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Abstract

This Master of Engineering Thesis describes the design and implementation of an
object-oriented Low Level Reader Protocol (LLRP) library. LLRP is a recently re-
leased protocol which standardizes the formats and methods of communication be-
tween RFID Readers and Clients and aims to become the global standard for Reader
management in RFID systems. LLRP provides a standard Reader - Client interface
by defining a number of Messages in binary format, which Clients and Readers can
each send and receive. This implementation uses a nested object model to represent
all the Messages and Parameters defined in the LLRP specification. It also provides
a serialization module, which converts Message and Parameter objects to the binary
format described in the LLRP specification and vice versa. The use of this object
model simplifies the implementation of Client logic and makes it easier to develop
rich Client applications without having to deal with the low level details of the LLRP
interface.
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Chapter 1

Introduction

1.1 Background

Radio Frequency Identification (RFID) is an emerging technology which continues to
be more widely adopted in a number of applications, such as access control, identifi-
cation, automated timing and product tracking. One of the most important uses of
RFID technology is in the supply chain as a mechanism to enhance the manufactur-
ing process. During manufacturing, products are tagged with RFID tags and can be
uniquely identified using the Electronic Product Code (EPC) [9], which is embeded in
the tag. The EPC allows a product to be identified and tracked as it moves through
the supply chain and finds its way to stores and eventually to consumers.

An increasing number of RFID systems are being deployed in order to enhance the
manufacturing process by providing a mechanism for recording business events and
data associated with a product. As RFID systems grow and become more complex,
control and performance of RFID Reader devices becomes more critical [7]. An RFID
system can consist of a large number of RFID readers, continuously feeding data
into the enterprise network. Current RFID Networks lack communications standards
and rely on vendor proprietary interfaces to exchange information between RFID
Readers and the network with which they are connected. Many RFID Readers are
connected to enterprise networks over TCP and are configured to transfer data via

the proprietary network interface. The lack of standards causes difficulties in the
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adoption of RFID technology as it limits interoperability and introduces dependencies
on vendor protocols. These difficulties suggest that a standard Reader-to-Network
interface is needed to reduce complexity in RFID systems and make RFID adoption
easler.

Recently, EPCGlobal has released the specification for the Low Level Reader
Protocol (LLRP) (7], which specifies a standard interface between RFID Readers and
Clients. The interface allows Clients to control and fully utilize Readers, providing
means to retrieve Reader capabilities, control Reader operation, and allowing for
robust status reporting and error handling. While the interface standardizes the way
with which Clients interact with Readers it allows for air protocol specific operation
and provides a mechanism for Reader vendors to define vendor specific extensions.
Adopting the LLRP interface as a standard can, therefore, improve the adoption
of RFID technology without limiting the control and performance of RFID devices.
It is envisioned that LLRP will soon become the standard interface between RFID
Readers and Clients and play a major role in the EPCGlobal Network [5].

This Master’s Thesis describes the design and implementation of an object-oriented
LLRP library. LLRP standardizes the formats and methods of communication be-
tween RFID Readers and Clients by defining a number of Messages that Readers and
Clients can exchange. Messages are encoded in a binary format and transported over
TCP. The Message format allows for a low level implementation which can be adopted
even by RFID Readers with limited amounts of memory. However, on the Client side,
which controls the operation of multiple readers, memory constraints are not likely to
be a problem. It is, therefore, possible to take advantage of a richer implementation,
which will make it easier to develop the Client logic while abstracting away the low
level details of the LLRP interface.

My work in this Master’s Thesis includes the following:

e Design of an object model to represent all Messages and Parameters defined in

the LLRP specification and implementation using C# and the .NET framework.

o A serialization/deserialization module for converting objects to the LLRP bi-
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nary format and vice versa.

e A simple Graphical User Interface for an LLRP Client, which can connect to a

single Reader and exchange default Messages.

1.2 Overview of LLRP

LLRP is an application layer, message-oriented protocol, which standardizes the for-
mats and procedures of communication between Clients and Readers. Using the
LLRP interface the Client can retrieve and change the Reader configuration, control-
ling in this way the Reader’s operation. The functionality provided by the interface

is summarized below:

e Allows Clients to retrieve Reader device Capabilities.

Allows Clients to control Readers to inventory, read, write tags and execute

other access commands.

Allows Clients to control the Reader device operation (e.g. Power levels, spec-

trum utilization, etc.)

Provides robust status reporting and error handling

Allows future expansions for support of additional air protocols

Allows Reader vendors to define custom vendor-specific extensions

1.2.1 Operation

The protocol data units are called Messages and they constitute the mechanism by
which the Client communicates with the Reader. The LLRP specification defines a
number of Messages that the Client and Reader can each send and receive respectively.
Messages can include a variable number of Parameters in order to communicate the

specific details of the LLRP operation that is requested by the Message.
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LLRP Messages are transported over T'CP so it is first necessary to establish a
TCP connection between the Client and the Reader. Clients and Readers can both
initiate or accept a connection. Clients can be connected to multiple Readers, while
Readers can hold a connection to only a single Client. After a TCP connection is
established the Reader must send a status report Message, indicating whether or not
the connection attempt was successful. Once the LLRP connection is established the
Client and Reader can communicate by exchanging LLRP Messages.

For the most part, LLRP operation will involve the Client sending Messages to
retrieve and update the Reader’s configuration. Figure 1-1 shows a typical timeline
of LLRP operations. Every Client Message defined in the LLRP specification has
a corresponding Reader response and consequently, Reader Messages are primarily
responses to Client Messages. Additionally, Readers can send status notifications,

keepalives or respond with an error Message when they receive an unsupported mes-

sage type.

1.2.2 Messages, Parameters and Fields

LLRP supports existing air protocols and provides an extensible mechanism for the
addition of new air protocols in the future. The specification defines a number of
Messages that Clients and Readers can each send and receive, specifying in this way
with which Clients control the Reader’s operation. Messages can be grouped accord-
ing to functionality and allow a great level of control through the use of Parameters.
Parameters are used to communicate specific details of the LLRP operation requested
by a Message and constitute a flexible and extensible mechanism for Reader control.

The structure of LLRP Messages is common across all protocols. Messages contain
a variable number of fields or Parameters. Fields are composed of the following basic

data types:
e Bit
e Bit Array
e Byte Array
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Figure 1-2: Binary Encoding of a LLRP Message

e Boolean

e Short Array

e Signed Integer

e Signed Short Integer

e Signed Long Integer

e Unsigned Integer

e Unsigned Short Integer
e Unsigned Long Integer
e UTF-8 String

Similar to Messages, Parameters have a common structure and may contain fields
or sub-Parameters. It is, therefore, possible to have an arbitrarily deep nesting of

Parameters.

1.2.3 Binary Encoding

LLRP Messages are encoded in a binary format to be transported between Clients
and Readers over a TCP connection. The LLRP specification defines how Messages
and Parameters are encoded as a stream of bytes. Figure 1-2 illustrates the binary
encoding for an LLRP Message.

The details of the binary encoding for LLRP Messages are as follows:
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Reserved Bits: 3 bits
The reserved bits are reserved for future extensions. Implementations of LLRP

based on this specification are using the value 0.

Ver: 3 bits
The version of LLRP. Implementations of LLRP based on this specification are

using the value 0x1. Other values are reserved for future use.

Message Type: 10 bits
The type of LLRP message being carried in the message.

Message Length: 32 bits
Size of the entire message in octets starting from bit offset 0 of the first word.

If the Message Value field is zero-length, the Length field will be set to 10.

Message ID: 32 bits
LLRP uses a Message sequence number in each message. The Message sequence
number is used to correlate a response with the original request. This sequence

number is local to the LLRP channel.

Message Value: variable length
Dependent on the Message Type. Consists of a variable number of LLRP Pa-

rameters

Similar to LLRP Messages, the specification defines the binary encoding for LLRP

Parameters. There are two different encodings for parameters: Type-length-value

(TLV) encoded parameters and Type-value (TV) encoded parameters. TV encoding

is used only for fixed length parameters, which cannot contain any sub-parameters.

Figure 1-3 and figure 1-4 illustrate the binary encoding for TLV encoded and TV

encoded parameters respectively.

The details of the binary encoding for TLV encoded Parameters are as follows:

¢ Reserved Bits: 6 bits

Reserved for future extensions. All reserved bits are set to 0.

19
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Figure 1-4: Binary Encoding of a TV Encoded Parameter

e Parameter Type: 10 bits

The type of LLRP parameter being carried in the message. The parameter

number space for the TLV-parameters is 128-2047.

e Parameter Length: 16 bits

The size of the entire parameter in bytes starting from bit offset 0 of the first

word. If the Parameter Value field is zero-length, the Parameter Length field

will be set to 4.

o Parameter Value: variable

Dependent on the Parameter

The details of the binary encoding for TV encoded Parameters are as follows:

e Parameter Type: 8 bits

Type of LLRP parameter being carried in the message. The parameter number

space for the T'V-parameters

e Parameter Value: variable

Dependent on the Parameter Type. Cannot contain sub-parameters

length
Type.

is 1-127.

length
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1.3 Role of LLRP in EPCGlobal Network

The EPCGlobal Network is a system designed by the Auto-ID Center at MIT together
with other academic institutions and industry leaders around the world and aims to
become the global standard for real-time, automatic product identification in the
supply chain of any industry, anywhere in the world. The EPCGlobal Network will
help increase manufacturing efficiency by providing complete visibility of information,
quick product discovery and access to a product’s history. It is also essential for this
network to support a wide variety of business use cases that may depend on the
particular industry or business sector.

The EPCGlobal Network specification [5], provides a high-level description of the
various components of the network. The stack of components abstracts the different
parts of the EPCGlobal network, starting from the low level tag operations all the way
up to services such as EPCIS [6], Discovery and ONS [4], which are more concerned
with the business context of tag reads.

Figure 1-5 shows the position of LLRP in the EPCGlobal Network.

LLRP is positioned between RFID Readers and the Filtering & Collection (F&C)
applications. As shown in Figure 1-5, RFID Readers are responsible for the trans-
mission of tag data using a Tag Protocol such as UHF Class 1 Gen 2 [3]. F&C
applications filter and collect raw tag reads over time intervals and deliver the filtered
and collected data to the EPCIS capturing application through the ALE [2] interface.
LLRP links the Reader role with the F&C role, allowing the F&C role to control tag

data collection.

1.4 Previous Work

The LLRP standard has been ratified very recently and has not yet been widely
adopted. At the moment there are no implementations of LLRP publicly available
but there is a lot of industry initiative to adopt LLRP as the standard Reader-Client

interface.
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RFID Reader
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Tag

Figure 1-5: Role of LLRP in EPCGlobal Network

Reader manufacturers are among the leaders in the LLRP adoption initiative.
Although some Reader manufacturers have come up with their own LLRP implemen-
tations, no implementation is yet publically available. This implementation would be
one of the first publically available ones and could potentially become part of a larger

open source, collaborative project.

1.5 Organization of this Thesis

Chapter 2 describes the object model design and analyzes the most important design
decisions. The serialization and deserialization processes are detailed in Chapter 3.

Chapter 4 describes the implementation of a Graphical User Interface for an LLRP
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Client. Chapter 5 discusses some of the design decisions as well as alternatives and

possible future work. Finally Chapter 6 concludes this thesis.
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Chapter 2

Object Model Design

Adopting LLRP as the standard RFID Reader to Client interface offers many advan-
tages but it is, however, a challenging task. The protocol offers rich capabilities as
it allows Clients to have full control over Readers, ensuring in this way that Clients
can get maximum performance from devices. The protocol provides this high level of
control while ensuring interoperability and allowing expansion for future air protocols
or different vendor extensions. Therefore, LLRP is more complex than a protocol that
is designed for more vendor specific operation.

The complexity of the protocol essentially lies in the binary nested format, which
is used to represent LLRP Messages and Parameters. Messages exchanged between
Readers and Clients are transported over TCP as a binary stream and can contain
a variable number of Parameters. Outgoing Messages are recursively marshaled into
the binary format on one end and recursively parsed on the other end. This deep
marshaling/parsing is a difficult and possibly error prone task as it requires accurate
manipulation of byte arrays and careful bitwise operations.

In order to abstract away the complexity of the binary nested format, this imple-
mentation of LLRP uses an object model to represent all Messages and Parameters
that are defined in the LLRP specification. Every Message is represented by a class
which implements the IL1rpMessage interface. Similarly, every Parameter is repre-
sented by a class which implements the IL1rpParameter interface. The details of the

IL1lrpMessage and ILlrpParameter classes are described in sections 2.1 and 2.2.
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This implementation provides a mechanism for serializing the objects into the
binary format and deserializing a binary stream to the appropriate objects. During
the serialization/deserialization process an intermediate object is used to represent
the binary encoding. The MessageEncoding class represents the binary encoding of
all LLRP Messages. There are two different encodings for LLRP Parameters, thus two
classes are used, TLVParameterEncoding and TVParameterEncoding. Both classes
implement the ParameterEncoding interface. The details of MessageEncoding and

ParameterEncoding classes are described in sections 2.3 and 2.4.

2.1 LLRP Messages

LLRP messages are the protocol data units by which a Client controls Reader oper-

ation. A Client can send messages to perform one of the following:

Query Reader capabilities

Control the Reader’s air protocol inventory and RF operations

Control the tag access operations performed by the Reader

Query/set Reader configuration, and close the LLRP connection

Messages sent by a Client can change a Reader’s state and, since state consistency
is essential for the system to function properly, all Client messages must be acknowl-
edged from the Reader. Consequently, Reader messages are primarily responses to

Client messages. Additionally, Readers can send the following messages:

e Reports from Reader to Client. Reports include Reader device status, tag data,

RF analysis report

e Errors. Reader responds with a generic error message when it receives an un-

supported message type
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An LLRP compliant Client must be capable of sending all Client messages defined
in the LLRP specification and receive all Reader messages. Similarly, LLRP compli-
ant Readers must handle Client messages properly and be able to send all Reader

messages. As defined in the LLRP specification a Message contains the following:
e Version value
o Message Type
e Message ID
e A variable number of optional or mandatory Parameters

This implementation defines all LLRP messages using an object model and can,
therefore, be used to implement both Client and Reader logic. Each message is
implemented as a concrete class, which implements the IL1rpMessage interface. The
structure of the Message classes, which is common for all Messages, is described below:

Each LLRP Message class contains the appropriate Parameters, as defined in the
LLRP specification. Parameters are objects which implement the IL1rpParameter
interface. A valid Message can be constructed by passing in all the mandatory and/or
optional Parameters to the Message constructor. To ensure data encapsulation, Pa-
rameters are defined as private member variables and are made accessible as public
properties. Properties are a built-in mechanism in C#, which allows access to the data
fields through get/set methods. Message Parameters can be accessed and modified
at any time after a Message is constructed.

In addition to Parameters, Message classes contain a private member variable of
type MessageEncoding. The MessageEncoding class represents the binary encoding
of the Message and provides methods for accessing and setting the Message header
information, i.e. version value, Message type and Message ID. The details of the
MessageEncoding class are outlined in more detail in section 2.3.

As shown in Figure 2-1, all LLRP Messages implement the ILlrpMessage
interface, which defines a single method called GetMessageEncoding(). The

GetMessageEncoding() method returns an object of type MessageEncoding. As
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Figure 2-1: Message Classes

in the case of Parameters, data encapsulation is used for the MessageEncoding field.

The encoding can only be retrieved by calling the GetMessageEncoding() method.

2.2 LLRP Parameters

LLRP Parameters are the mechanism by which Messages communicate the details of
LLRP operation. As defined in the LLRP specification each Parameter contains the

following:
e Parameter Type.
e Individual fields or sub-parameters.

The structure of LLRP Parameters in this implementation is similar to LLRP
Messages. Each LLRP Parameter is implemented as a concrete class which imple-
ments the IL1rpParameter interface. Similar to Messages, Parameters contain the
appropriate fields or sub-Parameters and provide the same construction and access
methods.

There are two different encodings for LLRP Parameters, thus two classes to rep-
resent the binary encoding: TLVEncoding and TVEncoding. All Parameters include

a field of one of the two encoding types. Both Parameter encoding classes implement
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Figure 2-2: Parameter Classes

the ParameterEncoding interface. The details of the TLVEncoding, TVEncoding and
ParameterEncoding classes are outlined in more detail in section 2.4.

As shown in Figure 2-2, all LLRP Parameters implement the ILlrpParameter
interface, which defines a single method called GetParameterEncoding(). The

GetParameterEncoding() method returns an object of type ParameterEncoding.

2.3 MessageEncoding Class

MessageEncoding is a generic class which can represent the binary encoding of all
LLRP Messages. It is used in the serialization/deserialization process as an intermedi-
ate state between the Message Object and the binary encoded format. It is essentially
an object wrapper around the binary format, providing convenient methods for ac-
cessing and setting all parts of an LLRP Message, which are outlined in section 1.2.3.
Figure 2-3 shows a class diagram of the MessageEncoding class, illustrating the public

properties for all the parts of an LLRP Message.
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The header of an LLRP Message consists of the Reserved bits, Version, Message
Type, Message Length and Message ID.

In the current LLRP specification the Reserved bits are all set to 0, while Version
is set to 0x1 by default. Since these values are the same for all Messages they are set
as defaults during the construction of a MessageEncoding object.

The Message Type is an unsigned integer in the range 1-1023. Each Message class
in its constructor sets its Message Type to the value specified in the LLRP specifica-
tion. As shown in Figure 2-4, which shows an example of the default constructor for
a Message class, the implementation provides a MessageTypes enumeration, which is

a useful abstraction for setting the Message Type.

public GET_READER_CONFIG()
{

encoding = new MessageEncoding();
encoding.MessageType = (ushort)MessageTypes.GET_READER_CONFIG;

b,

Figure 2-4: Example of a Message Class Constructor

The Message ID is set by the Client before sending a message to the Reader. This

ID is unique for Messages sent in a single session between a Client and a Reader and
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is used to correlate a response with the original request.

The MessageValue property of the MessageEncoding is set by the Message class
when the GetMessageEncoding() method is called. Figure 2-5 shows an example of
an implementation of the GetMessageEncoding() method. Message Parameters are
serialized into the binary format and merged into a single byte array, which constitutes

the MessageValue. The details of the serialization process are analyzed in Chapter

3.

public MessageEncoding GetMessageEncoding()
{
List<object> parameters = new List<object>();
parameters.Add(antennald) ;
parameters.Add(requestedData);
parameters.Add(gpiPortNum) ;
parameters.Add(gpoPortNum) ;
foreach (CustomParameter customParameter in customExtensionPointList)
parameters.Add(customParameter) ;

encoding.MessageValue = Serialization.GetBytes(parameters);
return encoding;

Figure 2-5: Example of a GetMessageEncoding() method implementation

Finally, the MessageLength property is calculated dynamically by adding the
lengths of the Message header and Message Value. No set method is provided for

Message Length since it is a derived value.

2.4 ParameterEncoding Classes

Similar to the MessageEncoding class, which represents the binary encoding of an
LLRP Message, there are two classes for representing the binary encoding for LLRP
Parameters; the TLVParameter and TVParameter classes. Both classes implement
the ParameterEncoding interface, which requires them to implement the GetBytes ()
method. All classes implementing the IL1lrpParameter interface, contain a field of

either TLVParameter or TVParameter type.
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2.4.1 TLVParameter Class

Figure 2-6 shows all the public properties and methods of the TLVParameterEncoding
class, which represents the binary encoding for Type-length-value (TLV) encoded

parameters.

k? ParameterEncoding

= N
TLYParameterEncoding @}
Class -

Fields

= properties
% parameterLength : ushort
%7 parameterType : ushort
¥ parameterValue : byte]
P Reserved : byte

& Methods
4 GetBytes() : byte[]
:p GetTLVParameter() : TLV...

% TLVParameterEncoding(...
Y.

Figure 2-6: Class Diagram for the TLVParameterEncoding class

" In the current version of the LLRP specification the Reserved bits are set to 0
by default. The Parameter class is responsible for setting the ParameterType and
ParameterValue of the TLVParameterEncoding. Since TLV Parameters can contain
a variable number of fields and sub-parameters they need to have a length property,
which is dynamically set during serialization by adding the header and message value

lengths.

2.4.2 TVParameter Class

Figure 2-7 shows all the public properties and methods of the TVParameterEncoding
class, which represents the binary encoding for Type-value (TV) encoded parameters.

The Parameter class is responsible for setting the ParameterType and Parame-
terValue of the TVParameterEncoding. TV-encoded parameters cannot contain sub-

parameters and thus have fixed length.
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Figure 2-7: Class Diagram for the TVParameterEncoding class
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Chapter 3

Object Serialization and

Deserialization

The Client logic is implemented by making use of the object model, which is out-
lined in Chapter 2. In order to communicate with Readers it is necessary to have a
serialization/deserialization process, which converts Message and Parameter objects
to the binary format defined in the LLRP specification and vice versa. The serializa-

tion/deserialization process is outlined in Figure 3-1.

3.1 Serialization

3.1.1 Message Object to MessageEncoding

The serialization process from a Message Object to the binary format includes an
intermediate step, namely the conversion to a MessageEncoding object. As described
in Section 2.3, MessageEncoding is a generic class which can represent the binary
encoding of all LLRP Messages and is used as a convenient object wrapper around
the binary encoding format. The first step in the serialization process is to to get a
MessageEncoding object by calling the Message’s GetMessageEncoding () method.
The GetMessageEncoding () method returns a MessageEncoding object after set-

ting its MessageValue property. The MessageValue is a byte array consisting of all
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| [ LirpMessage ]

MessageEncoding

Reader Response
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| aDD_ROSPEC_RESPONSE |

byte[] . Ll LLRPInterface

Client Message
£.Q. AID_ROSPEC

Figure 3-1: Overview of the Serialization Process

Message Parameters, each binary encoded according to the LLRP specification. Fig-

ure 3-2 shows the binary encoding of a GET_READER_CONFIG Message as an example.

0 1 2 3
oltlz21312s5|6|71sleofoftla|3fa4]|5[6 |7 (8|9 |o]|1f2([3]|4[5]|6]|7[8]9[0]1
Rsvd Ver Message Type =2 Message Lenpth [31:16]
Message Length [15:0] | Message ID[31:16]
Message ID[15:0] | Antenna ID
RequestedData [ GPIPortNum | GPOPortNumf15:8]

GPOPortNum[7:0] |

Custom Parameter (0-n)

Figure 3-2: Binary encoding for a GET_READER_CONFIG Message

Using Serialization helper methods each Parameter is converted into a byte array
and eventually all byte arrays are merged into a single byte array, which makes up the
Message Value. Figure 3-3 shows part of the GET_READER CONFIG class to illustrate
how serialization takes place in the GetMessageEncoding() method.

As shown in Figure 3-3 in the GetMessageEncoding method all Parameters are

inserted into a List in the order specified by the LLRP specification. The List is then
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public class GET_READER_CONFIG : ILLRPMessage

{

ushort antennald;

byte requestedData;

ushort gpiPortNum;

ushort gpoPortNum;

List<CustomParameter> customExtensionPointList;
MessageEncoding encoding;

public GET_READER_CONFIG()

{

encoding = new MessageEncoding();
encoding.MessageType = (ushort)MessageTypes.GET_READER_CONFIG;

}

public MessageEncoding GetMessageEncoding()

{

List<object> parameters = new List<object>();

parameters.Add(antennald);

parameters.Add(requestedData);

parameters.Add (gpiPortNum) ;

parameters.Add(gpoPortNum) ;

foreach (CustomParameter customParameter in customExtensionPointList)
parameters.Add(customParameter) ;

encoding.MessageValue = Serialization.GetBytes(parameters);
return encoding;

}
}

Figure 3-3: Message Class Example (GET_READER_CONFIG)

passed as a Parameter to the Serialization.GetBytes() method, which sequen-
tially converts each Parameter into the binary format, merges the subsequent byte
arrays and returns a single byte array.

The Serialization class contains a number of static methods for converting
both primitive types and LLRP Parameters. The GetBytes() method is overloaded

to accept any valid Parameter type and return its binary encoding.

Integer Types
Integers are encoded in network byte order with the most significant byte of the
integer sent first (Big-Endian). The following integer types supported:
Signed Integer: A 32-bit signed integer, encoded using 4 bytes.
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Unsigned Integer: A 32-bit unsigned integer, encoded using 4 bytes.
Signed Short Integer: A 16-bit signed integer, encoded using 2 bytes.
Unsigned Short Integer: A 16-bit unsigned integer, encoded using 2 bytes.
Signed Long Integer: A 64-bit signed integer, encoded using 8 bytes.
Unsigned Long Integer: A 64-bit unsigned integer, encoded using 8 bytes.

Strings

Strings are encoded in UTF-8 format [10]. Since strings can have variable length,
each UTF-8 encoded string is preceded by a 16-bit integer which specifies the length
of the string in bytes.

Booleans

A Boolean value is represented by a single bit. LLRP, however, requires the length
of all Messages to be a multiple of octets, which requires the binary encoding of all
Parameters to be a multiple of octets. Consequently, Boolean parameters are padded
with zeros to ensure that the length is a multiple of octets.

It is possible to have a number of Boolean values grouped together in the same
byte. This implementation provides a GetBytes() method overload, which converts a
list of Boolean values to a byte array. For example, if a list with 10 Boolean values is
passed, two bytes will be required. The first 10 bits of the 2-byte array will represent

the Boolean values, while the remaining bits will be set to 0.

LLRP Parameters

Since Parameters can contain a variable number of fields or sub-parameters,
they are recursively converted into a binary format by calling the Parameter’s
GetParameterEncoding() method. Section 3.1.2 describes the details of Parame-

ter Object conversion to the binary format.

Lists and Arrays

In addition to basic types, fields can be defined as Lists or arrays of primitive
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or sub-parameter types. Lists are encoded by iterating through their elements and

encoding each element in order.

3.1.2 Parameter Object to ParameterEncoding

Similar to Messages, which provide a GetMessageEncoding() method, all
classes implementing the ILlrpParameter interface must implement the
GetParameterEncoding() method. Since Parameters can contain sub-Parameters,
which in turn can contain other sub-Parameters and so on, Parameter objects
might be deeply nested. By implementing the GetParameterEncoding() method,
Parameters provide a way to go all the way down in the object hierarchy and

recursively convert Parameters to a nested binary format.

The GetParameterEncoding() method is similar to the GetMessageEncoding()
method. It inserts all Parameters into a List and passes it as an argument to the
Serialization.GetBytes{() method. The returned byte array constitutes the Pa-

rameter Value of the ParameterEncoding.

3.1.3 MessageEncoding to byte[]

Once the MessageEncoding is obtained the Client sets the MessagelD property before
sending the message to the Reader. The MessagelD uniquely identifies a Message in
a single session between a Client and a Reader and is used to associate the Reader’s
response with the appropriate message. The MessageEncoding is subsequently con-
verted into a byte array in order to be transmitted to the Reader over the TCP
stream. The MessageEncoding class provides a GetBytes() method, shown in Fig-

ure 3-4, which converts the object to the binary format.

The GetBytes () method sets the header bits and merges the header and message
value into a single byte array. The returned byte array is a well-formed binary encoded

LLRP Message, as defined in the LLPR specification.
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/// <summary>

/// Merges the header and message value into a single byte array

/// </summary>

/// <returms>

17/ A byte array, which constitutes a complete and well-formed LLRP Message
/// </returns>

public bytel[] GetBytes()

// Set Reserved Bits
header[0] |= (byte) (reserved);

// Set Version Bits
header[0] |= (byte) (ver << 3);

// Set Message Type

bytel] bits = Serialization.UShortToByteArray(messageType);
header[0] |= (byte)(bits[0] << 6);

header[1] |= bits[1i];

// Set MessagelD
Serialization.CopyIntToByteArray(header, MESSAGEID_BYTE_OFFSET, messageld);

// Set Message Length
Serialization.CopyIntToByteArray(header, MESSAGE_LENGTH_BYTE_OFFSET, MessageLength);

byte{] message = new byte[MessageLength];
// Copy header and message value arrays to a new byte array
header .CopyTo(message, 0);

messageValue.CopyTo(message, header.Length);

return message;

Figure 3-4: GetBytes method in MessageEncoding class

3.1.4 ParameterEncoding to byte]]

Similar to MessageEncoding, ParameterEncoding classes provide a GetBytes() method
for converting the encoding object into the binary format. Figures 3-5 and 3-6 show
the GetBytes () methods for the two types of ParameterEncoding, TLVParameterEncoding

and TVParameterEncoding respectively.
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/// <summary>

/// Merges the header and parameter value into a single byte array

/// </summary>

/// <returns>

/// A byte array, which constitutes a complete and well formed LLRP Parameter
/// </returns>

public byte[]l GetBytes()

// Set Reserved Bits
header[0] |= (byte) reserved;

// Set Parameter Type
byte[]l bits = Serialization.GetBytes(parameterType);

header{0] [= (byte) (bits[0] << 6);
header([1] |= bits[1];

// Set Parameter Length
Serialization.InsertBytes(header, PARAMETER_LENGTH_BYTE_OFFSET, ParameterLength);

byte[] parameter = new byte[ParameterLength];
// Copy header and message value arrays to a new byte array
header .CopyTo(parameter, 0);

parameterValue.CopyTo(parameter, header.Length);

return parameter;

Figure 3-5: GetBytes method in TLVParameterEncoding class
3.2 Deserialization

The Client receives Reader Messages in binary format over the established TCP
connection and deserialized them into objects. The deserialization process is described

below.

3.2.1 Byte[] to MessageEncoding

Reader Messages arrive over a TCP stream and have a variable byte length. As the
Client reads bytes off the TCP stream it needs to determine the message length and
read the exact number of bytes off the stream. Therefore, the Client first reads the
Message header, which specifies the Message’s length in bytes, and proceeds to read
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/// <summary>

/// Merges the header and parameter value into a single byte array

/// </summary>

/// <returns>

/// A byte array, which constitutes a complete and well formed LLRP Parameter
/// </returns>

public byte[]l GetBytes()

// Set the most significant bit of the header to 1.
header[0] [= (byte) (0x1);

// Set Parameter Type
header[0] |= (byte) (parameterType << 1);

int parameterLength = header.Length + parameterValue.Length;
byte[] parameter = new byte[parameterLength];

// Copy header and message value arrays to a new byte array
header.CopyTo(parameter, 0);

parameterValue.CopyTo(parameter, header.Llength);

return parameter;

Figure 3-6: GetBytes method in TVParameterEncoding class

the Message value, which consists of the bytes remaining after the header.

The Client constructs a MessageEncoding object by passing the header and mes-
sage value byte arrays to the MessageEncoding constructor. The constructor goes
through the header array and sets the Reserved bits, version, Message Type and Mes-
sage 1D of the MessageEncoding object. The message value argument is used to set
the MessageValue property of the the MessageEncoding object.

The MessageEncoding object can then be used to construct the appropriate

ILlrpMessage.

3.2.2 Message Object Construction from MessageEncoding

This implementation makes use of the Factory Design Pattern [8] to get around the
problem of creating objects without knowing the exact class of the object that is cre-

ated. The LlrpFactory class, which implements the Factory Design Pattern, provides
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a GetIL1lrpMessage () method which is called with a MessageEncoding as a param-
eter and based on the Message Type calls the corresponding Message constructor, as

shown in Figure 3-7.

public static ILlrpMessage GetILlrpMessage(MessageEncoding encoding)
{
switch (encoding.MessageType)
{
case (ushort)MessageTypes.GET_READER_CAPABILITIES:
return new GET_READER_CAPABILITIES(encoding);
case (ushort)MessageTypes.GET_READER_CAPABILITIES_RESPONSE:
return new GET_READER_CAPABILITIES_RESPONSE(encoding);
case (ushort)MessageTypes.ADD_ROSPEC:
return new ADD_ROSPEC(encoding);
case (ushort)MessageTypes.ADD_ROSPEC_RESPONSE:
return new ADD_ROSPEC_RESPONSE(encoding);

default:
throw new ArgumentException("Invalid Message Encoding");

Figure 3-7: GetlLIrpMessage Method

All Message classes provide a constructor which takes a MessageEncoding as an
argument. This constructor uses Serialization methods to parse and construct the
Message Parameters from the MessageValue of the MessageEncoding. In order to
parse Message Parameters it is necessary to explicitly know the expected Parameters
and the order in which they appear in the binary encoding. Nested Parameters must
be recursively parsed and optional Parameters must be handled properly.

As shown in Figure 3-8, Parameters are sequentially parsed from the MessageValue
byte array and deserialized using the Serialization methods.

The Serialization class provides static methods for deserializing Parameters
of all supported types. All methods take the MessageValue array and the current

position in the array as arguments. An integer variable, called currentIndex, is used
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/// <summary>
/// Constructs a GET_READER_CONFIG message from its encoding
/// </summary>
/// <param name="encoding">The encoding.</param>
public GET_READER_CONFIG(MessageEncoding encoding)
: this()
{
byte[] messageValue = encoding.MessageValue;
int currentIndex = O;

antennald = Serialization.ToUShort (messageValue, ref currentlIndex);
requestedData = messageValue[currentIndex++];
gpiPortNum = Serialization.ToUShort(messageValue, ref currentIndex);
gpoPortNum = Serialization.ToUShort(messageValue, ref currentIndex);
customExtensionPointList =
Serialization.ToLLRPParameterList<CustomParameter>(
messageValue, ref currentIndex);

Figure 3-8: Constructor for GET_READER_CONFIG with MessageEncoding argu-
ment

to keep track of the position in the MessageValue array. The currentIndex is passed
by reference and is modified by the Serialization methods so that it points to the next

Parameter.

Integer Types

Parameters of integer type are converted by combining the appropriate number
of bytes. For example, to deserialize a short integer we read 2 bytes from the
MessageValue array, starting at the currentIndex, and combine the upper and lower
bits to get the integer value. The currentIndex is incremented by 2 so that it points

to the next Parameter in the array.

Strings

Since strings can have variable length their encoding is always preceded by its length,
which is denoted by a 16-bit integer. To decode a string the value of the length is first

deserialized and is used to read the exact number of bytes off the MessageValue array.
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The .NET framework provides support for deserializing a UTF-8 encoded string.

LLRP Parameters

Complex Parameters are constructed using the ToILlrpParameter () method. Since
Parameters can be nested they are recursively deserialized from the nested binary

format. The details are analyzed in sections 3.2.3 and 3.2.4.

Lists and Arrays

Lists and arrays are deserialized sequentially, essentially reversing their serialization
process. Lists and arrays of basic types are always preceded by the number of elements
in the list, which is required in order to read the correct number of bytes off the

MessageValue array.

3.2.3 Byte[] to ParameterEncoding

LLRP Parameters are constructed by sequentially processing the MessageValue byte
array and recursively parsing the binary nested format. Before constructing a Param-
eter object ParameterEncoding object is first constructed. Since there are two types
of ParameterEncodings it is first necessary to determine which of the two encoding
types is being deserialized. This can be done by checking the first bit of the header.
All TLV-encoded Parameters have a 0 in the first bit of the header while TV-encoded
Parameters have the first bit set to 1.

The TLVParameterEncoding and TVParameterEncoding classes provide static
methods, GetTLVParameter and GetTVParameter respectively, each returning an en-
coding object.

The GetTLVParameter method first reads the header, which specifies the
length of the Parameter in bytes. Once the Parameter length is calculated a
TLVParameterEncoding object can be constructed by passing the Parameter header
and Parameter Value as constructor arguments.

The GetTVParameter method reads the header, which only includes the Param-
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eter Type since TV-encoded Parameters have fixed length. Parameter classes for
TV-encoded Parameters include a static property which indicates the fixed Param-
eter length. In order to construct a TVParameterEncoding object it is necessary to
determine the Parameter type, get the Parameter length and read the exact number

of bytes off the array.

3.2.4 Parameter Object Construction from ParameterEncoding

Parameter object construction makes use of the Factory Design Pattern, as in the case
of Messages. The LlrpFactory class provides a GetIL1rpParameter method which
can accept either a TLVParameterEncoding or a TVParameterEncoding as an argu-
ment and construct the corresponding Parameter object. The GetIL1lrpParameter
method is called internally by serialization methods during the construction of
LlrpMessages from their MessageEncoding.

All  Parameter classes provide a constructor which takes either a
TLVParameterEncoding or a TVParameterEncoding as an argument. The
constructor uses Serialization methods to parse and construct the sub-Parameters
from the Parameter Value.

Parameter deserialization makes wuse of the built-in C# generics.
ToILlrpParameter<>() is a generic method which requires the type of the ex-
pected Parameter to be specified. For example, if an ROSpec Parameter is expected
the ToILlrpParameter<ROSpec>() method is called, which will return an ROSpec
object. Using generics it’s possible to have the return type of a method dynamically
specified and allow a single method to handle all Parameter types.

The ToILlrpParameter<>() method constructs a Parameter and checks if its type
matches the expected type. This is a necessary step to handle Parameters that are
either optional or can appear multiple times in a Message.

In the case of optional Parameters, the method attempts to construct the expected
Parameter. If a different Parameter is constructed or if we reach the end of the input
array, a null value is returned and the array index is not incremented.

In the case when Parameters can appear multiple times, a List is constructed to
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hold Parameters of the expected type. The ToILlrpParameter<>() method is called
in a loop until we get a Parameter of a different type or we reach the end of the array.

If no Parameters of the expected type are found then an empty list is returned.
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Chapter 4

A Graphical LLRP Client

As a proof of concept I have used my object oriented LLRP library to implement
a prototype Graphical User Interface (GUI) for a simple LLRP Client. The Client
has limited functionality but the goal is to show that the object model simplifies the

development of LLRP Client applications.

4.1 TCP Connections

The LLRP specification requires Clients and Readers to be able to both initiate or
accept connections. At any given time a Client or Reader can be configured to only
either initiate or accept a connection.

As shown in Figure 4-1, the Client implementation provides functionality for both
initiating and accepting a connection. The Client can start listening for a connec-
tion on a port that is specified by the user. The default port defined in the LLRP
specification is 5084.

The GUI also allows a user to specify the IP address and port number of a Reader
and attempt to initiate a connection. In order to establish a connection the specified
Reader must be listening for incoming connections.

Figures 4-2 and 4-3 show the sequence of events in the case of Reader initiated
and Client initiated connections respectively. In both cases, after a TCP connec-

tion is established the Reader must reply with a status report Message. The report
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Figure 4-1: LLRP Client GUI

must include a ConnectionAttemptEvent Parameter and should indicate connection

success, if the TCP connection was established successfully.

The Client implementation uses asynchronous operations to communicate with
Readers. When the Client is set to listen for incoming connections it starts an asyn-
chronous listen operation, using the build-in asynchronous operations of the TcpLis-
tener class, which is provided by the .NET framework. The asynchronous listen

operation specifies a Callback method, which is called upon a connection attempt.

The OnConnect () callback method is called once a TCP connection between the
Client and a Reader is established. The Client then starts an asynchronous Read
operation, waiting for a ReaderEventNotification Message from the Reader. If this
operation times out, an incorrect Message is received, or the status report indicates

an unsuccessful connection, then the TCP Connection is terminated.
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Figure 4-2: Reader Initiated Connection

An LLRP Client would normally connect to and control the operation of multiple
Readers. This implementation, however, currently only supports a single Reader. The
GUTI allows the user to initiate a connection to only a single Reader. Additionally, if
the Client is in listening mode, once the Client accepts a connection it stops listening

and ignores any other connection attempts.

4.2 Message Handling

As shown on Figure 4-4 the GUI allows a user to select the Message to send from a
drop down menu which includes all Client Messages defined in the LLRP specification.

Depending on the selected Message, the Parameters grouping is adjusted to dis-
play the appropriate Parameters associated with the select Message. Figure 4-5
shows the Parameter configuration for a GET_.READER_CAPABILITIES Message. The
GET_READER_CAPABILITIES Message specifies a Requested Data Parameter, which
can be set using a drop-down menu.

Once all Parameters are set the Message can be send to the Reader by clicking

the Send Message button, as shown in Figure 4-6
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Figure 4-3: Client Initiated Connection

Messages are sent to the Reader asynchronously and, therefore, do not block the
form controls while waiting for the Reader to respond. It is possible to send multiple
Messages before receiving a response from the Reader. In this implementation Reader
responses are simply displayed in the Response box as shown in Figure 4-7. There is
no logic to keep track of outstanding Client Messages and no checks that the Message

IDs of the received responses match the ID of the request.

4.3 Connection Termination

The LLRP connection can be terminated both by the Client and the Reader.
A Reader terminates the connection by sending a status Message with a
ConnectionCloseEvent Parameter. Following the status Message the Reader im-
mediately closes the TCP connection without waiting for a Client response. In turn,
the Client handles the connection termination and performs any cleanup operations
if necessary.

The Client can also close the connection by sending a CLOSE_CONNECTION Message.
The Client GUI includes a Close Connection button which sends a CLOSE_CONNECTION
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Figure 4-4: Message selection using drop-down menu

Message to the Reader. The Reader acknowledges the request to close the connection
by sending a CLOSE_CONNECTION_RESPONSE Message and immediately closes the TCP
connection. If the Reader fails to respond with a CLOSE_CONNECTION_RESPONSE Mes-

sage within a certain time interval then the Client forces a connection termination.
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Figure 4-7: Reader response displayed in Response box
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Chapter 5

Discussion and Future Work

5.1 Discussion

5.1.1 Advantages of Object-Oriented implementation

Developing an object-oriented implementation of LLRP was the biggest design deci-
sion of this project. It might seem like an unusual choice for an implementation of a
low level protocol but it offers a number of advantages over a low level implementa-

tion.

Ease of implementation Client logic is implemented using the object model which
makes it easier to develop rich and robust Client applications. The low level details
of the LLRP interface are abstracted away, eliminating in this way one of the major

complexities of LLRP.

Use of enumerations instead of Integers Some Parameters are represented by
integer values in the binary format but only have a small range of possible values.
In some cases it is better to abstract away the integer values and use enumerations.
Figure 5-1 the use of enumerations in the case of the ProtocollD Parameter. The
Client does not need to know the underlying value which represents the EPCGlobal-
Class1Gen2 and simply use ProtocolID.EPCGlobalClass1Gen2.
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public enum ProtocolID : byte
{

UnspecifiedAirProtocol = O,
EPCGlobalClasslGen2 = 1
}

Figure 5-1: ProtocollD enumeration

Use of Interfaces The use of interfaces allows Parameters to be grouped together.
For example a SET_READER_CONFIG Message includes a list of IConfigSetParameters.
Parameters which can be used for configuring Reader operation implement the
IConfigSetParameter Parameter. In this way it is ensured that only valid Param-
eters are passed in the configuration data list without the SET_READER_CONFIG class

explicitly knowing which Parameters are valid.

Error Checking This implementation provides minimal error checking to facilitate
faster development and testing. Messages and Parameters can only include valid fields
and sub-Parameters but there are no checks to ensure that mandatory Parameters are
present. Additionally, during deserialization there are checks to ensure that received
Messages are well formed but it is possible to construct a Message that is missing
mandatory Parameters. It is easy, however, to include additional checks for Parameter

validity and increase the robustness of the application.

Parameter Range Checking The range of values for Parameters of basic types
is dictated by the Parameter type. In some cases, however, the specification dictates
a shorter range of values or excludes certain values or combinations of values. Even
though Parameter range checks are not present in this implementation, they could

easily be added on Parameter construction.

5.2 Future Work

In this section I propose some extensions to this LLRP implementation that have not

yet been implemented and would ideally be implemented in the future.
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5.2.1 Message Templates

The object model simplifies the construction of Messages and Parameters by pro-
viding object constructors instead of working directly with byte arrays. However,
constructing a deeply nested object can still be tedious since every Parameter and
sub-Parameter has to be constructed and assigned its value. To further simplify this
process, the toolkit could provide Message Templates which would allow for com-
mon Messages to be constructed without the need to explicitly construct Parameter

objects.

It could be possible to provide quick Message construction for all Messages by
providing a default constructor for each Parameter, which would construct all sub-
Parameters and assigned them default values. The Client would only need to call the
Message constructor to create a Message object and it can use the access methods to

modify Parameter values if needed.

5.2.2 Graphical User Interface

The Graphical LLRP Client implementation described earlier is a very simple one
with limited functionality. The goal of this implementation was simply to illustrate
how the LLRP library can be used to develop a Client application. As a future
extension this GUI could be extend to provide much richer functionality. Message
construction is currently limited to a few Message types which do no have deeply
nested Parameters. Developing a Ul to handle deeply nested Parameters can be a

challenging task and might require complete redesign of the current interface.

Additional functionality could include handling muliple Readers and providing
ways to automate Reader control. Readers can be controlled to send status reports
either periodically or triggered by some event. The Client could provide logic to
automatically process Reader responses and perform different actions depending on

Reader status.
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5.2.3 LLRP Schema

The current LLRP specification does not provide a schema for LLRP Messages and
Parameters. Providing a schema would offer many advantages and assist in creating
a more robust LLRP implementation. The schema should define all the Message
and Parameter Types and specify the fields and sub-Parameters associated with each
Message and Parameter. The schema should also indicate whether a Parameter is
optional or if it can appear multiple times in a Message.

Using the LLRP schema it would be possible to create a module that would
automatically generate all Message and Parameter classes, since the class structure
is similar across Messages and Parameters. This would make the implementation
of an LLRP library simpler and more robust. Possible future changes in the LLRP
spec would be reflected in the schema and would not require any changes in the code.
Moreover, the auto-generation module could be modified to provide Parameter Range
checking and improved error checking without the need to tediously go through each

Message and Parameter class.

5.2.4 TLS

LLRP connections could be secured by using the TLS protocol [1], which provides
privacy and data integrity between two authenticated applications. In order to use
TLS both Client and Reader must support its use. As a future extension this imple-

mentation could be extended to add support for TLS.

5.2.5 XML Encoding

A future extension for LLRP could be the addition of an XML encoding, which could
be used instead of the binary format. Figure 5-2 illustrates how an LLRP Message
could be encoded in XML format. The header parts and Message value each have
their own XML nodes. The Message value would form a nested XML tree, with
Parameters nested at an arbitrarily deep level.

The XML encoding is perhaps beyond the original scope of LLRP and might be
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<Message>
<Version>1.0</Version>
<MessageType>ADD_ACCESS_SPEC</MessageType>
<MessageID>12345</MessageID>
<MessageValue>
<Parameter>
<ParameterName>accessSpec</ParameterType>
<ParameterType>AccessSpec</ParameterType>
<ParameterValue>
<Parameter>
<ParameterName>antennald</ParameterType>
<ParameterType>uint</ParameterType>
<ParameterValue>1</ParameterValue>
</Parameter>
<Parameter>

</Parameter>

</ParameterValue>
</Parameter>
</MessageValue>
</Message>

Figure 5-2: XML Encoding for LLRP Message

harder to be adopted as it would require Readers to process XML documents. It could
offer, however, a number of advantages compared to the binary format. Parsing XML
would be much easier than parsing the binary format. The use of XPath or XQuery
would also allow fast searching through an XML encoded Message and could allow
Messages to be pre-processed before converting the XML into the object model. The
XML Messages could be converted to Binary XML before being transported between

Clients and Readers in order to limit the transportation overhead of XML.
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Chapter 6

Conclusions

This Master’s Thesis describes the design and implementation of an object-oriented
LLRP library. LLRP is a recently released protocol concerned with the formats
and procedures of communication between RFID Readers and Clients. The lack of
standards in current RFID networks was the main motivation behind the development
of the LLRP protocol. As RFID technology continues to be more widely adopted, it
becomes imperative to standardize the way information is exchanged between RFID
Readers and enterprise networks. A standard interface will allow RFID systems to be
designed without dependence on vendor proprietary interfaces and will simplify their
implementation. It is envisioned that LLRP will soon be adopted as the standard
Reader - Client interface.

Although LLRP is well received by the RFID Reader industry, it is not yet widely
adopted. The protocol is message-oriented and provides a high level of Reader control
while ensuring interoperability, allowing the addition of vendor-specific extensions
and provisioning for support of future air protocols. Consequently, LLRP is more
complex than a protocol designed for more specific operation, making its adoption a
challenging task.

The implementation described in this Thesis was oriented towards reducing the
complexity of LLRP, which primarily lies in the binary nested format used for repre-
senting LLRP Messages and Parameters. A nested object model is used to represent

all the Messages and Parameters defined in the LLRP specification. A Serialization
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module converts Message and Parameter objects to the binary format and vice versa,
abstracting in this way the low level details of the LLRP interface.

The use of an object-oriented LLRP library simplifies the implementation of Client
logic and makes it possible to develop rich Client applications. Working with objects
instead of directly manipulating the binary format can make Client applications more
robust and less error prone. It is also possible to check for Parameter validity and
ensure that Parameters have values within the valid range. As showcased by the
prototype implementation of a Graphical LLRP Client, this LLRP library can be a
useful toolkit in developing LLRP applications, without requiring the investment of

too much time and effort in dealing with the complexities of the LLRP interface.
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Appendix A

Design Detalils

A.1 Casing Conventions

The following conventions are used for naming the various classes of the LLRP library:
ALL_CAPS_.UNDERSCORE type is used for LLRP message names, e.g.
GET_READER_CAPABILITIES
Camel casing is used for LLRP Parameter and data field names. e.g. ROSpec

Interfaces use camel casing and are prefixed with an I, e.g. IConfigGetParameter

A.2 Namespaces

LLRP.Messages.ReaderDeviceCapabilities
Messages that query Reader capabilities.

e GET_READER_CAPABILITIES

o GET_READER_CAPABILITIES_ RESPONSE

LLRP.Messages.ReaderOperation

Messages that control the Readers air protocol inventory and RF operations.

e ADD_ROSPEC
e ADD_ROSPEC_RESPONSE

65



e DELETE_ROSPEC

e DELETE_ROSPEC_RESPONSE
e START_ROSPEC

e START_ROSPEC_RESPONSE
¢ STOP_ROSPEC

e STOP_ROSPEC_RESPONSE

e ENABLE ROSPEC

e ENABLE_ROSPEC_RESPONSE
e DISABLE_ROSPEC

e DISABLE_ROSPEC_RESPONSE
e GET_ROSPECS

o GET_ROSPECS_RESPONSE

LLRP.Messages.AccessOperation

Messages that control the tag access operations performed by the Reader.

e ADD_ACCESSSPEC

ADD_ACCESSSPEC_RESPONSE

DELETE_ACCESSSPEC

DELETE_ACCESSSPEC_RESPONSE

ENABLE_ACCESSSPEC

ENABLE_ACCESSSPEC_RESPONSE

DISABLE_ACCESSSPEC
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DISABLE_ACCESSSPEC_RESPONSE

GET_ACCESSSPECS

GET_ACCESSSPECS_RESPONSE

CLIENT.REQUEST.OP

CLIENT_REQUEST_.OP_RESPONSE

LLRP.Messages.ReaderDeviceConfiguration

Messages that query/set Reader configuration, and close LLRP connection.

e GET_READER_CONFIG

GET_READER_CONFIG_RESPONSE

SET_READER_CONFIG

SET_READER_CONFIG_RESPONSE

CLOSE_CONNECTION

CLOSE_CONNECTION_RESPONSE

LLRP.Messages.ReportsNotificationsKeepalives
Messages that carry different reports from the Reader to the Client. Reports include

Reader device status, tag data, RF analysis report.

e GET_REPORT

RO_ACCESS_REPORT

READER_EVENT_NOTIFICATION

KEEPALIVE

KEEPALIVE_ACK

ENABLE_EVENTS_AND_REPORTS
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LLRP.Messages.CustomExtension

Messages that contain vendor defined content.

e CUSTOM-MESSAGE

LLRP.Messages.Errors

Generic Error Messages.

e ERROR-MESSAGE

LLRP.Parameters.ReaderOperation
Parameters for Messages that control the Readers air protocol inventory and RF

operations.

LLRP.Parameters.AccessOperation
Parameters for Messages that control the tag access operations performed by the

Reader.

LLRP.Parameters.ReaderDeviceConfiguration

Parameters for Messages that query/set Reader configuration, and close LLRP

connection.

LLRP.Parameters.ReportsNotificationsKeepalives

Parameters for Messages that carry different reports from the Reader to the Client.

LLRP.Parameters.ReportsNotificationsKeepalives.ReaderEventNotificationData
Parameters for Messages that carry different event notification reports from the

Reader to the Client.

LLRP.Parameters.ReportsNotificationsKeepalives.TagReportData
Parameters for Messages that carry different tag data reports from the Reader to

the Client.
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LLRP.Parameters.ReaderDeviceCapabilities

Parameters for Messages that query Reader capabilities.

LLRP.Parameters.ReaderDeviceCapabilities.GeneralDeviceCapabilities

Parameters for Messages that query general device capabilities of a Reader.

LLRP.Parameters.ReaderDeviceCapabilities.RegulatoryCapabilities

Parameters for Messages that query regulatory device capabilities of a Reader.

LLRP.Parameters.General

General Parameters.

LLRP.Parameters.AirProtocolSpecific.C1G2

Parameters for the C1G2 air protocol.

LLRP.Parameters.CustomExtension

Parameters for Messages that contain vendor defined content.

LLRP.Parameters.Errors

Parameters for generic error Messages

A.3 Class Diagrams
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Appendix B

Serialization Methods

B.1 Objects to byte]]

/// <summary>
/// Returns the specified list of parameters as a byte array.
/// Each parameter on the list is recursively converted into a
/// byte array with all resulting byte arrays are merged into a single
/// byte array.
/// </summary>
/// <param name=parameterList’>
/// A list of objects.
/// List elements must be of one of the following types:
/// 1. Native type
/// 2. LLRPParameter
/// 3. List of LLRPParameters
/// </param>
/// <returns></returns>

public static byte[] GetBytes(List<object> parameterList)

{

if (parameterList == null)

return new byte[0];

int byteArrayLength = 0;
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List<byte[]l> byteArrayList = new List<byte[]>(parameterList.Count);

// Go through each element in the list, convert it to a byte array
// and insert byte arrays in an auxiliary list
foreach (object parameter in parameterList)

{
if (parameter != null)
{
bytel[]l encoding = GetBytes(parameter);
byteArrayList.Add(encoding);
byteArrayLength += encoding.Length;

// Go through the auxiliary list containing all the byte arrays, and
// merge them into a single byte array
byte[] result = new byte[byteArraylength];
int offset = 0;
foreach (byte[] b in byteArrayList)
{
b.CopyTo(result, offset);

offset += b.Length;

return result;

B.1.1 Integer Types

/// <summary>

/// Returns the specified 32-bit signed integer value as an array of bytes.
/// The integer is encoded in network byte order with the most significant
/// byte of the integer first (Big-Endian).

/// </summary>
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/// <param name={¥alue”>The number to convert</param>
/// <returns>A byte array of length 4</returns>
public static byte[] GetBytes(int value)

{

bytel] result = new byte[INT_BYTE_LENGTH] ;

for (int i = 0; i < INT_BYTE_LENGTH; i++)
result [INT_ BYTE.LENGTH - 1 - i] = (byte)(value >> (i * 8));

return result;

B.1.2 Strings

/// <summary>
/// Returns the specified string value as an array of bytes.
/// The string is encoded with UTF-8 encoding.
/// The first two bytes of the array specify the length of
/// the UTF-8 encoded string in bytes.
/// </summary>
/// <param name={alue >The string valye</param>
/// <returns>A byte array of variable length</returns>
public static bytel[] GetBytes(string value)
{
// Get UTF-8 encoding
byte[] utfEncoding = UTF8Encoding.UTF8.GetBytes (value);

// Get length of string in bytes

ushort byteLength = (ushort)utfEncoding.Length;
byte[] result = new byte[USHORT_BYTE_LENGTH + byteLengthl;

InsertBytes(result, 0, byteLength);
utfEncoding.CopyTo(result, USHORT-BYTE_LENGTH) ;
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return result;

B.1.3 Booleans

/// <summary>
/// Returns the specified Boolean value as an array of bytes.
/// </summary>
/// <param name=¥alue >A Boolean value</param>
/// <returns>A byte array of length 1</returns>
public static byte[] GetBytes(bool value)
{
// Insert bool value in a byte array of length 1

byte[] result = new byte[BYTE_LENGTH] ;

// If value is true set the first bit of the byte to 1
if (value)

result[0] |= Ox1;

return result;

B.2 Byte[] to Objects

B.2.1 Integer Types

/// <summary>
/// Returns a 32-bit signed integer converted from four bytes
/// at a specified position in a byte array.

/// </summary>
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/// <param name=buffer >An array of bytes.</param>
/// <param name=StartIndex”>The starting position within buffer.</param>
/// <exception cref=ArgumentOutOfRangeException”>
/// startIndex is less than zero or greater than the length of value minus 4.
/// </exception>
/// <exception cref=ArgumentNullException”>Buffer is null</exception>
/// <returns> A 32-bit signed integer formed by four bytes beginning at startIndex.</returns>
public static int ToInt(byte[] buffer, ref int startIndex)
{
if (buffer == null)
throw new ArgumentNullException(8pecified Buffer is null);
if (startIndex < 0)
throw new ArgumentOutOfRangeException(&tartIndex is less than 0);
if (startIndex + INT_BYTE LENGTH > buffer.lLength)

throw new ArgumentOutOfRangeException(&tartIndex is greater than the length of value minus 4y;

int endIndex = startIndex + INT_BYTE_LENGTH - 1;
int result = 0;

for (int i = 0; i < INT_BYTE_LENGTH; i++)

{

result |= (int)buffer[endIndex - i] << (i * 8);

startIndex += INT_BYTE_LENGTH;

return result;

B.2.2 Strings

/// <summary>
/// Returns a string converted from variable length UTF-8 encoded
/// byte array, starting at the specified position in the byte array.

/// </summary>
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/// <param name=buffer”>An array of bytes.</param>
/// <param name=§tartIndex >The starting position within buffer.</param>
/// <exception cref=ArgumentOutOfRangeException >
/// startIndex is less than zero or startIndex and byteLength
/// do not denote a valid range in bytes.
/// </exception>
/// <exception cref=ArgumentNullException >Buffer is null</exception>
/// <returns> A string formed by a variable length array, starting at startIndex.</returns>
public static string ToString(byte[] buffer, ref int startIndex)
{
if (buffer == null)

throw new ArgumentNullException(Specified Buffer is null);

ushort bytelLength = ToUShort(buffer, ref startIndex);

string result = UTF8Encoding.UTF8.GetString(buffer, startIndex, byteLength);

startIndex += bytelLength;

return result;

B.2.3 Booleans

/// <summary>

/// Returns a bool converted from a byte at a specified position in a byte array.
/// Returns true if the first bit of the byte is set to 1, false otherwise
/// </summary>

/// <param name=buffer >An array of bytes.</param>

/// <param name=§tartIndex >The starting position within buffer.</param>

/// <exception cref=ArgumentOutOfRangeException >

/// startIndex is less than zero or greater than the length of value minus 1.
/// </exception>

/// <exception cref=ArgumentNullException”>Buffer is null</exception>

/// <returns> A bool formed by a byte beginning at startIndex.</returns>

public static bool ToBool(bytel[]l buffer, ref int startIndex)
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if (buffer == null)

throw new ArgumentNullException(Specified Buffer is null);
if (startIndex < 0)

throw new ArgumentOutOfRangeException(§tartIndex is less than 0);
if (startIndex + BYTE_LENGTH > buffer.Length)

throw new ArgumentOutOfRangeException(8tartIndex is greater than the length of value minus 1);

byte firstBitValue = GetBits(buffer[startIndex++], 0, 1);
if (firstBitValue == 1)

return true;

return false;

B.2.4 LLRP Parameters

/// <summary>

/// Returns an object of type T converted from a variable number of bytes

/// depending on object type, starting at the specified position in

/// a byte array

/// </summary>

/// <typeparam name=T ">

/// The object type. The type must be implementing the ILlrpParameter interface.
/// </typeparam>

/// <param name=buffer >A byte array.</param>

/// <param name=8tartIndex >The starting position within buffer.</param>

/// <returns>

/// An object of type T formed by a variable number of bytes starting at startIndex
/// </returns>

public static T ToILlrpParameter<T>(byte[] buffer, ref int startIndex)

where T : ILlrpParameter

T expectedParameter = default(T);

79



if (startIndex < buffer.Length)

{
// Check first bit to determine parameter encoding
// A1l TLV-encoded parameters have a 0 in bit O of the header
// A1l TV-encoded parameters have a 1 in bit O of the header
byte firstByte = buffer[startIndex];

byte firstBit = GetBits(firstByte, 0, 1);

if (firstBit == Q)

{

//TLV Encoding
TLVParameterEncoding parameterEncoding = TLVParameterEncoding.GetTLVParameter(buffer, startIhAax

IL1rpParameter parameter = LlrpFactory.GetILlrpParameter(parameterEncoding);

if (typeof(T).IsAssignableFrom(parameter.GetType()))

{

expectedParameter = (T)parameter;

startIndex += parameterEncoding.ParameterLength;

else

//TV Encoding
TVParameterEncoding parameterEncoding = TVParameterEncoding.GetTVParameter(buffer, startIndex
ILlrpParameter parameter = LlrpFactory.GetILlrpParameter (parameterEncoding);
if (typeof(T).IsAssignableFrom(parameter.GetType()))
{
expectedParameter = (T)parameter;

startIndex += parameterEncoding.ParameterLength;

}

return expectedParameter;
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B.2.5 Parameter Lists

/// <summary>

/// Returns a list of objects of type T converted from a variable number of bytes
/// depending on object type, starting at the specified position in

/// a byte array

/// </summary>

/// <typeparam name=T >

/// The object type. The type must be implementing the LLRPParameter interface.
/// </typeparam>

/// <param name=buffer >A byte array.</param>

/// <param name=8tartIndex”>The starting position within buffer.</param>

/// <returns>

/// A List of objects of type T formed by a variable number of bytes starting at startIndex
/// </returns>

public static List<T> TolLlrpParameterList<T>(byte[] buffer, ref int startIndex)

where T : ILlrpParameter
List<T> parameterList = new List<T>();
while (startIndex < buffer.Length)
{
T parameter = TolLlrpParameter<T>(buffer, ref startIndex);
if (parameter != null)
parameterList.Add(parameter) ;

else

break;

return parameterList;
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