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Abstract

A technique is described for generating guaranteed stable control laws for uncer-
tain, modally dense structures with collocated sensors and actuators. By ignoring
the reverberant response created by reflections from other parts of the structure, a
dereverberated mobility model can be developed which accurately models the local
dynamics of the structure. This is similar in many respects to a wave based model,
but can treat more general structures, not only those that can be represented as a
collection of waveguides. This model can be determined directly from transfer func-
tion data using an analysis technique based on the complex cepstrum. In order to
minimize the effect of disturbances propagating through the structure, the power
dissipated by the controller is maximized in an .o sense. This guarantees that
the controller is positive real, and thus that the system will remain stable for any
structural uncertainty. The approach is demonstrated for several examples. Exper-
imental results on a beam in bending are presented. The controller based on this
approach is much more effective than simple collocated rate feedback. Significant
damping was added to many modes of the structure, without requiring a detailed
or high order model of the beam.
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Chapter 1

Introduction

1.1 Motivation and Background

Broadband active control of flexible structures is difficult for several reasons. Struc-

tures tend to be very lightly damped, modally rich, and difficult to model in detail,

due to their large sensitivity to parameter variations. It is well known [4] that for

many applications, there are likely to be many flexible modes within the desired

bandwidth of a structural control system. This is due in part to the light damping

that would be anticipated, for example in large space structures, which implies that

many modes can contribute to the performance. Also, performance requirements

may push the bandwidth higher directly, for example in noise control of machinery,

where the bandwidth must clearly include acoustic frequencies, and therefore many

flexible modes.

One of the problems associated with broadband control of structures is the

uncertainty in the plant model. A state space model of a structure must be at best

an approximation, since the true structure is infinite-dimensional. Finite element

methods are typically used to model a structure, and are sometimes capable of

modelling the lowest modes quite accurately. However, in the region of high modal

density, any model is likely to be highly inaccurate. Models of structures with



closely spaced modes in particular tend to be extremely sensitive to small parameter

changes, in their prediction of natural frequencies, and especially in their prediction

of mode shapes. As a result, the actual structure to which the control will eventually

be applied may differ significantly from the model for which it was designed. Thus

some knowledge about the uncertainty must be taken into account when designing

the controllers.

A variety of approaches have been used to deal with uncertainty in the plant

model. One typical approach is to treat the uncertainty as a multiplicative er-

ror which is totally unstructured. Bounds are specified on the magnitude of the

perturbation, while the phase is assumed unknown. In this case, stability can be

guaranteed by requiring that the closed loop complementary sensitivity be bounded

above by the inverse of the maximum singular value of the uncertainty bound [11].

Thus for the nominal plant G(s), if the true plant is given by

Gtr.(s) = (I + L(s))G(s) (1.1)

then the system is stable with feedback matrix K(s) if

a (G(jw)K(jw)(I+ G(jw)K(jw)) - ') < V w (1.2)

where (.-) is the maximum singular value, and L, is a function which satisfies

L(jw) I(L(jw))I V w (1.3)

This approach is reasonable for truly unstructured uncertainty such as unmod-

elled high frequency dynamics, and also may not be overly conservative for some

parametric, or structured uncertainty. However, for lightly damped, modally dense

systems, this approach will be extremely conservative. If the poles and zeroes are

close together, a small parameter error may result in the true pole lying at the fre-

quency of the modelled zero. The model error required in this case is significantly

larger than the plant itself [7]. This would imply that almost no control can be
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Figure 1.1: No knowledge of uncertainty direction may result in
physically impossible pole locations

applied in this region, and thus that nothing can be done to damp this mode. The

problem lies in the assumption of no knowledge about the direction of uncertainty.

In fact, since the structure is known to be stable yet lightly damped, there can be

far more uncertainty in the imaginary part of the pole location, or frequency, than

in the real part [5], as shown in Figure 1.1. Though the relative error in the real

part is large, the absolute error is small compared to the frequency, since right half

plane poles are not possible.

This conservative stability robustness test can be relaxed by taking advantage

of the positivity of structures. A transfer matrix G is positive real if

G(s) + GT(--s) > 0 V Re(s) > 0 (1.4)

and strictly positive real if the first inequality is strict [1]. Any strictly positive

real compensator will be stabilizing for any positive real plant. If the perturbation

matrix L is defined as just the deviation of the plant from the positive real condition,

then stability can be guaranteed if the compensator is both strictly positive real and

I



satisfies the earlier singular value test (Equations (1.2) and (1.3)) for this smaller

perturbation [371.

Another approach for dealing with uncertainty in some parameters is the Maxi-

mum Entropy/Optimal Projection (MEOP) approach by Bernstein and Hyland [5].

The goal of MEOP is to force the LQG algorithm to provide a more robust con-

troller, by including information about parametric uncertainty into the plant model.

This is done by using a stochastic model of the plant uncertainty. This approach

yields compensators with good performance over the entire range of parameters, at

the expense of a cumbersome numerical algorithm. However, there is no guarantee

of stability using this method. The W-synthesis approach by Doyle [12] also allows

for some structure in the uncertainty, and allows the performance to be optimized

not just for the nominal model, but for any model within the specified uncertainty

bounds. Control architectures such as HAC/LAC (High-Authority Control/Low-

Authority Control) [2], hierarchic control [18,20], and many others such as [3], have

been designed to deal with the spillover problems associated with uncertainty in

modelling structures. Other approaches have also been developed to deal with con-

trol design for uncertain structures; a good review of many of these can be found

in [25].

Many of these approaches to control design for uncertain structures begin with

a large order, detailed nominal model of the structure, and deal with uncertainty by

attempting to model it, as well as the nominal plant, in some fashion. However, if the

nominal model contains significant error, then the detailed information it contains

is meaningless, and has no effect other than to increase the computational burden

associated with the control design. Indeed, for broadband control of a modally

rich structure, the dimension of the plant required to model each mode may be

prohibitive for many control design techniques. Instead, only the information that

can be accurately modelled should be included in the description of the plant [5].

With this philosophy, there has been much research on the use of wave based



models for use in structural control. Early work in this field includes that of Vaughan

[39], who identified a matched termination as being an appropriate control law for

a beam, and gave suitable approximations for the implementation of the irrational

transfer functions required. More recently, a number of researchers have done both

theoretical [17,23,28,35,41] and experimental [29,32,33,40] work in wave-based con-

trol for structures. The assumption in all of this research is that the local dynamics

can be accurately modelled, and that an effective control system can be derived

based only on this information. The control derivations either attempt to elim-

inate reflection or transmission by controlling elements of the scattering matrix,

or are optimal approaches, based on maximizing some quantity such as the power

dissipation.

Mace [23] derives the control necessary to cancel the incoming disturbances by

creating waves of opposite sign. This methodology can only be effectively applied

to one-dimensional waveguides. For a Timoshenko beam, Hagedorn and Schmidt

[17] maximize the power flow out of the beam to obtain 'energy valves' that allow

energy to travel in one direction, but not the other. The modelling formalism

of Miller et al. [28], or that of von Flotow [41] allows the analysis of somewhat

more general structures, including any arbitrary network of waveguides. In this

framework, control laws can be developed to set certain elements of the scattering

matrix to zero, or to maximize the power flow out of the structure. The experimental

results cited earlier have all applied wave control to beams. Von Flotow and Shifer

[40] designed control laws to modify elements of the scattering matrix, and compared

their results with those for modal control. Optimal control techniques were tested

by Miller and Hall [29].

These wave control methods have demonstrated that good performance can be

achieved on a structure without requiring knowledge of uncertain information such

as the modal frequencies. One drawback to many of the wave-based approaches is

that they cannot always be applied to a general structure, at best being able to



treat networks of waveguides.

Of particular relevance to this thesis is the optimal control approach of Miller

et al. [281. The structure is represented as being composed of one-dimensional

waveguides which meet at junctions, and only the junction at which the control

acts is modelled. Using Weiner-Hopf techniques to ensure causality, Miller et al.

maximize the frequency weighted power dissipation associated with the control.

The drawback to this approach is that it will allow power to be generated at some

frequencies in order to achieve greater power dissipation at other frequencies. If

there is a mode of the system at such a frequency, it may be destabilized by this

compensator. This problem is corrected by approximating the optimal compensator

with a positive real form, which is guaranteed to be stabilizing. The final result,

then, is suboptimal, because the positive real constraint is applied in a somewhat

ad hoc manner. Thus while this design procedure is attractive, an approach which

treats more general structures and provides a guarantee of stability is desired.

1.2 Approach

This thesis describes a new approach to the modelling and control of uncertain

structures that will guarantee both stability robustness and performance robustness.

Much of the material presented here has been summarized in a previous paper [24].

The goal is to obtain a compensator that will provide broadband damping to the

structure. This might be used in conjunction with a low order modal compensator

which could provide good performance on those modes that could be well modelled.

Thus this could be used as the low authority controller in a HAC/LAC architecture

[21, rather than the rate feedback typically used. Rate feedback is guaranteed to

be stable, but it is not necessarily optimal. In general it is possible to add more

damping to a structure than can be obtained through rate feedback [29].

The model used in this thesis is the dereverberated mobility at a collocated and



dual actuator/sensor pair [22]. Only that part of the response which is due to the

local dynamics is retained in the model. This can be shown to correspond in the

frequency domain to an averaging, or smoothing, of the transfer function. This

model bears some relationship to the wave approach of [281, but it is more general,

as it allows structures which are not networks of waveguides to be treated.

Since the driving point mobility of a structure is positive real, stability can be

guaranteed by requiring that the compensator be positive real. This is assured by

minimizing the maximum value over frequency of the power flow into the structure.

This minimax problem can be reformulated as an M). optimization problem, and

then solved using existing software. This results in a compensator which dissipates

power at all frequencies. Taking energy as the Lyapunov function shows that the

closed loop system must be stable for all plants, provided that the sensors and

actuators are not mismodelled. Extensions based on the results of Slater [37] to

allow for actuator and sensor dynamics, time delays, or actuators and sensors that

are not collocated, are possible but are not treated here.

1.3 Overview

The remainder of this thesis is divided into six chapters. Chapter 2 presents some of

the necessary mathematical background. This includes some theory on M, control,

and results on spectral factorization from [15] that will be needed in Chapter 4.

Some of the wave mode theory of [26] is also presented, this will be used in deriv-

ing transfer functions in later chapters. In Chapter 3, the approach to modelling

is presented, and parallels will be drawn with existing wave approaches. Both a

computational approach based on the calculation of the complex cepstrum, and a

simpler approach based on smoothing the transfer function are presented. The for-

mulation of the control problem appears in Chapter 4. The unconstrained problem

is solved first, with no requirement that the solution be causal. The solution to the



causal problem is solved by representing it as an ),o, control problem, and state-

space methods are given to obtain this representation. Chapter 5 demonstrates the

approach for several examples. Experimental results on a 24 foot brass beam are

presented in Chapter 6. These are compared with previous experimental results

using rate feedback and )M2 optimal wave control on the same structure in [29]. Fi-

nally, Chapter 7 presents the main conclusions and contributions of the thesis, and

discusses a number of possible extensions to this research.



Chapter 2

Mathematical Preliminaries

In Chapter 4, the ). control design approach will be required, as will a number of

results on state space spectral factorizations. Some elements of wave mode theory

will also be useful in deriving open and closed loop transfer functions in the examples

in Chapter 5. In the interest of simplifying the later discussions, the necessary

mathematical background will be presented here.

2.1 )4 Control

A good reference for ). theory is Francis' book [15], from which much of the

following material is drawn. Before discussing the M, control design method, a

number of definitions are required. First, define the Hardy space )I:

Definition 1 ,. is the space of all complex functions of a complex variable which

are analytic and bounded in the open right half plane.

Thus, G(s) EM4. if G(s) is both stable and proper. (Though it need not be strictly

proper.)



Definition 2 The norm Ijlljo on M, is given in the scalar case by

IIG(s)Jll = sup IG(s)I (2.1)
Re(s)>o

Thus, the infinity norm is the supremum of a function in the right half plane. In

the matrix function case, the infinity norm is the supremum of the largest singular

value of the matrix. From the maximum modulus theorem, it can be shown that

any function analytic and bounded in some region achieves its maximum over that

region on the boundary, thus

JIG(s) ll = sup IG(jw)j (2.2)

Furthermore, if we consider G to be an operator acting on some (in general,

vector) variable z, then the norm of G can be written as an induced operator norm

as

IIG(s)l , = sup IIl1G (2.3)
E).. Ii11j 2

= sup jIIGxJJ (2.4)
sEXoo

II42=1

This defines the infinity norm in terms of a norm over M2, which we have yet to

define.

Definition 3 ) is the space of all complex functions of a complex variable which

are analytic in the open right half plane, and satisfy

S27-00sup - Tr Q G(( + jw) d < oo

The norm 11112 on M2 is the square root of the left hand side of the above expression,
which can be shown to be equivalent to

IIG(s)II2 [f~f ! Tr{IG(jw)2} d] (2.5)2w -oo



Figure 2.1: Four Block Problem

Further, define inner and outer functions, using the notation

G~(s) = GT(-s) (2.6)

Definition 4 A matriz G in ),. is inner if G~G = I. G is outer if it has no zeroes

in Re(s) > 0.

Thus an inner function has unit magnitude, is stable, and purely nonminimum

phase. An outer function is minimum phase. Note that multiplication by an inner

function does not change either the M4, or the M2 norm of a matrix function.

Now consider the standard four-block control problem, as shown in Figure 2.1.

The goal is to find a stabilizing compensator K from the sensed output y to the

control input u which will minimize in an appropriate sense the closed loop transfer

function from the disturbance w to the controlled variable z. This transfer function

is given by the lower linear fractional transformation

H(P, K) = P,, + P.,K(I - Pu,K)-1P, (2.7)

Note that w contains all disturbance sources, including both process and measure-

ment noise. Similarly, z contains all the quantities to be minimized, including both

state and control penalties. In general, the plant P includes the system, actuator

and sensor dynamics, and the dynamics of any weighting on w or z.



This representation of the problem is standard in the ),. control formulation.

The standard Linear Quadratic Gaussian (or M2) problem can also be written as

the same four block problem, the only distinction being the norm used in the opti-

mization, and the implicit assumptions about the characteristics of the disturbance.

In the context of LQG, the disturbance is gaussian white noise, and the )2-norm

of the controlled variable is minimized. If the disturbance can accurately be char-

acterized in this form, then LQG may be the appropriate technique to use. The

), problem instead minimizes the ,~,-norm of the transfer function from w to z.

From the definition of the operator induced norm Equation (2.4), the appropriate

interpretation of the disturbance is the worst case disturbance, having unit power at

a single frequency (which corresponds to the maximum amplification of the transfer

function). Thus No is suited to problems in which the disturbances are likely to

have significant narrowband energy at a poorly characterized frequency [6].

Define the notation

G(s)= = C(sI - A)-'B + D (2.8)
-CID

Hence G can be represented by the finite dimensional system of ordinary differential

equations

zc = Az+Bu

y = Cz+Du (2.9)

Then the four-block transfer function matrix in Figure 2.1 may be represented as

A B 1  B2

P= C1 D 1l D12  (2.10)

C2 D21 D22

The N•, control problem formulated in this way can be solved using state space

methods via an iterative solution to two Riccati equations. These are presented in



[13] with some slightly restrictive assumptions, and in [161 for the general case. The

iteration searches for the minimum value of the M4, norm of H(P, K), denoted '-. It

is worth noting that at this optimal solution, H(P, K) = -y everywhere; the closed

loop transfer function is a constant function of frequency.

In addition to the purely LQG solution and the M4, solution to the four-block

problem, a combined problem can be studied with a constraint on the M,, per-

formance in an W2 optimization [6]. This allows a design trade-off between M,,

objectives and (2 objectives, resulting in a compensator that combines the benefits

of each. This problem simplifies immensely if the same quantity is penalized in both

the •., and M2 formulations. In this case, it is equivalent to a maximum entropy

problem [31], the solution to which is readily obtainable from the same two Riccati

equations as before [30]. In fact, this is equivalent to simply removing the iteration

in the M4o solution procedure.

2.2 Spectral Factorization

As is the case for ,. theory, a good reference on spectral factorization is Francis

[15], in which the details of the following results are given. The algorithms and

theorems will be presented here without proof.

Before proceeding with the definition of a spectral factor and the algorithm for

computing it, some additional results from Equation (2.8) are useful. From the

definition (2.6) and the expansion in Equation (2.8),

-AT CT1
G"()= B D, (2.11)

[BT DT

The inverse of G can be expressed by writing G in differential equation form (Equa-

tion (2.9)), and manipulating to obtain the input as a function of the output,

A - BD-C BD-1(2.12)
-D-1C D-1



Of course, this is valid provided D # 0, so that G- 1 is proper. For notational

purposes, define

AX = A - BD-'C (2.13)

Finally, if T is a nonsingular transformation matrix, then

[A B T-1AT T-1 B-= (2.14)
[CD] CT D

Now, define the spectral factorization of G(s).

Definition 5 Consider G(s) square with G" = G, G and G-1 proper with no poles

on the imaginary azis, and G(oo) > 0. Then G - is a spectral factor of G(s) if

G = G G_ (2.15)

and

G, G-: 1 E , (2.16)

G_ is a co-spectral factor of G if, instead of the first condition,

G = G_G ' (2.17)

with the second condition still holding.

Note that if G- is a spectral factor of G, then GT is a co-spectral factor of GT.

Thus the same algorithm may be used to compute either the spectral factor, or the

co-spectral factor.

From the definition, it is clear that the goal is to split G into two components, one

of which is stable and minimum phase, the other of which is anti-stable and purely

non-minimum phase. The approach is to find two subspaces, one corresponding to

the unstable part of G, and the other corresponding to the stable part of G- 1, or

the minimum phase part of G. Then if the two spaces are complementary, that is,



they are independent and together span the entire space, then G can be factored

into the two desired components.

For G given as in Equation (2.8), the subspace corresponding to the stable part

of G is denoted X_(A), and that corresponding to the unstable part is X (A).

The subspace corresponding to the minimum phase zeroes of G is the same as that

corresponding to the left half plane poles of G- ', or X_(AX).

A transfer matrix G(s) satisfying the conditions in the definition of the spectral

factor can be written as

G = D + G1 + G" (2.18)

where G, is stable, minimum phase, and strictly proper. Find a minimal represen-

tation of G1:

G1= A B1  (2.19)

Thus from Equations (2.11), (2.18) and (2.19),

A, 0 B,
G= 0 -A -C (2.20)

C, Bf' D

Since A1 is stable and -AT is anti-stable,

X+(A)= Im (2.21)

where Im(-) denotes the image of (.).
At this point, some results about Hamiltonian matrices are required.

Definition 6

H = - A (2.22)

is a Hamiltonian matriz if Q and R are symmetric, and R is either positive semi-

definite or negative semi-definite.



The following results all require that H have no eigenvalues on the imaginary axis,

and that (A, R) be stabilizable.

If R in Equation (2.22) is zero, then there exists a unique matrix X satisfying

the Lyapunov equation

ATX + XA + Q = 0 (2.23)

and the modal subspaces of H are given by

X+ (H) = Im (2.24)

X (H) = Im (2.25)
X

Note that due to the assumption of (A, R) being stabilizable, this holds only for

stable A.

Now consider the case with general R. There exists a unique symmetric matrix

X denoted

X = Ric{ H} (2.26)

which stabilizes A - RX, and satisfies the Riccati equation

ATX + XA + Q - XRX = 0O (2.27)

Again,

X_(H) = Im (2.28)
X

Furthermore, X (H) and Im 0 are complementary.

Now, return to the spectral factorization problem. The modal subspace X+ (A)

is given by Equation (2.21). It remains to find a representation for X_(AX), and



two are complementary. However,

A = A, 0 -
0 -AT -CT

SA,- B1 D- 1C1  -j

CTD-A1C -(A 1

D-1[ C, BT]

BID-1BT

- B 1D-'C1)

is a Hamiltonian matrix. Thus X_ (Ax) is given by Equation (2.28), with

X = Ric{Ax}

and this modal subspace is complementary to X+ (A).

Defining the transformation matrix

ITT =X O
I

and applying (2.11), then

A1  0

-(C1 + BTX)TD-n(C 1 + BTX) -ATI I IT l"
C1+ BTX BT

B 1

-(CT + XB1) (2.33)

From this, one can check that

(2.34)

satisfies both Equations (2.15) and (2.16).

For D # 0, the spectral factor of G can be found with this algorithm from the

solution to a single Riccati equation. Results also exist for D = 0, for example in

[42].

show that the

(2.29)

(2.30)

(2.31)

(2.32)

A, B,
G_(4) =X) D[/B

D-1 /2(C 1 + BTX) D1/2



2.3 Wave Modelling

This section briefly summarizes a few of the results of Miller [261 that will be used

in subsequent chapters.

The partial differential equation (PDE) of a structural member can be trans-

formed into the frequency domain, and written in state space form as

dy - A(w)y (2.35)
dx

where y is a vector of generalized displacements and internal forces at the cross-

section z. The eigenvalues of A correspond to wave modes that travel independently.

Thus there exists a transformation matrix Y relating the cross-sectional variables

y to the wave mode amplitudes w. Since these wave modes travel independently,

there exists a diagonal transmission matrix e relating the wave mode amplitudes at

one position xz to those at another. Thus

w(X2, w) = e(X2, x1, w)w(z1, W) (2.36)

At a junction, such as a boundary where actuator forces act, the wave modes

can be split into incoming (w,) and outgoing (wo) elements. Partitioning y into

displacements u and forces f, then the transformation Y at a junction can be

written as

f Yfi YfO wO

The boundary condition at the junction relates the displacements u and internal

forces f to externally applied forces Q. This can be written as

Bu B [ = Q (2.38)

Using these two equations, the outgoing wave mode amplitudes w. can be expressed

in terms of the incoming wave mode amplitudes wi and the forces Q:

wo = Swi + IFQ (2.39)



t • QR

SL R SR

Figure 2.2: One Dimensional Waveguide

S is the open-loop scattering matrix, relating the outgoing waves to the incoming

waves. * describes how applied forces Q create outgoing waves. In terms of the

previously defined matrices in Equations (2.37) and (2.38),

S. = - [BYuo + BfYo]- 1 [BuYu + BYY, ]  (2.40)

S= [BuY + BfYo] - ' (2.41)

Now consider a closed-loop structure, with feedback from the cross-sectional

displacements u to the applied forces Q of the form

Q = Ku (2.42)

Then the closed-loop scattering matrix can be shown to be

Scz = [I - WKYuo-1 [S + 'PKYm] (2.43)

The closed-loop transfer functions of a structural waveguide can also be calcu-

lated with this wave approach, using a phase closure algorithm. Consider a simple

one-dimensional structure as shown in Figure 2.2. To find the transfer function

between applied forces Q at one end (say, for example, the right end), and the

generalized displacements y at this end, one would proceed as follows:

Wo, = SLWiL (2.44)

WOR = SRWiR + 'FLRQR (2.45)

Wi, = Wo , (2.46)

WIR = wor (2.47)



where ( is the transmission matrix from one end of this structure to the other.

Combining these equations yields

wi, = (SL~ Wo, (2.48)

Woa = (I- SRSt)-"IQQR (2.49)

So finally, the relationship between the displacements u and the forces Q is

u = (Y, -+ Yu,,SL()(I - SReSLe)-~1 RQR (2.50)

A minor extension of this result that can be useful but that does not appear in

[26] is to calculate the envelope of possible transfer functions in Equation (2.50) for

unknown lengths. This corresponds to maximizing or minimizing Equation (2.50)

with respect to the length parameter in e. For simple structures, such as a uniform

beam, this is not difficult, but in general the result is too complicated to be of much

value.

As an example of the theory presented in this section, consider a uniform free-

free Bernoulli-Euler beam, with bending stiffness EI, and mass per unit length pA.

The PDE for this structure is

84v 82v
EI- + pA --=0 (2.51)

Define the wave number k by

k =- V = coVj (2.52)

The transformation from cross-sectional to wave mode variables is given by

V 1 1 1 1

v' jk k -jk -k
y w (2.53)

-Ely"' jElkS  -Elk 3 -jElkS Elk3

Elv" -Elk 2 Elk,2 -Elk 2 Elk2



where the partitions indicated correspond to those of Equation (2.37). v and v'

are the deflection and slope of the beam at the boundary, respectively, and -ElI"'

and EIv" are the internal shear force and moment, respectively. The wave modes

consist of a leftward and rightward travelling wave, and left and right evanescent

waves that do not oscillate spatially, but decay with distance. The transmission

matrix is
e-kt 0
0 e= ek j (2.54)

The boundary condition of a free end is specified by

[ 1o 1 (2.55)

where F and M are the externally applied moment and force. These are assumed

to act in the same direction as the deflections v and v', so that a positive product

of F and v, and of M and v', results in a positive power flow into the beam.

Equations (2.40) and (2.41) give the open loop scattering and wave generation

matrices as

S = [- i+j (2.56)
1-j k

'I, -- l r1 k 1 (2.57)
2EIk3  1 -jk

Open and closed loop transfer functions for the beam can then be calculated from

Equations (2.43) and (2.50).



Chapter 3

Modelling

The intent of this chapter is to develop a useful model for control design for uncertain

modally dense systems. It has been pointed out [19,411 that modes are not useful

in this case. The modal frequencies and mode shapes are extremely sensitive to

small parameter variations, and are particularly sensitive if the modes are closely

spaced. Therefore, much of the information contained in a modal model is often

incorrect. This then leads to a difficulty in modelling the uncertainty in a useful,

and not overly conservative manner. The modal model also leads to large dimension

systems, and an associated computational burden.

The detailed information in a modal model may also be unimportant. While

knowledge of the exact mode shapes and frequencies may not be available, this does

not imply that nothing is known about the structure, or that nothing can be done

to control it. A reasonable control system can be designed without relying on this

information. Recognizing this, and recognizing the difficulties associated with a

modal approach, a modelling technique is desired which uses a simplified model of

the structure, containing only the information that can be accurately determined.



3.1 Dereverberated Mobility Model

The following discussion is restricted to the case where a sensor and actuator are

collocated. When this model is ultimately used for control design, this will of course

result in suboptimal compensators, since each actuator will only have feedback from

a collocated sensor. However, under the assumption of significant uncertainty, while

some information about the behavior of the structure can still be determined at the

driving point, there is very little information that can be relied upon about the

behavior between an actuator and sensor which are separated by many wavelengths

of the disturbance. This restriction is therefore reasonable for the control of higher

frequency modes, or low authority control. If desired, the low frequency modes

which can be well modelled could then be controlled with a high authority control

in a HAC/LAC architecture. In this approach, then, a multi-input multi-output

structure with actuator and sensor pairs at different locations would be modelled

as several separate, single-input single-output systems. Each of these would have

collocated actuators and sensors, and the modelling and control design for each of

them would be performed independently.

Several approaches other than modal analysis have been used in the past to

model structures with significant uncertainty. Statistical Energy Analysis, or SEA

[211, is a field which has seen much research, for example in the analysis of machinery

vibration. The response of individual modes to the driving noise is not calculated,

and only the average response is used. The structure is split into subsystems,

and the average energy in each of these subsystems is calculated from coupling

factors between them, loss factors within each of them, and the power flow into

each subsystem from the driving noise. The result is a description of the structure

that includes information about the average energy distribution, and where power

is being dissipated. As its name suggests, though, SEA is an analysis tool, and the

resulting model is not directly applicable for control design.
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Figure 3.1: Wave behavior in an arbitrary structure

Wave-based models have been used not just for the analysis of structures, but

as a basis for control design as well [17,23,28,29,32,33,35,39,40,411. Here, a local

model based on the partial differential equation (PDE) that applies to the struc-

tural member at the point in question is developed. The wave model contains the

same information as the PDE, however, depending on the control design approach,

there may be other implicit assumptions that introduce problems, such as ignor-

ing the effect of boundary conditions at other points of the member on the local

response. In most studies, the structural members have been simple one dimen-

sional waveguides, and the structures analyzed have been restricted to those that

could be well represented by networks of such waveguides. It may be difficult, how-

ever, to obtain a wave description for many complicated structures, because not all

structures can be well represented in this manner.

For some arbitrary structure, as shown in Figure 3.1, insight into the nature of

the problem can still be obtained from a wave approach. Various disturbances are

created at certain points in the structure and propagate through it. At any point in



the structure, such as at an actuator, the disturbance will be scattered. In general,

each of the resulting outgoing disturbances will eventually affect any global cost

criterion. Thus without a detailed and accurate description of how each outgoing

wave propagates, the goal of the control system should be to minimize the energy

of each of these disturbances. Since the scattering behavior is a function of only the

local dynamics, this goal can be achieved with only a local model of the structure.

An alternative approach to waves for obtaining such a model is to represent

the structure by its dereverberated driving point mobility [22]. The mobility is

the ratio of a generalized velocity and a generalized force, or the inverse of the

mechanical impedance [14]. It is the transfer function between two variables whose

product is the power flow into the structure, thus the sensors and actuators must

be both collocated and dual. The response at a point can be considered to be the

sum of two parts: a direct field, due to the local dynamics; and a reverberant field,

which is caused by energy reflected back from other parts of the structure. The

term "dereverberated" implies that the "reverberant" part of the response has been

removed before computing the mobility. It should be possible to model the direct

field more easily and accurately than the reverberant field, as it depends only on

a few parameters, while the reverberent field depends on the entire structure. For

the same reason, it is the reverberant field that contains greater detail, and requires

more degrees of freedom to model. Thus by using the dereverberated mobility, a

lower order model can be used that is based only on the details of the structure

which can be accurately modelled.

3.2 Cepstral Analysis Approach

The dereverberated mobility may be calculated through the use of the cepstrum

[22] of the impulse response. The cepstrum is the inverse Fourier transform of the

log of the complex spectrum, and is a function of time. For the impulse response



y(t), the complex spectrum is given by

Y(w) J y(t)e-jtdt (3.1)
0

Since a structural system is causal, y(t) should be 0 for t < O0. Also,

log Y = log IYI + j9, (3.2)

where the log magnitude is an even function of frequency, and the phase 0, is an

odd function. The complex cepstrum is given by

C,(t) = 7 - 1(logY) (3.3)

= 7-'1(logIY) + 71(j,) (3.4)

and is purely real. The inverse Fourier transform is given by

(()) 7= f Y(w)ej' tdw (3.5)
-00

The low time portion of the cepstrum corresponds to the direct response, and

the high time portions correspond to the reverberant response, with spikes at times

corresponding to the return times of the impulse from the rest of the structure.

Windowing the cepstrum before the first of these yields the direct response, which

can then be transformed back to the frequency domain to yield the dereverberated

impulse response.

The truncation time to choose can be based on the level of confidence in the

impulse response data. This illustrates one of the differences between the dere-

verberated mobility and a local wave model, that being direct control over how

much of the structure is included in the model. By truncating the cepstrum at the

appropriate point, some information about the rest of the structure is maintained

while the details of it are ignored. Thus the control design is provided with more

information, allowing it to generate a better controller.



The fundamental distinction between this and wave approaches is the ability

to treat generic structures without having to represent them with a wave model.

While the concept of direct and reverberant fields is based on wave ideas, there is

no requirement to actually identify a local wave model. All that is needed is the

input/output behavior at the driving point, which may be found from experimental

data, calculated from some nominal model, or found analytically, perhaps even from

a wave model. This approach is shown schematically in Figure 3.2 for the transfer

function from force to collocated velocity at one end of a free-free beam.

This structure provides an interesting example, since the dereverberated mo-

bility can also be found directly from the wave approach described in Section 2.3.

The reverberant field is created by reflections from the far end of the beam, so if

the scattering matrix for this end is set to zero, the dereverberated mobility can be

calculated from Equation (2.50). The result is

_ _ _ 1v'2=1(3 .6 )F (pA) 3/'(EI)/' ! .6)
This can be scaled so that the transfer function is just

~i 1(3.7)F
The cepstrum for both the true and dereverberated structures can also be calculated

from theory:

=Yp(,og = 7-1 l -) =1 }(3.8)
i=P1

1 (I°1 eI-t~wit cos(w/pt) - •E ef1 I-tit COs(w 5it)) t > 0==(3.9)
0 t<0

, = 7 {log (3.10)

S2t (3.11)
0 t<o0
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The sum in Equation (3.9) is over all poles pi = ýpjw, + jwp, and zeroes zi =

ýýw + jWJ,.

These are the functions plotted in Figure 3.2. It should be emphasized that

this theoretical approach would never be used in practice to compute the cepstrum.

It does, however, provide a validation of the approach. The correct dereverber-

ated mobility cannot be found exactly by simply truncating the cepstrum of the

reverberant structure in Figure 3.2(b) to obtain the dereverberated cepstrum in

Figure 3.2(c). If straight truncation were used, though, the resulting dereverber-

ated mobility would be the convolution of Figure 3.2(d) with a sine function, and

this would not differ significantly from the desired function in the region of interest.

Further details on the calculation of the cepstrum, and its use in removing

reverberation can be found in [9,38]. In general, however, it is not necessary to go

through the procedure of computing the cepstrum, truncating it, and transforming

back to the frequency domain.

3.3 Smoothing Approach

There is an alternative, less accurate, but much simpler way to calculate the dere-

verberated mobility. This is based on the observation that the effect of ignoring the

reverberant field is to smooth out the transfer function. If no energy returns from

beyond some closed surface surrounding the actuator, then this is equivalent to the

structure beyond this surface either being infinite in extent, or having perfectly

absorbing boundary conditions. This has also been shown [19,36] to be equivalent

to the logarithmic mean of the original transfer function.

Hodges and Woodhouse [19] demonstrate this by showing that the assumptions

that lead to using the smoothed transfer function in place of the original transfer

function also lead to using a dereverberated model in place of the original reverber-

ant system, and that these two new systems are equivalent. This is shown by consid-



ering the mean power input to a system by an excitation source with a broadband

spectrum, and comparing the modal interpretation with the wave interpretation.

Skudrzyk [361 considers the transfer function of a reverberant system, and the

affect of damping. As damping is added, the maxima of the transfer function

decrease, and the minima increase. Eventually the transfer function is a smooth

curve at the average of these maxima and minima. This response curve is therefore

that that would be obtained if the system were sufficiently damped and sufficiently

large, so that the reflected waves do not contribute significantly to the response.

The dereverberated system is therefore obtained by increasing the damping and

size of the system, and has a transfer function which is the logarithmic mean of the

original transfer function. This response curve corresponds to the amplitude of the

direct field that is generated by the input.

Thus another way to compute the dereverberated mobility is simply to take a

logarithmic average of the magnitude of the transfer function. This is not surpris-

ing, considering that the cepstral analysis approach described earlier is essentially

the same as low-pass filtering the logarithmic frequency response. The phase can

be determined uniquely from Bode's Gain-Phase Theorem [8], using the fact that

the dereverberated mobility is positive real. In practice, this method should be

adequate. Fitting the result with a rational polynomial gives a model that captures

the essential dynamics of the system over a wide frequency range that encompasses

many modes, with only a small number of poles and zeroes.

Figure 3.3(a) and (b) shows the transfer function of a free-free Bernoulli-Euler

beam. Rather than evaluating the system response only on the jw axis, however,

the transfer function is plotted for part of the right half complex plane; that is, as a

function of both the real and imaginary parts of the Laplace transform variable s.

The familiar sharp peaks and valleys associated with lightly damped structures only

appear near the imaginary axis. Farther away from the axis, the effect of individual

modes is smeared out, and the transfer function becomes smooth. Since the dere-
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verberated system can be obtained from the original system by adding damping,

as noted earlier, it is the dereverberated mobility to which the transfer function

approaches as the real part of the Laplace variable increases. Therefore, if the goal

of the control system is to move the poles away from the axis, this smooth transfer

function should be a good approximation to the structure. The significance of this

figure for control design will be discussed further in Chapter 4. Figure 3.3(c) and

(d) shows the dereverberated transfer function for the same system. The derever-

berated mobility is a good approximation to the structure everywhere except near

the jw axis.

As an example of the dereverberated mobility approach on a modally dense

structure, consider the transfer functions plotted in Figure 3.4. The graph shows

an experimental transfer function measured from endpoint moment to endpoint

slope rate on a pinned-free brass beam suspended in the laboratory at M.I.T. (This

beam is discussed in more detail in Chapter 6.) Note the high modal density above

a few tens of hertz; it seems reasonable that a control design that relied upon

the exact location of each mode would be undesirable. The average amplitude,

however does not depend at all on the length of the beam or the nature of the

boundary condition at the far end. Also plotted in the figure is the theoretical

response of a semi-infinite Bernoulli-Euler beam (the straight line, calculated again

from the wave approach of Section 2.3), and the average response, which differs

from the Bernoulli-Euler prediction only at low and high frequencies. It is this

average response that would be the appropriate dereverberated admittance, though

the straight line approximation would probably be adequate if the central frequency

range is the range of interest.

The dereverberated mobility model is not intended to accurately represent the

structure; it clearly fails in this regard. However, it is hoped that this will be a

useful model for the design of control systems for the structure. While the resonant

and anti-resonant details of the full reverberant mobility are not explicitly modelled,
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the reverberant field is composed of waves whose behavior is governed by the local

dynamics of the controlled junction each time they pass through it. Thus if the local

dynamics can be appropriately modified based on a local model, then the complete

reverberant field can be controlled.



Chapter 4

Control Design

The previous chapter described the modelling approach used, while this chapter

focuses on the design of the control system for this model. There are two main ob-

jectives to be satisfied by the control design. It must be guaranteed to be stabilizing

for all possible plants, and it must provide good performance, again for all possible

plants. In order to guarantee stability, positive real feedback from velocity to force

will be required. One could, for example, select rate feedback, which is guaranteed

to be stable, but this does not necessarily give the best performance that could be

achieved. Velocity feedback is only one possible choice of positive real feedback; the

object of this chapter is to derive the optimal positive real compensator.

The criterion to be used for optimality will be the minimum power flow into

the structure. That is, power extracted from the structure will be maximized.

Power flow is the appropriate quantity to minimize to provide active damping of

the structure, and allows a guarantee of stability by ensuring that the power flowing

into the structure due to the control is always negative.

Miller et al. [281 minimized the )2 norm of the power flow. This required some

assumptions about the power spectral density of the disturbance entering the junc-

tion. In the actual structure, this is related to the control through the disturbance

that previously departed the junction. In the wave model, however, it was assumed



Figure 4.1: System Block Diagram I

constant and independent of the control. As a result, in general the compensators

obtained allowed power to be added at some frequencies, since this behaviour could

not destabilize the design model. This problem can be avoided by minimizing the

power flow in an M,, setting. For an open-loop system, the power removed by the

controller is zero. If the closed loop power flow is guaranteed to be no worse at

all frequencies, then the closed loop system is guaranteed to be stable. In fact, it

is sufficient to place a constraint on the maximum value of the power flow which

guarantees it to be negative at all frequeucies. An )12 optimization [61 can then be

used, which may improve the overall performance.

Define G(s) to be the dereverberated driving point mobility, and assume some

disturbance input d to be additive at the output. Then the output y is related to

the input u and the disturbance via

y(s) = G(s)u(8) + d(s) (4.1)

as shown in Figure 4.1. As yet, no assumptions have been made about the nature

of the disturbance.

Recall that in Chapter 2 the noise assumptions made in Moo and U) optimizations

were discussed. Now consider this in the context of the model defined in Chapter 3.

The disturbance d in Equation (4.1) can be thought of as originating from two

sources: the original disturbance input to the real structure, and the reverberant

field ignored in the modelling process. This second source will have significant



power at the modal frequencies, and if the closed loop damping is still relatively

small, then in steady state this will be much larger than the physical disturbance.

Thus the disturbance spectrum in Equation (4.1) consists of significant power in

narrowband but unknown frequency ranges, which are exactly the assumptions

indicated in Chapter 2 as being appropriate for ),o minimization.

4.1 Unconstrained Optimum

Before finding a compensator which minimizes the worst case power flow, consider

finding the compensator which minimizes the power flow at each value of the Laplace

transform variable s. The control law is of the form

u = -Ky (4.2)

where the explicit dependence on the Laplace transform variable has been dropped.

Solving for the control in terms of the disturbance from Equation (4.1) gives

u = -(I+ KG)-'Kd (4.3)

= Hd (4.4)

Then the output can also be represented in terms of the disturbance as

y = (I + GH)d (4.5)

The instantaneous power flow into the structure is the product of the input u(t)

and the output y(t), since G(s) is an mobility. The average power flow can be

expressed as a time integral of the instantaneous power flow [27],

P., = lirm 1 yT(t)u(t)dt (4.6)
T--oo 2T

-T

Making use of Parseval's theorem, this can be transformed into the frequency do-

main:

Pa., f (s(jw)y(jw) + y"(jw)u(jw)) (4.7)
-00



The integrand of the right hand side of Equation (4.7) represents the steady state,

or average, power flow into the structure as a function of frequency [271. For conve-

nience, the average power flow at each frequency can be defined without the factor

of 1, as

P (w) = u(jw)y(jiw) + yH(jw)u(jw) (4.8)

where (.)H indicates Hermitian, or complex conjugate transpose. The Hermitian

operator is not analytic in the complex plane. Instead, the appropriate operator is

the analytic continuation of the conjugate from the jw axis to the remainder of the

plane. This operator is denoted (-)~ and is defined as in Chapter 2 as

Fm(s) = FT(-a) (4.9)

Substituting the earlier expressions for u and y into Equation (4.8) yields

P(w) = d~ {H-~(I + GH) + (I + GH)~H} d (4.10)

This equation gives the power flow into the structure as a function of the compen-

sator. The optimal value of H is that which minimizes the expected value of this

expression at each point in the complex plane. Since the power flow is a scalar, it

is equal to its trace. So

Cost(s) = E [Trace {dd" [H~(I + GH) + (I + GH)"HII} (4.11)

= Trace {dd[H~(I + GH) + (I + GH)~H]} (4.12)

where b dd= 0T = E [dd"] is the power spectral density of the disturbance d.

Making use of the symmetry in (4.12) gives that at the optimum,

H~ = H (4.13)

Using this result, then differentiation gives

a(Cost)(Ct= 2dd + 4ddH(G + G~) + (G + G~)Hdd = 0 (4.14)
aH



From this equation, the optimal H is given by

Hopt = -(G + G-)-1 (4.15)

provided this inverse exists. If it does not exist, this implies that if ddis full rank,

Equation (4.15) is valid, and an infinite amount of power can be extracted from

the structure. If dd is singular, then Equation (4.15) is not valid, however in this

case, Equation (4.14) is not sufficient to uniquely determine H. Since in general

the approach of this thesis deals with SISO systems, this case is not too significant

a restriction on the applicability of this result. Non-scalar 4dd will only arise if

a structure has multiple actuator and sensor pairs of different types at the same

location, since if they were at different locations the structure would be modelled

and controlled as separate SISO systems.

If the inverse in Equation (4.15) exists, then this compensator is independent

of the disturbance spectrum .dd. From Equations (4.3) and (4.4), the compensator

K is related to H by

K = -H(I + GH) - 1  (4.16)

so finally,

Kopt = (G~) - 1  (4.17)

This compensator extracts the maximum possible power from the structure at every

frequency.

This result is not new; it corresponds to the impedance matching condition

found, for example, in [10]. The maximum energy dissipation is obtained if the

impedance of the compensator is the complex conjugate of the impedance of the

load, which in this case is the rest of the structure.

In general, however, the compensator in Equation (4.17) is noncausal, and can-

not be implemented in real time, since it requires knowledge of future information.

The dereverberated mobility G(s) must be both stable and causal, and is therefore



right half plane analytic (RHPA). Since it is strictly positive real, it must also be

minimum phase, and thus the optimal compensator in Equation (4.17) will be left

half plane analytic (LHPA). So every pole of the compensator is in the right half

plane. This does not necessarily imply that the compensator is unstable. A right

half plane pole corresponds to a unique transfer function, but there are two time

domain systems with this transfer function. One is causal and unstable, so that the

impulse response is zero for negative time, and increases with increasing positive

time. The other is noncausal and stable, with its impulse response zero for positive

time, and decreasing to zero as time decreases to minus infinity.

One can determine which of these two systems applies in this case from a Nyquist

plot. Since both the compensator and the plant are strictly positive real, there are

no encirclements of the point -1, and thus K must be stable for the closed loop

system to be stable. This implies that in general, this compensator is noncausal.

K can be stable, causal, and LHPA only if it is a constant, and hence only if the

dereverberated mobility is a constant. One such case is that of a uniform rod in

compression, with a collocated force actuator and velocity sensor at one end. In

this case, Equation (4.17) corresponds exactly to the matched termination for the

rod.

Some understanding of why the optimal compensator is almost always noncausal

can be found from root locus arguments. For a point A to be on the root locus of

the plant P(s), the compensator K(8) must satisfy

1 + P(A)K(A) = 0 (4.18)

In order to place the structural poles far into the left half plane, the relevant plant

P(s) is the structure as it appears from far into the left half plane.

For a lightly damped structure with a large number of closely spaced poles and

zeroes, one can divide the complex plane into three regions. Near the jw axis,

and close to the poles and zeroes, the transfer function varies significantly from its

maxima to its minima, and the phase varies between +90* and -90*. If one looks at



the structure from farther into the right half plane, the effect of individual poles and

zeroes becomes smeared out, and the transfer function approaches the smoothed,

or dereverberated transfer function G(s). The phase of G in some frequency region

will be the average phase of the original transfer function near that region, and the

magnitude will be the logarithmic mean of the magnitude of the original transfer

function near that region. This behaviour is shown graphically in Figure 3.3.

In the left half plane, however, the structure's transfer function is not G(s). To

determine the phase contribution of each pole and zero, the contour to consider must

now be to the left of every pole and zero, and so each phase change has opposite sign.

The result is that in the left half plane, the structural transfer function approaches

-G(-s). Therefore, to move the poles far into the left half plane, K(s) must satisfy

1 - G(-s)K(s) = 0 (4.19)

or

K(s)= 1/G(-s) (4.20)

as given in Equation (4.17).

If this compensator could be implemented, all of the structural poles could be

moved arbitrarily far into the left half plane. Instead, the best causal compensator

must be found.

4.2 Causal Optimum

The wave model of Miller et al. [281 can also be put in a form similar to that of

Equation (4.1), though only for structures composed of waveguides. As discussed

earlier, Miller et al. performed an )12 optimization of the power flow, which did

not guarantee dissipation at all frequencies, and thus did not guarantee closed loop

stability. A more appropriate optimization to guarantee stability is to minimize the

worst case power dissipation, hence a minimax optimization of the power flow into



the structure. As will be shown shortly, this can be cast as an M. minimization

problem. In order for this to make sense, though, the disturbance input d should

be normalized to provide the same amount of power available to be dissipated at

each frequency. This provides the designer with complete control over the relative

importance of one frequency range to another, by removing any inherent frequency

weighting from the problem.

With the optimal noncausal compensator derived in the previous section, Equa-

tion (4.17), the closed loop power flow into the structure is given by Equations (4.10)

and (4.15) as

P = -d"(G + G~)-id (4.21)

Represent the disturbance d as

d = Gow (4.22)

Then if the input w has unit magnitude at a certain frequency, the optimal noncausal

compensator will dissipate unit power at this frequency, provided that the transfer

function Go is the co-spectral factor of G + G", given by

GoG~ = G + G~  (4.23)

The block diagram for this system is shown in Figure 4.2, and the system (Equa-

tion (4.1)) becomes

y(s) = G(s)u(s) + Go(s)w(s) (4.24)

Now, consider the problem of finding a causal compensator that will minimize

the worst case power flow in Equation (4.8). This quantity represents the power

flow into the structure, which will hopefully be negative. The goal is to find a

compensator K that results in

miun max (u(jwU)y((w) + yH(,w)u(jw)} (4.25)
U W

This minimax problem can be solved directly, using the approach of [34]. Alter-

natively, it can be reformulated as an M.., problem, for which software to find K



Figure 4.2: System Block Diagram II

exists. In order to cast this as an )1, optimization, however, the performance in-

dex must be positive definite. Note, though, that the best causal compensator can

dissipate no more power than the unconstrained, noncausal optimum. Thus if the

disturbance power w"w is added to the cost, positive definiteness will be assured.

The cost at each frequency is therefore

Cost(w) = w~w + u~y + y~u (4.26)

= wo~ w + u"(Gu + Gow) + (Gu + Gow)~u (4.27)

= U G + G~ Go J (4.28)
SG- I w

= JIGu +w 2  (4.29)

From this, the relevant output that should be minimized is

z = GCu + w (4.30)

Combining this with the system equation (4.24), the result can be written as a four

block problem (compare with Figure 2.1):

= I Go" W (4.31)Y Go G U



The compensator from y to u that minimizes the ,,. norm of the transfer function

from w to z will minimize the maximum power flow into the structure.

For computation, however, the unstable (1,2) block in Equation (4.31) is un-

acceptable. Any allowable compensator must stabilize this block, while the only

important stability constraint is on the output y. Recall from Chapter 2, however,

that the norm of z is unchanged by multiplication by an inner function. Define A(.)

to be the characteristic polynomial of the transfer function (.), and define the inner

function

GO(s) =)) (4.32)
A(Go(s))

Then redefine z to be

z = GIG'u + G1w (4.33)

so that the four-block problem (4.31) becomes

{GIl GIGflw
= (4.34)Y Go G U

which is stable.

In general, it may be desirable to weight some frequency ranges more heavily

than others, while still requiring that power be removed at all frequencies. This

could be because there is a known disturbance source in a certain range, because

structural modes are less well damped within this range, or because the performance

requirements put more emphasis on this range. Similarly, there will usually be some

frequency beyond which performance is not required, and the weighting can also be

chosen to reflect this.

The manner in which the weighting is introduced into the problem must be such

that if power is added to the structure somewhere, the resulting cost will be worse

than the open-loop cost. Hence, rather than weighting the sum of the disturbance

input power and the power input by the control, as in Equation (4.26), define the



cost to be the sum of the disturbance power and some frequency weighted control

power, as

Cost(w) = w~ ow + WN(u"y + y"u)WI (4.35)

which can be manipulated into the form

2
Wi(G-u + w)

Cost = (4.36)
W2w

where W1 is the selected frequency weighting, and W2 is defined by the relationship

1W1l2 + IW212 = 1 (4.37)

The output z of the four block problem is then

z = (G + W) (4.38)W2 w

Note that as desired, the open loop cost is unity everywhere, and the cost is greater

than unity at any frequency where power is added to the structure. Thus as before,

a closed loop cost of less than unity guarantees stability.

The only constraint on W1 is that its magnitude be less than or equal to unity

at all frequencies. Without this constraint, there is no guarantee that the cost be

positive definite, and the minimization could fail. Where W1 is small, a greater

amount of control effort is required to reduce the cost than before, and thus there

is more power removed. Hence, in order to emphasize some frequency range more

heavily, the weighting function W1 should be chosen to be smaller within that region.

Recall from Chapter 2 that one of the properties of )1,, compensators is that

at the optimum, the closed loop transfer function being minimized is a constant

function of frequency, equal to some number y [15]. From this, and Equation (4.35),

the closed loop power absorbed by the compensator can be related to y and the

weighting function. This is expressed as a fraction of the power absorbed by the



unconstrained optimal compensator:

1- yZ
(w)-= (4.39)

This provides some insight into how to select W1.

The cost in Equation (4.26) or (4.35) can also be modified to include a penalty

on the control effort, pu-u. The four block problem (4.34) is modified to include

an additional output in the vector z, corresponding to pu. This allows a trade-

off between performance and control, and also guarantees a proper compensator.

Similarly, it is straightforward to modify the four block problem (4.34) to include

sensor noise. An additional disturbance input is included in the vector w which

affects only the sensor output y.

The final result of this approach is a positive real compensator, which is guar-

anteed to be stabilizing for any positive real plant. However, if there are any time

delays, actuator or sensor dynamics, or if the actuator and sensor are not truly

collocated and dual, then the structure will not be positive real at all frequencies.

Stability can still be guaranteed if the complementary sensitivity is bounded above

by the inverse of the difference of the true structure from positivity, as noted by

Slater [37].

This constraint can be represented as a constraint on the ,.-norm of an ap-

propriate transfer function. If the error bound is given as in Equation (1.3) for the

difference from positivity, then stability can be guaranteed if the compensator is

positive real and, as in Equation (1.2),

IIGK(I+ GK)-'LmI < 1 (4.40)

The compensator is positive real if power is dissipated at all frequencies, or

izilo, _ 1 (4.41)

with z being given by Equation (4.30) or (4.38). Thus this problem is one of min-

imizing the )4, norm of one transfer function (Equation (4.41)), with a constraint

on the NU norm of another transfer function (Equation (4.40)).



4.3 State Space Computation

The calculation of the optimal compensator for the four-block problem is most

easily performed in state space, since software exists to solve the state space •1o

four-block problem. The first step then is to obtain a state space representation for

the plant G(s) and the desired weighting function Wi(s). From these, state space

representations for W2(s), Go(s), and Gi(s) must be calculated. These problems

can be formulated as spectral factorization problems, and solved by methods similar

to those discussed in Section 2.2.

4.3.1 Calculation of Go

Go is a co-spectral factor of M = G + G~ , and thus can be calculated with the

standard algorithm. The algorithm is restricted to systems G with a non-zero

direct feedthrough term D. This is not a serious restriction, however. No finite-

dimensional model is valid at all frequencies, nor does it need to be. This merely

implies that rather than rolling off at high frequencies, G(oo) should be a constant.

First, define the state space representation of G as

G = = C2 (sI - A) - ' B2 + D22  (4.42)
C, D22

The reason for the selection of the subscripts on B, C, and D is that G is the (2,2)

block of the four block problem.

Go can be represented as

Go = A B, (4.43)
C2 D21

where

D = D 2 + D (4.44)



A A TC2 D-1[] B2 C2 (4.45)AM= 0 -A - -B2T

X1 = Ric (A~ ) (4.46)

B 1 = (B2 + X ICT)D - 1I 2  (4.47)

D21 = D1/  (4.48)

From Chapter 2, Definition 5, the conditions required for this spectral factor-

ization to be valid are:

(i) M = M~,

(ii) M and M-1 are proper,

(iii) M and M-1 have no poles on the jw axis, (or alternatively, M have no

poles or zeroes on the jw axis),

(iv) M(oo) > 0.

The first condition is clearly satisfied, as is the second, since M and M- 1 are proper

with non-zero D22. If G is a dereverberated mobility, then it has no imaginary poles,

and thus neither does M. Furthermore, G is strictly positive real. This implies that

G(jw) + G"(jw) > 0, and thus that M has no zeroes on the jw axis. This also

implies that M(oo) > 0.

4.3.2 Calculation of G1

The (1,2) block of the four-block problem (4.34) is G1G-. This has the stable poles,

but the non-minimum phase zeroes of M = G + G~. The state space algorithm for

computing this is related to the spectral factorization algorithm found in [15], or

Section 2.2, and only the differences between the two will be indicated here.



Given G as in Equation (4.42), then

A 0

M=G+G~ = 0 - AT

C2 BT

B2

- C 2T

Dzz + DT,

AM BM] (4.49)
[CM D

and
Ax = - B D-1C, BT  (4.50)

0 -A -C T

The spectral factorization algorithm in Section 2.2 relies on finding the modal spaces

X_ (A') and X+ (AM) corresponding to the left half-plane zeroes of M and the right

half plane poles respectively. Instead, now find X+ (A' ) and X+ (AM), correspond-

ing to right half plane zeroes and right half plane poles. If these two spaces are

complementary, then the required factorization exists.

Since the unstable poles of any matrix A are the stable poles of -A,

X+(Ax) = X_ (-A) (4.51)

Thus the desired factorization exists if X_ (-AZ ) and X+(AM) are complementary.

Since A' is a Hamiltonian matrix, -A' is as well. Thus, there exists a matrix

X 2 = Ric {-Ax4 (4.52)

such that
X_ (-A) = Im (4.53)

and this is complementary to X+(AM), given by Equation (2.21). Given this, the

remainder of the derivation follows Francis [15] or Section 2.2 exactly, so that

A BZ
G1(s)Go(s) = (4.54)

D-1/ (C2 + BT X2) D1/

SA DB2 (4.55)
C, D12



Thus,

C = D-'/(C + B2'X 2) (4.56)
D12 = D1/ 2  (4.57)

Since the remaining (1,1) block GII of the four block problem is inner, it must

be true that

Dll = 1 (4.58)

Then the four block problem in Equation (4.34) is completely specified.

4.3.3 Calculation of W2

The computation of the weighting function W2 in Equation (4.37) from W1 can also

be represented in terms of a spectral factorization. First, represent W1 in state

space as

W1= [A B (4.59)
C, D.,

Then

W" = [C D (4.60)
BCombiningT Dthese gives

Combining these gives
Aw 0

W1Wf = -CC, -AAT

-DC, -B4

(4.61)

The A matrix of this system is a Hamiltonian matrix, with the (1,2) block equal

to zero. Thus the modal spaces are given by Equations (2.24) and (2.25). Hence

define the similarity transformation

T = (4.62)

Bw

-D,'D



where X. satisfies the Lyapunov equation

(4.63)ATX, + X, A , + COC, = 0

and use this to transform the system, Equation (4.61). This gives

A. 0 B.
ww~ = 0 -AT -C,"~

C' -BT -DwDe

where

(4.64)

(4.65)

Then W2 is a spectral factor of

Aw

0

0

-AT

-c: -BT

B,

c27
I - DwTDW

This is now in the form of a standard spectral factorization.

algorithm, W1 must satisfy

(4.66)

In order to apply the

1- DTD., > 0 (4.67)

or W,(oo) < 1. This is not a limitation at all, since multiplying the weighting

function everywhere by a constant will not change the resulting compensator. The

other conditions specified in the definition of the spectral factorization are also

satisfied. Note that if the magnitude of W1 is less than one at all frequencies, then

1 - W1Wj" can have no imaginary zeroes, nor can it have any imaginary poles.

4.3.4 Four Block Problem

Having determined how to compute all of its elements, the complete four-block

problem can be written in state space form as

A B1  82

C1 D11 D12  (4.68)

C2 D21 22

I - Wlwf =-

I



A

S= B, C1

0

C =
DwC 1

0

0 Aw

SC 0
0 CuW2

B,
B1 = BwD 11

SBw2

B2

B2 = BwD 12

0

(4.69)
Di 1= [DD] D12 =[DwD12J

D21 = [ D21 D22 = [ D22

The compensator is then found from the Riccati equations given in [16].

where

C2 = [2 0 0



Chapter 5

Examples

5.1 Example 1: Free-Free Bernoulli-Euler Beam

As an example of the approach developed in the previous chapters, consider a

free-free Bernoulli-Euler beam with a collocated force actuator and velocity sensor

at one end, as shown in Figure 5.1. The dereverberated mobility for this system

was calculated previously in Section 3.2. It is the transfer function of a semi-

infinite beam, which can be found, for example, from the wave approach discussed

in Section 2.3:

G(s) = pA)• ••(pA)314(EI)11/*7s (5.1)

F

Figure 5.1: Bernoulli-Euler Free-Free Beam



For simplicity, assume the mass per unit length pA and the bending stiffness EI

are such that

G( ) (5.2)

This can be done without loss of generality, as it requires only a scaling of the plant.

First, consider the unconstrained optimal compensator that extracts the maxi-

mum possible energy. From Equation (4.17),

K(s) = N (5.3)

This compensator has a slope of 10 db/decade, and a phase of -45* at all frequen-

cies. Note that this is the same compensator as that obtained by the unconstrained

optimization in Miller et al. [28], though the derivation differs, and in Flotow and

Schefer [40], by setting the reflection coefficient corresponding to the creation of

outgoing travelling waves from incoming travelling waves to zero. As expected, the

unconstrained optimal compensator is noncausal and cannot be implemented. That

it is noncausal could be determined by finding a rational approximation to y-i,

which would have right half plane poles, or from the knowledge that Vs is stable

and causal, since it is the transfer function of a stable structure (see Example 2 in

the next section.) Since Va is right half plane analytic, /2-i must be left half plane

analytic, and therefore if it is stable, it must be noncausal.

Now, find the compensator that minimizes the maximum power flow into the

structure. An analytical solution to this is given in Appendix A. With equal weight-

ing at each frequency, (W1 = 1) the optimal causal compensator is

K(s)= V (5.4)

This is similar to the noncausal solution, Equation (5.3), with the same magnitude

everywhere, but a phase of +45* instead. This is the "best" causal approximation to

Equation (5.3), and dissipates exactly half of the incoming power at all frequencies.



(a) (b)

Figure 5.2: Schematic root locus with 4. design (a) and with ve-
locity feedback (b).

Further insight into the nature of this control can be found from the root locus,

shown schematically in Figure 5.2. With velocity feedback, an appropriate choice

of gain will add significant damping to a given mode, and those nearby, but it is

not possible to add significant damping to all of the modes at the same time. Thus

the gain in velocity feedback must be optimized to provide damping at a certain

frequency. Far enough away from this frequency, the gain is either too low to have

much affect, or too high so that the closed loop poles lie near the open loop zeroes,

which are undamped. With the optimal causal compensator V's, the locus is not as

far into the left half plane, but now every pole can be placed at the leftmost part of

its locus simultaneously. Ideally, one would like the root locus to be arbitrarily far

into the left half plane, and place each pole at the leftmost part of its locus. This

is the behavior obtained by the unconstrained optimal compensator ', which of

I0- aW-



course cannot be implemented.

Now consider including a weighting function to increase the importance of a

certain frequency range, say in a narrow band near 1 rad/sec. So select W1 to

have unit magnitude far from 1, and less than unit magnitude near 1 rad/sec.

Recall that more importance is placed where the weighting function is smaller. An

analytic solution here would be difficult. However, the plant in Equation (5.2)

can be approximated adequately over a wide frequency range with a finite number

of alternating poles and zeroes on the real axis, with equal logarithmic spacing.

The state space methods described in Section 4.3 can then be used to obtain an

approximate compensator. The resulting compensator is plotted in Figure 5.3, along

with the optimal compensator with unity weighting from Equation (5.4), and the

unconstrained optimum from Equation (5.3). Note that the magnitudes of these

last two compensators are the same. Equation (5.2) in this case was approximated

by 9 poles and 9 zeroes with frequencies from 10- ' to 10" rad/sec. The weighting

function W1 had zeroes at 7 and v', and poles at ' and 2v2. Far from the region

that was selected as important, the compensator still has a V4 behavior, though

with less magnitude than the unweighted optimum in Equation (5.4), resulting in

poorer performance. Near 1 rad/sec, though, the slope of the compensator is now

-10 db/decade, and the phase is closer to -45*. At 1 rad/sec, the compensator has

exactly the same magnitude, and almost the same phase as the noncausal optimum,

and thus it absorbs almost all of the incoming power possible. The net power flow

absorbed by this compensator is plotted in Figure 5.4, expressed as a fraction of the

disturbance input power. For comparison, the power absorbed by velocity feedback

and the unweighted optimum are also plotted in the same figure. The comparison

between the two M. designs illustrates the trade-off in the choice of the weighting

function. The power flow can be increased in one frequency region, but at the

expense of decreasing the power dissipation at all other frequencies.

If this control law is now applied to a finite beam, the closed loop performance



can be examined. The transfer function between force and velocity at the far

(uncontrolled) end of the beam can be calculated using the phase closure approach

of [27], discussed in Section 2.3. The beam length was chosen so that the fifth mode

of the beam was at the center frequency of the weighted region. The result is plotted

in Figure 5.5, and the envelope of the transfer function for any length beam is also

plotted. As expected, the modal peaks in the region where W1 is smallest are more

heavily damped. Note that because the compensator in Figure 5.3 is positive real,

it will not destabilize the beam at any length. (Nor will it destabilize any positive

real structure.) Furthermore, for any length beam, there will be some damping

achieved everywhere, and greater damping in the region of interest, as indicated by

the envelope of possible transfer functions.

From Equation (4.39), the closed loop power flow can be related to the weighting

function W1. If the damping in a mode could be related to the power absorbed at

the frequency of that mode, then the achieved damping could be predicted from

knowledge of W1 and the achievable )M, norm -y. For a simple beam, an approxima-

tion to this is relatively straightforward; the procedure is presented in Appendix B.

With a unity weighting function W1, the result is

log(-) (5.5)eoVZ
This can be compared with actual eigenvalue calculations, and while the result is

not exact, the approximation is reasonable. Thus in this case, not only can the

closed loop power flow be predicted without actually designing the compensator,

the closed loop damping can also be predicted, provided one can give a reasonable

estimate of oy. This would be useful for determining how to modify the weighting

function to produce the desired behaviour.

It is worth comparing the results of this approach with those for other control

design techniques. Methods such as LQG are difficult to compare due to the lack

of a suitable basis for comparison. An LQG compensator will certainly give a

better )12 norm of the quantity minimized than the )1, design approach for the



nominal model. For a sufficiently large perturbation in the plant, however, the

LQG design may destabilize the system, as it has poor robustness to parametric

model error. Another design technique which is more suitable for comparison is

collocated velocity feedback. Rate feedback is also positive real, and thus guaranteed

to be stabilizing, but the performance is expected to be worse, being suboptimal.

A comparison of the power dissipated by rate feedback and by two ), designs

has already been shown in Figure 5.4. For a given structure, velocity feedback

dissipates power with a specific frequency distribution, with the gain as the only

parameter to vary. The gain changes only the center frequency of the distribution,

and not its shape. The M, design, on the other hand, allows much more freedom

in the characteristics of the power dissipation with frequency. Greater dissipation

at a single frequency is possible than with rate feedback, and broader band power

dissipation is also achievable. The envelope of possible closed loop transfer functions

on the free-free beam is shown in Figure 5.6 for several different gains of rate

feedback, and for the unweighted M, compensator described earlier. Once again,

this illustrates the same point. Velocity feedback is stabilizing, but in general, it is

suboptimal.

5.2 Example 2: Pinned-Free Beam

As a slightly more complicated example, consider again a finite beam, but this time

with one end pinned, with a moment actuator and collocated angular rate sensor

at this end. Also include some finite rotational inertia J at this end, as indicated

in Figure 5.7. The theoretical dereverberated transfer function for this beam can

be found once again using the wave approach of Section 2.3. For this structure, the

boundary conditions at the pinned end are given by the matrices

01B U 0(5.6)
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Figure 5.7: Bernoulli-Euler Pinned-Free Beam

Bf = (5.7)
0 1

The wave number k is defined from Equation (2.52). So from Equations (2.40),

(2.41), and (2.50),

M -- (pA)'/4(EI)/4 ,'+ Js2 (5.8)

If there were no rotational inertia J, then the transfer function would be

G(s) = (5.9)
vf(pA) 1/4(EI)s/4

The unconstrained optimal compensator would therefore be

K(s) = /f2(pA)1/4 (EI)3 /4(5.10)K(a)= (5.10)

This has a phase of 45*. If the weighting function W1 was unity at all frequencies,

then the causal optimum found from the Mo approach would be

( Vf2 (pA)I/4(EI)3/4
K(s) (5.11)

This has the same magnitude as the unconstrained optimum, but a phase of -45*.

The calculations required to obtain these compensators are essentially the same as

for the free-free beam in the previous example.

With J # 0, then at low frequencies, the behavior is similar to that of Equa-

tion (5.9). At high frequencies, the transfer function is dominated by the rotational



inertia, and rolls off at 20 db/decade. From the far end of the beam, the con-

trolled end then behaves as if it were clamped, and regardless of the control, all

disturbances are reflected back. Thus, power flow beyond the rolloff frequency of

Equation (5.8) should be unimportant, and the weighting function here should be

much larger than elsewhere. Also, assume again that some specific frequency range

near 1 rad/sec is more important. Note that while in practice it would be difficult

to extract power at high frequencies, the theory still allows power to be dissipated,

due the presence of Go. At high frequencies, G - -, and hence Go -+ oo. Thus the

disturbance spectrum is increased indefinitely to allow the same amount of power

dissipation at all frequencies with the unconstrained compensator.

For computation, EI = and pA = , so that the low frequency behavior is

exactly Vis. The rotational inertia J was selected to be 10- 3, to place the rolloff

frequency at 100 rad/sec, at a slightly higher frequency than that considered to be

important. Again, the system was approximated with a rational transfer function

which is accurate over the frequency range of interest, from 10- 4 to 104 rad/sec.

The compensator for this case is shown in Figure 5.8. At low frequencies, the

compensator is similar to the ' that would be optimal with no rotary inertia and

no weighting. Where the weighting function decreases near 1 rad/sec, the phase

jumps towards the noncausal optimum phase of 450, and thus absorbs close to the

maximum power possible. At high frequencies, as desired, the compensator gives

up and does not attempt to absorb incoming power, though it does remain positive

real. Thus again, the closed loop system is stable for any length beam, and for

any boundary condition at the far end. The open and closed loop transfer function

from moment to slope rate at the controlled end of the beam is given in Figure 5.9.

This transfer function shows the rolloff at 100 rad/sec, beyond which the poles and

zeroes are essentially undamped, but almost cancel each other. The poles are more

heavily damped near 1 rad/sec, but none of the zeroes are affected. Also plotted is

the dereverberated mobility (Equation (5.8)), and the upper bound of the envelope



of possible transfer functions for any length of beam.
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Chapter 6

Experimental Results

While theoretical results are valuable of themselves, they must ultimately be tested

in an experiment. This verifies the theoretical results, and indicates problems in

their application. In addition to demonstrating the usefulness of the work, the

experiment points out limitations, and appropriate directions for further research.

The approach described in Chapters 3 and 4 was tested on a brass beam sus-

pended in the Space Engineering Research Center laboratory at M.I.T. Previous

experiments with this beam [26,29] include collocated rate feedback and )2 optimal

wave control, and these provide a basis for comparison with the ), compensator.

6.1 Experimental Setup

The setup is shown schematically in Figure 6.1. For complete details on the setup,

see reference [29]. The beam is suspended horizontally in the lab, with actuation and

sensing such that the bending vibration can be controlled. One end is effectively

pinned, while the other is free. The properties and dimensions of the beam are

summarized in Table 6.1. The open-loop damping of the first 17 modes (up to a

frequency of 27.7 Hz) averaged about 0.3%.

Control is applied through a torque motor at the pinned end, and sensing is



Figure 6.1: Schematic of Experimental Setup

Dimensions and Properties

Length 7.32 m

Width 0.102 m

Thickness 3.175 mm

El 31.1 Nm2

pA 2.85 kg/m

Table 6.1: Beam



provided by a linear accelerometer mounted a short distance from the end. The

member connecting the sensor to the tip is assumed to be rigid, such that the

sensor provides a rotational acceleration measurement collocated with the moment

actuator. In practice, this assumption is not quite valid, though it is reasonable in

the frequency range of interest.

In addition to the control actuator and sensor, a shaker and data acquisition

accelerometer were mounted at the free end of the beam. The shaker was mounted

to provide a force collocated with the acceleration measurement. The closed loop

transfer function between these two was used as an indication of the performance

achieved.

The signal from the accelerometer at the controlled end was fed through a signal

amplifier into an analog computer which contained the compensator program. The

output of this was fed through a power amplifier into the moment actuator. The

accelerometer signal from the uncontrolled end was fed into a Signology SP-20

Signal Processing Peripheral to record and analyze the response data, and obtain

frequency domain information. This signal was also fed into an oscilliscope so that

any instabilities could be quickly identified, and their frequencies determined.

6.2 Compensator Design

A detailed model of the beam is not necessary for the experiment; it is sufficient

to just take the transfer function from the control actuator to the control sensor.

This transfer function is shown in Figure 6.2. The dereverberated mobility is that

of Example 2, given in Equation (5.8) with the rotational inertia at the tip cor-

responding to the inertia of that part of the actuator armature and sensor that is

fixed to the beam. From the measured transfer function, the effect of this inertia

was at a frequency higher than the region of interest, so for the control design, the

tip rotational inertia was assumed to be zero. The dereverberated mobility based



on this assumption is also shown in Figure 6.2.

The optimal compensator with unity weighting is proportional to , given

in Equation (5.11). This compensator can also be derived from previous wave

approaches, and had been implemented on this beam in [291. In order to test the 4,.

approach, a weighting function was selected to emphasize a narrow frequency band

near 35 rad/sec. This corresponds approximately to the frequency of the 7
th mode

of the beam. The minimum value of W1 in this region was approximately 0.65, and

the weighting increased to near unity a factor of -v above and below this frequency,

as shown in Figure 6.3. The optimal compensator from slope rate to moment for

this case was found to be well approximated by the product of the unweighted

optimum, •, and a two pole, two zero lag-lead network. This network provided

the phase lead that is required so that at the center of the weighted region, the

phase approaches the unconstrained optimal phase of 45* (from Equation (5.10)),

allowing the compensator to dissipate more power. The optimum poles and zeroes

of this network are symmetric about the center frequency of the weighting function

W1 , at 35 rad/sec. The two free parameters of this network were optimized to

minimize the M,, norm of the cost. This results in the compensator from slope rate

to moment being

K(s) = 63.4- . 2 + 38.5 - 3210(6.1)

The available measurement, however, was proportional to angular acceleration,

and thus a further integration was necessary to obtain angular rate. This integrator

was rolled off at DC to prevent saturation and drift problems. The second order

dynamics were chosen to have a natural frequency of 0.5 Hz, and a damping ratio

of 0.5. Finally, an additional gain was necessary to obtain the compensator from

the sensor signal to the actuator input. The resulting compensator as implemented

was
gs)--81. . -+ 38.58 +6 6 - 3s ( 4a

K(s) = 811011 2 + 3. 9+ + 3.1446 (6.2)
- -2 + 1008 + 3210) a2 +3.14s + 9.876



The implementation of the half integrator 7 is presented in [26]. The transfer

function of the circuit used to approximate this is shown in Figure 6.4. The approx-

imation is excellent in the region of interest, however at higher frequencies, it rolls

off too quickly, and there is an associated phase drop, as shown in Figure 6.4. The

measured compensator in the experiment is compared with the desired compensator

in Figure 6.5. Good agreement is obtained, except at low frequencies where the DC

rolloff of the integrator has a noticeable effect, and at frequencies higher than those

shown, where the approximation to 7 is poor. The actual compensator has some

additional phase lead at 35 rad/sec, primarily due to the integrator dynamics, which

results in increased damping at this frequency at the expense of poorer performance

at low frequencies.

6.3 Results

Once the compensator was implemented, the gain was gradually turned from zero

towards the optimal value. Because the actuator and sensor were not truly collo-

cated, and had some dynamics, the plant was not actually positive real. Due to this,

and because of the additional phase lag of the half integrator at high frequencies,

the compensator could not be implemented at full gain without destabilizing high

frequency modes of the beam. At 65% of the full gain, there was an instability

at 775 Hz. (If a Bernoulli-Euler pinned free beam model were appropriate at this

frequency, this would correspond to approximately the 90th mode of the beam.) At

60% of the optimal gain, a significant improvement in the response of the beam was

already apparent, as shown in Figure 6.6. This figure compares the open loop with

the closed loop transfer function from force at the free end to collocated velocity.

The corresponding open and closed loop transfer functions for velocity feedback

can be found in [29]. The results for the M.. technique presented here show some

improvement over rate feedback already, even though full gain was not used. As



desired, the modes in one particular frequency range are damped more heavily than

others. This range is slightly higher in frequency than that desired due to the im-

plementation at less than the optimal gain. Note that the spikes present in the data

at 16.4, 19.8, 24.3, and 24.5 Hz correspond to torsional modes of the beam, which

are excited by the shaker but are uncontrolled by the moment actuator.

The predicted response based on the implemented compensator is plotted in

Figure 6.7. This was calculated from the experimental compensator transfer func-

tion using the approach of Section 2.3. Reasonable agreement is obtained between

this prediction and the actual transfer function, although the achieved performance

is noticeably better than that predicted. A prediction based on the desired, opti-

mal compensator would be poorer due to the significant additional phase lead at

35 rad/sec in the actual compensator.

Further experimentation is still necessary. The implementation of the compen-

sator could be improved at both low and high frequencies, and this might allow

better performance to be achieved, at a higher gain. Ideally, the experiment should

be done on a structure with truly collocated sensors and actuators. This could be

done on this beam by mounting a tachometer on the torque motor. Ultimately,

however, in any experiment, the input to output transfer function will not remain

positive real for sufficiently high frequencies, and the compensator design should be

modified to recognize this fact. This could be done after the )oo approach developed

in this thesis has been applied, by including additional roll-off in an ad hoc manner.

This would reduce the complementary sensitivity at higher frequencies, so that the

singular value test of Slater [37] could be passed. Alternatively, and preferentially,

the singular value constraint could be embedded in the design process. Thus this

experiment has indicated at least one direction that future research into this control

design approach should take.
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Chapter 7

Conclusions and

Recommendations

7.1 Summary

In this thesis an approach to broadband active damping of modally dense structures

with significant uncertainty has been presented. Both modelling and control design

issues for this class of problems were investigated. Instead of a wave-based or modal

model, the structure is modelled with its dereverberated mobility. The maximum

power flow into the structure is minimized by solving an equivalent M)4 control

problem.

7.2 Contributions and Conclusions

1. A wave based model of the local dynamics of a structure near a collo-

cated and dual sensor and actuator pair is equivalent to a dereverberated

model of the structure. The dereverberated model is more general than

a local wave model, as it can be easily applied to any structure. This

model can be calculated directly from the driving point impedance, by



taking its logarithmic average, and can therefore be applied even when

only experimental data are available. The dereverberated model retains

many of the advantages of wave models. The local information can be

determined with less uncertainty than the full structural model, while the

global dynamics of the structure can be modified by controlling the local

dynamics near an actuator, with a control law based only on this local

model.

2. A causal, guaranteed stabilizing, optimal compensator can be obtained by

minimizing the maximum power flow into the structure. This results in

a positive real controller which dissipates power at all frequencies. This

can be compared with several other compensators that could be designed

based on the same model. The compensator that dissipates the most

power at every frequency is in general noncausal, and cannot be imple-

mented. M2 optimal power dissipation [28] does not guarantee stability,

and simple rate feedback is stabilizing, but not necessarily optimal. The

desirable properties of the solution can be retained while increasing the

importance of a certain frequency range, through the use of a weighting

function.

3. The technique was demonstrated for several simple examples. If a weight-

ing function is chosen to emphasize some frequency range, then at the

frequency deemed most important, the optimal compensator is close in

both magnitude and phase to the unconstrained optimum. Thus at this

frequency, it dissipates almost all of the incoming power possible. The

compensator still dissipates some power at all frequencies, and is there-

fore guaranteed to be stable. The unconstrained optimal compensator

thus provides some insight into how one could select the best compen-

sator without requiring the M, design approach. The transfer function

should be chosen to match the unconstrained transfer function as closely



as possible in both magnitude and phase at the frequencies deemed im-

portant, while maintaining causality and positive realness.

4. Experimental results indicate that this approach to modelling and control

design performs satisfactorily. Significant damping was added to many

modes of a laboratory structure, without the large effort in system iden-

tification, off-line computation, and compensator complexity that would

be required of many control design techniques. Greater damping was

achieved than in velocity feedback experiments on the same structure

[291. Difficulties arose, however, for two main reasons. First, the imple-

mentation of the compensator was not perfect, particularly at low and

high frequencies. Second, and more important, the actuator and sensor

were not collocated, and may have had additional dynamics, so that the

plant transfer function was not positive real at all frequencies as assumed.

7.3 Recommendations

1. The approach presented in this thesis works for systems which have a

positive real transfer function between the sensor and actuator. In real

structures, this will never be the case, due to actuator and sensor dynam-

ics, time delays, and noncollocated actuators and sensors. Further work

should investigate ways to modify the control design technique to allow

for perturbations from the positive real condition, for example using the

results of Slater [37]. One approach to doing this was discussed briefly in

Chapter 4. Stability can be guaranteed by solving an ), minimization

problem, with a constraint on the M),. norm of a second transfer function.

Whether this problem can be easily solved is an open question.

2. Further experimentation is necessary to obtain a better comparison be-

tween this technique and existing control design approaches. On the struc-



ture used in the experiment in Chapter 6, this could include a better

implementation of the compensator, and either a hardware modification

to give a collocated sensor and actuator, or some allowance in the com-

pensator design procedure for non-collocation. Also, the experiment was

conducted on a structure which could be easily modelled with a wave ap-

proach. Experimental results on a more complex structure for which this

is not the case would be valuable in justifying the modelling approach

presented in this thesis.

3. There may be a relationship between the modelling and control design

approach presented here, and existing approaches, such as MEOP [5] and

other optimal wave control methods [28]. These connections should be

investigated. In particular, Miller et al. [28] solved an N2 optimal control

problem, while this research solved a similar W.. problem. A combination

of these two problems would be of interest. Closed loop stability can be

guaranteed with an ,. constraint, and an N2 optimization could then

guarantee performance [6,31]. Depending on the value of the constraint,

this approach could yield solutions varying from the )N. optimal solution

presented here, to the )2 optimal solution of Miller et al. [28].

4. The approach presented in this thesis optimizes the power dissipation

associated with the control input, which results in active damping of the

structure. However, damping is not necessarily a suitable performance

criterion for all structural control problems. The algorithm should be

modified to allow for the evaluation and optimization of other performance

criteria, such as line-of-sight pointing error.

5. In general, the first few modes of a structure are relatively well known,

and the uncertainty increases with frequency. A compensator which dis-

cards this information is suboptimal. An additional modification to the



approach should be to incorporate some knowledge of the lowest modes

of the structure.
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Appendix A

Beam oo Compensator

For a free-free beam with dereverberated mobility G(a) = I, the compensator that

minimizes the maximum power flow into the structure can be found analytically.

From Equation (4.30) the problem is to find a stable, causal compensator that

minimizes the N), norm of the transfer function from w to G-u + w. From the

definition of Go (Equation (4.23)),

1 1
GoG = +

= -+
78Ivff-

(A.1)

(A.2)

Or,

Go(8)- (A.3)

Since d = Gow, then from Equation (4.4),

u = HGow (A.4)

The compensator K from y to u will be stable and causal provided H is also stable

and causal. Thus the problem is to find H to minimize

IJIG HGo + 11100 (A.5)



The solution to this, using the notation of Francis [15] is

- = minIjIG'HGo+111o (A.6)

= minn I H- + (A.7)

= min -H1 + 11 (A.8)

Equation (A.8) is of the form

S= min IIR - Xll0 (A.9)
H

where

R- (A.10)

X -- H (A.11)

The problem now is to find X E Mo to minimize JIR - XII,. From the maximum

modulus theorem, only the imaginary axis need be considered, so substitute s = jw

to give
1-jR = (A.12)

There are three possible options for the behavior of X(s) at the origin. Either X

has a pole at zero, in which case IR - X(., is infinite, X has a zero at the origin,

in which case JjR - X1, 2Ž 1, or X is a constant, with either 0* or 180* phase. In

the last case, the smallest value JR(0) - X(0) I can have is '•', for X(O)= 1. Thus

there cannot exist X(s) for which jR - XI1. < 1. Since the solution X(s) =

results in DJR - Xll = 72, this must be an optimal solution. From Equation (A.11),

1
H = (A.13)

and from Equation (4.16), the compensator from the output y to u is given by

K = V (A.14)



Appendix B

Damping Prediction from Power

Flow

The M, control design approach described in Chapter 4 yields information about the

closed loop power flow achieved, via Equation (4.39). It would be useful to relate

this to the closed loop modal damping achieved in the structure. For arbitrary

structures, this is extremely difficult. However, for a simple structure such as the

free-free beam of Example 1, in Section 5.1, a relationship between power flow and

damping can be derived.

To do this, consider a wave-packet travelling through the structure. The wave-

packet is a spatially localized disturbance, which is also narrowband in frequency,

and thus can be approximated as having a single frequency. Though a disturbance

that is simultaneously both spatially localized and of a single frequency is not pos-

sible, it is an approximation that can lead to reasonable results for sufficiently high

frequency. The wave-packet travels at the group velocity v, of the structure, which

is a function of frequency:

v 2Vw (B.1)
ak CO



where co is defined in Equation (2.52). Therefore, for a beam of length t, in a time

tl = - (B.2)

the wave-packet has travelled through the beam and back to its original position,

with a decrease in amplitude associated with travelling once through the controlled

junction.

The compensator absorbs a fraction 6(w) of the total power available. Thus in

one cycle, the energy of the wavepacket decreases to

E(tl) = (1 - 6)E(0) (B.3)

and the amplitude, which is proportional to the square root of the energy, decays

to

A(tl) = VI A(O) (B.4)

The modal solution is of the form

u(t) = aiti(z)e(Co+iwi)' (B.5)

The wave-packet at time tl in Equation (B.2) has the same shape as at t = 0, and

only the amplitude has changed. If the disturbance is approximated to consist of

only a single frequency, and if this frequency corresponds to that of mode n, then

the amplitude at tx is related to the initial amplitude by

(ti) e- (B.6)
u(0)

Comparing this with the wave solution in Equation (B.4), then one finds that the

real part of the eigenvalues is given by

= log(1 - 6(w,)) (B.7)
2tl

Combining this with Equation (B.2), then

log(1 - 6 (w,))yV-. (B.8)
2tco



where the power absorbed, 6(w), is given by Equation (4.39) as

1 - y•

In particular, if the weighting function W1 is unity, then

log('y) Z• (B.IO)
an = -(B.10)

tco

Finally, the modal damping ratio ýn is related to a, by

-, = Ln (B.11)
Wn

Thus with equal power absorbed at all frequencies, the time constant of the beam

modes increases with frequency, and the modal damping ratio decreases.
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