE/, E < 0 (3.7)
ET

where NT is the density of trap states and ET is the characteristic width of the trap

distribution. The density of trapped charges is:1

nT = •g(E)f(E)dE- -T JeE/dE=NTeEF/ (3.8)
-M ET -_

The density of charges in the conduction band (Ec = 0) is:'

no = Ncf (Ec )= NceE,/kT Nc  (3.9)

Assuming only the charges in the conduction band dominate current, we obtain:'

J = qno#uF (3.10)

Assuming n, >> no , the trap-charge limited current (TCLC) density as a function of

voltage is:'

e m 2m+l m+l Vm+1

JcL = qN m+l m + 2m+1 , (3.11)

where m = ET/kT. From Eq. (3.11), the slope of the current-voltage characteristics on a

log-log plot is m+l. Therefore, from the slopes on the log-log plots of current density

versus voltage, one can extract the trap energy width Er.

The effect of charge concentration on the mobility is implicit in the TCLC model.

The TCL drift current expression is obtained by substituting Eq. (3.9) into Eq. (3.10):'



J = q Nc (, ,uF (3.12)

where Nc is the density of states at the band edge, NT is the total density of trap states,

and nT is the density of injected charges. Rewriting Eq. (3.12):1

J =qn/k Nc 1 = qnTTueff F (3.13)

An effective mobility is defined, eff (n,) = p (0) f (n) , where p (0) = p is the mobility

for zero concentration. The charge-carrier concentration dependence of mobility is

introduced as a mobility enhancement factor.

3.4.4 Gaussian Distribution of Trap States

Steiger et al.69 have analyzed the electronic trap distributions of the amorphous

electron transport material tris(8-hydroxyquinoline) aluminum (Alq 3) using fractional

TSC (thermally stimulated current) and TL (thermally stimulated luminescence)

techniques. The experimental results can be explained with a Gaussian distribution of

trap states. 69 And it is remarked that the current-voltage relation from the SCLC model

with Gaussian trap distribution has the same behavior as an exponential TCL with the

power-law slope parameter given by:69

m = 1F+ 22]- , (3.14)
16k2 T2  6 kT

for 2fof2/16 > k2 T 2 , where o is the standard deviation of the Gaussian trap distribution.

Eq. (3.14) has the same power-law slope form as that of the exponential case,

with m = E,/kT. Therefore, although the form of the trap distribution will affect the

shape of the J-V characteristics, the J-V curves alone are not sufficient to distinguish

between an exponential and Gaussian trap distribution.



Chapter 4 - Bulk-limited Transport in Amorphous Organic

Semiconductors

4.1 Introduction

This chapter discusses the phenomenological models of the temperature, electric

field, and charge density dependences of the charge-carrier mobility. The mobility

relation from these models can be substituted into an SCL (Eq. (3.3)) or TCL (Eq. (3.11))

model to obtain an expression for current as a function of voltage.

The relative importance of localization and polaronic effects in organic molecular

crystals is still unclear. However, in amorphous organic films, Anderson localization

most likely occurs because of the presence of large energy state variations and weak

intermolecular interactions. Thus, the relative importance of static energetic disorder is

much greater in amorphous organic semiconductors, although the contribution of

molecular deformation energy (polaron effects) to the charge-carrier transport activation

energy is still debated.3' 70-72

4.2 Time-of-Flight Measurement of Charge-Carrier Mobility

One of the most important parameters characterizing organic semiconductor

devices is the charge-carrier mobility. Mobility is a metric that characterizes the overall

electrical transport capability of a semiconductor. There are many experimental methods

that produce mobility data,60 either through electrical (time of flight, xerographic

discharge, equilibrium carrier extraction, drift current, space-charge-limited-current,

conductivity to concentration, field-effect transistor (FET), and surface acousto-electric

traveling wave (SAW)) or magnetic interactions (Hall effect, magneto-resistance, and

cyclotron resonance). 60 These methods listed, as applied to organic semiconductors, are

elaborated and analyzed by Karl.60 A common and convenient technique for measuring

the charge-carrier mobility is by time-of-flight (TOF). An optical pulse is incident on the

semiconductor, generating photo-excited carriers. A bias is applied to the semiconductor,

and the transient photocurrent is measured. Depending on the applied voltage bias, either



the positive or negative carrier will be quickly swept into its respective electrode, thereby

causing a large initial spike in the transient photocurrent measurement. However, the

other carrier species must drift across the film. The time it takes for most of the charges

to go across the film is related to the mobility:

vd - pF -: = d2/ZrV (4.1)

where d is the thickness of the film, r is the transit time, V is the applied voltage, and the

electric field, F, is assumed to be constant throughout the film. In order to get accurate

results, the optical pulse must be relatively instantaneous. In other words, the transit time

- must be much longer than the optical pulse width by increasing the thickness of the

sample film.

Unlike conventional ordered inorganic semiconductors, the carriers in disordered

materials hop through a variety of paths and percolate through the sample. The dispersion

in carrier velocities complicates measurements of the transit time. Following Scher and

Montroll,3 6 the transit time for a carrier to percolate through an amorphous film is often

defined as the inflection point in the log-log plot of the photocurrent transients.

4.3 Temperature and Electric Field Dependences of Mobility

4.3.1 Introduction

Mobility in disordered organic semiconductors are many orders of magnitude

smaller than crystalline organic semiconductors (typically 1 cm 2/Vs) and crystalline

inorganic semiconductors (typically 10 to 1000 cm 2/Vs), and the charge-carrier mobility

in disordered organic semiconductors are also observed to be field-dependent at most

temperatures and fields measured. 3, 72-78 Figure 4-1 shows a typical mobility

measurement for the archetypical amorphous organic semiconductor, tris(8-

hydroxyquinoline) aluminum (Alq 3):
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Figure 4-1: Temperature and electric field dependence of charge-carrier mobility obtained from

transient electroluminescence measurements.79 Solid lines are theoretical fits using a percolation-

based bulk conduction model developed in Chapter 5. From Limketkai, Jadhav, and Baldo (2007).80

4.3.2 Mobility Measurements

One of the first descriptions for mobility was obtained from the observed field

and temperature dependences of both electron and hole mobility in thin films of charge-

transfer complexes of 2,4,7-trinitro-9-fluorenone (TNF) mixed with poly-n-

vinylcarbazole (PVK). It was fit to the mobility relation by Gill:81

/ = /0exp -(A A-flBr1 (4.2)

where Eo, 4 0, 8, and To are constants.

Gill8 ' studied the mechanism of transport in molecularly-doped polymers by

measuring the drift mobility in varying film compositions of PVK:TNF. The field and

temperature dependences were found to be the same for practically any film composition

ratio from pure polymer PVK to pure monomer TNF.8 Varying the film composition,

however, changed the measured magnitude of the drift mobility. From the variation in

concentration of TNF in PVK, it was concluded that uncomplexed PVK facilitates hole

transport and TNF aids electron transport."' The concentration dependence of mobility

also suggest an intermolecular hopping mechanism.



Note that after the study of Gill,81 similar temperature and field dependence

behavior was observed for the hole mobility in other molecularly-doped polymer systems,

such as in triphenylamine (TPA) doped in polycarbonate with the following expression

reported by Pfister:82

# = o exp (aFn) E T -TEn (4.3)

where a, Eo, and To are constants and n is approximately equal to /2. This is identical to

Gill's expression for n = 1/2 and A = P,0 .

Schein et al.72 employed a graphical technique to determine the field and

temperature dependence from plots of experimental data of amorphous organic solids.

From the measurements of p-diethylaminobenzaldehyde-diphenyl hydrazone (DEH)

doped in polycarbonate, they found that the various graphical data could be described

by:72

# = flo exp -(To/T)2 ]exp[ rj- Y T] (4.4)

where #0, To, 8, and y are constants.

4.3.3 'Poole-Frenkel' Electric Field Dependence of Mobility

Poole-Frenkel is a limiting case of the general Onsager theory,83 describing the

dissociation of a charge pair in a Coulomb potential under an electric field. In

conventional semiconductors, charges trapped at a charged defect can be detrapped by an

electric field that lowers the barrier for the carrier to thermally escape the Coulomb

potential. This yields the Poole-Frenkel field dependence of the drift mobility.

The potential energy seen by a hole in the presence of an applied electric field, F,

and an electron is:1

U = -qFR - (4.5)

where e is the permittivity of the material. The barrier lowering by an applied electric

field, A, is obtained by finding the maximum value of U:1



dU q_ qqdU ->x= q A = (4.6)dx 4XF r
The charge density escaping the Coulomb trap potential to participate in the drift current

is:1

n = Nc exp[ (qB-) (4.7)

The total Poole-Frenkel (PF) emission current density is then:1

J,= qp Ncexp (qOB -A))F= q ex[jp Ncexp [- ]) F (4.8)

where original 0B is the energy barrier height and Nc is the density of states at the

conduction band. The mobility can then be redefined as a modified mobility:1

I =#o0 exp [ ] ,o exp [. ] (4.9)kT kT

with a field-dependent factor that follows a • dependence.

This square root field dependence of mobility, frequently observed in charge

transport studies of disordered organic semiconductors, 3' 73-78 is observed for mobility

plots of single carrier transport. In this case, a Poole-Frenkel mechanism causing this

field dependence is unsure because holes (or electrons) are the majority carriers but there

are few electrons (or holes) to create Coulomb binding potentials to trap the holes (or

electrons).1

To explain the 'Poole-Frenkel' dependence without using a Poole-Frenkel

mechanism, Novikov and Vannikov 84-86 developed a model in which the transport sites

are traps created by dipole moments in the polymer host matrix. Transport is then

determined by the escape rate of charge carriers from these dipole traps. Based on Monte

Carlo simulations, this dipole-trap model gives the mobility expression for moderately

strong fields:84

/ = 0 exp -fi - T2 - (4.10)

where To is related to the dipole moment trap depth.



Movaghar et al.87 showed that a logu oc F" dependence, where 0 • n • 0.5, is a

characteristic feature of hopping transport in a DOS manifold with n being dependent on

the shape of the DOS.

4.4 Models to Explain Temperature and Electric Field Dependences of Mobility

4.4.1 The Gaussian Disorder Model (GDM)

Suppose there is diagonal disorder (variations in site energies) that creates a

Gaussian distribution of LUMO energy levels of the constituent molecules in the

disordered amorphous organic film:1

1 1 ee,(
g (e, a)= exp (4.11)

where a is the standard deviation of the dispersion in energy levels. In the Gaussian

disorder model, the hopping rate of a charge from site i to site j in a lattice is assumed to

follow that of Miller-Abrahams:13

v e = vo exp [-2yr] (4.12)

1, Ej < Eý

where y depends on the decay rate of the localized electronic wavefunctions, and Ei and

Ej are the energies of the localized state at site i and j, respectively. The total rate is

composed of a spatial dependent tunneling rate in the first exponential and energy

dependent Boltzmann jump rate in the second exponential.

The effect of diagonal, or energetic, disorder is to create a distribution of LUMO

states such that there is an effective energy barrier for charges to thermally hop from one

molecular layer to the next. The effects of off-diagonal disorder (variations in

intermolecular coupling interactions) results from the dependence of the tunneling rate on

the intermolecular spacing between molecules: 3

v, oc v0 exp -27ao0 a I (4.13)
ao

where ao is the average intermolecular spacing and AR,1 is the actual distance between

sites i and j. In Monte Carlo simulations, the energies of sites i and j are randomly picked

40



from a Gaussian distribution (diagonal disorder). The overlap parameter F,, = 2yao is

also subjected to a random distribution (off-diagonal disorder). To apply this in

simulation, Gaussian distributions of Fi and F, , each with variance or, are used to

contribute to the overlap parameter Fi, with variance I = 2F r .3 The diagonal disorder

is the spread in the distribution in site energies a , and the off-diagonal disorder is

quantified by the variance of the overlap parameter 1, which is a convenient definition

for simulation purposes.3

Diagonal disorder is an inhomogeneous broadening of molecular energy levels

that can be caused by random internal fields from dipole interactions (excitons or

permanent molecular dipole moment) and charges on other molecules. Although the

diagonal disorder can be linked to some microscopic picture, modeling the effect of off-

diagonal disorder as causing a Gaussian probability density of overlap parameters

between sites cannot be easily rationalized from a physical picture.3

The GDM for molecularly-doped polymers employs a lattice of randomly

positioned and assigned energy levels chosen from a Gaussian distribution. The

simulations describe biased random walks of charge-carriers in the molecular lattice.

From simulating the carrier dynamics in a disordered energy landscape, the mobility

p = v/F is calculated from the average carrier velocity. In the high field limit, a

phenomenological mobility expression fit to the simulation plots was found:3

exp C Z2 J I ! 1.5

kT3 k

pc[ -2·2.252j4] 2<1.5
where the jump rates between sites are taken to follow Miller-Abraham rates. 13 C is a

constant, and a and I are diagonal and off-diagonal disorder parameters, respectively.

Ideally, the degree of built-in diagonal and off-diagonal disorder can be extracted from

the measured temperature and field dependences of mobility of molecularly-doped

polymer systems. According to Eq. (4.14), when temperature is increased such that

a-= a/kT is smaller than 1, a decreasing mobility with field should be observed. The



diagonal and off-diagonal disorders have opposite effects on the strength of the field

dependence of the mobility, and pure off-diagonal disorder will yield mobility that

decrease with field for the entire range of field strengths.88

GDM simulations have reproduced several experimentally observed data89 and

show that the experimentally observed 'Poole-Frenkel' field dependence of mobility is a

signature of carrier hopping transport between disordered energy states.

4.4.2 The Correlated Disorder Model (CDM)

GDM simulations reproduced the 'Poole-Frenkel' field dependence of mobility

over only a relatively narrow range of electric field strengths and only at large fields (F >

10' V/cm).3' 19 This has led some to believe that GDM did not model disorder completely.

In the GDM, the effect of disorder is modeled by two parameters, the diagonal disorder

u and off-diagonal disorder Z . Diagonal disorder (energy variation of localized

molecular states) and off-diagonal disorder (variation in intermolecular interactions) arise

from random energetic interactions among molecules in the lattice. If all the energy

interactions are assumed to be independent and random, the distribution of site energies

should follow a Gaussian. However, it is also reasonable to assume that this same

microscopic picture of random internal fields and interactions will have some correlation

of energies of molecules near each other. If there is some correlation in the morphology

of the material (such as tiny crystalline grains in polycrystalline films), this spatial

correlation will translate to energy correlations. The question is whether these spatially

correlated site energies are significant enough to affect macroscopic properties of

transport, such as influencing the charge-carrier mobility.

Gartstein and Conwell 90 demonstrated that the introduction of correlation of

energies of sites close together can produce 'Poole-Frenkel' behavior over a wider range

of fields. This spatial correlation of energies can be justified to arise from long-range

energy correlations from charge-dipole interactions 19' 21 or correlations in thermal

fluctuation in molecular geometries.91 Proper modeling of the effect of spatial disorder

and its consequent result of spatial correlation in site energies is important, especially at

low densities of molecular charge carriers when the spatial disorder effects is more

significant. 92 Note that as the average intermolecular separation between transport sites is



increased (by decreasing the concentration of transport sites in the polymer host), the

charge hopping rate will be limited by the tunneling rates. At this point, spatial disorder

(which controls off-diagonal disorder in the overlap parameter that affects the tunneling

rate) will be more significant than the diagonal disorder.

A possible physical origin for disorder and local correlation of site energies is

dipole interactions.18-22 In dipolar CDM, where dipole interactions is assumed to be the

dominant cause for disorder and energy correlations, independent and randomly oriented

dipole moments p are placed at each lattice site. 21 The energy of a charge on a site is then

the sum of the dipole interactions of the surrounding lattice sites: 21

Um n n M (4.15)

The spatial disorder is folded into the variation in the dipole moment orientations. This

dipolar disorder model yields a site energy distribution that is approximately Gaussian,

but unlike GDM that assumes a strict Gaussian, there will also be spatial correlations in

this energy distribution from the surrounding dipoles. 18' 21

CDM is similar to GDM in that carriers are simulated as hopping in a disordered

site energies distribution. The difference is that in GDM the site energies are

independently and randomly drawn from a Gaussian probability density function,

whereas, in CDM, independent and random dipole moments are first assigned at each

lattice site and then site energies are calculated from Eq. (4.15).21 CDM leads to an

approximate Gaussian distribution of site energies but these energies are also spatially

correlated (the random energy interactions causing site energy disorder approximately

independent but still has some correlations).

The mobility relation characterizing the Monte Carlo simulations in a correlated

disorder model (CDM) is found for 3D charge transport under moderate fields:21

UcoDM = o exp 3- +0 C kI -rTa (4.16)

where Co = 0.78 and F = 2. Note that # 0 is the zero-field mobility at T -> oo. The

mobility relation in Eq. (4.16) was found by fitting simulation data to a trial function: 21



u= =0o exp -A +A -A3  Fa (4.17)

where A 1, A2, A 3, n, and m are constants. The coefficient A1 was determined from

temperature dependence of simulation plots of u at zero field, and A2 and A3 from

temperature dependence of the slope of simulation plots of log mobility vs Ji.21 The

improvement of incorporating correlation in the site energies of the localized states is the

increase in the range of fields that 'Poole-Frenkel' behavior is reproduced.

For dense films of conjugated polymers, Yu et al.91, 93 proposed that the dominant

cause for energetic variations of localized electronics states are thermal fluctuations of

the molecular geometry of the polymers. And, the intermolecular restoring force of these

fluctuations leads to spatial correlations in site energies because the molecular assemblies

are spatially correlated. 91' 93

4.4.3 Small Polaron Model

The energy barrier to localized hopping are typically assumed to be either

dominated by static disorder (from variations in physical structure leading to energetic

and spatial disorder) or dynamic disorder (induced polaronic barrier upon adding a charge

to a molecule; carrier interaction with phonons). A polaron is a quasi-particle composed

of the charge and its surrounding polarization cloud. This strong charge-phonon coupling

lowers the energy of the charge to create a bigger barrier for charge removal, thereby

inducing self-trapping. The polarization cloud distorts the surrounding lattice molecules,

and as the charge moves in the lattice, this distortion is conserved with it. Only

polarization effects that are established faster than the charge localization time are part of

the polaron.' A carrier that is confined to a single molecular site is called a 'small

polaron.' 94 The associated polarization cloud is small and only extends to a few

neighboring molecules.

Small polaron models employing the Marcus rate equations in small polaron

hopping theory24-26 have been used to describe the hopping mechanism of charges.

Kenkre and Dunlap9 5 compared the different approaches to explain transport: ordered

polaronic, disordered polaronic, and disordered non-polaronic (classic GDM). Several

models have been proposed that included both polaron phenomenon and energetic



disorder effects. 95 1°00 One approach to include both disorder and polaronic effects is to

model the charge carriers as polarons moving in a disordered DOS. The inclusion of

disorder can explain the observed temperature and field behavior that may otherwise be

unexplained by polaronic effects alone (polarons moving in isoenergetic transport sites).

The relative contribution of polaronic and disorder effects to observed macroscopic

properties will vary depending on the structural properties of the disordered organic

system. The activation energy barrier to localized hopping is then contributed from both

static and dynamic disorder, and depending on the particular molecular system, disorder

may not always be the dominant effect. The difficulty is in extracting the disorder and

polaronic parameters from experimental data.

4.5 Charge-Carrier Density Dependence of Mobility

One other key dependence of mobility is the charge-carrier concentration. Tanase

et al. studied the hole mobility of poly(2-methoxy-5-(3',7'-dimethyloctyloxy)-p-

phenylene vinylene) (OCIClo-PPV) and amorphous poly(3-hexyl thiopene) (P3HT) in

diodes and field-effect transistors (FET).1' 0 They found that the measured hole mobility

in the FET architecture is orders of magnitude bigger than that measured in a diode using

the same OCIClo-PPV and P3HT material.

One possible explanation for the discrepancy between diode and FET measured

mobility of the same material is a possible change in charge transport parameters because

of the different device architectures.o10 For example, optical properties of OCIClo-PPV

indicate that the polymer chains preferentially align along the plane of the film.10 1' 102

This anisotropy could yield different disorder parameters experienced by charges injected

from different field directions in a diode and FET. However, Tanase et al.'0' found that

the mobility activation energy, which is related to the disorder a, is equal for both diode

and FET (the FET activation energy was measured for different gate voltages, and then

extrapolated to zero gate bias; the activation energy at zero gate bias in the FET was

equal to the diode activation energy), thereby ruling out anisotropy in disorder as a cause

for the differences in mobility. Therefore, they attributed the difference between the

diode and FET to a dependence of mobility on charge carrier density; the higher mobility

in FET is attributed to the presence of a higher concentration of charges during typical



operation in a FET compared to a diode. The carrier concentration in the accumulation

channel of a FET with an applied gate bias is orders of magnitude larger than the

concentration of carriers in a diode injected with an applied bias. The mobility changes in

a FET and diode can be described by the charge-carrier concentration dependence. 161 The

mobility in a FET is calculated by differentiating the measured channel current Id with

respect to the gate voltage Vg: 1'0 1,103

1(V,) d  L (4.18)a V, wc,Vd

where W is the channel width, L the channel length, Vd is drain voltage, and Ci is

interface capacitance. For a given gate voltage, the charge-carrier concentration can be

calculated. The mobility in a diode is calculated from SCLC model fits to the measured

current density versus voltage (J-V) characteristics. The charge-carrier concentration in

the diode is calculated from the applied voltage.

Models for diode architectures commonly explain the temperature and field-

dependent mobility with hopping in a Gaussian DOS,3 whereas in a FET, the temperature

and gate-bias-dependent mobility is described with hopping in an exponential DOS.47 To

describe the experimental diode measurements, Tanase et al.o0' employed the CDM

model:2 1

IUCDM = /0exp - 3) +0.78 L- - 2 (4.19)

where a is the width of the Gaussian DOS and ao is the average intersite separation. To

describe the experimental FET measurements, Tanase et al.101 employed the percolation

model of Vissenberg and Matters: 47

O (To°/T)4 sinl(T/T°) TOI/T
S- T) pT -1 (4.20)

q (2a)3 B,

where a is the inverse decay length of localized states, B, is the critical bond number for

percolation, p is charge density, and To is the width of the exponential DOS

(g(E)= N/kToexp[E/kTo], E 0).

Tanase et al.101 explained that the exponential DOS (commonly used to describe

organic FET measurements), is approximately the same to a Gaussian DOS (commonly



used to describe organic diode measurements) in the energy range of the Fermi levels

corresponding to the carrier concentrations in a FET during typical operation

conditions. 161 Their conclusion was that there is no inherent difference in charge transport

in a diode and FET; a unified theory with a temperature, field, and charge density

dependent mobility should interpret the measurements in a diode and FET as simply one

in the high-field, low-charge-density and the other in the low-field, high-charge-density

regimes, respectively. The gate-bias dependence of mobility in FETs is strong because of

the stronger dependence on charge concentration in the low-field operation.91 The

importance of the carrier density dependence to describe polymer diode and field-effect

transistor measurements was explained theoretically by Yu et al.91, 93

It is difficult to separate the individual charge density and field dependences of

mobility in diodes because both the electric field and charge density increase with an

applied voltage. Field-effect transistors provided a system to isolate the charge density

dependence of mobility, but they typically operate at much higher charge densities. To

obtain lower densities in a FET, it will have to operate at lower gate biases, which will

lead to drain currents that are too small to measure accurately. To obtain higher densities

in diodes, the applied voltage will have to be higher, which will lead to higher fields. In

the presence of high fields, it will be more difficult to differentiate between the field and

density dependence of mobility in the J-V curves.

Electrochemical doping is another possible route to control the density in the

material, but that introduces additional effects due to the added dopant impurities. 10 4 To

solve this problem, Snaith and Gratzel' 2 introduced a method to investigate the charge

density dependence of mobility in the low charge density regime. Their device

architecture is a hole transport material (HTM) contacted by a molecular sensitizer.

Instead of a gate voltage, the hole density in the HTM is controlled by light being

absorbed by dye molecules that transfer holes to the HTM and electrons to a TiO 2 layer

underneath. They12 show that increased hole density upon illumination significantly

increases the hole conductivity of the material. This observed mobility enhancement at

low charge densities is significant because it shows the importance of considering the

charge density dependence of mobility in organic semiconductor diodes, even when the

charge density may not be as big as in FETs.



4.6 Models to Explain Charge-Carrier Density Dependence of Mobility

Coehoorn et al.10 5 provided a very thorough study of charge-carrier concentration

dependence of the hopping mobility in a Gaussian DOS. They studied the concentration

dependence for the regime of low-field, average intermolecular distances much larger

than the decay length of the localized states, and temperatures low enough and disorder

big enough such that o/kT > 1. They analyzed several existing semianalytical models for

hopping transport and modified them and applied them for Gaussian DOS. Coehoorn et

al.'0 5 compared and studied the Monte Carlo simulation results of Bissler et al.,3

numerical results to the master equation (Eq. (2.5)) by Pasveer et al.,10 6 and the models of

Movaghar and Schirmacher, 32 Vissenberg and Matters, 47 Arkhipov et al.,107 Martens et

al.,10 8 Baranovskii et al.,54' 55 Roichman et al.,10 9' 110 and Rubel et al.57

Coehoorn et al. gave brief summaries of the semianalytical hopping models they

compared for the study of the charge-carrier concentration dependence of mobility.10 5

The Movaghar-Schirmacher 32 model utilizes a modified effective medium approximation

to derive the conductivity from the master equation. Vissenberg-Matters 47 model is based

on the percolation theory formalism introduced by Ambegaokar et al.34 to describe

hopping in an exponential DOS. The Arkhipov et al.107 model suggested that the mobility

can be calculated by averaging the carrier hopping rates or by using an effective transport

energy level concept. Martens et al.'0 8 extended the Mott 39 variable range hopping (VRH)

formalism of hopping in a uniform DOS to the case of an arbitrary DOS. They postulated

that the charge concentration dependence of mobility stems from the effects of charge

concentration on the DOS and delocalization. Baranovskii et al.54' 55 used the transport

energy level concept to derive the mobility in a Gaussian DOS. Rubel et al.57 extended

this model with the use of percolation theory to include more description of the

dependence of mobility on the concentration of localized states N. Roichman et al.110

used a mean medium approximation to develop a transport model that includes the charge

density dependence of mobility.

Coehoorn et al.10 5 represent results of these models in a similar form in order to

make a more direct comparison. From their comparisons of the models' predicted carrier

concentration dependence and numerical results of Pasveer et al.,10 6 they proposed the

following mobility expression: 105



U(c) 3kT exp -po-Inc- a-E + d 62 (4.21)

where N, is total density of hopping sites, vo is attempt frequency in the Miller-Abrahams

rate, c is carrier concentration, and 6 = r/kT with o as the width of the Gaussian DOS.

Q is a dimensionless function that may depend on c, 6, and N,/la3 , where a is the

inverse of the decay length of the localized wavefunctions. EF is the Fermi level, and how

it increases in energy as carriers fill up the DOS will depend on the width of the DOS and

the temperature (EF is dependent on c and 6). The parameters po, a, and d only depend

on N,/a3 . Fitting this mobility relation to results of the various models will yield

different parameter values. 10 5 From Eq. (4.21), the concentration dependence acts to

enhance the mobility, y (c) = (0) f (c, 6).

4.7 Model to Explain Combined Temperature, Field, and Density Dependences of

Mobility

Pasveer et al.1'06 proposed a unified description of the dependence of mobility on

temperature, field, and charge density in disordered polymer films.106 They used an

iteration approach similar to the one suggested by Yu et al.91' 93 to solve the Master

equation (Eq. (2.5)) in a lattice of Gaussian distributed random site energies with Miller-

Abrahams hopping rates. From fits to the numerical plots of low-field mobility versus

concentration at different temperatures,' 06 they obtained the following mobility relation

for temperature and charge concentration: 106

pa(T, p)= Fo (T)exp[l (2 - )(2pa )],

lo (T) = u c, exp [-c 2 2 ], (4.22)

ln(6 2 -6)-In (ln 4) a2v _8-2 22 6-Or O kT

where ci = 1.8x10 -9, c2 = 0.42, a is the lattice spacing, oa is the width of the Gaussian

distribution used to randomly assign site energies, and p = (Pi)/a 3 is the density of



charge-carriers. They remarked that the parameterization is satisfactory for densities that

aren't too high and will fail at densities approaching 0.5/a 3 .

From fits to numerical plots of mobility versus field at different temperatures and

at low density, 106 they obtained an approximate mobility relation with decoupled field

and density dependences:'1

p (T, p, F) = u (T, p)f (T, F)

f(T, F) = exp 0.44 (a2 - 2.2) 1+O.8 i2 (4.23)

Their parameterization was optimized from fits to numerical plots for low density, but is

able to fit numerical plots for high density as well. 106

4.8 Doping Dependence of Mobility

Doping a semiconductor with donor or acceptor impurities will increase the

available charge-carriers to conduct current. The simplest way to model doping is to

make it equivalent to just varying the concentration of charges (e.g., increasing the Fermi

level and density of free carriers in conduction band). These charges are not injected with

the applied voltage, and hence, for a given voltage, the current density should be higher

for higher dopant concentration. The specific process of doping in disordered organic

semiconductors, however, will contribute other effects other than just increasing the

carrier concentration.11, 112

To explain the doping dependence of mobility, Arkhipov and co-workers invoked

a Coulombic trap effect.104' 113, 114 They proposed that ionized dopants in disordered

organic semiconductors create Coulomb potential centers that strongly interact with the

charge-carriers localized at hopping sites. These interactions increase energetic disorder

by creating additional deep Coulombic traps in the DOS. Therefore, although doping

adds more charge-carriers into the disordered organic system to increase the Fermi level,

the creation of additional deep trap states will broaden the deep tail of the DOS to

counteract the shift in Fermi level. They developed an analytic model describing carrier

mobility in weakly and heavily doped disordered organic semiconductors and fit

experimental data of electrochemically doped polythiophenes.'04 They explained the



differences of doping dependence of mobility employing field-effect and electrochemical

doping processes. The field-effect doping dependence increases monotonically with

concentration because field-effect doping does not introduce ionized dopant centers to

create Coulomb traps. The observed electrochemical doping dependence (decrease in

mobility at low dopant levels followed by steep increase) is explained by the fact that for

low dopant levels, the addition of free carriers is not enough to balance the addition of

deep Coulomb traps, but eventually, for high dopant concentrations, the Coulomb traps

smooth out and their activation energies decrease. Indeed, Weise et al.115 conducted

thermally stimulated current (TSC) measurements to probe the energetic distribution of

traps for the system of 4,4',4"-tris(N-(1-naphthyl)-N-phenylamino)triphenylamine (1-

NaphDATA) doped in N,N'-di(1-naphthyl)N,N'-diphenylbenzidine (a-NPD). A trap

depth corresponding to the HOMO energy level difference between dopant and matrix

molecules is seen for low doping concentrations." 15 However, at higher dopant

concentrations, the deep traps seem to disappear in the measurements.

Martens et al.108 developed a model based on a variable range hopping (VRH)

theory. They proposed that the effect of increasing charge-carrier concentration is to shift

the Fermi level up, increase the number of available states since DOS increases with

energy, and increase the size of the localized region. The effect of doping not only

increases the charge-carrier concentration but is postulated to also introduce doping-

induced states near the Fermi level that will increase the conductivity. Assuming these

effects are dominant, Martens et al. 08 derived a concentration-dependent VRH

conductivity a(c) in a disordered system with arbitrary DOS g (E) and a volume Vo of

the localized region. They fit their theory to experimental data of iron(III) chloride-doped

PPV (FeCl3-doped PPV). Mott's law of 3D VRH between localized states in a constant

DOS,39 a(T)= o exp[-(To/T)V4], is obeyed for low enough temperatures in doped

conjugated polymers.108 Indeed for low enough temperatures, the Martens et al. model

retrieves Mott's expression (including concentration dependence and an exponential

factor):108

T= Uo (c)eA(c)exp [-(To (c)/T)v4] (4.24)



where c is the charge-carrier concentration, a is the inverse decay length of the localized

wavefunctions, and r 0 (c) is a concentration-dependent prefactor. The concentration

affects the DOS in To and the localization region size in A. Therefore, concentration

dependence of mobility originates from the concentration dependence on EF, A, To, and

o0 . To obtain Eq. (4.24), Martens et al. 8os made the approximation

g (EF) - g (E) - (E - EF ) g'(EF ) in their general analytical result of VRH conductivity

in arbitrary DOS.

4.9 Bulk-limited Current Conduction in Organic Semiconductors using Modified

Temperature, Field, Density-Dependent Mobility Expression

4.9.1 Field-Dependent Mobility in SCLC

Bulk-limited current models for transport in organic semiconductors have

included space-charge limited (SCL) and trapped-charge limited (TCL) models. For a

prominent field and temperature dependent charge-carrier mobility, 3' 79, 116-118 as is the

case for disordered organic semiconductors (see Eq. (4.2)), the SCL current is calculated

using modified field-dependent charge-carrier mobility relations, 75-77' 119-122 including

Poole-Frenkel, u (F) =u (0) exp[y ] ,75, 120 and power-law, p (F) =Lu (0) (F/Fo) ,121

field dependences.

Blom et al.75 described the hole conduction in poly(paraphenylene vinylene)

(PPV) using an SCLC model with a field-dependent mobility. The SCL current density is

given by:lo' 75

J =qpL(F)p(x)F(x)=q1_1(F) qdF F(x)

V= IF(x)dx

where p (x) is the hole density, F (x) is the field as a function of x, L is the thickness of

the organic semiconductor, and the mobility is taken to have the following relation: 75



g(F) =p(0) exp[yV-F]

u (0) = ,0 exp -T (4.26)- kTo

( kT kTo
Using Eqs. (4.25) and (4.26), theoretical fits to experimental data of current density

versus voltage measurements of PPV with an indium-tin oxide (ITO) anode and gold

(Au) cathode were made.75

Campbell et al.122 fit J-V curves using an SCLC model with modified hopping

mobility of the GDM3 relation in Eq. (4.14) and the mobility relation of Gill81 in Eq. (4.2).

4.9.2 Charge-density Dependent Mobility in SCLC

Tanase et al.123 utilized a space-charge-limited current (SCLC) model with a

charge density-dependent mobility to describe the current density versus voltage (J-V)

characteristics of OCIC1o-PPV hole-only diodes. Tanase et al. assumed the following

field-independent and density-dependent mobility relation derived from the Vissenberg-

Matters47 percolation model: 123

T4 
T o/T

sin K T1
I(p,T)= (0o,T)+ p (4.27)

q (2a) Bc
\1 I/

where p is the hole charge density, c0 is a conductivity prefactor, a is the inverse decay

of localized states, and Bc = 2.8 is a critical average bond number for percolation. The

first term is the hole mobility for very low charge densities; it is fit to the low bias region

of the experimental J-V curves with the conventional SCLC model. The second term is

derived from the mobility relation theoretically calculated by Vissenberg and Matters47

for low-field, high carrier density in exponential DOS with characteristic width To. The

justification for exponential DOS is that for high carrier densities, the Fermi level will be

in the energy range of the tail of the Gaussian DOS that can be well approximated as an

exponential. 101 The SCL current is given by, J = q (p) p(x)F(x), and is numerically



solved with Eq. (4.27) and Poisson's equation, qp(x) = edF/dx. Tanase et al.123 were

able to fit the J-V characteristics of OC 1Clo-PPV at room temperature using the SCLC

model with only a density-dependent mobility.123

Ramachandhran et al.124 derived the following analytic expression for the diode

current-voltage relation using the charge-density-dependent mobility form, p = anb ,

where a is a material and temperature dependent prefactor, b = (To/T)-1, and To is the

width of the exponential DOS:' 24

)E b (b+l)b+l (2b+3)b+2 V b+ 2

=ae q (b+2)2 b+3  d (4.28)

4.9.3 Field and Charge-density Dependent Mobility in SCLC

Using their unified temperature, field, and charge density dependent mobility

expression (see Eqs. (4.22) and (4.23)), Pasveer et al.' 6 fit experimental current density-

voltage characteristics for NRS-PPV and OCClo-PPV polymer films using an SCLC

model employing their mobility relation.'" The space-charge-limited current density is

calculated from:1 6

J = qy (T, p(x), F (x)) p(x)F (x)

dF qd= q p(x) (4.29)
dx e

V = fF(x)dx

where L is the thickness of the polymer film. They show that by including both field and

density-enhanced mobility, the current density versus voltage characteristics of polymer

films can be explained with this mobility enhancement in an SCLC model.



Chapter 5 - Percolation Model for Bulk-limited Transport

in Amorphous Organic Semiconductors

5.1 Introduction

Disordered organic semiconductors are comprised of molecules held together by

weak van der Waals bonds. As a result, charge transport in films of organic

semiconductors is dominated by disorder and localization. Initial studies of charge

transport in organic semiconductors focused on the charge-carrier mobility, in particular,

the field dependence that seems to follow a log/u oc /Ft. This experimentally observed

field dependence of mobility has been termed 'Poole-Frenkel' even though the source of

the field dependence may not be Poole-Frenkel. Numerical simulations of charge hopping

in a disordered lattice with Gaussian distributed site energies (GDM)3 and/or spatially

correlated site energies (CDM) 21 have reproduced the same observed field dependence of

mobility; some of these simulations reproduced the 'Poole-Frenkel' field dependence

without considering polaronic effects, suggesting that the field-dependent behavior of

mobility is mainly due to static site energies disorder. Analytic theories for lD hopping in

correlated site energies have also yielded a log c -,f relation. 19' 91 Aside from the field

dependence of mobility, the charge-carrier concentration dependence is also important.

Realizing the importance for a full, unified description of mobility, Pasveer et al.106

numerically solved the master equation and fit the full temperature, electric field, and

concentration dependent mobility relation by parameterizing numerical plots. Although

parameterizing numerical solutions and computer simulations gives a general mobility

relation trend, the various parameterizations and constants introduced usually do not have

an obvious physical origin (that can be extracted with measurements from independent

experiments), thereby, making it difficult to link physical microscopic processes that are

the predominant cause for experimentally observed macroscopic properties. Simulations

of random walks of hopping carriers in a localized density of states provide useful

insights on transport details (how individually varying specific input parameters on a

microscopic scale will affect certain transport behaviors macroscopically; or how



invoking specific microscopic mechanisms modeled in simulations will translate into

macroscopic behavior observed in simulation results), but they usually do not provide a

general physical description the summarizes the dominant transport phenomenon.

In this chapter, an analytic theory for hopping transport that gives a unified

description for the full temperature, electric field, and charge density dependence of the

charge-carrier mobility is presented. The simple theory is verified with experimental data.

An archetypical amorphous organic semiconductor, tris(8-hydroxyquinoline) aluminum

(Alq3), was chosen, where the electronic states are completely localized, and hopping

transport is believed to be the dominant mechanism over the range of experimental

parameters tested. Only three physical parameters (the width of the localized density of

states, exponential decay length of the localized electronic wavefunctions, and maximum

conductivity) are required in the analytic model to match the current density versus

voltage (J-V) characteristics over many orders of magnitude of current from room

temperature to T = 100K. The model is fit to mobility data as well, over a wide range of

electric fields and temperature.

5.2 Theory

5.2.1 Background

The theory introduced in this chapter is based on a percolation model. One of the

first models utilizing percolation theory to analyze the hopping conductivity in disordered

systems was by Ambegaokar et al.34 and later applied by Vissenberg and Matters47 for

the case of an exponential DOS to describe the charge-carrier mobility in thin-film

transistors of amorphous organic semiconductors. The theory introduced in this chapter

extends the percolation model presented by Vissenberg and Matters47 to include the

effects of an applied electric field. Li et al.125 also employ percolation theory to study the

effect of extrinsic traps on the hopping transport in organic semiconductors.

Charge-carrier hopping motion between localized states can be described by the

kinetics master equation:

= q (1-(5.1)



where I/j is the net current flow of charges from donor site i to acceptor site j, Wi is the

hopping rate of a charge from site i to j, and Pi is the occupational probability of a charge

on site i. It is assumed that one charge occupies the energy state Ei (LUMO state of

organic molecule) at site i at a time.

5.2.2 Zero-Field Limit

For small electric fields, the conductance between donor and acceptor can be

written as:

G& = Go exp[-sa]  (5.2)

where Go = qv0/kT and from incorporating Miller-Abrahams rates (Eq. (2.6)), the

following is obtained: 33, 47

IE- E, Ea -E,+IE - EaIsda = 2ara+ d (5.3)
2kT

The average number of bonds, B, is the density of bonds divided by the density of

sites that form bonds in the disordered hopping material. The density of bonds formed at

the percolation threshold is given by:47

Nb = Jd3da fdEd dEag (Ed)g(Ea)9(sc-Sda) (5.4)

where rda is integrated over the entire 3D space of the material, g (E) is the density of

states (DOS) of the material, 0 is the Heaviside unit step function, and sd, is the exponent

of the conductance between donor and acceptor sites, Gda= Go exp[-sda . At the first

instance of infinite cluster formation (first occurrence of percolation), the density of

bonds satisfies the relation: Bc = Nb/ N , , where Ns is the density of sites forming bonds

and Bc is the critical number of average bonds that corresponds to the percolation

threshold. For a three-dimensional amorphous system, this critical average number of

bonds is Bc = 2.8 .38, 47, 48

The density of states per unit energy and volume is taken to follow an exponential

distribution:"'1,
47

N0g (E)= •o exp[E/kTo], -oo < E < 0 (5.5)
kT1



where No is the total density of states per unit volume (molecular density in the

disordered organic semiconductor material) and To is the. characteristic temperature that

corresponds to the width of the exponential distribution. The particular choice for the

DOS does not have to be an exponential, but experimental measurements of the DOS in

undoped amorphous organic films using high lateral Kelvin probe force microscopy

(KPFM) have shown an exponential-like tail distribution. 126 Note that the exact

functional dependence of the DOS is not crucial in the results as long as it increases

strongly with energy. Although, an exponential function is convenient in that the results

for conductivity can be solved analytically.

The density of sites forming bonds in the infinite cluster is given by:47

Ns = dEg(E)0(sckT -E-E F) (5.6)

where Em = EF + sckT is the maximum possible energy of a donor site that can form a

bond to an acceptor site (a bond is defined as a link between two sites where the

conductance is greater than or equal to the critical conductance, G, 2 Gc ). Only sites

with energies between sckT from the Fermi energy EF form bonds in the infinite cluster at

the percolation threshold, as calculated in Eq. (5.6).

Since the density of states g (E) is assumed to increase strongly with energy, the

dominant contribution to integral for the density of bonds (Eq. (5.4)) comes from high

energies. Hence, the current is dominated by contributions from carriers in sites with

energies approaching the maximum Emx. For an exponential DOS in Eq. (5.5), the

dominant contribution is from Emax, given the condition, IEmax - E, >> kT0.

From Eq. (5.3), the critical donor energy, Ec, of a site that can participate in bond

formation for a given intersite distance rda iS:47

Ec = EF +(sc -2arda)kT (5.7)

where the maximum bond energy is Ex (the critical donor energy taken in the limit

rd-- 0 ). Sites participating in longer bonds have energies less than those of sites

participating in shorter bonds. For the maximum hopping distance of rmax = sc/2a, Eq.

(5.7) yields Ec = EF.



5.2.3 Zero-Temperature Limit

The critical donor energy given in Eq. (5.7) is in the zero-field limit (F = 0). In the

zero-temperature limit (T = 0), there is no thermally-activated hopping in energy.

Consequently, hopping is through tunneling and the conductivity between two sites

is G = Go exp[-s, ] with Go = qvo and s, = 2ara. The critical site energy satisfies the

relation:

f (E )exp[-2ar] = exp[-sc] (5.8)

where f (E) is the occupational probability at energy E and the acceptor sites are

assumed to be approximately empty. Because there is no thermal excitation at T = 0,

carriers at sites with energy E. must be excited by the electric field. Therefore, sites at

Er must participate in bonds of length ra > 0. It follows that, for short bonds, the

maximum acceptor energy cannot be less than Em (see Figure 5-1). The maximum

acceptor energy is for bonds formed parallel to the electric field. Therefore, for carriers at

sites close to energy Emx, the critical energy at the percolation threshold is:

Ec = E x - qraF (5.9)

Eqs. (5.8) and (5.9) yield an occupational probability function f(Ej) of the form

Cexp[-Ec/kTF] , where kT = qF/2a , identical to the result of Shklovskii. 12 7 The

constant C is approximated by extrapolating the exponential distribution to the Fermi

energy (i.e., f (E,) - 1):

f (Ec)= exp[-(Ec -EF)/kTF] (5.10)

Therefore, in the zero-temperature limit, the critical energy is given by:

Ec = EF +(sc - 2arda)kTF (5.11)

The maximum donor energy is obtained in the limit ra - O0, Er = E. + skTF. At the

maximum bond distance, r. = s /2a', Ec = E .
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Figure 5-1:80 Plots of maximum donor and acceptor energies to form bonds as a function of intersite

hopping distance r. Vertical transitions represent hops from a donor to acceptor. Once a charge-

carrier hops into an acceptor site, a horizontal transition is made so that the acceptor becomes a

donor for a subsequent hop. At T = 0, the maximum acceptor energy for bond formation is

Ec(r)+qrF . In (a), the donor distribution f (Ec)-exp[-Ec/kTF] is assumed with

kTF > qF/2a. Since the maximum acceptor energy to form a bond decreases with r, it takes an

infinite number of hops for a carrier to reach Emax. Since the occupation fraction at Emax is non-zero,

it follows that Ec (r) + qrF = Emax and kTF = qF/2a for small r, as shown in (b). Extrapolating

to EF, the distribution is f (E c)= exp [- (E c -E)/kT,]. From Limketkai, Jadhav, and Baldo

(2007).8o

5.2.4 Non-Zero Temperature and Electric Field

For non-zero temperature and electric field, the thermal energy is added to the

energy supplied by the electric field: 87

Ec = EF +(sc - 2arda )k (T + TF) (5.12)

The conductance between donor and acceptor sites is G = Go exp [-Sd], where sda has

some form that describes the hopping conductivity between two sites at non-zero

temperature and electric field. Although the exact function for Sda is unsure, only the

maximum bond energy is needed to calculate the bond number (the percolation criterion).

The maximum bond energy for both the zero-field and zero-temperature cases was found

from Sda. For non-zero temperature and field, the maximum energy of a donor site that

can participate in bond formation for a given intersite distance rd, (Eq. (5.12)) is found by



adding the maximum thermal and field energies in the two limiting cases of zero field

and temperature, respectively.

From Eq. (5.12), the maximum energy is E. = EF + sck (T + T,). Therefore, the

total density of sites that participate in bond formation for non-zero temperature and field

is:

N, = JdEg(E)(sk (T +TF)-IE-EI) (5.13)
The density of bonds is given by:

Nb = Jdrd3r dEd fdEag(Ed)g(Ea +Ad)O(sc- Sda) (5.14)

where Ada is the energy shift due to an applied electric field. The electric field

distribution between donor and acceptor sites forming bonds is assumed to be

approximately constant, i.e., rm. dF/dx <<F (x) . Using Eqs. (5.5) and (5.12) to solve

Eqs. (5.13) and (5.14), the critical average number of bonds is given by:

N T3B= Nb =1 6  To3 T+TF 2 n(x)exp [s, (T+TF)/To (5.15)
Ns (2a)3 (2T+T)2 (2T+3TF)

where the DOS is assumed to increase strongly with energy such that Ema - EF, > kT0

and n(x)= NoeE~/ kr is the density of charge carriers for EFI > kTo and T+T, < T.

Solving Eq. (5.15) to obtain sc, an analytic expression for the conductivity is:

[1 FTo l (T+TF)
S= coe c 16 TO T+TF 2 (x) (5.16)

Be-  (2a)3 (2T+TF )2 (2T+3TF,)

The charge-carrier mobility, p = o/qn, as a function of charge density, electric field, and

temperature is then:

To

o16 TO, T+TF T+TF TO -

q Bc (2a)3 (2T+ TF) 2 (2T+3TF)2  (5.17)

5.3 Experiment

Using the continuity equation ( dJ/dx =0 ) and Poisson's equation

( qn/e = dF/dx ), the mobility expression in Eq. (5.17) is tested against the



comprehensive study by Brtitting et al.79 of charge transport in the archetype small-

molecular weight electron transport molecule tris(8-hydroxyquinoline) aluminum (Alq3).

Figure 5-2 shows the theoretical fits to the current density versus voltage (J-V)

characteristics for a range of temperatures for a 300-nm-thick film of Alq3 with calcium

cathode and aluminum anode. In Figure 5-2(a), the theoretical fit assumes a built-in

potential of 0.4 V. 128 The parameters used to fit the experimental curves are the disorder

temperature To = 450K, the inverse decay length of the electronic wavefunctions a =

0.58 A-', and the maximum conductivity prefactor o = 1 x 103 S/m, which is dependent

on the intermolecular orbital overlap. As expected, ao is significantly smaller in

amorphous Alq 3 than polycrystalline pentacene.47 Note that there are only three

parameters used to fit the data. The extension of the percolation model of Vissenberg and

Matters47 includes the effects of an applied electric field on the charge-carrier mobility

but does not introduce any additional fit parameters.

The fit in Figure 5-2(a) is best at high electric fields (where the experimental data

exhibits positive curvature with increasing field). However, the theory does not fit as well

for the low electric field regime (where the experimental curves exhibit opposite

curvature). The discrepancy between the theoretical fits and experimental curves may be

attributed to uncertainty in the built-in potential and neglect of contact impedances

(which must be considered at low bias). Indeed, Brtitting et al.79 assumed a built-in

potential Vbi = 0.7 V in their fits, as compared to the measured value of 0.4 V by

Campbell and Smith128 and an expected Ca-Al work function difference of approximately

1.4V. Since the mobility expression is of bulk origin, any contact effects contributing to

an interface impedance is lumped into a constant voltage offset, Voff. Figure 5-2(b) is a fit

to the bulk-only J-V characteristics with a compensated voltage offset Voff = 2V. The

conductivity prefactor o- was increased to 2 x 103 S/m for the corresponding fits.
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Figure 5-2:80 Temperature dependence of the experimental J-V characteristics of an AI/Alq3/Ca diode

with an Alq 3 thickness of 300 nm. Data is from Briitting et al. (2001). 79 Solid lines are theoretical fits

using Eq. (5.17). (a) The J-V curves were compensated by a built-in potential of Vbi = 0.4 V, 128 and fit

to theory. (b) J-V curves were offset by a voltage Von = 2 V to compensate for uncertainty in Vbi and

the contact resistances, and then fit to theory. From Limketkai, Jadhav, and Baldo (2007).80

The fits to the experimental J-V curves demonstrates that Eq. (5.17) accurately

models the bulk electron mobility in Alq3. Equation (5.17), however, contains no explicit

Poole-Frenkel field dependence. To examine the electric field dependence of mobility,

the analytic expression for mobility is plotted against F in Figure 5-3 and compared

against experimental data obtained from transient electroluminescence measurements. 79

Predictions from the steady-state model and transient measurements of drift velocity are

not strictly comparable since mobility depends on the charge-carrier density. Since the

charge density is uncertain in transient measurements, the measured mobility data is fit to

theory assuming a charge density n = 2 x 1018 cm 3. Both theory and experiment

reproduce the 'Poole-Frenkel' behavior for a range of electric fields.
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Figure 5-3:8s Temperature and electric field dependence of charge-carrier mobility obtained from

transient electroluminescence measurements.7 9 Solid lines are theoretical fits using Eq. (5.17). From

Limketkai, Jadhav, and Baldo (2007).80

5.4 Conclusion

In conclusion, an analytic theory for charge-carrier hopping transport has been

formulated based on a percolation model. The theory is tested against bulk disordered

amorphous organic semiconductors, which is believed to be a hopping system with

completely localized states. The electric field dependence of the charge-carrier mobility

is found to be well-modeled by an effective temperature. The dominant effect of the

electric field is to increase the effective temperature, thereby generating a non-

equilibrium charge distribution.

The bulk mechanism for transport was analyzed by reducing any contact

impedances at the electrode-organic interface, thus making it negligible compared to the

bulk resistance. This can be achieved with a device structure having a thick single layer

organic with ohmic contacts. A theory for the bulk mechanism of electrical transport was

then developed to characterize the bulk properties of organic semiconductors such as the

charge-carrier mobility. With this description for the bulk transport, the injection

mechanism can be extracted by subtracting any bulk effects from experiments that vary

the contact materials. From this, it will be possible to develop a general theory that

encompasses the mechanisms for transport (injection and bulk) in organic

semiconductors.



5.5 Discussion

There has been previous work on the concept of field-induced effective

temperature.87, 127, 129-133 Shklovskii 127 derived a high-field conductivity expression by

substituting temperature in the low-field conductivity expression a(T) with an effective

temperature T = qF/2ak , a(Tff) . Arkhipov et al.133 derived an expression for

effective temperature and used the analytical results to compare to experimental data of

boron and phosphorous-doped a-Si:H. They pointed out that the effective temperature

expression depends on the DOS function. The effective temperature Tf (T,F) as a

function of field and temperature for an arbitrary algebraic DOS function,

g(E) = go[(E-EF)/Eo]a, -<2 A <o , is given by:133

Tf (T,F) = T 4-(4+A) f 2+ -(5+ 2) f3 +1 +(2 +A2 ) f4+A +(3 +2 )f'+ f(5.18)S4(1_f2)2 (5.18)

where f = qF/2akT. Field and temperature dependences of simulation results of

transport in exponential DOS are found to be able to be parameterized by a single

effective temperature expression given by: 130-132

Te(T,F) = T2 + fl (5.19)

Arkhipov et al.133 pointed out that various values obtained for the parameter fl for

different DOS distributions and transport processes (dispersive and equilibrium hopping)

suggests that there is no universal effective temperature that is applicable for all DOS and

transport processes in disordered hopping systems.

Although the field and temperature dependence of conductivity in Eq. (5.16)

cannot be parameterized entirely in terms of a single effective temperature Teff, the

temperature and field dependence is dominated by the exponent To/(T + T,) . Therefore,

the effective temperature derived from the percolation-based bulk theory gives a linear

sum:

qFTeff = T + qF= T + TF (5.20)
2ak



This linear combination of T and TF differs from previous work130 -133 which instead

employed an effective temperature of the form:

Teff = T 2 + FT2  (5.21)

To compare these approaches for the amorphous organic semiconductor material, Alq3,

the mobility data of Britting et al.79 is plotted under the two transformations of Eqs.

(5.20) and (5.21) in Figure 5-4.
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Figure 5-4: Mobility data" under two effective temperature transformations. In the left plot, the

transformation employs Eq. (5.20), and the right plot employs Eq. (5.21). The parameter values are a

- 0.58 AL- and fi= 1.6.

From Figure 5-4, it is shown that the linear combination transformation is more

precise for the high temperature, low electric field data. When TF < T, the sum of

squares transformation deviates from the universal trend. Therefore, for the amorphous

organic semiconductor material system, a linear sum of the effective temperature is a

more accurate description.

x 120Kx 120K

I I



Chapter 6 - Injection-limited Transport in Amorphous

Organic Semiconductors

6.1 Introduction

Charge injection theories describe the physics of the injection of charge-carriers

across the metal-semiconductor interface. If the injection interface is more resistive than

the bulk of the film, then the current-voltage characteristics will be determined by

injection theories. A lot of theories used to describe the injection current are based on two

conventional charge injection models in covalently-bonded semiconductors, thermionic

emission and tunneling. To properly model charge injection into organic semiconductors,

the effects of disorder and localization are considered.
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Figure 6-1: Left: Band diagram of metal-semiconductor device structure. Current injection occurs

through thermionic emission and tunneling. Right: Energy diagram of metal-organic device
structure when effects of disorder and localization are included. Current injection occurs through

thermally activated hops and tunneling.

6.2 Modeling Localization and Disorder for Injection

Most models successfully explaining charge transport behavior in disordered

organic semiconductors have been based on the formalism of a random walk of hopping

charges within a Gaussian distribution of localized energy states.3 The same principle of

charge hopping into a distribution of localized states should also be considered for the
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case of charge injection into disordered organic solids.7 ' 9 134 Abkowitz et al.135 developed

an injection model of thermally-assisted tunneling from carriers at the Fermi level of the

metal to localized states in the semiconductor. Gartstein and Conwell 8 used Monte Carlo

simulations to describe emission-limited injection into an energetically disordered

insulator. Their model states that due to energetic disorder, most of the incoming charges

will populate the tail of the DOS in the insulator layer close to the metal contact. The

injection of charges further into the insulator is then determined by these charges jumping

over an energy barrier created by the image-charge potential and energetic disorder. Their

simulations calculate the probability for the charges in the interface layer to escape into

the bulk and not return to the metal contact and recombine. From simulations, Gartstein

and Conwell 8 demonstrated that energetic disorder increases the non-linearity of the

thermal injection of carriers and enhances the field dependence of injection. 8', 136

Arkhipov and coworkers7 9, 134 modeled the initial injection step from the Fermi

level of the metal to the first layer of the energetically disordered material. Arkhipov et

al.7 presented an analytic theory for this model, where injection current is determined by

injection of charges into the first layer of the energetically disordered organic

semiconductor followed by hops into the bulk. The charges, once injected into the

organic, can either overcome the energy barrier and escape into the bulk or return to the

metal and recombine. The potential energy landscape that describes the energy barrier to

escape is given by:7

2

U (x, E) = A qFx + E (6.1)
16KrEx

where x is the distance from the metal contact surface, E is the energy of the localized

hopping sites (whose energy distribution is a Gaussian), F is the applied field, and A is

the energy difference between the Fermi level of the metal contact and the center of the

Gaussian DOS. After a charge injects into the Gaussian DOS in the interfacial layer, the

escape probability into the bulk is determined by the drift and diffusion within the

potential landscape described by Eq. (6.1). This probability is modeled with the one-

dimensional Onsager escape probability' 37 in the presence of disorder in energy E.7 From

their analytic theory, they solved for the injection current as a function of electric field,

temperature, and energetic disorder width of the DOS:7



J = qvo fdxo exp[-2yxo w]e (xo) E dE' Bol(E') g [Uo (xo) - E' (6.2)

where wes, is the escape probability for a charge to avoid surface recombination, a is the

distance from the electrode surface to the first hopping site in the semiconductor

interfacial layer, y is the inverse localization radius, Bol(E) is the Boltzmann

occupation statistics, v0 exp[-2yx 0 ] is the tunneling rate, g(E) is the Gaussian DOS,

and the electrostatic potential energy (energy barrier from electrode Fermi level to center

of Gaussian DOS lowered by field F and image potential) a distance xo from the electrode

surface is:7

2

U0 (x0) = A q qFxo  (6.3)
167•xo

Wolf et al.9 conducted Monte Carlo simulations of this model of charge-carrier hopping

injection from a metal into a random organic solid. In their simulations, the organic

dielectric is modeled as a cubic lattice of 170 x 170 x 20 hopping sites, where the site

energies are randomly chosen from a Gaussian distribution with standard deviation a.

They included the effect of image charges and an applied field on the site energy

distributions in the organic semiconductor. Miller-Abrahams 13 rates are used to describe

hopping of charges between sites in the organic and also from the Fermi level in the

metal into a site in the organic. After the initial hop from the metal Fermi level to the

organic, the charges are simulated to hop within a 5 x 5 x 5 surrounding lattice. The

energy levels of metal sites are assigned to the Fermi energy of the metal, EF. The charge

will hop somewhere within this lattice, and can either recombine back into the metal or

hop farther layer into the bulk. The process is repeated in the simulation for all these

charges; for charges that have reached the ninth layer, they are considered to be

dissociated. Simulation results of Wolf et al.9 yielded similar temperature dependence as

experimentally measured charge injection currents for amorphous Alq3 film with Mg:Ag

cathodes by Barth et al.138. The Monte Carlo simulations and analytical results of this

model are compared by Arkhipov et al.134

Therefore, with the inclusion of the two main properties (localization of hopping

sites and energetic disorder) in amorphous organic semiconductors, the temperature and



field dependence of charge injection can be understood from the analytic theory and the

Monte Carlo simulations of this model.7' 9 134

6.3 Interfacial Trap Model for Charge Injection

6.3.1 Introduction

The current-voltage characteristics of electron injection from metals into organic

semiconductors have often been observed to follow a power law, J -V Vm .11, 139 To

explain this power-law behavior for the injection current, Baldo et al.139 140 proposed an

injection model shown in Figure 6-2. In this model, there is a spatial dependence of the

energetic disorder width, where the strongest disorder is near the interface because of the

additional interfacial disorder contributions (additional disorder contributions from

interface dipoles and image potential that get randomized from the rough metal-organic

interface morphology).
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Figure 6-2: Left:' Simple picture of broadened interface DOS. The bulk disorder is narrower than

the interfacial disorder. From Baldo (2004).1 Right:1' 40 Model of interface between metal contact and

doped organic semiconductor. The metal-organic chemistry dopes the organic semiconductor and

form filled gap states (between LUMO and HOMO levels). Inhomogeneous image potential and

dipoles at the interface broaden the interfacial DOS. From Limketkai and Baldo (2005).140

Therefore, the broad interfacial DOS effectively form traps for injected charge.

Similarly to TCL model, current is limited by traps, except these traps do not limit bulk

conduction but are interfacial traps limiting injection current. The model assumes that the

most difficult and relevant hop to the injection current is the hop from the first molecular
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layer to the second. Since the interface disorder contribution diminishes very quickly

(falls off like the dipole and polarization energy), the second molecular layer is

practically only bulk disorder. The interfacial DOS is broadened to form deep trap states,

and current is limited by charges escaping these deep states into the second layer. After

the charges are in the second layer (assumed to be empty since most injected charges are

trapped at interface), they are assumed to move freely into the bulk. At high biases, when

the deep interfacial traps are filled, the interface barrier is small and current transitions to

a bulk SCL limit. In this interfacial trap model, the cathode dependence of current is

mainly explained by cathode doping filling the interface traps.

6.3.2 Metal-Organic Interface

Since electronic states in amorphous organic semiconductors are highly localized

and charge-carriers are limited to intersite hopping along molecular distances, the

environment at the interface boundary has a significant effect on the injection of carriers.

Several interfacial properties that have been experimentally confirmed to affect the

injection currents include the interface barrier (work function difference between

injecting electrode and organic semiconductor), interfacial chemistry (reactions between

metal electrode and organic molecules can lower interface barrier, form interface and

midgap states, add dopants, and etc), and interfacial morphology (depends on chemistry

of materials and growth conditions: substrate temperature, deposition rate, pressure,

etc.).128, 139-145 Scott146 summarizes the electronic environment at the metal-organic

interface contacts and the consequent effect on the injection current.

Detailed ultraviolet photoelectron spectroscopy (UPS) of interfaces' 47 between

reactive metal cathodes and the electron transporting material tris(8-hydroxyquinoline)

aluminum (Alq3) has been thoroughly investigated by groups including that of Kahn et

al.'43 Studies have highlighted four important characteristics of these interfaces. First,

there is a large, material-dependent barrier to electron injection from the metal into the

organic semiconductor. Second, UPS detects filled states in the energy gap between the

highest occupied molecular orbital (HOMO) and the lowest unoccupied molecular orbital

(LUMO) of the deposited Alq3,143' 148 confirming charge transfer from the reactive metal

to Alq3 molecules. Third, there is a large interfacial dipole, likely due to depletion of the



doped interface with an associated shift in the vacuum level. Finally, x-ray photoelectron

spectroscopy (XPS) studies have observed that the Cls energy levels of Alq3 molecules

deposited on a metal surface are broadened. 143 The broadening has been attributed in part

to inhomogeneous polarization at the disordered metal-organic interface. 143

Despite UPS observations of a material-dependent metal-organic injection barrier,

there is surprising evidence of material-independent charge injection at these complex

interfaces. For example, the low-temperature I-V characteristics of interfaces between

Alq3 and the reactive metals Al and Mg are nearly identical' 39 even though the electron

injection barrier is thought to be 0.3 eV smaller at the Mg/Alq 3 interface. 143 The

similarity in I-V characteristics suggests that-at least at low temperature-the injection

mechanism may be independent of the metal-organic injection barrier. In another

example, Kahn et al. 143, 149 have shown that the I-V characteristics of metal-on-Alq 3

interfaces are identical to inverted Alq 3-on-metal interfaces. Yet UPS studies find

differences in the spatial extent of the chemical reaction150 between Mg or Al cathodes

and Alq 3 in these devices. 143 The contrast suggests that electron injection may be

independent of interfacial morphology.

6.3.3 Interface Roughness and Polarization

In thermionic emission models of metal-semiconductor interfaces, 5 the mean

energy of charge transport states is lowered by the image potential, defined as the

potential due to polarization of the metal surface adjacent to a charge. Near a flat metal

interface, the polarization energy is146 E (z)=-q 2/16rez, where q is the electron

charge, e is the permittivity of the organic medium, and z is the distance from the metal.

But XPS studies have highlighted the possible importance of inhomogeneous polarization

at the interface. 143 Indeed, the Cls energy levels of Alq 3 molecules adjacent to a metal

surface are observed to be broadened by approximately 0.5 eV at full width at half

maximum. 143

Roughness at the metal-organic interface contributes to disorder in the

polarization potential. The potential 0 due to a point charge located at i0 = (x0, y0, zo) in

the molecular semiconductor is calculated using Poisson's equation:



V20= -A 6(i •-). (6.4)

Following previous studies,151 the disordered metal interface is represented as a zero-

mean random surface, with mean surface parallel to the x-y plane, satisfying the scaling

relation h(x, y) = y-Hh(yx, yy), where h(x, y) is a single-valued stochastic self-affine

function, y is a scaling parameter, and H is the roughness exponent. Within the self-

affine regime, we consider length scales tangential to the metal surface above the cutoff

corresponding to the interatomic spacing, =1 A, and bounded by length scales, 4, where

h is on the order of the intermolecular spacing. At 4, we define w as the root mean

square (RMS) displacement perpendicular to the metal surface. The metal surface is

weakly rough, i.e., w <«< .

The boundary conditions for the calculation of 0 are 0[x, y,z = h(x, y)] = 0 and

= 0 at jFj -4 o. Using perturbation analysis, 5' we expand the potential 0 (z) in powers

of h(x, y):

=0 +A + +... (6.5)

We transfer the second boundary condition from z = h(x, y) to z = 0 using the following

Taylor series expansion:

0(x, y,h)= (x, y,0)+ (x, y,0)h(x, y)+ (x, y,0)h' (x, y)+... (6.6)

The boundary condition is rewritten as:

(x, y,O)+- (x, y,0) h(x, y)+ (, y,O) h2 (x, y)+.. =O0 (6.7)

Substituting Eq. (6.5) into Eq. (6.4) and Eq. (6.7), and equating coefficients of equal

order in h(x,y), we have for first order:

V21 = 0

S(x, y, z = 0) = -h (x, y) (6.8)

( (x, y, z --- )= 0O



The zeroth-order solution, 00, is obtained using the method of images: 152

(6.9)=  q + q
4xero 7 - r0 4xereo0r + roi

where the first term in Eq. (6.9) is the potential of the charge and the latter term is the

image potential. The first-order solution of the image potential can be solved by rewriting

Eq. (6.8) as:

D2
- -k2) 1 = 0

aZ2 1 1

0 k~= 0) = 3 (6.10)

where O(k/,z) is the 2d Fourier transform of the potential (x,y,z), -3{ is the Fourier

transform operator, and I is the wave vector. The potential must decay as z - 00, thus

the solution to Eq. (6.10) is

(6.11)

From Eq. (6.9)

S(x, y, O) = -h (x, y) • =
az Z=0

-qz oh(x, y) (6.12)
2Zereo ((X- x)2 +(y-yO )2+Z

We take the inverse Fourier transform of Eq. (6.11) with a convolution of Eq. (6.12) to

obtain the expression for the first order correction to the image potential in real space:

(6.13)(xo-qzo)= -z h(x' +xo, y'+ Y ) dx' dy,
S(X02er [-X2 +y,2 +z ~

We can simplify Eq. (6.13) by considering the numerator and denominator separately.

h(x', y') is slow varying relative to the denominator of Eq. (6.13), which peaks at

x,2 + y,2= z0/1 . For charges close to a self affine metal interface, i.e. zo/45 << ,

we can make the approximation h (x'+ xo, y + 0 ) = h (xo, yo) and approximate Eq. (6.13)

as:

-h(x,y) z0)



-q h(xo,yo)
• (Xo, Yo, Zo) -q h (xo, yo )(6.14)8xoZ0ro 2 (6.14)

8;xeo zo

To first order then, the standard deviation in the z = zo plane is:

2

ozo) = (6.15)
8)w,eo ,Zo

XPS measurements143 of o(ao) = 0.7 eV are consistent with Eq. (6.15) for ao = 6A,7 w =

3.5A, and e, = 1, confirming that the roughness of metal interfaces significantly

influences energetic disorder in the adjacent semiconductor.

It is also notable that the ratio of standard deviations in the first and second

molecular layers is:

"=4 (6.16)

independent of material parameters such as the surface roughness, where oa and 0o is the

standard deviation of transport states in the first and second layers, respectively. The first

layer is defined to contain all molecules within one hopping distance, ao, from the rough

interface; the second layer is spaced by a further ao; see Figure 6-2. Equation (6.16) is

expected to be a general characteristic of metal-organic interfaces; its significance will be

discussed in the following section.

Note that the effect of surface roughness on the mean image potential has been

calculated by Rahman and Maradudin' 53 for a generalized dielectric interface with

Gaussian correlation statistics. Our treatment concentrates on the dependence of energetic

disorder on distance from a self-affine metal surface.

Using a perturbation expansion in powers of h(x,y), 1•' the self-affine rough

metal/organic interface height function, and equating coefficients of equal order (see Eqs.

(6.5) through (6.7)), we find that the higher order terms of the image potential satisfy the

differential equation:

V20 =0
np1 • m(h,=0- m =X-nAm (6.17)

on (x, y, z = 0) = 1 •z-- z= (6-

S(x, y, z --->)= 0



In k-space, the potential solutions on for n > 1 follow an exponential z-dependence ekz

with k-values limited by the interatomic spacing in the metal surface (- 1A). The

frequency spectrum of the self-affine surface h(x,y) follows a power-law behavior that

peaks at ý. For weakly rough surfaces >> max {h(x, y)), the lower order contributions

A, in the boundary condition are negligible compared to An. Consequently, the dominant

term of the potential solutions is: q0 - h"l/zng. Hence, the higher order terms in the

perturbation expansion of Eq. (6.5) approach zero as n - 00 if w < zo.

6.3.4 Calculation of Current

As discussed in the introduction, UPS studies of Mg/Alq3 and Al/Alq3 interfaces

detect filled states in the Alq 3 energy gap that are formed by chemical reactions between

Alq 3 and low work function metals. 143' 148 Filled gap states are indicative of cathode-

induced doping of the interfacial organic semiconductor. At equilibrium, charge diffusion

back to the metal establishes an interfacial dipole that minimizes the energy barrier

between the cathode and the organic semiconductor.

The first molecular layer at the interface contains both reacted molecules,

characterized by filled gap states, and unreacted molecules, characterized by the intrinsic

LUMO for Alq 3, albeit broadened by inhomogeneous polarization. There are two

important consequences of disorder and doping at the interface. Firstly, the transition

from the energetically disordered broad DOS at the interface to a narrow DOS in the next

layer forms an injection barrier between the first and second layers. Secondly, doping

enhances the interfacial dipole. Together with the broad DOS at the interface, the

interfacial dipole may minimize any charge injection barrier between the metal and the

organic semiconductor. Consequently, we assert that injection-limited I-V characteristics

at cathode-doped interfaces are determined by the rate of charge hopping from the first to

the second layer, not the rate of charge hopping from the metal to the first layer; see

Figure 6-2. The current density, J, is given by:139

J(Ef)=aoq f (E,EF)g,(E)R(E)R(E2-E)g 2 (E2 +A)dEldE2 (6.18)



where gi (E,)= (Nl 2 )exp[-1/2(E/)2 is the density of intrinsic LUMO states

in the ith layer and fi(EI,EF) is the energy distribution of charges in the depletion region.

Because its DOS is broad, the charge distribution in the first layer is assumed to be

degenerate. The quasi Fermi level for electrons in the first layer is EF, ao is the

intermolecular spacing, and the molecular density is N= 1021 cm3 . A = -aoqF + AEp is

the shift in energy in the second layer due to the applied electric field, F, and the change

in mean polarization energy, AEp. We describe the hopping rate, R, with the Marcus

formula:

R(E)= Kexp[-(E+ A)2/42kT] (6.19)

where E is the energy difference between hopping sites, and K is the transmission

coefficient, and 2 is the molecular reorganization energy. From Eqns. (6.18) and (6.19),

and making the approximation thatfi is degenerate, we get:

(E)=aoqN jexp[ im(Ei/)2 ]E, (6.20)-)0 (2+" /+kT) U ep-

where m =1+"2 /(U2+2+kT) is the power law slope and we have assumed that

E,I» >>-Al. At low temperatures the decay of energetic disorder in Eq. (6.16) gives

m=l+ 1+12/2 =17.

The current density in Eq. (6.20) is related to the applied voltage, V, by the quasi

Fermi energy, EF, in the LUMO states. Calculating the total charge (injected + doped) in

the first layer using an asymptotic approximation in the integration of the Gaussian

distribution fi(E 1,EF)gl(El) gives:

V+AV=Voexp[--_(EF,/")2] (6.21)

where Vo = qaoNu"d/,4JE( eEF and d is the thickness of the electron-transport layer.

The approximation is valid for lE, >- o-i, when the Fermi level at least one standard

deviation away from the mean of the Gaussian DOS. For high biases, where the

interfacial DOS fills up to within one standard deviation, the injection step from first to

second layers may no longer be the limiting factor for current. The applied voltage, V, is



calculated from the injected space charge trapped in the first layer. But free charge that

has diffused from filled gap states due to doping of the interface also affects the density

of charge in the LUMO states. To account for the effects of doping, Eq. (6.21) defines a

doping-dependent voltage shift, AV, equivalent to the additional voltage required to inject

an amount of charge equal to the doped free charge present in the LUMO states in the

first layer.

Approximating Eq. (6.20) under the assumption that EF >> , A , and

substituting for the Fermi energy using Eq. (6.21), gives the analytic model for charge

injection into cathode-doped amorphous organic semiconductors:

J= Jo(V+AV)m/Vom (6.22)

where AV is the doping-dependent voltage shift and

J = qraoN(AkT/crl EI) (2+u/,•,lkT)/ . Note that J0 and Vo are approximately

constant since EF is slowly-varying in the broad DOS gi(Ei). The assumption that

IE, >> , A is valid in the range of applied electric fields used in this study. For typical

molecular reorganization energies, and applied electric fields - 106 V/cm, both X and A

are << oa = 0.7 eV.

6.3.5 Current-Voltage Measurements

In this section we compare the model of Eq. (6.22) with I-V data for five organic

semiconductors: tris(8-hydroxyquinoline) aluminum (Alq3), 154 9-dimethyl-4,7 diphenyl-

1,10-phenanthroline (bathocuproine, or BCP), 155  4,4'-N,N'-dicarbazole-biphenyl

(CBP),156  3-phenyl-4-(l'-naphthyl)-5-phenyl-1,2,4-triazole (TAZ),157  and copper

phthalocyanine (CuPC). 158 Each material was incorporated in a device fabricated on a

UV-ozone treated glass substrate precoated with an indium tin oxide (ITO) anode with a

sheet resistance of = 20Q /sq. The ITO was coated with a layer of poly(3,4-

ethylenedioxythiophene):poly(4-styrenesulphonate) (PEDOT:PSS) to minimize leakage

current in the finished devices. This layer was prepared by spin coating onto the ITO

substrate followed by baking at T =120 oC for at least 1 hour in an oxygen-free

environment. All devices were fabricated with a hole blocking layer of BCP deposited on



the PEDOT:PSS. The deep HOMO of BCP159 minimized the hole current in each device.

Organic semiconductors to be tested were deposited on the BCP. All small molecular

weight materials were deposited by high-vacuum ( < 10-6 Torr) thermal evaporation. The

cathode materials employed in this study were Au, Ag, Al, a 1:50 mixture of Mg and Ag

(Mg:Ag),7 and Al with a 5A-thick interfacial layer of LiF deposited between the Al and

the organic material (A1/LiF). 16° All cathodes were deposited through 1-mm-diameter

shadow masks and were 1000A-thick, except Mg:Ag, which had an additional 300A-

thick film of Ag for protection from oxidation. Lithium doping at the interface was

investigated at Al-BCP contacts (Al/BCP:Li) and Au contacts to Alq 3 (Au/Alq 3:Li) and

BCP (Au/BCP:Li) by co deposition of 10% Li into a 200A-thick organic layer adjacent to

the cathode. All devices were tested immediately after fabrication and measured in an

inert He atmosphere.

At T = 10K and high applied bias, the I-V characteristics of each interface

exhibited power law behavior with m = (20±1), as shown in Figure 6-3.
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Figure 6-3:14° The I-V characteristics at T = 10K for (a) Alq 3 interfaces, (b) BCP interfaces, and (c), a

comparison of Al/LiF contacts to Alq3, BCP, TAZ, CBP, and CuPC. All cathodes exhibit similar

power law behavior, i.e. J - WV, where m = (20±1), and the IV characteristics of all but three contacts:

Au/Alq3, Au/BCP and AI/BCP are clustered together and controlled by an energy barrier between

the first and second molecular layers. The heavy dotted line with power law slope m = 20 marks the
approximate transition between contacts controlled by an energy barrier in the organic

semiconductor and the three high voltage contacts limited by an additional energy barrier between

the metal and organic semiconductor. From Limketkai and Baldo (2005)."14



The power law slope for each device is summarized in Table 6-1. The I-V

characteristics are remarkably similar at low temperature with the exception of Au/Alq3,

Au/BCP and Al/BCP interfaces, which require much higher voltages.

Device structure Interface doping Activation energy Power law slope
(No/N) [%] (EA) [meV] m

Al/LiF/Alq 3  15±3 34±1 19±1

Mg:Ag/Alq 3  13±3 34±2 20±1

Al/Alq3  8±3 35±2 21+1

Ag/Alq 3  3±1 22±1 21±1

Au/Alq 3  - - 20+1

Au/Li:Alq 3  7±2 26-2 21±+1

Al/LiF/B CP 17±4 32±3 21+2

Mg:Ag/BCP 10+4 40±5 21+1

Al/BCP - - 20+1

Ag/BCP 0 18+1

Au/BCP - - 20+2

AI/Li:BCP 13±4 42±3 22+1

Au/Li:BCP 12±4 47±3 21+2

Al/LiF/TAZ 12±4 28±3 19+2

Al/LiF/CBP 4±1 20±2 19+1

Al/LiF/CuPC 14±4 34±4 21+1

Table 6-1:14 Doping and power law characteristics of all the interfaces studied in this work. The

power law slope, m, where J - V", was determined at J = 0.1 A/cm2 and T = 10K and found to be a

conserved property of these interfaces, with m = (20±1). Three of the interfaces: Au/Alq3, Au/BCP

and Al/BCP were significantly more resistive than the rest and injection at these interfaces was

assumed to be limited by a large energy barrier between the metal and organic semiconductor. Of

the remaining interfaces, the doping fraction, ND/N, at the contact, and the doping activation energy,

EA, were determined by comparing I-V characteristics to extrapolations of low temperature

(T < 50K) data. For example, the Ag/BCP I-V characteristic is aligned with the extrapolation of low

temperature data, and is consequently found to be undoped. From Limketkai and Baldo (2005).14

Excluding the Au/Alq3, Au/BCP and A1/BCP interfaces, the temperature

dependencies of the remaining I-V characteristics are plotted in Figure 6-4 for (a) Alq3 (b)



BCP and (c) a comparison of Al/LiF contacts. At high temperature, the IV characteristics

vary significantly for the different interfaces. But the differences are diminished at low

temperature. Since cathode-induced doping is expected to vary significantly among the

various interfaces studied, the similarity at low temperature between the various I-V

characteristics suggests that doping is thermally activated, i.e. AV (T -- OK)= 0.
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Figure 6-4:14° The temperature dependence of the operating voltage at J = 0.1 A/cm2 for (a) Alq 3

interfaces, (b) BCP interfaces, and (c), a comparison of AI/LiF contacts to Alq3, BCP, TAZ, CBP, and

CuPC. At high temperatures, differences in doping at the various cathode interfaces cause the

characteristics to diverge. The estimated behavior of each organic semiconductor in the absence of

doping is shown with dotted lines, and obtained by extrapolation from the low temperature data

(T < 50K). Solid lines are the sum of the low temperature extrapolation and fits to AV(T) in Figure

6-5. From Limketkai and Baldo (2005).140

To quantify the temperature dependence of AV, we first fit Eq. (6.22) with AV= 0

to the low temperature (T < 50K) data for each organic semiconductor, yielding the

dotted lines in Figure 6-4. The AV(T) values for each cathode were then obtained by

subtracting these fits from the applied voltage at J = 0.1 A/cm2. As shown in Figure 6-5,

the temperature dependencies of the doping-induced voltage shifts, AV, accurately fit a

simple Arrhenius law. This is discussed further in the next section. The measured

activation energies for the various contact interfaces are summarized in Table 6-1.
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Figure 6-5:14° The temperature dependence of doping for (a) Alq 3 interfaces, (b) BCP interfaces, and

(c), a comparison of Al/LiF contacts to Alq 3, BCP, TAZ, CBP, and CuPC. The doping-induced

voltage shift, AV, is obtained by subtracting an extrapolation of the low temperature data in Figure

6-4 from the actual voltage. Fits to Eq. (6.23) are shown in solid lines and used to determine the

various doping fractions and activation energies summarized in Table 6-1. From Limketkai and

Baldo (2005).140

We confirm in Figure 6-6 that AV is independent of current density at high bias,

i.e. the I-V characteristics of all interfaces except Au/Alq 3, Au/BCP and Al/BCP

interfaces are related by a temperature-dependent rigid shift in voltage. Thus, Eq. (6.22)

provides a general description for charge injection at these interfaces. Except at low

temperature, the Au/Alq3, Au/BCP and AI/BCP interfaces are not related to the other IV

characteristics by rigid shifts in voltage.

Application of the theory of Eq. (6.22) allows us to determine the various material

parameters summarized in Table 6-2. In particular, from the fits for AV = 0 and the power

law slope at low temperature, we can determine o- and oý. We obtain o1 = 0.63+-0.08 eV

for Alq3, consistent with XPS measurements of broadening of the Cls energy level of

Alq3 at metal-Alq 3 interfaces. 143
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Figure 6-6:1" Temperature dependence of J-V characteristics of (a) Alq3 interfaces, (b) BCP

interfaces, (c) AI/LiF/TAZ, (d) AI/LiF/CBP, and (e) Al/LiF/CuPC. A rigid voltage shift was applied to

Alq3 and BCP curves to overlap with Mg:Ag/Alq 3 data and Al/LiF/BCP data, respectively. All the

measured Alq 3 and BCP data share the same characteristics, except for a cathode-dependent rigid

voltage shift. From Limketkai and Baldo (2005).14

Alq3  BCP TAZ CBP CuPC

a1 [eV] 0.63+0.08 0.74±0.09 0.64±0.07 0.59±0.08 0.69+-0.09

a2 [eV] 0.14+0.02 0.16+0.02 0.14±0.02 0.13±0.02 0.15±0.02

2 [eV] 0.16_±0.04 0.16±0.04 0.12±0.02 0.11+0.03 0.13±0.03

J0 [A/cm 2] 84±12 74±10 74±9 69±13 74±8

V0 [V] 30.39_0.20 31.50+0.22 27.30+0.14 23.73-0.21 30.38+0.15

Table 6-2:1' Parameters for the five organic semiconductors studied in this work, as determined by

the low temperature power law slope and fits to extrapolated I-V characteristics for AV= 0. The

standard deviation of the density of states in the first and second molecular layers is oa and oý,

rý



respectively. A is the molecular reorganization energy. Jo and Vo are constants from Eq. (6.22). Jo was

determined at T = 10K. The extracted values of oi are consistent with XPS measurements of Alq 3

interfacial energy level broadening of approximately 0.7 eV. 143 From Limketkai and Baldo (2005).14o

6.3.6 Discussion

(i) Energy barriers at the metal/organic interface and in the organic semiconductor

From the I-V characteristics at T = 10K, we divide the various cathode interfaces

into two categories. In the first category, the I-V characteristics are controlled by an

energy barrier in the organic semiconductor. The similarity of I-V characteristics at

T = 10K demonstrates unequivocally that electron injection at these interfaces is not

controlled by an energy barrier between the metal and organic semiconductor. In this

work, cathode interfaces in this category were typically either cathode-doped or

deliberately doped with Li during fabrication.

The second category consists of interfaces with large energy barriers between the

metal and organic semiconductor. The transition to power law behavior with m = (20+1)

is only observed in this category at extremely high biases, since the energy barrier at the

metal-organic interface must be overcome before the energy barrier within the organic

semiconductor is significant. But even for a high work function cathode such as Au, the

metal-organic barrier can be minimized by doping. Indeed, Au/Li:Alq3, Au/Li:BCP and

AI/Li:BCP contacts exhibit I-V characteristics consistent with the first category of

contacts.

(ii) Common characteristics of metal/organic interfaces

Two common properties are observed in the interfaces studied here: Firstly, the

power law slope is m = (20+1) at 10K, independent of the choice of cathode or organic

material. Secondly, at a given temperature, the I-V characteristics of all contacts

controlled by an energy barrier in the organic semiconductor are related by a rigid linear

shift in voltage.

Several possible explanations for the common properties in the I-V data may be

excluded. Firstly, the low temperature behavior is not due to a transition to bulk-limited

conduction. Five different organic semiconductors were employed in this study, and



despite their different bulk charge transport properties all exhibited similar power law

behavior at low temperature. Moreover, the thickness dependence of the IV

characteristics for Alq 3 contacts is linear at low temperature, consistent with injection-

limited charge transport. 139 Secondly, the similarities in I-V characteristics are not due to

the common BCP/PEDOT:PSS/ITO anode. Nearly identical data has been obtained for

the Alq3 devices using Mg anodes' 39 and varying the thickness of BCP.

Rather, calculations of polarization induced energetic disorder approximately

match XPS measurements of energy level broadening at the metal surface. 143 And the

invariance of the power-law slope at low temperature is consistent with predictions of the

effect of interface roughness' 53 on the image potential. Energetic perturbations decay

rapidly with distance from the disordered interface, but only the decay rate - which is

independent of interface roughness - affects al/ Y2 and the injection theory. Hence the

low temperature power law is preserved irrespective of the metal cathode, or the organic

semiconductor employed. And hence the I-V characteristics of metal-on-organic and

organic-on-metal interfaces are similar despite the morphological differences. 143 The

discrepancy between the theoretical prediction of m = 17 and the observations of

m = (20+1) is likely due to the neglect of higher order terms in the calculation of m, and

the assumption of a constant dielectric constant for charges in the first and second layers

of the organic semiconductor, thereby ignoring the polarization of molecules in the first

interfacial layer.

(iii) The temperature dependence of AV

The temperature dependence of the rigid doping induced voltage shift AV is

observed to fit:

AV = AVo +(qaod/e o ) N, exp[-EA/kT] (6.23)

where EA is the activation energy, ND is the effective doping density, and AVo is a

temperature-independent constant determined by the equilibrium density of charge in the

LUMO states at zero temperature.

Since the activation energy of AV is observed to be much less than the energetic

disorder at the interface, we speculate that EA is determined by the temperature



dependence of charge diffusion. From the Marcus charge hopping expression, the

temperature dependence of the isoenergetic diffusion constant, D, is described by:

D o icexp[- /4kT] (6.24)

The activation energies and calculated doping densities, ND, for the various cathode

interfaces are listed in Table 6-1. For fitted values of the molecular reorganization energy

A = 160 meV, EA =-1/4, consistent with Eq. (6.24).

(iv) Discrepancies at low bias

At low current densities the I-V characteristics of many of the contacts studied

diverge significantly from power law behavior. There are two origins for the divergence.

Firstly, we note that the power law theory of Eq. (6.22) is valid only in the high electric

field limit. When V = 0, Eq. (6.22) reduces to J = Jo (AV/Vo)t 1 0. Thus, power law

behavior is not expected to hold at V = 0. Secondly, for low applied voltages, 'additional'

current is observed (i.e. current exceeding the power law prediction). At high

temperatures, it is likely that the additional current is thermally activated leakage

associated with device imperfections. As confirmation, we note that many I-V

characteristics are not repeatable for J < 10-5 A/cm2 . At lower temperatures, several

weakly doped contacts exhibit nearly pure power law behavior. But reproducible

deviations at low currents are also observed, especially for heavily doped contacts such as

Al/LiF/Alq3, suggesting that doping may alter the density of states in the first few

molecular layers. Indeed, depletion of heavily doped interfaces alters the DOS by

generating a strong electric field at the interface that is affected by spatial disorder. Our

calculations suggest that this effect could contribute several tenths of an eV to the

variances oi and or at heavily doped interfaces, significantly altering the I-V

characteristics.

(v) Trapped charge limited conduction

Finally, we note that I-V characteristics following the power law form J C V"'

have been previously attributed to trap charge limited (TCL) conduction with an

exponential distribution of traps."1 TCL theories apply to bulk semiconductors and do not



usually consider the electric field and temperature dependence of charge carrier

mobilities. 161 Yet, TCL theories fit aspects of the I-V characteristics of injection-limited

devices because the broad DOS at the metal-organic interface forms traps for injected

charge. The injection model presented in this work is empirically similar to TCL theories,

suggesting that I-V characteristics previously attributed to TCL be reconsidered for the

possibility of injection limited charge transport.

6.3.7 Conclusion

In conclusion, the theory of Eq. (6.22) agrees with experimental data for the

injection characteristics at disordered, cathode-doped organic semiconductor interfaces.

Common properties of disparate contacts are identified, notably: (i) a power law slope of

m = (20+1) at low temperature, independent of the choice of cathode or organic material;

and (ii) relation of IV characteristics of contacts at a given temperature by a rigid linear

shift in voltage. The similarity between I-V characteristics for disparate organic

semiconductors at low temperatures highlights the important effect of interface roughness

on the image potential. At higher temperatures, the effects of doping are more

pronounced. Indeed, all contacts improve with doping, and doping technologies may be

more significant than the choice of the bulk semiconductor in the engineering of low

resistance contacts. This work also suggests that to minimize disorder and obtain

consistent results from single-molecule electronic devices sandwiched between metal

contacts, both the molecules and the metal interfaces must be fabricated with atomic

precision.

6.4 Injection and/or Bulk Limited Conduction

To determine whether the measured current in an organic semiconductor diode is

injection or bulk limited, the dependence of voltage on diode thickness at constant current

is often used to discriminate between the two.9, 79 From injection-limited models, at a

given current density, the voltage should scale linearly with the thickness of the device.

Bulk-limited models, however, predict a non-linear voltage dependence with thickness.

For SCL current, the voltage is predicted to scale to the power 3/2 with thickness (see Eq.

(3.3)).



However, Scott' 46 commented that it is difficult to straightforwardly extract

parameters from just the field and temperature dependences of the measured currents

because the contributions from different processes have similar behaviors. For example,

the field dependence of the Schottky effect and the mobility are both 'Poole-Frenkel'

exp[J-F], and the injection and hopping processes are both thermally-activated. 146

Scott 146 pointed out that many studies have looked at the temperature dependence of the

measured current to extract the barrier height while ignoring the possible mobility

contribution, which could have the same thermally-activated dependence. Indeed, the

charge injection model developed by Scott and Malliaras' 46' 162 predict a dependence on

the mobility of the organic semiconductor. To experimentally verify this prediction, Shen

et al.163 measured the injected current from indium-tin oxide (ITO) into tetraphenyl

diamine (TPD) doped in polycarbonate (PC). They found that the measured current was

indeed proportional to the bulk hole mobility, which was varied by changing the

concentration of the hole transport dopant TPD in the PC host matrix and measured by

time-of-flight technique.163

Obtaining correct physical parameter values from the measured current density

versus voltage (J-V) characteristics relies on the use of an accurate model. Difficulty

arises for amorphous organic semiconductors because the measured current behavior with

field is similar for predictions from both injection and bulk limited current models. Wolf

et al.9 demonstrated that over a limited field range, their simulations of charge injection

into a disordered hopping system featured behavior resembling bulk transport with an

exponential distribution of traps. They further remarked that with a Gaussian distribution

of traps, the field dependence of the bulk-limited current looks even more like injection-

limited current. Therefore, the field dependence of the current may be indistinguishable

between injection and bulk limited conduction. 9

Therefore, in order to describe transport in organic semiconductor diodes over a

broad range of currents and parameters, both mechanisms for transport (injection and

bulk), influenced by many factors (built-in potential, injection barriers, diode thickness,

traps, etc), must be understood. 79, 164-167



Chapter 7 - Cathode-Doping of Organic Semiconductors

7.1 Introduction

Frequency and bias-dependent capacitance measurements on hetero-layer organic

devices composed of a N,N'-diphenyl-N,N'-bis(1-naphtyl)-l,1-biphenyl-4,4 diamine

(NPD) hole transport layer (HTL) and tris(8-hydroxyquinoline)aluminum (Alq 3) electron

transport layer (ETL) have shown evidence of the presence of fixed negative charges at

the NPD-Alq3 interface under reverse bias.79, 168-171 To analyze the capacitance

measurements, a circuit element model (Figure 7-1) for the double heterostructure is

employed. Here, the resistors of the organic layers are dependent on the temperature,

charge density, and applied field across the material; and the capacitors have parallel-

plate capacitance, C = AE,Eo/d , where A is the area of the metal contact, Er the relative

permittivity, eo the vacuum permittivity, and d the thickness of the individual layers.

Briitting and coworkers 79' 168-170 studied the bias and frequency dependent capacitances of

this structure in two regimes. One regime is when the resistances of both the Alq3 and

NPD are large enough such that an = wRC > 1 is satisfied in both layers, where c is the

measurement frequency of the small-signal AC bias. In this case, the induced differential

charge from the small AC voltage will collect at the parallel capacitors, and the measured

value of total capacitance should be the series sum of the two capacitances, CAq 3 and

CNPD. The second regime studied is when the NPD resistance, RNPB, is small enough

such that wrD= coRNPDCNPD << 1, but RA1q3 is still large with Alnq3 = tRAlq, C 3q >> 1. In

this case, the charges will short CNPD (by going through RNPD), and the measured value of

total capacitance should simply be the Alq3 capacitance alone, CAlq.
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Figure 7-1:79, 1, 169 Circuit element model of organic light-emitting diode composed of Alq3 as the
ETL and NPD as the HTL. Adapted from Berleb et al.79' 16 , 169

Under forward bias, the voltage will be dropped predominantly across the Alq3

layer.168 173 since the NPD hole mobility is much larger than the Alq3 electron mobility,79,
118, 174, 175 the holes can easily inject from the anode to collect at the NPD-Alq3

heterojunction, while the electrons will accumulate at the metal cathode-Alq 3 interface

(assuming the forward bias is still small that electrons do not readily inject and transport

across the Alq3 layer). This is the regime when RNpD is small, and for the appropriate

measurement frequency, the measured capacitance for the whole hetero-layer device

should be CTOT = Aeeo /t , where t is the thickness of the Alq3 layer alone. Under reverse

bias, the resistances of the Alq3 and NPD layers will be both very large. Charges will not

easily transport across either organic layers, and they will pile up at the metal contact

interfaces. This is the regime when RspD and RAq3 are both large, and for the appropriate

frequency, the measured capacitance should then be the series sum of the individual Alq3

and NPD capacitances. Therefore, the capacitance transition between the two regimes

from CT = CD + C 3 to CTOT = C occurs during the transition from reverse bias to

forward bias voltage, which is expected to occur at an applied voltage equal to the built-

in potential, VBI.79' 168-171 This is the point when the device reaches the flatband condition.

The capacitance transition is an indication when RPD becomes small, which occurs when

NPD reaches flatband. See Figure 7-2 below.
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Figure 7-2: Band-diagrams for different biases. (a) At reverse bias, both organic layers are reverse

biased, so Rlq3 and RNPD are both large. Charges will collect at metal contacts. Measured

capacitance at the appropriate frequency should be CI = CD + C•. (b) At V = VBI, the

organic layers become flatband, which is the transition point from reverse to forward bias. NPD is

now flatband and begins to conduct holes well. This is the transition point and at the appropriate

measurement frequency, the measured capacitance should be CTOT = CAq 3 . (c) At forward bias,

NPD mobility is relatively large such that RND is small enough to let holes inject and collect at Alq3-

NPD junction. Electrons collect at cathode contact since RA1 is somewhat large. Therefore, the

forward bias field drop is mostly across Alq 3. The measured capacitance at the appropriate frequeny

should be CTOT = CAIq3 *

However, capacitance measurements reveal that the capacitance transition voltage,

VT, is not equal to VBI, but some higher reverse bias.79' 168-171 It was explained that this

observed NPD flatband voltage shift, AVT, away from the predicted VT = VBI is the result

of negative charges residing at the Alq 3-NPD interface in the reverse biased condition.79'
168-171 Although VT < V < VBI is a reverse bias voltage, NPD is still in the flatband

condition because negative charges at the hetero-organic interface are contributing to the

field drop in the Alq 3 layer. From Poisson's equation, the electric field, Fi , due to the

surface density of negative charges at the hetero-organic interface, o, is related to the

change in transition voltage AVT by:79' 168-171

i/Eoe = F = Fdq3 =AVT/t, (7.1)

where t is the Alq 3 layer thickness. When large reverse bias V < Vi is applied, where Vi is

the voltage drop across the Alq 3 layer due to these interfacial negative charges, the Alq3

and NPD layers are both in the reverse biased condition. (Figure 7-3(a)) However, when

h



the applied reverse bias reaches V = VT, the NPD layer already reaches the flatband

condition, but the Alq 3 layer is still reverse biased, accommodated by the negative

interfacial charges. (Figure 7-3(b)) Note that the interfacial charge density is still equal to

oi. As the reverse bias is decreased within the range, VT < V < VBI, holes inject from the

anode to gradually compensate the negative interfacial charges. The density of charges at

the hetero-interface decreases from o i . The NPD layer is still in the flatband condition

while the Alq 3 layer is decreasing it's reverse biased potential slope. When the applied

bias equals the built-in voltage (V = VBI), all the interfacial charges are fully compensated

and Alq 3 finally becomes flatband. (Figure 7-3(c)) Note that the amount of extra voltage

needed to fully compensate the interface charge density o i is Vi = VBI + VT. At applied

voltages past the built-in voltage (V > VBI), the device becomes forward biased. Injected

holes from the anode travel through the NPD because of its relatively high mobility

( RNp, small), but electrons collect at the cathode interface. (Figure 7-3(d))

T dAlq dNPD
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Cathode-------------- V V CTOT )A-cCathode BI m o d 9q3
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Figure 7-3:"6s Potential landscape of ITO/NPD/Alq 3/Ca OLED device under different bias conditions.

(a) For large reverse biases, V < VT, the amount of negative charges at the interface is equal to the

total NPD-Alq 3 interfacial charges Q'. The presence of these charges incurs a change in potential

slope from across NPD to across Alq3. (b) At V = VT, NPD reaches the flatband condition. And the

amount of interfacial charges is still equal to Qi. With decreasing reverse bias within the range, VT <

V < VBI, NPD remains in the flatband condition, but interfacial charge becomes less than Qi as they

are compensated by injected holes from the anode. (c) At V = VBI, there is full compensation, and

there are no more interfacial charges. Alq 3 reaches the flatband condition. (d) For forward bias, V >

VBI, holes are easily injected at the anode and travel across NPD to collect at the hetero-organic

interface. Adapted from Berleb et al. (2000).168

In this chapter, the doping density is extracted from quasi-static capacitance-

voltage (QSCV) measurements of hetero-layer devices with varying cathodes and Alq3

thicknesses. The cathode and thickness dependence of the change in capacitance

transition voltage, AVT, is correlated to a negative interfacial charge density. The

accumulation of this negative charge may be due to acceptor-like traps,7 9' 168-171 formed at

the interface from the reaction of thermally evaporated cathode metal atoms that may

have diffusedl 43' 171, 176-179 through the organic semiconductor layer. Not only does the

cathode metal disrupt the organic-organic interface in the OLED, but the cathode metal

atoms in the bulk of the layer react with some surrounding organic molecules to form

low-lying midgap states143' 176 that partially dope the unreacted molecules (Figure 6-2

(right)). This cathode doping introduces a density of available charge-carriers in the

device. The cathode dependence of the density of free charge is one contributing factor to

the cathode dependence of the current-voltage characteristics. Fits to the temperature

dependence of the J-V curves are done using a bulk percolation transport model (Chapter

5), with a cathode-dependent bulk doping density in the organic semiconductor.

7.2 Experimental Results

Organic hetero-layer devices were fabricated on UV-ozone treated glass

substrates precoated with an indium tin oxide (ITO) anode with sheet resistance of

-20M/sq. The hole transport layer was N,N'-Bis(3-methylphenyl)-N,N'-

diphenylbenzidine (TPD) and electron transport layer was Alq3. The cathodes employed

in this study were Ag, Al, Mg (with a 40-nm-thick Ag cap to protect from oxidation), and



Al with a 5-A-thick interfacial layer of LiF deposited between the Al and the organic

material (Al/LiF).'16 The 100-nm-thick cathodes were thermally evaporated on top of the

organic semiconductor layer through a 1-mm-diameter shadow mask. Materials were

deposited by high-vacuum (<10 -6 Torr) thermal evaporation.

The device structure was an ITO anode underneath a fixed 60-nm-thick TPD layer,

followed by an Alq 3 layer, and then a top cathode. The Alq3 layer thickness was varied,

but the TPD layer was fixed at 60 nm because the transition voltages have been

previously observed to be independent of the higher mobility HTL thickness. 168 The

quasi-static C-V plot of an aluminum device (ITO/60nm TPD/60nm Alq3/Al) is shown in

Figure 7-4(a). The Alq3 thickness, t, dependence of VT for the aluminum cathode devices

is shown in Figure 7-4(b). Using Eq. (7.1), the interfacial surface charge density can be

calculated from the change in VT for each device thickness. From measurements of VT vs

t, the calculated surface charge densities as a function of t for each cathode are shown in

Figure 7-5. Solid lines in Figure 7-4(b) and Figure 7-5 are fits assuming the charge

density decays like an exponential function with thickness, oi =A exp [- tB] . The

parameter A is 7.1 x 1015, 6.7 x 1015, 6.7 x 10"5, and 4.9 x 1015 elm 2 for LiF/Al, Al, Mg,

and Ag cathodes, respectively. The decay parameter B is 14286, 935, 361, and 231 nm

for LiF/Al, Al, Mg, and Ag cathodes, respectively.
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Figure 7-4: (a) Transition voltage, VT, as a function of Alq3 thickness, t, for the hetero-layer device

ITO/60nm TPD/Alq3/100nm Al. (b) QSCV plot of ITO/60nm TPD/60nm Alq3/100nm Al.
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Figure 7-5: (left) Calculated surface charge density at TPD-Alq 3 interface as a function of Alq3

thickness for different cathodes. (right) Same plot but for thicknesses up to 120 nm.

7.3 Discussion

7.3.1 Cathode Metal Forms Interface Traps

Similarly to what has been previously observed,79' 168-171 the shift in capacitance

transition voltage AV, (or equivalently, TPD flatband voltage) is shown to be dependent

on Alq3 thickness, t. A voltage shift towards higher reverse bias and the capacitance

values in Figure 7-4(a) (for relative permittivity eR = 3.5), confirm that the shift is caused

by the presence of negative charges collecting at the hetero-organic junction. Figure 7-5

shows that the magnitude of interfacial charge density is decreasing with increasing Alq 3

thickness. The fixed negative charge that accumulates at the interface at reverse bias is

thought to be caused by the presence of interfacial acceptor-like trap states. 79' 168-171

Thermally evaporated cathode metal atoms diffuse into the semiconductor layer and react

with the organic molecules to form filled midgap states. 143' 176 At the hetero-organic

interface, the reacted TPD midgap states will donate some charge to the Alq 3 side,

leaving empty states that fill and become negatively charged when the device is under

reverse bias. Charge transfer will take place if there are lower-lying empty Alq3 midgap

states, which would be present if these states donated their charge to the LUMO states of

the unreacted Alq3 molecules. If this is assumed, the magnitude of the density of mobile

negative charge in the Alq 3 LUMO states at the hetero-organic interface will be



proportional to the magnitude of the density of empty TPD states. Note that for large t, it

is predicted that there will be less interfacial charges because the cathode metal is not

able to penetrate that far to the Alq3-TPD boundary to form these empty traps. Therefore,

the cathode doping density profile in an Alq 3 bulk can be probed by varying the Alq 3

thickness in C-V measurements of Alq3-HTL hetero-layer devices.

7.3.2 Effect of Cathode-doped Charge on J-V Characteristics

The density of mobile negative charges in the Alq3 LUMO transport states at the

hetero-organic interface is proportional to the measured accumulated negative charge

density at reverse bias voltage V = VT. Therefore, the interfacial charge density oi profile,

shown in Figure 7-5, is directly related to the doping density p profile.

The doped charge distribution, arising from cathode metal-organic reactions in the

organic semiconductor bulk, is assumed to be approximately uniform for small

thicknesses. The effect of these doped charges is to increase the available mobile charge-

carriers, and hence the charge-density-dependent mobility, without the additional applied

field of injected space charge. A uniform volume density of the bulk doped charge is p =

cri/2ao cm -3, where ao = 1 nm is the average intermolecular spacing. o; is taken to be the

measured fixed interfacial surface charge density in the Alq3-TPD devices for small t.

From Figure 7-5 , oi is approximately equal to 7 x 1015 and 5.5 x 1015 e-/m 2 for the LiF/Al

and Mg cathodes at 70 nm. Fits to the current-voltage curves for a single 70-nm-thick

Alq3 layer diode device with a Mg cathode is shown in Figure 7-6. The current-voltage

relation is calculated using the percolation-based bulk charge transport model8o with

compensated built-in potential offset of 1V and with the inclusion of uniformly bulk

doped free charge. The parameters used in the percolation model are: a= 0.5 A-', 0 = 2

x 104 S/m, and To = 1000K.

To study the cathode dependence of the J-V characteristics, note that from

previous studies the effect of the cathode on the current-voltage relation is a voltage

shift. 140 Fits to plots of voltage versus temperature at constant current density J = 10-2

A/cm2 with different cathodes and ITO/poly(3,4-ethylene-dioxythiophene):poly(4-

styrenesulphonate) (PEDOT:PSS) anode are shown in Figure 7-7. The LiF/Al cathode



device is also calculated with the percolation-based bulk charge transport model with

built-in potential offset of 0.5V.80
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Figure 7-6: Temperature dependence of J-V characteristics for ITO/PEDOT:PSS/70nm Alq3/Mg

device at 20K intervals from 290K to 110K. Theoretical fits are shown in solid lines. Symbols are

data from Limketkai and Baldo (2005).'40
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Figure 7-7: Temperature dependence of voltage at a constant current density for different cathodes.

Solid lines are fits to the LiF/Al and Mg cathode devices. Symbols of circles (o), triangles (A),
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It is interesting to note that the Al/LiF and Mg devices follow the bulk model

prediction and only differ by a rigid voltage shift, which is attributed to the difference in

cathode doping density and built-in potentials. The other two cathodes, Al and Ag, cannot

be fit to a pure bulk transport theory. Although Al dopes Alq3 particularly well, its high

work function introduces an additional injection barrier. Note that an Al cathode for a

BCP organic semiconductor diode exhibits a lot higher operating voltages compared to an

Al/Alq 3 diode because aluminum does not react with BCP as well to dope the material

with free charge-carriers. 140

Transport is determined by the injection and bulk current. Initially, the applied

field has to be large enough to overcome the injection barrier. At high electrical biases,

when the field is large and injection current is non-limiting, the injected space charge in

the bulk limits the current. Note that the bulk transport percolation model does not

include injection effects, which would become more dominant for low-doped interfaces

and higher work function cathodes and at low biases. The deviation from a near linear

theoretical bulk voltage versus temperature for Ag and Al in Figure 7-7 indicates the non-

negligible effects of contact impedances for these cathodes.

The thickness dependence of the operating voltage at constant current density, J =

10-1 A/cm2, for Mg/Alq3/Mg devices is plotted in Figure 7-8. The solid line is the

percolation model prediction, assuming zero built-in potential and half the uniform

volume density used in the fits for the ITO/PEDOT:PSS/Alq3/Mg device in Figure 7-6.

Note that the presence of mobile charge-carriers in a bulk-limited conduction model gives

an approximately linear thickness dependence of the voltage. This suggests that the

voltage dependence on thickness alone is insufficient to distinguish between injection and

bulk-limited current.
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Figure 7-8: Thickness dependence of voltage at constant current density, J = 10-1 A/cm 2, for

Mg/Alq 3/Mg devices at room temperature. Symbols are experimental data. The solid line is the bulk

percolation model prediction.

7.4 Conclusion

In conclusion, cathode metal diffuse into the organic semiconductor upon

evaporation to react/dope the material. The disruption of an organic-organic interface by

cathode metal reaction explains the transition voltage shift of capacitance measurements

in hetero-layer organic devices, such as OLEDs. The cathode metal introduces unfilled

states at the hetero-organic junction that collect interfacial negative charge-carriers under

reverse bias. The cathode has been shown to directly dope the organic material,

introducing a distribution of free charge to effectively increase the charge-density-

dependent mobility. For organic semiconductor diodes with low contact impedances, the

current-voltage behavior can be assumed to be determined by the bulk mobility, and

differences in doping density from the cathodes contributes to the operating voltage shifts.

Any deviations from a bulk fit may be explained by neglected contact effects that become

significant for low-doped, high work function cathodes, and low electrical biases.



Chapter 8 - Conclusion

8.1 Summary and Future Work

In conclusion, this thesis presents a model for charge-carrier transport in

amorphous organic semiconductors. The model (Chapter 5) derives an expression for the

charge-carrier mobility and the current-voltage relation. It unifies the material,

temperature, electric field, and charge density dependences of transport and is compared

to experimental measurements. In Chapter 7, the current-voltage characteristics for

single-layer organic devices with different cathodes are found to be well-described by the

percolation-based bulk conduction model with a cathode-dependent mobile charge

distribution arising from diffusion of cathode metal atoms doping the organic

semiconductor layer. However, higher work function metals like silver (Ag) and

aluminum (Al) cannot be fully explained by bulk conduction alone, and it is hypothesized

that injection mechanisms become more significant for organic diodes employing these

cathodes.

Possible future work for this research is to explore the concept of the field-

dependent effective temperature, such as how it adds to the actual temperature in

different materials and to find an accurate description in the regime where this current

effective temperature model fails, at high fields and low temperatures. In addition, it will

be useful to have a model for the injection mechanism that can be combined with the bulk

conduction theory that will give an overall and general model for transport spanning

between these two rate-limiting cases. Future research will hopefully provide a complete

understanding of charge-carrier transport enabling predictive models for the electrical

behavior of arbitrary organic semiconductor device architectures.
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