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Abstract

Recent approaches to multi-task learning have investigated the use of a variety of
matrix norm regularization schemes for promoting feature sharing across tasks.
In essence, these approaches aim at extending thel1 framework for sparse sin-
gle task approximation to the multi-task setting. In this paper we focus on the
computational complexity of training a jointly regularized model and propose an
optimization algorithm whose complexity is linear with thenumber of training ex-
amples andO(n log n) with n being the number of parameters of the joint model.
Our algorithm is based on setting jointly regularized loss minimization as a con-
vex constrained optimization problem for which we develop an efficient projected
gradient algorithm. The main contribution of this paper is the derivation of a gradi-
ent projection method withl1−∞ constraints that can be performed efficiently and
which has convergence rates ofO(1/ǫ2) for any convex Lipschitz loss function.

1 Introduction

Multi-task learning has had a relatively long history in machine learning [Ando and Zhang, 2005,
Argyriou et al., 2006, Baxter, 1997, Obozinski et al., 2006,Raina et al., 2006, Amit et al., 2001,
Torralba et al., 2006, Quattoni et al., 2008]. Broadly speaking the goal of multi-task learning is to
exploit commonality among tasks by training classifiers forrelated problems together with a shared
representation.

In this paper we focus on convex formulations of multi-task learning based on jointly regularized loss
minimization. The main idea of joint regularized loss minimization is to cast the multi-task learning
problem as a penalized convex optimization. Under this framework one seeks to find parameters
W = [w1, . . . ,wm] for m tasks which minimize the sum of the losses of each classifier with an
additional penalty term that controls the “joint complexity” of the coefficient matrixW . In general,
the penalty term is designed to promote feature sharing across tasks and to minimize the total number
of features used by any task.

Different penalty terms have been proposed in the literature, typically involving a composition of
norms over the coefficient matrix. Recent work considered models regularized with anl1−∞ norm
[Tropp, 2006, Quattoni et al., 2008]; this norm penalizes the sum of the maximum absolute values of
the coefficients of each feature across tasks, and can be shown to minimize the number of non-zero
rows in the coefficient matrix.

We believe that to take full advantage of multi-task learning the optimization algorithm should scale
to large number of dimensions, training examples and tasks.Existing methods for solving problems
involving l1−∞ regularizaiton have relied on general LP and QP solvers, which are not typically
able to scale to handle large numbers of input points. In thispaper we propose a projected gradient
algorithm forl1−∞ regularized joint loss minimization whose complexity is linear with the number
of training examples andO(dm log dm), whered is the number of input dimensions andm is the
number of tasks.
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Because of their scalability properties, projected subgradient methods have been recently revived
in the machine learning community for solving constrained optimization problems involving large
number of examples and dimensions. For example, Shalev-Shwartz et al. [2007] proposed a pro-
jected subgradient method for solving large scale support vector machines, and Duchi et al. [2008]
proposed an analogous algorithm withl1 regularization. Our approach follows this line of research:
we cast jointly regularized loss minimization as a convex constrained optimization and develop an
efficient projected gradient algorithm. Results from optimization theory allow us to guarantee con-
vergence rates ofO(1/ǫ2) for any convex loss function with our method. The main challenge in
developing a projected gradient algorithm forl1−∞ constraints resides on being able to efficiently
compute Euclidean projections onto thel1−∞ ball. We show that this can be done inO(dm log dm)
time, whered andm are the number of dimensions and tasks.

2 Previous Work

In recent years various approaches for joint regularized loss minimization have been proposed
[Obozinski et al., 2006, Argyriou et al., 2006, Amit et al., 2001, Ando and Zhang, 2005, Quat-
toni et al., 2008], in this section we focus on the convex formulations of the problem that are most
closely related to our work.

Obozinski et al. [2006] proposed a joint regularization framework based on anl1−2 matrix norm
on the problems coefficientsW . The proposed norm penalizes the sum ofl2-norms of the block
of coefficients associated with each feature across tasks. To optimize their objective they proposed
a blockwise boosting scheme based on boosted-lazzo, an optimization algorithm developed forl1
regularization. They show that for twice-differentiable strongly convex loss functions their algorithm
will converge in a finite number of iterations, but no bound onthe rate of convergence is available.
Their algorithm can in theory be extended to handle stronglyconvex losses regularized with other
l1−p norms, although no applications withl1−∞ have been reported.

Argyriou et al. [2006] developed a related formulation alsoincorporating an intermediate hidden
representation, at the additional computational cost of retraining classifiers at each iteration. They
show that their objective can also be expressed as a convex optimization for which they develop an
an iterative algorithm which is guaranteed to converge to the optimal solution.

Amit et al. [2001] proposed an alternative joint regularization framework based on a trace-norm
penalty on the coefficients matrix, where the trace-norm is defined as the sum of the singular val-
ues ofW , and derived a method that performs gradient descent on a smooth approximation of the
objective.

Quattoni et al. [2008] recently proposed a model for jointlyregularized optimization with a norm
penalty that minimizes the total number of features involved in the approximation. Their joint regu-
larization exploits a norm derived from simultaneous sparse signal approximation methods [Tropp,
2006], thel1−∞, which they optimize with a general LP solver. The number of variables of the
resulting linear program is equal to the total number of training examples plus the number of input
dimensions, and the number of constraints is of similar magnitude. It is well known that best linear-
program solvers typically could not handle problems with more than several thousand variables.
Thus, while this approach is feasible for small problems, itbecomes intractable for large data-sets
with a large number of tasks, and thousands of examples and dimensions.

The main differences between our approach and previous optimization algorithms for joint regular-
ized loss minimization is that forl1−∞ constraints and any convex loss we can guarantee conver-
gence rates that do not depend on the number of the training examples. Furthermore, as long as
the subgradient of the cost function can be computed efficiently the overall cost each of iteration is
small.

3 Joint Regularization for Multi-task Learning

Following Quattoni et al. [2008] we assume that we have a collection of related tasks and a set of data
samples for each of them:D = {T1, . . . , Tm} where:Tk = {(xk

1 , yk
1 ), (xk

2 , yk
2 ), . . . , (xk

nk
, yk

nk
)}

for xi ∈ R
d andyi ∈ {+1,−1}
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Let wk be the parameters for thek-th problem andW = [w1,w2, . . . ,wm] to be ad ×m matrix
whereWj,k corresponds to thej-th coefficient of thek-th problem. We are interested in learning
linear classifiers for each problem of the formfk(x) = w

T
k x.

Consider learning a single sparse classifier; i.e. a classifier with a small number of non-zero co-
efficients. Given a training set withn examples, a natural way of expressing the problem as a
constrained convex optimization is:

min
w

1

n

n
∑

i=1

loss(f(xi), yi) s.t.
d

∑

j=1

|wj | ≤ C (1)

Here loss(f(x), y) in the objective is some convex loss function that measures the loss incurred
by the classifier on an example. For the experiments in this paper we use the hinge loss defined as
hinge(f(x), y) = min(0, 1−yf(x)). The constantC in the constraints is a regularization parameter
that controls the amount of sparsity in the model.

In the joint sparse approximation problem we are interestedin learningm classifiers that are jointly
sparse. By jointly sparse we mean that we wish only a few features to be non-zero in any of them
problems. It is easy to see that a jointly sparse solution would consist of a matrixW with only a
small number of non-zero rows. Tropp [2006] showed that thel1−∞ regularization norm defined as:

||W ||1−∞ =

d
∑

j=1

max
k
|wjk| (2)

is a convex relaxation of a pseudo-norm that counts the number of non-zero rows ofW . Given this
matrix norm a natural way of expressing the jointly sparse minimization as a constrained convex
optimization problem would be:

min
W

m
∑

k=1

1

nk

nk
∑

i=1

loss(f(xk
i ), yk

i ) s.t.
d

∑

j=1

max
k
|wjk| ≤ C (3)

4 A Projected Subgradient Method for Joint Regularization

Our algorithm for optimizing equation (3) is based on the projected subgradient method for mini-
mizing a convex functionF (z) subject to convex constraints of the formz ∈ Z, whereZ is a convex
set [Bertsekas, 1999]. In our caseF (z) is the sum of average losses per task,z is the matrixW of
coefficients for each problem andZ is the set of all matrixes with||W ||1−∞ ≤ C.

A projected subgradient algorithm works by generating a sequence of solutionszt via z
t+1 =

PZ(zt − η∇t). Here∇t is a subgradient ofF at zt andPZ(z) = minz
′∈Z ||z− z

′|| is the Eu-
clidean projection ofz ontoZ. Finally, η is the learning rate that controls the amount by which the
solution changes at each iteration.

Standard results in optimization literature [Bertsekas, 1999] show that whenη = η0√
t

andF (z) is a

convex Lipschitz function the projected algorithm will converge to anǫ-accurate solution inO(1/ǫ2)
iterations.

For the hinge loss, computing the subgradient of the objective of equation (3) atW is straightfor-
ward. The subgradient for the parameters of each task can be computed independently of the other
tasks, and for thek-th task it is given by:

∇t
k =

∑

(x,y)∈Tk s.t. yfk(x)<1

yx (4)

In the next section we show how to compute the projection ontothel1−∞ ball efficiently.
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4.1 Euclidean Projection onto thel1−∞ Ball

In this section we describe an efficient method to project a matrix A to thel1−∞ ball. For now, we
assume that all entries inA are non-negative, later we will show that this assumption imposes no
limitation. The projection can be formulated as finding a matrix B as follows :

min
B,µ

1

2

∑

i,j

(Bi,j −Ai,j)
2 (5)

s.t. Bi,j ≤ µi , ∀i, j (6)
∑

i

µi = C (7)

Bi,j ≥ 0 , ∀i, j ; µi ≥ 0 , ∀i (8)

In the above problem, the objective (5) corresponds to the Euclidean distance betweenA andB,
whereas the constraints specify thatB is in the boundary of thel1−∞ ball of radiusC. To do so,
there are variablesµ that stand for the the maximum coefficients ofB for each featurei, as imposed
by constraints (6), and that sum to the radius of the ball, as imposed by constraint (7). Constraints
(8) stand for non-negativity of the new coefficients and maximum values.

The Lagrangian of the projection is given by:

L(B,µ,α, θ,β,γ) =
1

2

∑

i,j

(Bi,j −Ai,j)
2 +

∑

i,j

αi,j(Bi,j − µi)

+ θ
(

∑

i

µi − C
)

−
∑

i,j

βi,jBi,j −
∑

i

γiµi

DifferentiatingL with respect toBi,j gives the optimality condition ∂L
∂Bi,j

= Bi,j − Ai,j + αi,j −
βi,j = 0. At the same time, the complementary slackness conditions related toβ imply that when-
everBi,j > 0 thenβi,j = 0. Therefore, wheneverBi,j > 0 we have thatαi,j = Ai,j −Bi,j .

DifferentiatingL with respect toµi gives the optimality condition∂L
∂µi

= θ − ∑

j αi,j − γi = 0.
The complementary slackness conditions imply that whenever µi > 0 thenγi = 0 and therefore
θ =

∑

j αi,j . Thus,θ =
∑

j Ai,j − Bi,j wheneverµi > 0. This means that when projectingA the
sum of magnitudes removed from a feature will beθ, and this quantity will be constant across all
the features.

A final observation from the Lagrangian reveals how to obtainthe coefficients ofB given the optimal
maximumsµ. At the optimal solution, the following holds for non-zero coefficients:

Ai,j ≥ µi =⇒ Bi,j = µi (9)

Ai,j ≤ µi =⇒ Bi,j = Ai,j (10)

To prove (9), assume thatAi,j ≥ µi but Bi,j 6= µi. By (6), if Bi,j 6= µi thenBi,j < µi, which
meansαi,j = 0 due to complementary slackness. This implies thatBi,j = Ai,j , and therefore
Ai,j < µi, which contradicts the assumption. To prove (10), assume thatAi,j ≤ µi butBi,j 6= Ai,j .
If Bi,j 6= Ai,j thenαi,j > 0, and soBi,j = µi due to complementary slackness. But sinceαi,j > 0,
Ai,j > Bi,j = µi, which contradicts the assumption.

With these results, the problem of projecting into thel1−∞ ball can be reduced to the following
problem, which finds the optimal maximumsµ:

find µ , θ (11)

s.t.
∑

i

µi = C (12)

∑

Ai,j>µi

Ai,j − µi = θ , ∀i s.t. µi > 0 (13)
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With µ we can create a matrixB using equations (9) and (10). Intuitively, the new formulation
reduces finding the projection to thel1−∞ ball to finding a new vector of maximum absolute values
that will be used to truncate the original matrix. The constraints express that the cumulative mass
removed from the coefficients of a feature is kept constant across all features, except for those
features whose coefficients vanish.

So far we have assumed that the input matrixA is non-negative. For the general case, it is easy to
prove that the optimal projection never changes the sign of acoefficient [Duchi et al., 2008]. Thus,
given the coefficient matrixW used by our learning algorithm, we can run thel1−∞ projection on
A, whereA is a matrix made of the absolute values ofW , and then recover the original signs after
truncating each coefficient.

4.2 An Efficient Algorithm to Find µ

In this section we describe an efficient algorithm to solve problem (11). Given a matrixA and a
ball of radiusC, the goal is to find a vectorµ of maximums for the new projected matrix, such that
C =

∑

i µi. We start by defining the following function:

N(µ) = ||A||1−∞ −
∑

i

µi =
∑

i

max
j

Ai,j −
∑

i

µi =
∑

i

max
j

(Ai,j − µi)

This function measures how much a candidate vectorµ reduces the norm ofA. Note that by con-
straint (12) the optimal maximums must accomplish thatN(µ) = ||A||1−∞ − C = δ. Note also
that this function can be decomposed feature-wise asN(µ) =

∑

i Ni(µi), where each component is
Ni(µi) = maxj Ai,j − µi.

The maximumsµ truncateA causing a cumulative reduction in magnitude that must be constant
across features, as expressed by constraints (13). We definea function that computes the cumulative
reduction for a featurei, given a maximum valueµi for the coeffiecients of that feature:

Ri(µi) =
∑

Ai,j>µi

(Ai,j − µi)

Thus, we are interested in findingµ andθ such thatN(µ) = δ and∀i Ri(µi) = θ. Our strategy is
to first findθ, and then findµ by building the inverse function ofRi, soµi = R−1

i (θ).

To gain insight of the relation betweenN(µ), Ri(µi) and θ, we start by looking at the simpler
relationship between the functionsNi andRi and a new maximum valueµi. Let si be a vector
of the coefficients of featurei in A sorted in decreasing order, with an added0 at positionm + 1,
si,1 ≥ si,2 ≥ . . . ≥ si,m ≥ si,m+1 = 0. It is easy to see thatRi is piecewise linear with intervals
[si,k, si,k+1], and that the slope at thek-th interval is−k. Let us define a vectorri where each
component isri,k = Ri(si,k) =

∑k−1
j=1 (si,j − si,k) =

∑k−1
j=1 si,j − (k − 1)si,k.

Finally, consider the functionFi(θ) = Ni(R
−1
i (θ)), that given a reduction of the coefficients mass

of featurei computes the reduction of the matrix norm. This function is also piecewise linear, with
intervals[ri,k, ri,k+1] for 1 ≤ k ≤ m. Furthermore, we know thatFi(ri,k) = Ni(si,k) = si,1−si,k.
Thus, the gradient ofFi can be computed as :

Ni(si,k+1)−Ni(si,k)

ri,k+1 − ri,k

=
si,1 − si,k+1 − si,1 + si,k

∑k
j=1 si,j − ksi,k+1 −

∑k−1
j=1 si,j + (k − 1)si,k

=
1

k

Recall thatN is the sum ofNi. Similarly, we can consider the sum ofFi, which is also a piecewise
linear function, with intervals given by merging the valuesof all vectorsri. The algorithm in Figure
1 builds the pieces of eachFi incrementally, until it finds aθ such that

∑

i Fi(θ) = δ:

The cost of the algorithm is dominated by the sort and merge operations. The initial sorting ofd
vectors takesO(dm log m). Merging the vectors and visiting its elements takesO(dm log d). Thus,
the total cost of the projection algorithm isO(dm log dm). Notice that the projection algorithm
only needs to consider non-zero rows ofA. Thus, in this complexity cost,d can be interpreted as
the number of non-zero rows, rather than the actual number offeatures. This property is particulary
attractive for learning methods that maintain sparse coefficients, such as online learning methods.
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Algorithm Given a matrixA ∈ R
d×m, andδ :

• Create the vectorssi by sorting the rows ofA in decreasing order. Then, with eachsi,
create vectorsri, sorted increasingly by construction.

• Run a merge algorithm on thed sorted vectorsri. At each iterationt the merge algorithm
visits an element〈i, k, ri,k〉, ensuring that elements are visited in increasing order inri,k.
While merging:

– Maintain a vector of gradientsg for each feature, withgi = 1/k, wherek is the
number of values ofri that have been visited.

– Incrementally build a list of points(rt, nt), wherert is the value visited at stept of
merge, andnt is the reduction inl1−∞ norm whenθ = rt. Initially n0 = 0, then:

nt = nt−1 +
X

i

gi(r
t − rt−1)

• Stop whennt+1 > δ. With the gradient values after the update in stept, setθ as

θ = rt + (δ − nt)/
X

i

gi

Let k be the last visited value ofri until stept, then set

µi = max { si,k − (θ − ri,k)/k , 0 }

Return µ

Figure 1: An algorithm to find optimal maximumsµ.
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Figure 2: Synthetic experiments. Left: test error. Right: feature selection performance.

5 Experiments

For all experiments we compared thel1−∞ projection with both independentl2 projections for
each task and independentl1 projections, To compute the independentl1 projections we used the
algorithm of Duchi et al. [2008]. In all cases we used a projected subgradient method, thus the only
difference is in the projection step. For all the experiments we used the sum of average hinge losses
per task as our objective function. The learning rate was setto η0/

√
t, whereη0 was chosen to

minimize the objective on the training data. All models wererun for 200 iterations.

5.1 Synthetic Experiments

To create data for these experiments we first generated parametersW = [w1,w2, . . . ,wm] for all
tasks, where each entry was sampled from a normal distribution with 0 mean and unit variance. To
generate jointly sparse vectors we randomly selected 10% ofthe features to be the relevant feature
setV . Then for each task we randomly selected a subsetv and zeroed all parameters outsidev.1

Each of the dimensions of the training pointsx
k
i for each task was also generated from a normal

distribution with 0 mean and unit variance. All vectors werethen normalized to have unit norm. The
corresponding labelsyk

i were set tosign(wkx
i
k). The test data was generated in the same fashion.

The number of dimensions for these experiments was set to 200and the number of problems to 60.

1We make sure that|v| is at least half the size ofV
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Figure 3: Average EERs on the Reuters Dataset.

We evaluated three types of projections:l1−∞, independentl2 and independentl1. For each pro-
jection the ball constraintsC were set to be the true norm of the corresponding parameters.That
is for the l1−∞ norm we setC = ||W ||1−∞, for the independentl2 norms we setCk = ||w||2
and for the independentl1 norms we setCk = ||w||1. We trained models with different number of
training examples ranging from 10 to 640 examples per task and evaluated the classification error of
the resulting classifier on the test data.

Figure 2 shows the results of these experiments. As we would expect, given the amount of feature
sharing between tasks, thel1−∞ projection results in better generalization than both independentl1
and independentl2 projections. Since we know the relevant feature setV , we can evaluate how good
thel1 andl1−∞ projections are in recovering these features. For each model we take the coefficient
matrix W learnt and select all the features corresponding to non-zero coefficients for at least one
task. The right plot shows precision and recall of feature selection for each model, as we increase
the number of training examples per task. As we can see both the l1 model and thel1−∞ can easily
recognize that a feature is in the relevant set : the recall for both models is high even with very few
training examples. The main difference between the two models is in the precision at recovering
relevant features: thel1−∞ model returns significantly sparser solutions.

5.2 Visual Category Recognition Experiments
For this experiments we collected a dataset from the Reutersnews-website. Images on the Reuters
website have associated story or topic labels, which correspond to different stories in the news.
There were a total of 25,589 images and 316 stories, an image can belong to one or more stories.
The experiments involved the binary prediction of whether an image belonged to one of the 40 most
frequent stories, these are all the stories for which we had at least 80 positive images in the training
partition. Story examples are: Golden Globes, Australian Open, Danish Cartoons or Afghanistan.

We partitioned the data into four sets: 5,000 images were used as unlabeled data to compute an
image representation, 5,000 images were reserved as validation data, and 10,589 images as training
data. The remaining 5,000 images where used for testing. Foreach of the 40 most frequent topics
we created multiple training sets of different sizes,n = {15, 30, 60, 120, 240}: each training set
containedn positive examples and2n negative examples. All examples were randomly sampled
from the supervised training data. We performed 10 runs of the experiments by randomizing the
selection of training examples.

For all the experiments we computed and image representation in two stages. In the first stage we
create and initial bag of words representation, containing3,000 visual words. In the second stage we
used the unlabeled dataU = [x1, x2..xu], wherexi is the bag of words representation of an image,
to compute our final representation. We do this by performingSVD on U to obtain a projection
matrixP , where each column ofU corresponds to an unlabeled data sample. Finally, the new image
representation is built by projecting the initial bag of words representation to the space spanned by
the columns ofP . The size of the final image representation is given by the rank of U which in these
experiments was 3,000.

As in the synthetic experiments we compare thel1−∞ projection with independentl1 projections
and independentl2 projections. To validate the constantC for each model we assume that we have
10 topics for which we have validation data. We chose theC that minimized the average Equal Error
Rate on these topics, for tried values ofC = {1, 10, 100}.
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Figure 4: Sparsity patterns ofl1 (left) andl1−∞ (right) coefficient matrices. Rows corresponds to features,
whereas columns correspond to tasks. The right legend indicates the map weights to colors.

Figure 3 shows results on the Reuters dataset. The left plot shows the average EER over the 30
non-validation topics for the three different types of projections. It can be seen that independent
l1 projection results in better performance than independentl2 projection but they are both outper-
formed byl1−∞ projection. The right graph shows the average EER for each ofthe 30 stories for
models trained with 30 examples. It can be observed that the performance of thel1−∞ model is
quite robust as it improves performance for all but a few topics. Figure 4 shows the absolute values
of the coefficient matrices learnt with 30 examples forl1 and l1−∞ regularization. Clearly,l1−∞
produces a joint sparsity pattern.

6 Conclusion
In this paper we have presented a simple and effective algorithm for training joint models with
l1−∞ constraints. The proposed algorithm has a convergence rateof O(1/ǫ2) and a computational
cost that scales linearly with the number of examples and with O(dm log dm) with the number of
problems and dimensions,d andm respectively. The experiments show that this algorithm canfind
solutions that are jointly sparse, resulting in lower test error.

One of the advantages of our approach is that it can be easily extended to work on an online set-
ting, where the subgradients would be computed with respectto one or few examples. Indeed, our
algorithm can be easily modified to fit the framework of onlineconvex optimization proposed by
Zinkevich [2003]. This would result in online algorithm forjointly-regularized multi-task learning
with provable regret bounds and computational const which can scale to real-sized datasets. Future
work should explore this possibility.
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