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Abstract

Recent approaches to multi-task learning have investigate use of a variety of
matrix norm regularization schemes for promoting featuraring across tasks.
In essence, these approaches aim at extending thramework for sparse sin-
gle task approximation to the multi-task setting. In thipgawe focus on the
computational complexity of training a jointly regulartzenodel and propose an
optimization algorithm whose complexity is linear with ttiember of training ex-
amples and(n log n) with n being the number of parameters of the joint model.
Our algorithm is based on setting jointly regularized logsimization as a con-
vex constrained optimization problem for which we develog#icient projected
gradient algorithm. The main contribution of this papehis derivation of a gradi-
ent projection method with _ ., constraints that can be performed efficiently and
which has convergence rates®f1/¢) for any convex Lipschitz loss function.

1 Introduction

Multi-task learning has had a relatively long history in mime learning [Ando and Zhang, 2005,
Argyriou et al., 2006, Baxter, 1997, Obozinski et al., 20B&jna et al., 2006, Amit et al., 2001,
Torralba et al., 2006, Quattoni et al., 2008]. Broadly sjpegkhe goal of multi-task learning is to
exploit commonality among tasks by training classifiersrédated problems together with a shared
representation.

In this paper we focus on convex formulations of multi-tasdrhing based on jointly regularized loss
minimization. The main idea of joint regularized loss miigation is to cast the multi-task learning
problem as a penalized convex optimization. Under this é&aork one seeks to find parameters
W = [wy,...,w,,] for m tasks which minimize the sum of the losses of each classifiir an
additional penalty term that controls the “joint complgkiof the coefficient matrix4’. In general,
the penalty term is designed to promote feature sharingatasks and to minimize the total number
of features used by any task.

Different penalty terms have been proposed in the liteegattypically involving a composition of
norms over the coefficient matrix. Recent work consideredet®regularized with ah _ ., norm
[Tropp, 2006, Quattoni et al., 2008]; this norm penalizesstim of the maximum absolute values of
the coefficients of each feature across tasks, and can beagbawninimize the number of non-zero
rows in the coefficient matrix.

We believe that to take full advantage of multi-task leagrtime optimization algorithm should scale
to large number of dimensions, training examples and tdskisting methods for solving problems
involving I; ., regularizaiton have relied on general LP and QP solversghware not typically
able to scale to handle large numbers of input points. Ingaser we propose a projected gradient
algorithm forl; _ .. regularized joint loss minimization whose complexity isdar with the number
of training examples an@(dm log dm), whered is the number of input dimensions andis the
number of tasks.



Because of their scalability properties, projected sutligrda methods have been recently revived
in the machine learning community for solving constrainptiroization problems involving large
number of examples and dimensions. For example, Shalea®het al. [2007] proposed a pro-
jected subgradient method for solving large scale suppmtiov machines, and Duchi et al. [2008]
proposed an analogous algorithm withregularization. Our approach follows this line of research
we cast jointly regularized loss minimization as a convemstained optimization and develop an
efficient projected gradient algorithm. Results from ojitition theory allow us to guarantee con-
vergence rates aP(1/¢?) for any convex loss function with our method. The main chajiein
developing a projected gradient algorithm fer ., constraints resides on being able to efficiently
compute Euclidean projections onto the ., ball. We show that this can be doneGi{dm log dm)
time, wherad andm are the number of dimensions and tasks.

2 Previous Work

In recent years various approaches for joint regularized Iminimization have been proposed
[Obozinski et al., 2006, Argyriou et al., 2006, Amit et alg®, Ando and Zhang, 2005, Quat-
toni et al., 2008], in this section we focus on the convex fadations of the problem that are most
closely related to our work.

Obozinski et al. [2006] proposed a joint regularizatiomfeavork based on ah _, matrix norm
on the problems coefficientd’. The proposed norm penalizes the sunisehorms of the block
of coefficients associated with each feature across taskepfimize their objective they proposed
a blockwise boosting scheme based on boosted-lazzo, anipgtion algorithm developed fdg
regularization. They show that for twice-differentiabliloagly convex loss functions their algorithm
will converge in a finite number of iterations, but no boundtioa rate of convergence is available.
Their algorithm can in theory be extended to handle stronglyex losses regularized with other
11—, norms, although no applications with_. have been reported.

Argyriou et al. [2006] developed a related formulation alscorporating an intermediate hidden
representation, at the additional computational cost hirging classifiers at each iteration. They
show that their objective can also be expressed as a contiexizgtion for which they develop an
an iterative algorithm which is guaranteed to converge ¢aohtimal solution.

Amit et al. [2001] proposed an alternative joint regulati@a framework based on a trace-norm
penalty on the coefficients matrix, where the trace-normefindd as the sum of the singular val-
ues of W, and derived a method that performs gradient descent on aterapproximation of the
objective.

Quattoni et al. [2008] recently proposed a model for joimdgularized optimization with a norm
penalty that minimizes the total number of features invdlivethe approximation. Their joint regu-
larization exploits a norm derived from simultaneous spaignal approximation methods [Tropp,
2006], thel;_.,, which they optimize with a general LP solver. The number arfiables of the
resulting linear program is equal to the total number ohirag examples plus the number of input
dimensions, and the number of constraints is of similar ritade. It is well known that best linear-
program solvers typically could not handle problems withrenthan several thousand variables.
Thus, while this approach is feasible for small problembgitomes intractable for large data-sets
with a large number of tasks, and thousands of examples amehdions.

The main differences between our approach and previousiizatiion algorithms for joint regular-
ized loss minimization is that faf ., constraints and any convex loss we can guarantee conver-
gence rates that do not depend on the number of the trainegmrs. Furthermore, as long as
the subgradient of the cost function can be computed effigiéme overall cost each of iteration is
small.

3 Joint Regularization for Multi-task Learning

Following Quattoni et al. [2008] we assume that we have @&ctithn of related tasks and a set of data
samples for each of then®) = {T1,..., T} where: Ty, = {(x},y}), (x5, 95),..., (xk vk )}
for x; € R andy; € {+1, -1}



Let w; be the parameters for thieth problem andV = [wy, ws, ..., w,,] to be ad x m matrix
whereW; ;, corresponds to thg-th coefficient of thek-th problem. We are interested in learning
linear classifiers for each problem of the fofiy(x) = w} x.

Consider learning a single sparse classifier; i.e. a classifith a small number of non-zero co-
efficients. Given a training set with examples, a natural way of expressing the problem as a
constrained convex optimization is:

n d
min % Zloss(f(xi)7yi) s.t. Z lw;| < C 1)
T i=1 j=1

Hereloss(f(x),y) in the objective is some convex loss function that measureddss incurred
by the classifier on an example. For the experiments in tipepae use the hinge loss defined as
hinge(f(x),y) = min(0, 1—y f(x)). The constanf in the constraints is a regularization parameter
that controls the amount of sparsity in the model.

In the joint sparse approximation problem we are interestégarningm classifiers that are jointly
sparse. By jointly sparse we mean that we wish only a few featto be non-zero in any of the
problems. It is easy to see that a jointly sparse solutionldvoansist of a matriX?” with only a
small number of non-zero rows. Tropp [2006] showed thatthg, regularization norm defined as:

d
W1l = 3 mac @)

j=1

is a convex relaxation of a pseudo-norm that counts the nuofb®n-zero rows of1’. Given this
matrix norm a natural way of expressing the jointly sparseimization as a constrained convex
optimization problem would be:

Nk

m d
. 1 ky ,k
min ,;_1 - E_l loss(f(x7),y;) s.t. E max lwjr| < C 3)

Jj=1

4 A Projected Subgradient Method for Joint Regularization

Our algorithm for optimizing equation (3) is based on thejgrted subgradient method for mini-
mizing a convex functiot#'(z) subject to convex constraints of the fogne Z, whereZ is a convex
set [Bertsekas, 1999]. In our caB¥z) is the sum of average losses per tasls the matrixiV of
coefficients for each problem arfflis the set of all matrixes witfiW||; o, < C.

A projected subgradient algorithm works by generating ausage of solutiong’ via z'*! =
Py(z' — nV?'). HereV' is a subgradient of’ atz' and Pz(z) = ming ¢z ||z — Z'|| is the Eu-
clidean projection of onto Z. Finally, n; is the learning rate that controls the amount by which the
solution changes at each iteration.

Standard results in optimization literature [Bertsek&99] show that when = % andF(z)is a

convex Lipschitz function the projected algorithm will s@nge to are-accurate solution i) (1/€?)
iterations.

For the hinge loss, computing the subgradient of the objeaf equation (3) atV is straightfor-
ward. The subgradient for the parameters of each task caarbputed independently of the other
tasks, and for thé-th task it is given by:

Vi = > yx @)

(x,y)ETy s.t. yfr(x)<1

In the next section we show how to compute the projection ted, _ ., ball efficiently.



4.1 Euclidean Projection onto thel; ., Ball

In this section we describe an efficient method to project &irma to thel, ., ball. For now, we
assume that all entries iA are non-negative, later we will show that this assumptiopdses no
limitation. The projection can be formulated as finding anraB as follows :

min ,Z i — Aij) ©)

B,u

s.t. Bw S wi o, Vi, j (6)
S p=c ™)
B:,j >0, Vi,j; p =20, Vi (8)

In the above problem, the objective (5) corresponds to thdid@an distance betweefi and B,
whereas the constraints specify thais in the boundary of thé _., ball of radiusC. To do so,
there are variableg that stand for the the maximum coefficientsidfor each feature, as imposed
by constraints (6), and that sum to the radius of the ballprgmsed by constraint (7). Constraints
(8) stand for non-negativity of the new coefficients and maxn values.

The Lagrangian of the projection is given by:

‘C(Bau’aaaea/g77) = 72 ,] 2 + Zal_} 1,7 /1’7)
+ 9(2“1 ) Zﬁz,] i,j T Z’Yiﬂi
i
Differentiating £ with respect taB; ; gives the optimality condltlo%— — A+ ooy —

Bi.; = 0. At the same time, the complementary slackness conditieiated toﬁ |mply that when-
everB; ; > 0theng; ; = 0. Therefore, wheneveB; ; > 0 we have thaty; ; = A; ; — B; ;.

Differentiating £ with respect tqu; gives the optimality condltloﬂ =0- Z o5 — v = 0.
The complementary slackness conditions imply that whem,eye> O then~; = 0 and therefore
0 => ;. Thus0 =3, A;; — B; ; whenever; > 0. This means that when projectingthe
sum of magnitudes removed from a feature willtheand this quantity will be constant across all
the features.

A final observation from the Lagrangian reveals how to obtiaéncoefficients of3 given the optimal
maximumsy. At the optimal solution, the following holds for non-zeroefficients:
Aij > = Bij = 9
Ai,j S i = Bi,j = Ai,j (10)

To prove (9), assume that; ; > p; but B; ; # p;. By (6), if B; ; # p; thenB; ; < p;, which
meansw; ; = 0 due to complementary slackness. This implies that = A; ;, and therefore
A; j < pi, which contradicts the assumption. To prove (10), assumatedth; < u; butB; ; # A; ;.
If B; ; # A; j thena, ; > 0, and saB; ; = u; due to complementary slackness. But singg > 0,
A; j > B; ; = p,, which contradicts the assumption.

With these results, the problem of projecting into the,, ball can be reduced to the following
problem, which finds the optimal maximurps

find , 0 (112)
s.t. Z i = (12)
Z Aij—pi =0, Vi st. p; >0 (13)

A; 3> M



With p we can create a matri® using equations (9) and (10). Intuitively, the new formigat
reduces finding the projection to the ., ball to finding a new vector of maximum absolute values
that will be used to truncate the original matrix. The caaistis express that the cumulative mass
removed from the coefficients of a feature is kept constardsacall features, except for those
features whose coefficients vanish.

So far we have assumed that the input mattiis non-negative. For the general case, it is easy to
prove that the optimal projection never changes the signcokfficient [Duchi et al., 2008]. Thus,
given the coefficient matri¥¥” used by our learning algorithm, we can run the., projection on

A, whereA is a matrix made of the absolute valuesif and then recover the original signs after
truncating each coefficient.

4.2 An Efficient Algorithm to Find p

In this section we describe an efficient algorithm to solvebfem (11). Given a matrixl and a
ball of radiusC, the goal is to find a vectqe of maximums for the new projected matrix, such that
C =), ni- We start by defining the following function:

N(p) = ||Al[1—c — Z,Ui = ijaxAi,j — ZMZ‘ = ijax(Ai,j — 1)

This function measures how much a candidate vegtoeduces the norm ofl. Note that by con-
straint (12) the optimal maximums must accomplish ) = ||A||;_« — C = 6. Note also
that this function can be decomposed feature-wis€(@s) = >, N;(x;), where each component is
NZ(/J,Z) = Inax; Ai,j — M-

The maximumsu truncateA causing a cumulative reduction in magnitude that must beteon
across features, as expressed by constraints (13). We ddfinetion that computes the cumulative
reduction for a featurg given a maximum valug, for the coeffiecients of that feature:

Ri(pa) = > (Aij — i)

Aj >

Thus, we are interested in findingandé such thaiN(u) = 6 andVi R;(u;) = 6. Our strategy is
to first find6, and then fings by building the inverse function @t;, sou; = R;*(6).

To gain insight of the relation betweeW(u), R;(u;) andd, we start by looking at the simpler
relationship between the function§ andR; and a new maximum valug;. Lets; be a vector
of the coefficients of featurein A sorted in decreasing order, with an addeat positionm + 1,
Si1 > Si2 > ... > Sim > Sim41 = 0. Itis easy to see thdt; is piecewise linear with intervals
[Si ks Sijk+1], and that the slope at theth interval is—k. Let us define a vectar; where each

componentis; = Ri(s; k) = Z?le(sm — Sik) = Z;‘.:ll sij — (k—1)s; .

Finally, consider the functiod;(6) = N;(R; ' (6)), that given a reduction of the coefficients mass
of feature; computes the reduction of the matrix norm. This functionl$s giecewise linear, with
intervals[r; , 7 x+1] for 1 < k < m. Furthermore, we know tha;(r; 1) = N;(s; 1) = i1 — Si k-
Thus, the gradient of; can be computed as :

Ni(sikt1) — Ni(si k) . Si,1 — Sik+1 — Si,1 + Sik

1
Tik+1 — Tik Z?:l Si5 — kSi g1 — Ef;ll Sij T (k — l)si,k k

Recall thatN is the sum ofN;. Similarly, we can consider the sum 8&f, which is also a piecewise
linear function, with intervals given by merging the valwésll vectorsr;. The algorithm in Figure
1 builds the pieces of eadf} incrementally, until it finds @& such thad ", F;(6) = o:

The cost of the algorithm is dominated by the sort and merggations. The initial sorting of
vectors take® (dm log m). Merging the vectors and visiting its elements tak¥gm log d). Thus,
the total cost of the projection algorithm @¢(dm log dm). Notice that the projection algorithm
only needs to consider non-zero rowsAf Thus, in this complexity cost] can be interpreted as
the number of non-zero rows, rather than the actual numbeatdres. This property is particulary
attractive for learning methods that maintain sparse aoeffis, such as online learning methods.



Algorithm  Given a matrix4 € R4*™, ands :
e Create the vectors; by sorting the rows ofd in decreasing order. Then, with eagh
create vectors;, sorted increasingly by construction.

e Run a merge algorithm on thksorted vectors;. At each iteratiort the merge algorithm
visits an elementi, k, r; 1), ensuring that elements are visited in increasing ordey in
While merging:

— Maintain a vector of gradients for each feature, witly; = 1/k, wherek is the
number of values of,; that have been visited.

— Incrementally build a list of pointé-?, n*), wherer? is the value visited at stepof
merge, anch! is the reduction ifl; _ .. norm wherg = r*. Initially n® = 0, then:

nt _ nt—l + Zgi(rt _ Tt_l)
e Stop whem!™! > §. With the gradient values after the update in stegetd as
0:rt+(5—ni)/2gi

Let k be the last visited value af; until stept, then set

i =max { s;x — (0 —rik)/k, 0}

Return p

Figure 1: An algorithm to find optimal maximums
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Figure 2: Synthetic experiments. Left: test error. Rightatfire selection performance.

5 Experiments

For all experiments we compared the ., projection with both independetit projections for
each task and independdntprojections, To compute the independénprojections we used the
algorithm of Duchi et al. [2008]. In all cases we used a prigie¢subgradient method, thus the only
difference is in the projection step. For all the experirsem¢ used the sum of average hinge losses
per task as our objective function. The learning rate wascseg//t, wheren, was chosen to
minimize the objective on the training data. All models were for 200 iterations.

5.1 Synthetic Experiments

To create data for these experiments we first generated ptesi = [wy, wa, ..., w,,] for all
tasks, where each entry was sampled from a normal distibutith 0 mean and unit variance. To
generate jointly sparse vectors we randomly selected 108#tedeatures to be the relevant feature
setV. Then for each task we randomly selected a subseid zeroed all parameters outside

Each of the dimensions of the training poinds for each task was also generated from a normal
distribution with 0 mean and unit variance. All vectors wren normalized to have unit norm. The
corresponding labelg® were set tasign(wx%). The test data was generated in the same fashion.
The number of dimensions for these experiments was set tar2dthe number of problems to 60.

"We make sure thaw| is at least half the size df
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Figure 3: Average EERs on the Reuters Dataset.

We evaluated three types of projectioris- ., independent, and independeriy. For each pro-
jection the ball constraint§’ were set to be the true norm of the corresponding parameiéat

is for thel;_ . norm we setC’ = ||[W]|1_, for the independent, norms we seC}y = ||w||2
and for the independeit norms we se€), = ||w||;. We trained models with different number of
training examples ranging from 10 to 640 examples per tadleaaluated the classification error of
the resulting classifier on the test data.

Figure 2 shows the results of these experiments. As we woyldat, given the amount of feature
sharing between tasks, the ., projection results in better generalization than both prestelent
and independerit projections. Since we know the relevant featurélsatve can evaluate how good
thel, andl; ., projections are in recovering these features. For each Innaake the coefficient
matrix W learnt and select all the features corresponding to nonm-zeefficients for at least one
task. The right plot shows precision and recall of featutecsi®n for each model, as we increase
the number of training examples per task. As we can see beth thodel and thé; ., can easily
recognize that a feature is in the relevant set : the recalidth models is high even with very few
training examples. The main difference between the two isaden the precision at recovering
relevant features: thig_., model returns significantly sparser solutions.

5.2 Visual Category Recognition Experiments

For this experiments we collected a dataset from the Ren&svs-website. Images on the Reuters
website have associated story or topic labels, which cpored to different stories in the news.
There were a total of 25,589 images and 316 stories, an imagé&long to one or more stories.
The experiments involved the binary prediction of whetheinaage belonged to one of the 40 most
frequent stories, these are all the stories for which we hézhat 80 positive images in the training
partition. Story examples are: Golden Globes, Australiper®) Danish Cartoons or Afghanistan.

We partitioned the data into four sets: 5,000 images werd aseunlabeled data to compute an
image representation, 5,000 images were reserved asti@tidiata, and 10,589 images as training
data. The remaining 5,000 images where used for testinge&ar of the 40 most frequent topics
we created multiple training sets of different sizes= {15, 30,60, 120, 240}: each training set
containedn positive examples angin negative examples. All examples were randomly sampled
from the supervised training data. We performed 10 runs efettperiments by randomizing the
selection of training examples.

For all the experiments we computed and image representatiovo stages. In the first stage we
create and initial bag of words representation, contaiBif§0 visual words. In the second stage we
used the unlabeled data = [z, x2..z,], wherez; is the bag of words representation of an image,
to compute our final representation. We do this by perforn8®i on U to obtain a projection
matrix P, where each column &f corresponds to an unlabeled data sample. Finally, the negem
representation is built by projecting the initial bag of @erepresentation to the space spanned by
the columns of?. The size of the final image representation is given by thk o/ which in these
experiments was 3,000.

As in the synthetic experiments we compare the,, projection with independerit projections
and independerit, projections. To validate the constatitfor each model we assume that we have
10 topics for which we have validation data. We choseihkat minimized the average Equal Error
Rate on these topics, for tried values(of= {1, 10,100}.



Figure 4: Sparsity patterns df; (left) andl;_ (right) coefficient matrices. Rows corresponds to features,
whereas columns correspond to tasks. The right legend indicates gheerghts to colors.

Figure 3 shows results on the Reuters dataset. The left ptavtsthe average EER over the 30
non-validation topics for the three different types of pajons. It can be seen that independent
[, projection results in better performance than indepentegnmtojection but they are both outper-
formed byl, _. projection. The right graph shows the average EER for eatheo80 stories for
models trained with 30 examples. It can be observed thatéhfenmance of thé, ., model is
quite robust as it improves performance for all but a fewdspFigure 4 shows the absolute values
of the coefficient matrices learnt with 30 examples ffoand/; _ ., regularization. Clearlyj;_ .,
produces a joint sparsity pattern.

6 Conclusion

In this paper we have presented a simple and effective #hgoror training joint models with
l1_ constraints. The proposed algorithm has a convergencefral¢l /?) and a computational
cost that scales linearly with the number of examples ant @{dm log dm) with the number of
problems and dimensiong,andm respectively. The experiments show that this algorithmfoah
solutions that are jointly sparse, resulting in lower tesbre

One of the advantages of our approach is that it can be eagénded to work on an online set-
ting, where the subgradients would be computed with redpeate or few examples. Indeed, our
algorithm can be easily modified to fit the framework of onlg@vex optimization proposed by
Zinkevich [2003]. This would result in online algorithm fintly-regularized multi-task learning
with provable regret bounds and computational const whichscale to real-sized datasets. Future
work should explore this possibility.
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