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Problem Set #3

Problem 1: A Square Lattice (Similar to problem 4.1 in the 6 edition of Kittel but

absent from the 7" edition)

Consider the vibrations of a planar square lattice of lattice constant a. There is only
one atom of mass M in each primitive unit cell and it is restricted to motions perpen-
dicular to the plane (transverse motion). We will assume only nearest neighbor
interactions, for which the force constant is C. Let u; , denote the transverse displace-

ment of the atom in the 1™ column and the m™ row.

a) Show that the equation of motion is
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M = Cl (U + Uy m—20) Uy U o — 2um 1.

b) Show that the dispersion relation is found from the expression

Ma? = 2C(2—cos kya—coska).

¢) Find the first Brillouin zone. Sketch the dispersion curve, ® verses k along

the % direction, the direction where k, = ky, and along a straight line path from
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d) Show that the dispersion curve is isotropic for small k, and find the limiting

value of the group velocity as k—0, that is, the sound velocity in the lattice.
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Problem 2: Atomic Displacements in the Diatomic Linear Chain

Do problem 3 (4) at the end of chapter 4 of 7th (6"‘) edition of Kittel.

Problem 3: A Different Diatomic Chain

Do problem 5 (6) at the end of chapter 4 of 7t (6“‘) edition of Kittel.

It is often said that phonons are sound waves in a crystal. This is not strictly
true. In fact, a sound wave is a coherent state of the harmonic oscillator which
is associated with a particular phonon. In a similar way, the microwave radiation
from a klystron or the optical radiation from a laser well above threshold are
coherent states of the electromagnetic field. The following three questions are
designed to introduce you to (or remind you of) the coherent state of a harmonic

oscillator.

Problem 4: Time-Dependent Wavefunctions

An arbitrary time-dependent wavefunction ‘¥(x,t) can be written in terms of the

time-independent energy eigenfunctions y,(x) as follows:
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a) Assuming the y, form an orthonormal complete set, Jw,;(x)\un(x) dx =9
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find the coefficients c, in terms of the wavefunction at t=0, ¥(x,t=0).

b) In the case of a simple harmonic oscillator of frequency ®, show that, with the

possible exception of a factor of -1, W(x,t) is periodic with a period T = 2w.
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Problem 5: Consequences of Spatial Localization for a Harmonic Oscillator
For a harmonic oscillator we will show that if ¥(x,t=0) = d(x—x,), then

Y(x,t=T/4) is a plane wave.

a) Expand W(x,t) in terms of the energy eigenfunctions y,(x). Find a expression
for the expansion coefficients, c, in terms of the W, (x,). Write down the expres-

sion for W(x,t=T/4) as an infinite sum over the energy eigenstates.

b) The formal expression found in a) for ¥(x,t=T/4) does not appear at all like a

plane wave. However, plane waves are eigenstates of the momentum operator,
—ihai. Apply this operator to W(x,t=T/4). Use the recursion relations below to
X
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express in terms of y,,, and y,_;. Rearrange the resulting sum so that

each y,(x) appears only once with a coefficient containing both Y_1(X,) and
Wp,1(X,). Use the recursion relations again to consolidate these terms in such a

way that ‘¥(x,t=T/4) is retrieved. What is the particle’s momentum at t=T/4?

The energy eigenstates of a harmonic oscillator obey the recursion relations

[% + a%} Yu(x) = ‘E‘G\yn_l(x)
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where a = VE¥mo.



Problem 6: The Coherent State

The probability density associated with an energy eigenfunction is independent of
time. In particular, it does not oscillate back and forth in space. The quantum

state which most closely approximates the classical behavior of a harmonic oscil-
1 . ; . )
lator, V(x) = ) m®? x2, is called the ‘coherent state’. It is not an eigenstate of

energy, position, or momentum.
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where x,=(#2m®)” and o is a dimensionless constant.

a) Find and sketch the time-dependent probability of finding the particle at x.

b) Show that ‘F(x,t) satisfies the time-dependent Schroedinger equation. (This is

not conceptually difficult. It just requires care and patience.)

You may be interested in some other properties of the coherent state. The proba-

bility that a measurement of the energy will give the n' energy eigenvalue,

2

HKo(n+)2), is a Poisson distribution with mean value <n> = o“. The coherent state

is an eigenfunction of the lowering operator with eigenvalue oe .
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