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Abstract

Computers cannot fully understand spoken language without access to the wide range
of modalities that accompany speech. This thesis addresses the particularly expressive
modality of hand gesture, and focuses on building structured statistical models at the
intersection of speech, vision, and meaning.

My approach is distinguished in two key respects. First, gestural patterns are
leveraged to discover parallel structures in the meaning of the associated speech.
This differs from prior work that attempted to interpret individual gestures directly,
an approach that was prone to a lack of generality across speakers. Second, I present
novel, structured statistical models for multimodal language processing, which enable
learning about gesture in its linguistic context, rather than in the abstract.

These ideas find successful application in a variety of language processing tasks:
resolving ambiguous noun phrases, segmenting speech into topics, and producing
keyframe summaries of spoken language. In all three cases, the addition of gestural
features – extracted automatically from video – yields significantly improved perfor-
mance over a state-of-the-art text-only alternative. This marks the first demonstra-
tion that hand gesture improves automatic discourse processing.

Thesis Supervisor: Regina Barzilay
Title: Associate Professor

Thesis Supervisor: Randall Davis
Title: Professor

3



4



Acknowledgments

This thesis would not be possible without the help, advice, and moral support of

many friends and colleagues.

Coauthors and collaborators: Aaron Adler, S. R. K. Branavan, Harr Chen,

Mario Christoudias, Lisa Guttentag, and Wendy Mackay.

Conscientious readers of theses and related papers: Aaron Adler, S. R.

K. Branavan, Emma Brunskill, Sonya Cates, Mario Christoudias, Pawan Deshpande,

Yoong-Keok Lee, Igor Malioutov, Gremio Marton, Dave Merrill, Brian Milch, Sharon

Oviatt, Tom Ouyang, Christina Sauper, Karen Schrier, Sara Su, Özlem Uzuner, Elec-
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Words are but vague shadows of the volumes we mean.

Theodore Dreiser

1
Introduction

Speech is almost always accompanied by a range of other behaviors, including move-

ments of the face, body, and hands (Rimé & Schiaratura, 1991). Of all these co-speech

behaviors, hand gestures appear to be especially reflective of the speaker’s underlying

meaning (e.g., Figure 1-1). Many psychologists hypothesize that gesture is an integral

part of spoken communication, helping to convey crucial semantic content (McNeill,

1992). If so, it is natural to ask whether automatic natural language processing

systems can better understand speech by incorporating hand gestures. Can hand

gestures fill in the gaps when words give only a “vague shadow” of the intended

meaning?

Attempts to incorporate hand gestures in automatic language processing have

been stymied by a number of practical and conceptual challenges. Gesture conveys

meaning through a direct, visual medium – quite unlike speech, which is fundamen-
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“Think of the 
block letter C”

“Then there’s a T- 
shaped thing”

“So there’s a 
wheel over here”

speech gesture meaning+ =

Figure 1-1: In this example, the speaker is describing the behavior of a piston, hav-
ing seen an animation of the diagram on the right. Each line shows an excerpt of
her speech and gesture, and highlights the relevant portion of the diagram. The
speech expresses the spatial arrangement awkwardly, using metaphors to letters of
the alphabet, while the gesture naturally provides a visual representation.

16



tally symbolic (Kendon, 2004). Thus, gesture does not easily lend itself to a compact,

formal representation. The majority of co-speech gestures have neither predefined nor

intrinsic meaning; rather, they are interpretable only in the surrounding linguistic con-

text. Gesture is commonly believed to be highly idiosyncratic, so that its meaning

may also vary widely by speaker. Finally, communicative gestures are only a fraction

of the total set of hand motions that occur during speech. Automatic systems must

be able to disattend other movements that may be semantically meaningless, such as

when the speaker adjusts her glasses or hair.

To address these challenges, this dissertation offers two main ideas. First, I focus

on identifying patterns between gestures, which are leveraged to discover parallel pat-

terns in the discourse structure. Unlike previous research (e.g., Chen, Liu, Harper,

& Shriberg, 2004; Cassell, Nakano, Bickmore, Sidner, & Rich, 2001), I do not at-

tempt to assess the semantic or pragmatic contribution of individual gestures or

movements. Speaker-specific idiosyncrasies and the modulating effects of linguistic

context may make the form of individual gestures difficult to interpret directly. But

even if individual gestures cannot be decoded, the relationships between gestures may

be comprehensible.

As an example, Figure 1-2 shows automatically-extracted hand trajectories for two

short gestures that occur roughly 30 seconds apart. It is hard to imagine inferring any

meaning from these two trajectories when taken in isolation, but it is clear that the

path of motion in the right hand is repeated quite closely. This repetition can serve

as a clue for linguistic analysis. In this case, the second gesture (shown in the right

panel) is accompanied by the ambiguous anaphoric pronoun “it,” which refers back

to the noun phrase “this thing,” uttered during the performance of the first gesture

(in the left panel). Recognizing the similarity of this pair of gestures can facilitate

linguistic analysis even when the meaning of each individual gesture is unknown.

The second key idea is to build models of gesture without relying on gestural

annotations. From a practical standpoint, annotating the form of gesture for a corpus

of any reasonable size would be extremely time-consuming. Moreover, no annotation

scheme formal enough for computational analysis has yet been shown to be sufficiently

17



Figure 1-2: An example of two automatically extracted hand gestures. In each ges-
ture, the left hand (blue) is held still while the right (red) moves up and to the left.
The similarity of the motion of the right hand suggests a semantic relationship in the
speech that accompanies each gesture: in this case, the noun phrase “this thing” and
“it” refer to the same semantic entity.

18



flexible to describe all relevant aspects of a gesture’s form. On a conceptual level,

our ultimate goal is not to describe characteristics of gesture but to solve language

processing problems that are critical to end-user applications. Thus, it seems best to

learn directly from linguistic annotations whenever possible.

I avoid the need for gestural annotation by building custom statistical learning

models that explicitly encode the relationship between gesture and speech. Such mod-

els are capable of learning about gesture by exploiting features of the language. This

idea is applied in two ways: by leveraging linguistic annotations, and in a completely

unsupervised framework. In both cases, gesture and verbal features are combined

in a single joint model, maximizing the ability of each modality to disambiguate the

other when necessary.

These two strategies – focusing on patterns between gestures, and learning models

of gesture in the context of language – constitute the core technical innovations of

this thesis. I demonstrate the applicability of these ideas to discourse processing on

both local and global levels.

1.1 Gesture and Local Discourse Structure

In the previous section, the gestural trajectories shown in Figure 1-2 were used as

an example of how gesture can help to disambiguate the relationship between the

accompanying noun phrases. The problem of determining whether a pair of noun

phrases refer to the same semantic entity is called coreference resolution, and may

be considered a local-scale discourse phenomenon. Chapter 4 demonstrates that the

similarity of the gestures accompanying a pair of noun phrases can help to predict

whether they corefer.

To obtain maximum leverage from gestural similarity, is important to ensure that

the hand movements being compared are indeed meaningful gestures. For any given

hand motion, we may assess its salience – a measure of whether it is likely to be

communicative. Gesture similarity and salience are learned using a novel architec-

ture called conditional modality fusion – an application of hidden-variable conditional

19



And this top one clears this area here, and goes
all the way up to the top...

2

So this moves up. And it – everything moves up.
1

Figure 1-3: Two frames from a comic book summary generated by the system de-
scribed in Chapter 4

random fields (Quattoni, Wang, Morency, Collins, & Darrell, 2007). This model op-

erates without labels for gesture similarity or salience, learning directly from corefer-

ence annotations. The resulting system resolves noun phrases more accurately than

a state-of-the-art baseline that uses only verbal features. Moreover, modeling gesture

salience substantially increases the predictive power of gesture similarity information.

Gesture salience is then applied to another local discourse processing task: ex-

tracting keyframe summaries from video. The model of gesture salience learned on

coreference is transferred directly to the keyframe summary task, again without any

labeled data for summarization. The resulting system produces “comic books” in

which the transcript is augmented with keyframes showing salient gestures (Figure 1-

3). These comic books cohere well with human-generated summaries, outperforming

state-of-the-art unsupervised keyframe extraction baselines.

1.2 Gesture and Global Discourse Structure

Gesture similarity is a property of pairs of gestures; in Chapter 5, this idea is extended

to larger sets of gestures, under the name of gestural cohesion. This term draws a

deliberate parallel to the well-known phenomenon of lexical cohesion, which measures

the self-consistency of word use within a discourse segment (Halliday & Hasan, 1976).

Lexical cohesion has been found to be an effective feature for high-level discourse

20



analysis, particularly for the task of topic segmentation: dividing a text into topically-

distinct segments (Hearst, 1994). Chapter 5 investigates whether gestural cohesion

can be used in the same way.

Lexical cohesion is an effective feature for discourse analysis because word choice

is one way that semantics is conveyed in text and language. Thus, a change in the

distribution of lexical items is predictive of a change in the intended meaning. Given

the hypothesis that meaning is also conveyed via gesture, it seems reasonable that the

distribution of gestural forms may predict segmentation in the same way. For each

dialogue, a “lexicon” of gestural forms is acquired through unsupervised clustering.1

The observed words and gestural forms are then combined in a novel, unsupervised

model for segmentation. A Bayesian framework provides a principled way to combine

the modalities: separate sets of language models are learned for gesture and speech,

and the priors on these language models control the relative influence of each modal-

ity on the predicted segmentation. The resulting system produces more accurate

segmentations than are obtained using only speech information.

Finally, the lexical representation constructed for topic segmentation is applied

to answer a more fundamental question about gesture: to what extent do different

speakers use the same gestural forms when describing a single topic? Even assuming

that gestures convey semantic meaning, their form is shaped by the speaker’s mental

imagery, which may be highly idiosyncratic. Is it possible to show that for some

topics, many speakers will use the same representational gestures? I build a lexicon

of gestural forms across multiple speakers, and apply a hierarchical Bayesian model to

quantify the extent to which the distribution over forms is determined by the speaker

and topic. This yields the first quantitative evidence that the use of gestural forms

to communicate meaning is consistent across speakers.

1Unlike the traditional sense of the term “lexicon,” the gestural forms here do not necessarily
have any pre-defined meaning.
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1.3 Contributions

The main contribution of this thesis is a predictive analysis of the relationship between

gesture and discourse structure. While previous research has identified correlations

between gesture and discourse phenomena (e.g., Quek, McNeill, Bryll, Duncan, et

al., 2002), this thesis presents systems that predict the discourse structure of unseen

data, using gestural features that are automatically extracted from video. Moreover,

adding gesture to state-of-the-art text-based systems yields significantly improved

performance on well-known discourse processing problems. This demonstrates that

gesture provides new and unique information for discourse processing.

A second contribution is the focus on relationships between gestures, which are

used to detect parallel patterns in the discourse structure. This approach is the first to

successfully uncover gesture’s contribution to the underlying narrative semantics. It

is a departure from earlier efforts in multimodal natural language processing, which

tried to identify individual gestures and intonation patterns that act as pragmatic

discourse cues (e.g., Chen et al., 2004; Shriberg, Stolcke, Hakkani-Tur, & Tur, 2000).

This dissertation focuses on three specific gestural patterns: similarity, cohesion, and

salience. Models for each pattern are learned from automatically extracted features

without labeled data. These models are then demonstrated to be predictive of dis-

course structure.

Finally, the machine learning models themselves constitute an important contri-

bution. The use of custom models that explicitly encode the role of each modality

differs from previous research, which relied on generic machine learning methods (e.g.,

Chen et al., 2004). The models employed in this thesis are capable of learning about

gesture in its linguistic context, rather than in the abstract. This permits learning

about gesture directly from linguistic annotations. In addition, these models provide

a principled approach to modality combination. Chapter 4 applies these ideas in a

supervised, discriminative framework, using a novel hidden conditional random field

architecture; Chapter 5 presents two novel unsupervised Bayesian models.

The remainder of the thesis is organized as follows. Chapter 2 assesses related
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work on gesture, discourse processing, and other attempts to integrate non-verbal

modalities into automatic language processing. Chapter 3 describes a novel gesture-

speech dataset that makes this research possible. Chapter 4 applies the ideas of

gestural similarity and salience to the local discourse problems of coreference resolu-

tion and keyframe extraction. The mechanism is conditional modality fusion, a novel

discriminative technique for modality combination, which learns to identify salient

gestures and filter away non-communicative hand motions. Chapter 5 develops the

notion of gestural cohesion, with an application to topic segmentation. In addition, I

use a novel hierarchical Bayesian model to demonstrate that the relationship between

gestural forms and the discourse topics can generalize across speakers. Finally, the

main ideas and contributions of the thesis are summarized in Chapter 6, where I also

discuss limitations and directions for future work.
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2
Related Work

This thesis builds on diverse streams of related work. First, any computational ac-

count of gesture and discourse should be informed by psychology and linguistics.

These fields provide theoretical models of how gesture and speech combine to create

meaning, as well as experimental results that shed light on how humans use these

modalities to communicate. Section 2.1 summarizes relevant contributions from this

area, and notes prior computational work that builds on psycholinguistic models of

gesture.

The remaining portions of this chapter describe implemented systems that employ

gesture or other non-verbal features. Section 2.2 describes multimodal interfaces

and dialogue systems in which human users interact with computers using gesture

and sometimes speech. Section 2.3 describes the application of prosody to natural

language processing – a parallel line of research that faces similar challenges to those
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dealt with in this dissertation.

2.1 Gesture, Speech, and Meaning

From the 1970s on, there has been increasing interest in the study of gesture from

the psychological and linguistic communities. This has been fueled largely by the

hope that gesture can provide clues to the organization of language and thought in

the human mind (Kendon, 2004). In the course of trying to answer these high-level

questions, psychologists and linguistists have developed valuable ideas and results

that inform my research. In this section, I describe studies of gesture’s communicative

function, prior attempts to formalize these ideas in a computational framework, and

briefly mention a few notable taxonomies and annotation systems for gesture.

2.1.1 The Role of Gesture in Communication

Gesture has long been understood to be closely linked to speech (Condon & Ogston,

1967; Kendon, 1972). The form and timing of gesture and speech mirror each other

in ways that are obvious even from casual observation.1 However, our understanding

of the communicative role of gesture remains incomplete at best, particularly with

respect to how gestures are understood. Indeed, psychologists continue to debate

whether representational gestures affect the listener’s comprehension at all. I briefly

summarize arguments on both sides of this debate, and then review experimental

results showing specific semantic and pragmatic functions played by gesture.

Do Listeners Understand Gestures?

While there can be little doubt that listeners understand certain, specialized ges-

tures (e.g., navigational directions accompanied by pointing), some researchers have

expressed skepticism about the communicative function of spontaneous, representa-

tional gestures. Part of the motivation for such skepticism is that gesture is employed

1The synchrony between speech, gesture, and other physical movements is surprisingly tight,
incorporating even eye blinks (Loehr, 2007).
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even in situations where it cannot possibly be viewed – for example, in telephone

conversations, or when speaking to the blind (Rimé & Schiaratura, 1991). Such ex-

amples show that at least some gestures are not intentionally produced for the viewer’s

benefit. Are such gestures produced merely out of habit, or is there some other mo-

tivation? Some researchers argue that representational gestures are primarily for the

benefit of the speaker, rather than listener. In particular, Krauss (2001) argues that

by acting out an action or idea via gesture, the speaker may find it easier to produce

the associated verbal form.

There is evidence for the view that gesture aids speech production. When told

not to gesture, speakers becomes substantially more dysfluent, as increasing numbers

of filled pauses (e.g. “um”) are placed within grammatical clauses (Rauscher, Krauss,

& Chen, 1996). The authors argue that this suggests the absence of gesture leads

to difficulty with lexical retrieval. Speakers experience additional difficulties when

discussing content with a spatial component, speaking more slowly and producing

more dysfluencies overall.

Such findings are not limited to cases in which speakers were explicitly forbidden

or prevented from gesturing. Goldin-Meadow, Nusbaum, Kelly, and Wagner (2001)

observe that the absence of gesture increases the speaker’s cognitive load regardless

of whether speaker was instructed not to gesture or simply chose to produce speech

without gesture. These results – as well the failure of some studies to show that

listener comprehension benefits from gesture (Krauss, Morrel-Samuels, & Colasante,

1991) – lead Krauss (2001) to conclude that representational gestures primarily serve

to aid the lexical retrieval of spatially-associated terms.

In other settings, gestures do appear to aid comprehension. Goldin-Meadow

(2003) describes a series of studies showing that children can benefit from observing

gestures produced by their teachers; furthermore, when students make errors, their

gestures can reveal additional information about where they went wrong. Using videos

of scripted scenarios, Kelly, Barr, Church, and Lynch (1999) find that comprehension

improved significantly when both gesture and speech were present. Interesting, when

asked to recall just the spoken communication, listeners often added information that
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was actually communicated with gesture and not speech. This suggests that not only

did the listeners draw information from gesture, they also encoded this information in

a way that did not distinguish between spoken and gestural communication. Finally,

electroencephalography (EEG) studies demonstrate that subjects register neurophys-

iological indicators of surprise when viewing videos in which the gesture and speech

convey contradictory information (Kelly, Kravitz, & Hopkins, 2004). This supports

the view that people attempt to interpret the semantics of the gestures that they

observe.

While this debate is relevant to our main interest in gesture and automatic dis-

course processing, from a computational perspective we may remain agnostic about

the extent to which listener comprehension benefits from viewing representational

gestures. Human language processing is robust, and may succeed even when various

cues are removed (Whitney, 1998).2 Automatic natural language processing systems

do not benefit from the same common-sense reasoning and background knowledge

available to humans. Thus, even if representational gestures are generally redundant

with speech – and thus, rarely necessary for human listeners – they may still be of

great value to computer systems for the forseeable future.

Gesture and Local Semantics

We now explore a series of studies that identify specific types of semantic phenomena

that are sometimes communicated with gesture. One such case is word-sense disam-

biguation: Holler and Beattie (2003) find that speakers are more likely to produce

representational gestures in conjunction with homonyms (one example from the paper

is “arms,” meaning either the body part or weapons) than with other words. While

the meaning of homonyms may be deducible from the larger discourse context, such

disambiguation requires additional cognitive effort on the part of human listeners,

and may pose substantial difficulties for automatic systems.

2However, evidence from eye tracking suggests that even in cases when people can deduce meaning
without gesture, listeners use gesture to interpret the utterance more quickly than when only speech
is available (Campana, Silverman, Tanenhaus, Bennetto, & Packard, 2005).
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One type of information often conveyed by gesture that is apparently not deducible

from the associated speech is the physical size of semantic entities. Beattie and

Shovelton (2006) ask subjects to describe a set of cartoon narratives, and find that

size is often communicated via gesture, and very rarely communicated redundantly

in both speech and gesture. This suggests that size would not be deducible from

the surrounding speech without the presence of gestures. Moreover, they find that

speakers are more likely to communicate size via gesture when the size is particularly

important to the overall story, as judged by a separate set of raters who were familiar

with the underlying narrative but did not view the speakers’ explanations.

Similarly, gesture may be used to differentiate spatial relations between objects.

Lausberg and Kita (2003) find that when describing the spatial configuration of two

objects, the horizontal position of each object is expressed via the hand that is used to

represent it. Similarly, Melinger and Levelt (2004) find that some speakers use gesture

to disambiguate spatial relationships when describing an abstract arrangement of

colored nodes – however, they find that roughly half of the speakers in their study

never used gestures. Those speakers who did gesture also produced significantly

more ambiguous speech, suggesting that they were intentionally using gesture as a

disambiguating modality. The idea that verbal ambiguity could predict the likelihood

of salient gestures influenced the use of verbal features to help assess gesture salience

(Section 4.4.2).

Both Kendon (2004) and McNeill (1992) note examples in which speakers assign

spatial regions to individual characters or entities, and then refer back to these regions

when the entities are mentioned again. A more systematic study of this phenomenon

is presented by So, Coppola, Licciardello, and Goldin-Meadow (2005), who show that

speakers tend to use gestures to communicate coreference when describing cartoon

narratives. The observation that spatial location may disambiguate noun phrases

helped motivate my work on noun phrase coreference (Chapter 4), which uses spatial

location as one of the features that predicts gestural similarity.

Aside from the word sense disambiguation study (Holler & Beattie, 2003), in all of

the cases discussed thus far, gesture is used relationally. For example, when describing
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spatial arrangements, gestures are (presumably) not taken to indicate the absolute

position of the object, but rather the position of the objects relative to each other. In

this thesis, I have focused on how gestures reveal a relationship of semantic identity.

However, these studies suggest that gesture also provides an imagistic representation

of the specific ways in which entities are dissimilar – for example, in their size and

placement. The exploitation of such contrastive gestures is an interesting avenue for

future research.

Gesture and High-Level Discourse Structure

Chapter 5 deals with gesture and topic-level discourse structure. There, I identify

two main types of cues that predict topic segmentation: inter-segmental boundary

cues, and intra-segmental cohesion. Boundary cues are essentially pragmatic: they

convey information about the locations of segment boundaries, and not about the

content within the segment. This dissertation concerns gestures that communicate

the speaker’s underlying meaning, and so has focused on intra-segmental gestural

cohesion – the repetition of gestural forms throughout a topically-coherent segment.

However, it is important to note that psycholinguistic research suggests that ges-

ture communicates discourse structure in both ways, suggesting future research on

computational models that unify both types of cues.

An explicit, quantitative study of nonverbal cues for discourse segment bound-

aries was undertaken by Cassell et al. (2001). They begin by noting that “changes in

the more slowly changing body parts occur at the boundaries of the larger units in

the flow of speech,” an observation presented earlier by Condon and Osgton (1971).

Put another way, not only are gesture and speech tightly synchronized, but this syn-

chronization occurs on multiple levels, such that small linguistic units (e.g., phrases)

are synchronized with fast moving body parts (e.g., hand and fingers) and large dis-

course units (e.g., topic segments) are synchronized with slower-moving parts (e.g.,

the torso). Cassell et al. therefore hypothesize that whole-body posture shifts should

be indicative of discourse segment boundaries. Using manual annotations of speaker

posture in twelve videos, they find that posture shifts occur much more frequently at
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segment boundaries, although some shifts still occur within segments. They exploit

this correlation to generate realistic gestures in an animated avatar; to my knowl-

edge no one has attempted to build a system that detects segment boundaries using

posture shifts.

Gestural cues have also been observed for more fine-grained discourse phenomena.

Kendon (1995) describes four conventionalized gestures that are used in Southern

Italy, each of which conveys information about the role of the associated speech in

the surrounding discourse. These include four specific gestures: “the purse hand,”

indicating that the associated utterance is a question; “praying hands,” often in-

dicating that the speaker asks the listener to accept the utterance as given; “the

finger bunch,” which often indicates that a statement is a high-level topic, rather

than a comment; and “the ring,” which tells the listener that a precise piece of in-

formation is being communicated. These gestures provide information on the level

similar to the “dialogue acts” annotated in DAMSL (Core & Allen, 1997): descrip-

tions of the meta-linguistic role played by sentence-level utterances. In this sense,

such conventionalized gestures may provide a sort of pragmatic visual punctuation

of discourse. However, Kendon notes that the Southern Italian linguistic community

is well-known to have a large number of conventionalized gestural forms; analagous

discourse-marking gestures may not exist in other linguistic communities.

The most relevant psycholinguistic work with respect to gestural cohesion derives

from David McNeill’s concept of catchments: recurring gestural themes that indi-

cate patterns of meaning (1992, 2005). McNeill shows, though example, how unique

iconic and metaphoric gestures accompany specific ideas, and how these gestures re-

cur whenever the associated idea is discussed. Catchments may also display subtle –

but semantically crucial – variations. In one of McNeill’s examples (2005, pages 108-

112), speakers describe a “Sylvester and Tweety” cartoon, in which Sylvester (a cat)

crawls up a drain pipe two times: once on the outside, and once on the inside. In this

example, speakers often uses similar gestures, but modulate the second instance to

indicate that the action is now on the inside of the drain – moreover, this information

is communicated in gesture even when one of the speakers forgets to mention it in
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the speech.

McNeill argues that gesture also conveys meaning through layers of catchments,

simultaneously providing information at the levels of narrative (the story), metanar-

rative (statements about the story), and paranarrative (statements about the speaker

herself). In one such example, overlapping catchments occur at each layer, yielding

extremely complex gestural forms (2005, pages 173-177).

While McNeill and his collaborators have demonstrated many compelling exam-

ples of catchments, there is little systematic data on how often catchments occur.

There are other questions as well: which features of the gestural modality do catch-

ments tend to employ? What governs the mapping between semantic concepts and

gestural features? What sorts of ideas tend to be expressed via catchments, rather

than (or in addition to) spoken language?

The answers to these questions bear obvious significance for any computational

account of gestural catchments. A complete computational treatment of catchments

would require automatically detecting the full set of gestural features that may be

used to express catchments, and identifying the specific features that are relevant in

any given gesture. Implementing the layered model – in which catchments occur at

the narrative, metanarrative, and paranarrative levels – requires going even further,

assigning gestural features to each layer of communication. No complete computa-

tional implementation of gesture catchments has yet been attempted, though some

preliminary efforts will be discussed in Section 2.1.2.

Despite these challenges, this dissertation can be viewed as a partial implementa-

tion of the idea of catchments – indeed, the first such implementation that success-

fully predicts discourse phenomena on unseen examples. In Chapter 1, I emphasized

a strategy of detecting patterns between gestures, rather than decoding individual

gestures – this is directly inspired by the idea of catchments. By detecting similar

pairs of gestures, this dissertation shows that at least some catchments can be recog-

nized automatically from raw visual features. Chapter 4 goes further, showing that

such automatically detected catchments can be used to make accurate predictions

about noun phrase coreference. Chapter 5 extends this idea from pairs of gestures
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to larger sets, demonstrating a predictive relationship between catchments and topic

boundaries.

2.1.2 Computational Analysis of Gestural Communication

Prior computational research on gesture in human-human speech has rarely empha-

sized predictive analysis of linguistic phenomena from signal-level gesture features,

as this dissertation does. Nonetheless, this work provides valuable insights as to

what types of gestural features can be detected from video, and how automatically-

extracted and hand-annotated gesture features correlate with language.

Francis Quek and colleagues have published a series of papers that explicitly ad-

dress the idea of catchments. Quek, McNeill, Bryll, Duncan, et al. (2002) demonstrate

how automatic hand tracking can supplement a manual discourse analysis. The pa-

per provides automatically extracted hand positions and velocities for a portion of

a single dialogue, and couples this with a close analysis of the associated discourse

structure. While this does not go as far as showing how discourse structure might

be predicted from the gestural features, it points the way towards the sorts of visual

features that would be necessary for such an approach to succeed.

Explicitly referencing McNeill, Quek advocates a “Catchment Feature Model,” in

which a variety of salient visual features could be extracted from gesture and then

applied to multimodal linguistic analysis (Quek, 2003). These include: detecting

static “hold” gestures (Bryll, Quek, & Esposito, 2001), symmetric and anti-symmetric

motion (Xiong, Quek, & McNeill, 2002), oscillatory motion (Xiong & Quek, 2006),

and the division of space into semantically meaningful regions (Quek, McNeill, Bryll,

& Harper, 2002). Quek and his coauthors give examples in which such features appear

to correlate with linguistic phenomena, including topic segmentation (Quek et al.,

2000), speech repairs (Chen, Harper, & Quek, 2002), and filled pauses (Esposito,

McCullough, & Quek, 2001). My thesis builds on these ideas by showing that similar

gesture features can predict discourse phenomena on unseen data.

Another way in which my thesis extends this line of work is through the application

of machine learning methods. In the cited papers from Quek et al., detectors for each
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gestural feature are constructed by hand. In many cases, these detectors include a

large number of hand-tuned parameters – for example, Bryll et al. (2001) list twelve

manual parameters for the static hold detector. Because these parameters are tuned

on small datasets, it is unclear how closely the observed correlation between gesture

features and discourse structure depends on their precise settings. In particular, such

an approach may not scale to datasets that include multiple speakers and topics. For

this reason, I have emphasized applying a learning-based approach, and in particular,

learning about gesture in the context of a specific language processing task.

A learning-based approach to gestural communication is applied by Chen et al.,

who investigate the connection between gesture and sentence boundaries. While sen-

tence boundary detection is not a discourse-level linguistic task, this work is clearly

relevant. In their first paper on this topic, Chen et al. (2004) show that automatically

extracted hand gesture features are predictive of sentence boundaries, improving per-

formance above transcript-based features. They also investigate the connection with

a third modality – prosody – and find that adding gesture does not yield significant

performance gains over a system that combined verbal and prosodic features. Thus,

with respect to sentence boundaries, there appears to be substantial overlap between

the prosodic and gestural modalities. Their second paper replaces automatically

extracted gesture features with hand annotations, and does obtain a statistically sig-

nificant improvement over a system using verbal and prosodic features (Chen, Harper,

& Huang, 2006).

Chen’s research, while highly relevant to this dissertation, differs in a few illustra-

tive respects. As noted, sentence segmentation is not a discourse-level phenomenon

(since discourse, by definition, concerns the semantic relationships across sentences).

As a result, the task faced by Chen et al. is somewhat different: rather than inferring

the speaker’s meaning, they query gesture for clues about how the speech is syntacti-

cally organized. As a result, they do not attempt to identify patterns of gestures that

form a catchment structure, but instead search for individual gestures that serve as a

sort of visual punctuation. Since prosody is known to play a similar role, particularly

with respect to sentence boundaries (Shriberg et al., 2000), it is unsurprising that
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they discovered a high degree of overlap between prosodic and gestural features on

this task.

To summarize, my dissertation is influenced by prior computational research on

the communicative impact of hand gesture, but extends this work in two key ways.

Quek et al. helped to inspire the principle that meaning can be found in patterns of

gesture, rather than individual gestures. However, they did not attempt to show that

such patterns could be learned from data, and they did not demonstrate a predictive

relationship between gestural patterns and linguistic phenomena. Chen et al. did take

a machine learning-based approach, in the context of sentence segmentation. How-

ever, rather than searching for meaning in patterns of gesture, they treated gesture as

a sort of visual punctuation, and thus found high redundancy with prosodic features.

This thesis combines the strengths of both approaches, and is thus the first to show

that gestural patterns can predict discourse structure.

2.1.3 Classifying and Annotating Gesture

In this thesis, I have generally avoided taxonomies or annotations for gesture. This

is not because such formalisms have no value, but because I believe that such an

approach induces a substantial startup cost for gesture research: designing an anno-

tation scheme that is concise enough to be tractable yet detailed enough to be useful,

and then producing a sufficiently large dataset of annotations. Nonetheless, existing

annotation systems can shed light on the nature of gesture, and on our approach and

dataset. This section briefly discusses two frequently-referenced taxonomies from the

literature, and a recently-published annotation scheme.

Movement Phases

Kendon (1980) provides a hierarchical taxonomy of gesture with respect to its kine-

matic and temporal properties, shown in Figure 2-1. At the top level is the gesture

unit, a period of activity that begins with an excursion from rest position, and ends

when the hands return to repose. The gesture phrase is what is traditionally con-
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Figure 2-1: Kendon’s taxonomy of gesture

sidered to be a single “gesture” – for example, pointing at something while talking

about it, or tracing a path of motion. At the lowest level are movement phases : mor-

phological entities that combine to create each gesture phrase. Every gesture phrase

must have a stroke, which is considered by Kendon to be the content-carrying part

of the gesture. In addition, there may also be a prepare phase, which initiates the

gesture, and possibly a retract phase, bringing the hand back to rest position. A hold

refers to a static positioning of the hand in gesture space, either before or after the

stroke.

On the level of movement phases, Kendon’s taxonomy provides a fine-scale tem-

poral segmentation of gesture. An annotation according to this taxonomy could not

be used to capture a gesture’s semantics, as the taxonomy does not describe the

gesture’s form. However, the taxonomy does specify the stroke and hold phases as

the most relevant portions of a gesture. This idea is relevant to the notion of ges-

ture salience explored in Chapter 4, particularly the concept that the distance of the

hands from rest position is predictive of the communicative role of the gesture. A

fine-grained notion of salience, reflecting the distinctions proposed by Kendon, would

be an interesting departure point for future research.

Types of Gesture Phrases

McNeill (1992) defines several types of gesture phrases: deictic, iconic, metaphoric,

and beat. The following definitions are quoted and summarized from Cassell (1998):
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• “Deictics spatialize, or locate in physical space...” Deictics can refer to actual

physical entities and locations, or to spaces that have previously been marked

as relating to some idea or concept.

• “Iconic gestures depict by the form of the gesture some features of the action

or event being described.” For example, a speaker might say “we were speeding

all over town,” while tracing an erratic path of motion with one hand.

• “Metaphoric gestures are also representational, but the concept they represent

has no physical form; instead the form of the gesture comes from a common

metaphor.” For example, a speaker might say, “it happened over and over

again,” while repeatedly tracing a circle.

• “Beat gestures are small baton-like movements that do not change in form with

the content of the accompanying speech. They serve a pragmatic function, oc-

curring with comments on one’s own linguistic contribution, speech repairs and

reported speech.” Speakers that emphasize important points with a downward

motion of the hand are utilizing beat gestures.

This list nicely summarizes the various ways in which gestures can communicate

information. However, as McNeill himself notes (2005, pages 41-42), the list should be

thought of more as a set of dimensions of expressivity, rather than mutually exclusive

bins. As discussed above, gestures are capable of communicating narrative, meta-

narrative, and para-narrative information simultaneously. Thus, it is not difficult to

find examples of gestures that occupy multiple places in this taxonomy: for exam-

ple indicating a location in space (acting as a deictic) while simultaneously giving

temporal emphasis (acting as a beat).

The data and methods in this dissertation emphasize deictic and iconic gestures.

In the dataset described in Chapter 4, the presence of visual aids led speakers to

produce a large number of deictic gestures (for a quantitative analysis, see Eisen-

stein & Davis, 2006), referring to specific areas on the diagram. No visual aids were

permitted in the dataset from Chapter 5, and the resulting gestures were more of-

ten representational – iconic and metaphoric, by McNeill’s taxonomy. Because the
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dialogues focus on mechanical devices, iconics seem more likely than metaphorics,

though no quantitative analysis of this dataset has yet been performed.

McNeill’s taxonomy describes the communicative function of gesture rather than

the communicative content. As with Kendon’s taxonomy, even a perfect annotation

will not tell us what the gestures actually mean. Moreover, it seems doubtful that

the communicative function of a gesture can be evaluated without consideration of

the surrounding linguistic context – a single form might appear as deictic or iconic

depending on the accompanying speech. In a sense, McNeill’s taxonomy describes

more than gesture – it describes the role gesture plays in language, which cannot be

understood without consideration of the speech itself. Indeed, viewers have difficulty

reliably distinguishing deictic from iconic gestures when not permitted to consult the

audio channel (Eisenstein & Davis, 2004).

FORM

Martell, Howard, Osborn, Britt, and Myers (2003) propose an annotation system

named Form, which describes the kinematic properties of gesture. Form system-

atizes gesture in a variety of ways, such as dividing gesturing space into discrete bins,

and categorizing all possible hand shapes. High quality FORM annotations – whether

obtained through automatic or manual transcription – may ultimately facilitate ges-

ture research by abstracting over some of the signal level noise in video. However,

extracting communicative content from such a representation still poses some of the

same problems faced when dealing with video directly: perceptually similar gestures

may be appear to be quite different in the Form representation, and only a few of

the features in the representation will be relevant for any given gesture. These issues,

coupled with the substantial implementational challenge of extracting a Form rep-

resentation from video, led me to avoid using Form annotations in this dissertation.

37



2.2 Multimodal Interaction

Thus far, the area in which gestures have found the greatest application in imple-

mented software systems is in multimodal user interfaces. Multimodal input permits

users to control computer applications using speech and some sort of gestural modal-

ity – typically a pen, but in some cases, free-hand gestures. In general, both the

language and gestures permitted by such systems are constrained by a limited vo-

cabulary and fixed grammar. After reviewing some notable examples of multimodal

input, I briefly present some relevant systems for multimodal output generation. In

such research, information is conveyed to the user via avatars that are capable of

both speech and gesture. Any such effort encodes theories about how modalities can

combine to create meaning, raising interesting connections with this dissertation.

2.2.1 Multimodal Input

Multimodal input processing was pioneered by the “Put-That-There” system, which

combined speech and pointing gestures (Bolt, 1980). Gestures were performed by

manipulating a small cube augmented with tracked beacons, and the user was able to

specify objects with a combination of words and pointing gestures, “e.g., move that

to the right of the green square.” The user’s goal was to create and move colored

geometric objects around a map.

Thus, from a very early stage, multimodal input research emphasized utilizing

gesture to ground ambiguous pronouns with spatial reference. Subsequent systems

extended this idea to more complex gestures. For example, QuickSet (Cohen et al.,

1997) permitted deictic pen gestures indicating regions or sets of objects, and also

recognized sketches of predefined symbols – though these cannot truly be said to be

“gestures” in the same sense taken throughout this dissertation. A second innovation

of QuickSet was the introduction of unification-based semantic parsing techniques to

build a frame representation jointly from speech and gestural input (Johnston et al.,

1997). However, this approach requires that users speak and gesture according to a

fixed grammar, and is thus inapplicable to our interest in human-human dialogue.
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More flexible probabilistic approaches were later considered (Chai, Hong, & Zhou,

2004; Bangalore & Johnston, 2004), though even these assume that the universe of

possible referents is known in advance. While perfectly reasonable in the case of

human-computer interaction, this assumption is generally implausible for discourse

between people.

All of the systems described thus far in this section permit gesture only through

pens or tracked pointers.3 Sharma et al. argue that to move towards control by

free hand gestures, we must design recognition algorithms that handle the gestures

that occur in unconstrained human-human dialogue (Kettebekov & Sharma, 2000).

As a basis for this work, they constructed a dataset of video recordings of weather

forecasts; this was motivated in part by the professional recording quality, which

facilitates hand tracking. According to Poddar, Sethi, Ozyildiz, and Sharma (1998),

many hand motions in this dataset are well-described by a relatively small taxonomy:

points, contours, and regions. Interestingly, even at this level of description, gesture

processing is facilitated by taking the surrounding language into account: recognition

was improved by both the transcipt (Sharma, Cai, Chakravarthy, Poddar, & Sethi,

2000) and the speaker’s prosody (Kettebekov, Yeasin, & Sharma, 2005). This provides

support for the view that the interpretation of co-speech gesture depends critically

on the surrounding language.

2.2.2 Multimodal Output

While this dissertation focuses on processing natural multimodal language as input,

a parallel track of research works to generate realistic-looking gesture and speech. As

mentioned above, Cassell et al. (2001) describe a system that produces plausible pos-

ture shifts and gaze behaviors, based on the discourse structure. Nakano, Reinstein,

Stocky, and Cassell (2003) present an empirical study of human-human interaction,

showing a statistical relationship between hand-coded descriptions of head gestures

and the discourse labels for the associated utterances (e.g., “acknowledgment,” “an-

3An extension of QuickSet to free hand gestures is presented by Corradini, Wesson, and Cohen
(2002).
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swer,” and “assertion”). They then demonstrate that these findings can be encoded

in a model to generate realistic conversational “grounding” behavior in an animated

agent.

These systems generate gestures that convey metanarrative content: information

about the role that each utterance plays in the discourse. In contrast, Kopp, Tep-

per, Ferriman, and Cassell (2007) investigate how to produce gestures that convey

narrative meaning directly. They present an animated agent that gives navigation

directions, using hand gestures to describe the physical properties of landmarks along

the route. In this system, the hand gestures are dynamically generated to reflect

the characteristics of the semantic entity being described. As noted by Lascarides

and Stone (2006), gestural form is generally underspecified by semantics, as there are

multiple ways to express the same idea. One way to further constrain gesture genera-

tion is to produce gestures that observe the catchment structure proposed by McNeill

(1992) and exploited in this dissertation. At this time, I am aware of no gesture

generation system that attempts to implement this idea.

2.3 Prosody

Parallel to our interest in gesture, there is a large literature on supplementing natural

language processing with prosody – a blanket term for the acoustic characteristics of

speech, e.g. intonation and rhythm, that are not reflected in a textual transcription.

Incorporating prosody into discourse processing poses similar challenges to those faced

with gesture. Like gesture, prosody is a continuous-valued signal that does not easily

lend itself to combination with the discrete representations usually employed for text.

However, while this dissertation focuses on extracting narrative content from gesture,

prosody has been used only at a metanarrative level, giving explicit cues of semantic

and discourse structure.
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2.3.1 Prosodic Indicators of Discourse Structure

Pierrehumbert and Hirschberg (1990) proposed that “intonational structures” help

to group constituents for a compositional semantic analysis: a smooth intonational

contour over a set of constituents suggests that they can be combined, while sharp

discontinuities suggest a natural boundary point. This idea was applied to semantic

processing using combinatory categorial grammars by Steedman (1990). In this line of

research, prosodic contours act as intonational parentheses or commas: punctuation

that serves to reveal the underlying combinatory semantic structure. Later research

applied the idea of prosody-as-punctuation to statistical syntactic parsing (Gregory,

Johnson, & Charniak, 2004; Kahn, Lease, Charniak, Johnson, & Ostendorf, 2005).

Prosodic features have also been applied to inter-sentential discourse analysis.

For example, Grosz and Hirshberg (1992) showed that phrases beginning discourse

segments are typically indicated by higher-than-normal pitch, and were preceded by

unusually long pauses. Parentheticals – short digressions from the principal discourse

segment topic – are indicated by a compressed pitch range. The relationship between

these prosodic cues and discourse boundaries was more systematically investigated

by Swerts (1997). In more recent research, similar prosodic features have been applied

to topic and sentence segmentation, surpassing the performance of systems that use

only textual features (Shriberg et al., 2000; Kim, Schwarm, & Osterdorf, 2004). The

literature on prosody thus parallels Kendon’s (1995) identification of gestural forms for

specific discourse acts, and Chen’s (2004, 2006) use of gesture as a sentence boundary

cue. Rather than searching for a prosodic expression of the narrative semantic content,

these researchers have identified pragmatic cues about the narrative structure.4 While

such an approach may be extensible to gesture, this would ignores gesture’s capability

to express narrative content directly through the gestural form.

4One exception is a recent effort to perform cohesion-based segmentation using only acoustic
features (Malioutov, Park, Barzilay, & Glass, 2007). However, this work does not show that acoustic
features yield an improvement over manual transcripts, so the acoustic features may be approximat-
ing standard lexical cohesion, rather than contributing additional information.

41



2.3.2 Modality Combination for Prosody and Speech

Another distinction from prior work on prosody relates to modality combination.

Most of the papers on prosody train separate prosodic and textual classifiers, and

then combine the posterior distributions (e.g., Y. Liu, 2004). Typically, this involves

taking a weighted average, or multiplying the posteriors together, although one may

also use the posterior probability from one classifier as a feature in another classifier.

This approach, labelled late fusion in Section 4.4.3, was also used for gesture-speech

combination by Chen et al. (2004, 2006). Alternatively, early fusion combines features

from both modalities into a single feature vector – this technique was compared with

various late fusion alternatives by Shriberg et al. (2000) and Kim et al. (2004).

Late fusion approaches often outperform early fusion because they explicitly ac-

knowledge the differences between modalities; however, adding or multiplying poste-

rior probabilities is ad hoc and theoretically unjustified. Such techniques may have

been necessary because much of the research on prosody uses “off-the-shelf” machine

learning components that were not originally intended to handle multiple modalities

with very different characteristics. For example, Shriberg et al. (2000) model prosody

with a decision tree because there is no obvious way to add prosodic features directly

to an HMM-based language model.

In contrast, this dissertation employs custom models that explicitly encode each

modality separately in the model structure. In the coreference task from Chapter 4, I

employ a conditional model in which the potential function gates the gesture similarity

features, while allowing the verbal features to be used in all cases. In the discourse

segmentation task from Chapter 5, gesture and speech are modeled in a generative

Bayesian framework; separate Dirichlet priors permit a different amount of smoothing

in each modality. The application of custom, structured approaches to the model-

combination problem is one of the major contributions of this dissertation.
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3
Dataset

This chapter describes the set of video recordings used to perform the experiments

in this dissertation.1 The elicitation procedure for this dataset reflects a desire for

balance between ecological validity and tractability for automatic processing. The re-

sulting speech and gesture is spontaneous and unscripted but is shaped to be relevant

to the main questions of this dissertation by the tasks and scenarios that were as-

signed to the participants. In particular, participants were asked to give instructional

presentations, yielding speech and gesture that should be similar to classroom lec-

tures and business presentations. The applicability of this dataset to other linguistic

settings is an important topic for future research.

1This dataset is a subset of a larger effort performed collaboratively with Aaron Adler and Lisa
Guttentag, under the supervision of Randall Davis (Adler, Eisenstein, Oltmans, Guttentag, & Davis,
2004). Portions of the dataset are available at http://mug.csail.mit.edu/publications/2008/
Eisenstein JAIR/
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At the time of this writing, there exist some linguistic corpora that include visual

data, but none are appropriate for this dissertation. The Ami corpus (Carletta et

al., 2005) includes video and audio from meetings, but participants are usually seated

and their hands are rarely visible in the video. The Vace corpus (Chen et al., 2005)

also contains recordings of meetings, with tracking beacons attached to the speakers

providing very accurate tracking. This corpus has not yet been released publicly.

Both Ami and Vace address seated meeting scenarios; however, gesture may be

more frequent when speakers give standing presentations, as in classroom lectures

or business presentations. There are many such video recordings available, but they

have typically been filmed under circumstances that frustrate current techniques for

automatic extraction of visual features, including camera movement, non-static back-

ground, poor lighting, and occlusion of the speaker. Rather than focus on solving

these substantial challenges for computer vision, a new multimodal corpus was gath-

ered in a manner that attempted to avoid such problems.

Participants Fifteen pairs of participants joined the study by responding to posters

on the M.I.T. campus. The group included seventeen females and thirteen males,

with ages ranging from 18 to 32; all participants were university students or staff. As

determined by a pre-study questionnaire, all but six of the participants were native

speakers of English. Of the remainder, four described themselves as “fluent,” one

as “almost fluent,” and one spoke English “with effort.” Participants registered in

pairs, eliminating a known confound in which strangers often limit their gestures due

to social inhibition in the early parts of a conversation.

Topics Each pair of participants conducted six short discussions. For each discus-

sion, they were assigned a specific topic to ensure that the data would be meaningful

and tractable. Five of the six topics related to the structure or function of a phys-

ical device: a piston, a pinball machine, a candy dispenser, a latchbox, and a small

mechanical toy. The remaining topic was a short “Tom and Jerry” cartoon. These

topics were chosen to encourage the use of concrete, representational gestures. How-
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ever, the participants were given no explicit instructions about gesture. Diagrams for

each topic are shown in Appendix C.

Procedure At the beginning of the experiment, one participant was randomly se-

lected from each pair to be the “speaker,” and the other to be the “listener.” The

speaker was given prior knowledge about the topic of discussion – usually in the form

of an explanatory video – and was required to explain this information to the listener.

The listener’s role was to understand the speaker’s explanations well enough to take

a quiz later. The speaker stood behind a table, while the listener was seated.

The discussions were videotaped and were conducted without the presence of

the experimenters. Discussions were limited to three minutes, and the majority of

speakers used all of the time allotted. This suggests that more natural data could have

been obtained by not limiting the explanation time. However, in pilot studies this led

to problematic ordering effects, where participants devoted a long time to the early

conditions, and then rushed through later conditions. With these time constraints,

the total running time of the elicitation was usually around 45 minutes.

Materials For the piston, pinball machine, candy dispenser, and latchbox, the

speaker was privately shown a short video showing a simulation of the device; for the

“Tom and Jerry” case, the speaker was shown the relevant cartoon; for the mechanical

toy, the speaker was allowed to examine the physical object.

A variety of experimental conditions were considered, manipulating the presence

of explanatory aids. In the “diagram” condition, the speaker was given a pre-printed

diagram (all diagrams are shown in Appendix C, page 141). In the “no aid” condition,

the speaker was not given any explanatory aids. Data from the “diagram” condition

is used in Chapter 4, and the “no aid” condition is used in Chapter 5. There was also

a “drawing” condition, in which the speaker was given a tracked whiteboard marker.

Data from this condition is not used in this thesis.

The pinball machine was always presented first, as a “warmup” task, in the “dia-

gram” presentation condition. The latchbox, candy dispenser, and piston were coun-
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terbalanced against presentation conditions. No diagram was available for the cartoon

and toy, so these were never assigned to the “diagram” condition. Except for the pin-

ball machine, the order of presentation was counterbalanced against both the topic

and presentation condition.

Recording and Annotations Speech was recorded using headset microphones.

An integrated system controlled the synchronization of the microphones and video

cameras. Speech was transcribed manually and with the Windows XP Microsoft

Speech Recognizer. Audio was hand-segmented into well-separated chunks with du-

ration not longer than twenty seconds. The chunks were then force-aligned by the

Sphinx-II speech recognition system (Huang, Alleva, Hwang, & Rosenfeld, 1993),

yielding accurate timestamps for each transcribed word.

Video recording employed standard consumer camcorders. Both participants wore

colored gloves to facilitate hand tracking. An automatic hand tracking system for this

dataset is described in Section 4.2.1 (page 51). The extraction of spatio-temporal

interest points is described in Section 5.2 (page 96).

Various linguistic annotations were applied to the dataset. Section 4.4.3 (page 69)

describes noun phrase coreference annotation; Section 4.5.3 (page 84) describes the

annotation of salient keyframes; Section 5.3.3 (page 106) describes the annotation of

topic segmentation. Detailed statistics about the dataset can be found in Appendix B

(page 138).
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4
Gesture and Local Discourse Structure

This chapter describes the application of gesture to two local discourse processing

problems: noun phrase coreference resolution, and the extraction of keyframe sum-

maries. I show that models of gesture similarity and salience can be learned jointly,

using labels only for noun phrase coreference. The resulting multimodal classifier

significantly outperforms a verbal-only approach, marking the first successful use of

gesture features on this problem. Modeling gesture salience is shown to further im-

prove coreference performance; moreover, the learned model of gesture salience can

be transferred to the keyframe extraction problem, where it surpasses competitive

alternatives.1

1Some of the work in this chapter was published previously (Eisenstein, Barzilay, & Davis, 2008c;
Eisenstein & Davis, 2007; Eisenstein, Barzilay, & Davis, 2007).
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Figure 4-1: An excerpt of an explanatory narrative in which gesture helps to disam-
biguate coreference

4.1 Introduction

Coreference resolution is the task of partitioning the noun phrases in a document or

dialogue into semantic equivalence classes; it has been studied for over thirty years

in the AI community (Sidner, 1979; Kameyama, 1986; Brennan, Friedman, & Pol-

lard, 1987; Lappin & Leass, 1994; Walker, 1998; Strube & Hahn, 1999; Soon, Ng, &

Lim, 2001; Ng & Cardie, 2002). Resolving noun phrase coreference is an important

step for understanding spoken language, with applications in automatic question an-

swering (Morton, 1999) and summarization (Baldwin & Morton, 1998). This task is

widely believed to require understanding the surrounding discourse structure (Sidner,

1979; Grosz & Sidner, 1986).

There are several ways to indicate that two noun phrases refer to the same semantic

entity. Most trivially, it may be reflected in the orthography of the noun phrases. For

example, consider the trio of noun phrases: “the big red ball,” “the big round ball,”

and “the round, red ball”; the surface forms alone suggest that these noun phrases are

likely to corefer. In other cases, coreference may be indicated by semantically similar

but orthographically distinct words, e.g., “the man with the inappropriate clothing”

and “Mr. Ugly-Pants” both indicate that the referent is a man who is poorly dressed,

but more sophisticated linguistic processing is required to make such an inference.
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With anaphoric pronouns, the surface form typically conveys little semantic infor-

mation – in English, only the gender and number may be communicated. In text, the

pronoun usually refers to the most recent, or most prominent, prior compatible noun

phrase. However, the presence of hand gesture radically alters this situation. Gesture

may be used to highlight the similarity between a pronoun and a previously spoken

noun phrase, raising the prominence of noun phrases that otherwise would not be

potential targets for coreference. Gestural similarity may be conveyed by assigning

spatial locations to semantic entities (So et al., 2005), and then referring back to

those locations. Alternatively, the similarity may conveyed through repeated motion

patterns (McNeill, 1992).

Figure 4-1 shows an example in which gesture helps to explicate a coreference

relation. Several sentences occur between the anaphoric pronoun “it” and the original

noun phrase “this bar.” However, the similarity of the gestures – in this case, both

the location and organization of the hands – indicates that the noun phrases indeed

refer to the same entity.

Thus, in the multimodal setting, gesture can be crucial to understand the speaker’s

meaning. Moreover, even when gesture is not the only cue to noun phrase coreference,

it can reduce the burden on linguistic processing by acting as a supplemental modal-

ity. In either case, our goal is to identify similar gestures, which can be used as a

clue to the semantic relationship of co-articulated noun phrases. In this way, gesture

and speech combine to reveal meaning, without requiring the interpretation of indi-

vidual gestures. Interpreting individual gestures requires reconstructing the visual

metaphor governing the mapping between gestural features and semantic properties.

This is especially difficult because the relationship between gesture and meaning is

underspecified (Lascarides & Stone, 2006), permitting multiple gestural realizations

of a single idea. By focusing on identifying similar gestures, the inherent difficulties

of recognizing and interpreting individual gestures can be avoided.

While gestural similarity may be a useful clue for uncovering discourse structure,

not at all hand movements are intended to be informative (Kendon, 1980). For exam-

ple, “self-adaptors” are self-touching hand movements, such as adjusting one’s glasses

49



Figure 4-2: An example of a pair of “self-adaptor” hand motions, occurring at two
different times in the video. The speaker’s left hand, whose trajectory is indicated by
the red “x,” moves to scratch her right elbow. While these gestures are remarkably
similar, the accompanying speech is unrelated.

or hair. Such movements are believed to have little direct communicative function,

although they may function as proxies for stress (Beattie & Coughlan, 1999). Fig-

ure 4-2 shows two examples of a self-adaptor, which is repeated in a highly consistent

form. It is probably inappropriate to draw inferences about the semantics of the

co-articulated speech based on these hand movements. Thus, the idea of leveraging

similarity of hand motion requires a qualification – we are interested in the similarity

of salient gestures.

This chapter explores the connection between gestural similarity, salience, and

meaning. Section 4.2 describes the extraction of a set of visual features used to

characterize gestural similarity. Section 4.3 describes a novel gesture-speech combi-

nation technique called conditional modality fusion; it is distinguished from previous

techniques in that it attempts to identify and isolate the contribution of salient ges-

tures, ignoring spurious movements such as self-adaptors. Section 4.4 describes the

application of these ideas to noun phrase coreference resolution, finding significant

improvements over the speech-only case. Gesture salience is then exploited to auto-

matically produce keyframe summaries in Section 4.5; these summaries are consistent

with keyframes selected by human annotators. Finally, the ideas in this chapter are
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summarized in Section 4.6.

4.2 From Pixels to Gestural Similarity

Gesture may be described on a myriad of dimensions, including: hand shape, location,

trajectory, speed, and the spatial relation of the hands to each other. This section

describes a set of features that characterize gestural similarity along some of these di-

mensions. The communicative power of the gestural medium derives from its inherent

flexibility, and attempts to completely systematize the various ways in which gesture

may convey meaning seem doomed to failure. The feature set presented here is thus

limited, but has two desirable properties: the features can be extracted automatically

from video, and are shown to be effective for language processing in the second part

of this chapter. The development of additional gesture similarity features is always

an important area of future research.

4.2.1 Hand Tracking from Video

The feature set used in this section is based on hand tracking, meaning that it is

necessary to obtain estimates of the locations of the speaker’s hands. This is done

by estimating the pose of an articulated upper body model at each frame in the

video, using color, motion, and image edges as cues. Search is performed using the

particle filter – a sampling-based technique that enforces temporal smoothness across

the model configuration. The system described in this section is implemented using

OpenCV,2 a library of image processing and computer vision algorithms. More details

on the video recording can be found in Chapter 3.

Articulated Upper-Body Model

An instantiation of the articulated upper-body model is shown in the right panel

of Figure 4-3. The model contains shoulder and elbow joints, a “twist” parameter

allowing the entire body to rotate in the depth plane, and position on the x-axis.

2http://www.intel.com/technology/computing/opencv/
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Figure 4-3: An example image from the dataset, with the estimated articulated model
(right). Blue represents foreground pixels; red represents pixels whose color matches
the hands; green represents image edges.

For each of these six parameters, the value, velocity, and acceleration are estimated.

There are also six fixed parameters describing the dimensions of the articulated parts,

which are tuned by hand for each speaker.

Visual Cues

The articulated model is fit to the video by leveraging color, motion, and edge cues.

Speakers wore colored gloves, enabling the construction of a histogram of the expected

color at the hand location; the likelihood of each model configuration was affected

by how closely the observed color at the predicted hand location matched the known

glove colors. Because the speaker was known to be the only source of motion in the

video, pixels that differed from the background image are likely to be part of the

speaker’s body. Thus, the likelihood of each model configuration was also partially

determined by how well it “covered” such estimated foreground pixels. A Canny

filter (Forsyth & Ponce, 2003) was used to detect edges in the foreground portion of

the image; the model configuration was also rated by how well its predicted edges

lined up with these observed edges. Finally, a prior on model configurations enforced
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physiological constraints: for example, reducing the probability of configurations with

extreme joint angles.

Particle Filter

Using these cues and constraints, it is possible to search for model configurations that

fit each individual frame in the video. However, more robust and rapid search can

be performed by considering the video as a whole, leveraging temporal smoothness.

This is done using a particle filter (Arulampalam, Maskell, Gordon, & Clapp, 2002),

which maintains a set of weighted hypotheses about the model configuration. These

weighted hypotheses are known as particles; the weights indicate an estimate of the

probability that the hypothesized configuration is the true model state.

At each time step, particles may randomly “drift” to slightly different configura-

tions, accounting for system dynamics. The particles are then reweighted, based on

how well the hypothesized configuration matches the new observation. After reweight-

ing, the set of particles is stochastically resampled; at each sampling step, the prob-

ability of a given particle being selected is proportional to its weight. Resampling

tends to eliminate particles whose configuration does not match the observations,

and creates multiple copies of those that do. The resulting online estimator is similar

to the Kalman Filter, but better adapted to the non-Gaussian observation noise that

typically affects vision applications (Arulampalam et al., 2002). The specific form of

the particle filter employed here follows Deutscher, Blake, and Reid (2000).

Performance and Limitations

An informal review of the system output suggests that both hands were tracked ac-

curately and smoothly more than 90% of the time, when not occluded. As shown in

Figure 4-3, the system was able to correctly track the hands even when other parts

of the articulated model were incorrect, such as the elbows; this is likely due to the

strong cues provided by the colored gloves. It is difficult to assess the tracker perfor-

mance more precisely without undertaking the time-consuming project of manually

annotating the correct hand positions at each frame in the video. The main cause
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Pairwise gesture features
focus-distance the Euclidean distance in pixels between the average hand position

during the two NPs
DTW-agreement a measure of the agreement of the hand-trajectories during the two

NPs, computed using dynamic time warping
same-cluster true if the hand positions during the two NPs fall in the same cluster
JS-div the Jensen-Shannon divergence between the cluster assignment like-

lihoods

Table 4.1: The set of gesture similarity features

of error appears to be the lack of depth information. In particular, difficulties were

encountered when speakers flexed their elbow joints in the depth dimension. Due to

our single camera setup and the general difficulty of estimating depth cues (Forsyth

& Ponce, 2003), such flexions in the depth dimension gave the appearance that the

arm length itself was changing. Deutscher et al. (2000) show that this problem can

be addressed with the use of multiple cameras.

4.2.2 Gesture Similarity Features

This section describes features that quantify various aspects of gestural similarity,

listed in Table 4.1. Features are computed over the duration of each noun phrase.

yielding a single feature vector per NP. While it is not universally true that the

beginning and end points of relevant gestures line up exactly with the beginning

and end of the associated words, several experiments have demonstrated the close

synchrony of gesture and speech (McNeill, 1992; Loehr, 2007). The effectiveness of

other gesture segmentation techniques is left to future work.

The most straightforward measure of gesture similarity is the Euclidean distance

between the average hand position during each noun phrase – the associated feature

is called focus-distance. Euclidean distance captures cases in which the speaker is

performing a gestural “hold” in roughly the same location (Kendon, 2004). However,

Euclidean distance may not correlate directly with semantic similarity. For example,

when gesturing at a detailed part of a diagram, very small changes in hand position

may be semantically meaningful, while in other regions positional similarity may be
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defined more loosely. The ideal feature would capture the semantic object of the

speaker’s reference (e.g., “the red block”), but this is not possible in general because

a complete taxonomy of all possible objects of reference is usually unknown.

Instead, a hidden Markov model (HMM) is used to perform a spatio-temporal

clustering on hand position and speed. This clustering is used to produce the same-

cluster and JS-div features, as explained below. The input to the model are the

position and speed of the hands; these are assumed to be generated by Gaussians,

indexed by the model states. The states of the HMM correspond to clusters, and

cluster membership can be used as a discretized representation of positional similarity.

Inference of state membership and learning of model parameters are performed using

the traditional forward-backward and Baum-Welch algorithms (Rabiner, 1989).

While a standard hidden Markov model may be suitable, reducing the model’s

degrees-of-freedom can increase robustness and make better use of available training

data. Reducing the number of degrees-of-freedom means that we are learning simpler

models, which are often more general. This is done through parameter tying: requiring

some subsets of model parameters to take the same values (Bishop, 2006). Three

forms of parameter tying are employed:

1. Only one state is permitted to have an expected speed greater than zero. This

state is called the “move” state; all other states are “hold” states, and their

speed observations are assumed to be generated by zero-mean Gaussians. Only

a single “move” state is used, because position seems most likely to be relevant

for static gestures.

2. Transitions between distinct hold states are not permitted. This reflects the

common-sense idea that it is not possible to transition between two distinct

positions without moving.

3. The outgoing transition probabilities from all hold states are assumed to be

identical. Intuitively, this means that the likelihood of remaining within a hold

state does not depend on where that hold is located. While it is possible to
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imagine scenarios in which this is not true, it is a reasonable simplification that

dramatically reduces the number of parameters to be estimated.

Two similarity features are derived from the spatio-temporal clustering. The

same-cluster feature reports whether the two gestures occupy the same state for

the majority of the durations of the two noun phrases. This is a Boolean feature that

indicates whether two gestures are in roughly the same area, without need for an

explicit discretization of space. However, two nearby gestures may not be classified

as similar by this method if they are near the boundary between two states or if both

gestures move between multiple states. For this reason, the similarity of the state

assignment probabilities is quantified using the Jensen-Shannon divergence, a metric

on probability distributions (Lin, 1991). JS-div is a real-valued feature that provides

a more nuanced view of the gesture similarity based on the HMM clustering. Both

same-cluster and JS-div are computed independently for models comprising five,

ten, and fifteen hold positions.

Thus far, our features are designed to capture the similarity between static ges-

tures; that is, gestures in which the hand position is nearly constant. These features

do not capture the similarity between gesture trajectories, which may also be used to

communicate meaning. For example, a description of two identical motions might be

expressed by very similar gesture trajectories. The DTW-distance feature quanti-

fies trajectory similarity, using dynamic time warping (Huang, Acero, & Hon, 2001).

This technique finds the optimal match between two time sequences, permitting a

non-linear warp in the time dimension. Dynamic time warping has been used fre-

quently in recognition of predefined gestures (Darrell & Pentland, 1993).

The continuous-valued are binned using Weka’s default supervised binning class,

which is based on the method of Fayyad and Irani (1993).3 This method recursively

partitions the domain of an attribute value by adding cut points. Cut points are

placed so as to minimize the class label impurity on each side of the cut. For example,

in binning the focus-distance feature the method first divides the attribute domain

at the point that best separates positive and negative labeled examples. Additional

3The specific class is weka.filters.supervised.attribute.Discretize.
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cut points are added until a termination criterion is reached, based on the minimum

description length (Bishop, 2006).

Finally, note that feature set currently supports only single-hand gestures. The

articulated upper body model makes it possible to estimate the distance of each hand

from the body center. The more distant hand is used in all cases.

4.3 Gesture Salience

Section 4.1 introduced the hypothesis that gesture similarity is an important cue

for analyzing discourse structure. However, not all hand movements are meaningful

gestures. The psychology literature suggests that human viewers consistently identify

a subset of hand motions as intentionally communicative, and disattend other, non-

communicative movements (Kendon, 1978). A key claim of this thesis is that the

same ability should be incorporated in multimodal discourse processing systems.

Hand movements that are relevant to the speaker’s communicative intent will

be referred to as salient. Our goal is to learn to estimate the salience of the hand

movements that accompany critical parts of the speech – in the case of coreference,

the focus is on noun phrases. As stated, the definition of salience implies that it is

a property that could be annotated by human raters. In principle, such annotations

could then be be used to train a system to predict salience on unseen data.

However, such labeling is time-consuming and expensive. Rather than addressing

salience generally, it may be advantageous to use a more functional definition: salient

gestures are hand movements that improve automatic language processing. As we

will see, restating salience in this way permits it to be estimated without labeled data

and situates the concept of gesture salience within the context of a specific language

processing problem and feature set. For example, a given gesture may be irrelevant to

coreference, as it may be communicating something other than noun phrase identity.

Alternatively, a gesture may be salient for the relevant discourse processing task but

may communicate in a way that cannot be captured by the available features. In
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both cases, it would be better to treat the gesture as not salient for the purposes of

natural language processing.

This section describes a novel approach to assessing gesture salience, called con-

ditional modality fusion. This approach does not require an annotated training set

and gives an estimate of salience that is customized both for the task and feature set.

Conditional modality fusion learns gesture salience jointly with the target language

processing task – in this case, noun phrase coreference. Gesture salience is modeled

with a hidden variable; gesture features influence the coreference label prediction only

when the hidden variable indicates that the gestures are salient. Thus, in maximizing

the likelihood of the training data – which does not include labels for gesture salience

– conditional modality fusion nonetheless learns to predict which gestures are likely

to be helpful.

More formally, assume that the goal is to predict a binary label y ∈ {−1, 1},

representing a single binary coreference decision of whether whether two noun phrases

refer to the same entity. The hidden variable h describes the salience of the gesture

features. The observable features are written as x, and the goal of training is to learn

a set of weights w. Conditional modality fusion learns to predict y and h jointly,

given labeled training data only for y. Marginalizing over the hidden variable h,

p(y|x;w) =
∑
h

p(y,h|x;w)

=

∑
h exp{ψ(y,h,x;w)}∑

y′,h exp{ψ(y′,h,x;w)}
.

In the second line, the joint probability of y and h is modeled in terms of a ratio of

exponentiated potential functions ψ. These functions representing the compatibility

between the label y, the hidden variable h, and the observations x; this potential is

parametrized by a vector of weights, w. The numerator expresses the compatibility

of the label y and observations x, summed over all possible values of the hidden

variable h. The denominator sums over both h and all possible labels y′, yielding the

conditional probability p(y|x;w).
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This model can be trained by a gradient-based optimization to maximize the

conditional log-likelihood of the observations. The unregularized log-likelihood and

gradient are given by:

l(w) =
∑

i

log p(yi|xi;w) (4.1)

=
∑

i

log
∑

h exp{ψ(yi,h,xi;w)}∑
y′,h exp{ψ(y′,h,xi;w)}

, (4.2)

∂li
∂wj

=
∑
h

p(h|yi,xi;w)
∂

∂wj
ψ(yi,h,xi;w)−

∑
y′,h

p(h, y′|xi;w)
∂

∂wj
ψ(y′,h,xi;w).

The derivative of the log-likelihood is thus a difference of expectations. The first

term is the expectation with the respect to only the hidden variable, using the training

label yi; the second term is the expectation with respect to both the hidden variable

and the label. When these terms are equal the model cannot learn any more from

this example and does not update the weights.

The use of hidden variables in a conditionally-trained model follows Quattoni et

al. (2007). However, while this reference gives the general outline for hidden-variable

conditional models, the form of the potential function depends on the role of the

hidden variable. This is problem-specific, and a novel contribution of this thesis is

the exploration of several potential functions, permitting different forms of modality

fusion.

4.3.1 Models of Modality Fusion

Intuitions about the role of the hidden variable can be formalized in the form of the

potential function ψ. This section considers several alternative forms for ψ, corre-

sponding to different theories of gesture-speech integration. The models range from

a simple concatenation of gesture-speech features to a structured fusion model that

dynamically assesses the relevance of gesture features for every noun phrase.
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All models are shaped by the goal of determining whether two noun phrases

(NPs) are coreferent. Gesture salience is assessed at each NP, to determine whether

the gestural features should influence our decision about whether the noun phrases

corefer. We set h = 〈h1, h2〉, with h1 ∈ {1,−1} representing gesture salience during

the first noun phrase (antecedent), and h2 ∈ {1,−1} representing gesture salience

during the second noun phrase (anaphor).

Same-Same Model

In the trivial case, the hidden variable is ignored and features from both gesture and

speech are always included. Since the weight vectors for both modalities are unaffected

by the hidden variable, this model is referred to as the “same-same” model. Note that

this is identical to a standard log-linear conditional model, concatenating all features

into a single vector. This model is thus a type of “early fusion” (see Section 2.3),

meaning that the verbal and non-verbal features are combined prior to training.

ψss(y,h,x;w) ≡ y(wT
v xv + wT

nvxnv) (4.3)

xv and wv refer to the features and weights for the verbal modality; xnv and wnv

refer to the non-verbal modality.

Same-Zero Model

Next, consider a model that treats the hidden variable as a gate governing whether

the gesture features are included. This model is called the “same-zero” model, since

the verbal features are weighted identically regardless of the hidden variable, and the

gesture feature weights go to zero unless h1 = h2 = 1.

ψsz(y,h,x;w) ≡

y(wT
v xv + wT

nvxnv) + h1w
T
hxh1 + h2w

T
hxh2 , h1 = h2 = 1

ywT
v xv + h1w

T
hxh1 + h2w

T
hxh2 , otherwise.

(4.4)
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The features xh and weights wh contribute to the estimation of the hidden variable

h. They may include some or all of the features from xv and xnv, or different features.

These features are assessed independently at each noun phrase, yielding xh1 for the

antecedent and xh2 for the anaphor. A description of the hidden variable features

that are used for coreference resolution is found in Section 4.4.2.

This model reflects the intuition that gesture similarity features (indicated by xnv)

are relevant only when the gestures during both noun phrases are salient. Thus, these

features contribute towards the overall potential only when h1 = h2 = 1.

To see how gesture salience can be learned from this potential function, it is

helpful to consider cases. If the current model of gesture similarity contradicts the

training label, then the dot product ywT
nvxnv < 0. The log-likelihood is maximized

when the numerator of equation 4.2 goes to infinity for all labeled examples; in other

words, we want the potential function ψ to be large in all cases in the training set.

Since ywT
nvxnv < 0, the value of the potential function ψ will be higher when h1 or

h2 = −1. Thus, when the model of gesture similarity contradicts the coreference label,

this serves as a de facto negative training example for gestures salience. Similarly,

cases in which the model of gesture similarity agrees with the coreference label serve

as de facto positive examples of gesture salience.

Different-Zero Model

We may add flexibility to our model by permitting the weights on the verbal fea-

tures to change with the hidden variable. This model is called the “different-zero”

model, since a different set of verbal weights (wv,1 or wv,2) is used depending on the

value of the hidden variable. Such a model is motivated by empirical research show-

ing that speech is different when used in combination with meaningful non-verbal

communication, compared to unimodal language (Kehler, 2000; Melinger & Levelt,

2004).

The formal definition of the potential function is:
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ψdz(y,h,x;w) ≡

y(wT
v,1xv + wT

nvxnv) + h1w
T
hxh1 + h2w

T
hxh2 , h1 = h2 = 1

ywT
v,2xv + h1w

T
hxh1 + h2w

T
hxh2 , otherwise.

(4.5)

Other Models

Thus far, we have encountered three models of increasing complexity. The “different-

different” model is one step more complex, including two pairs of weight vectors for

both verbal and gestural features (see Equation 4.6). In this model, the distinction

between verbal and non-verbal features (xv and xnv) evaporates, and there is no

reason that the hidden variable h should actually indicate the relevance of the non-

verbal features. In addition, the high degree of freedom of this model may lead to

overfitting.

ψdd(y,h,x;w) ≡

y(wT
v,1xv + wT

nv,1xnv) + h1w
T
hxh1 + h2w

T
hxh2 , h1 = h2 = 1

y(wT
v,2xv + wT

nv,2xnv) + h1w
T
hxh1 + h2w

T
hxh2 , otherwise.

(4.6)

All of these models assume that the verbal features are always relevant, while

the gesture features may sometimes be ignored. In other words, the salience of the

verbal features has been taken for granted. One might consider alternative potential

functions such as a “zero-same” model, in which the verbal features were sometimes

ignored. As gesture unaccompanied by speech is extremely rare in the dataset, such

models were not considered.

4.3.2 Implementation

The objective function (equation 4.1, page 59) is optimized using a Java implemen-

tation of L-BFGS, a quasi-Newton numerical optimization technique (D. C. Liu &

Nocedal, 1989). L2-norm regularization is employed to prevent overfitting, with cross-

validation to select the regularization constant.
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Although standard logistic regression optimizes a convex objective, the inclusion

of the hidden variable renders the objective non-convex. Thus, convergence to a

global optimum is not guaranteed, and results may differ depending on the initial-

ization. Nonetheless, non-convexity is encountered with many models in natural

language processing and machine learning generally, such as Baum-Welch training of

hidden Markov models (HMMs) (Rabiner, 1989) or hidden-state conditional random

fields (Quattoni et al., 2007; Sutton & McCallum, 2006). Often, results can be shown

to be reasonably robust to initialization; otherwise, multiple restarts can be used to

obtain greater stability. The empirical evaluation presented in Section 4.4.4 shows

that our results are not overly sensitive to initialization. In all other experiments,

weights are initialized to zero, enabling the results to be reproduced deterministically.

4.4 Gestural Similarity and Coreference Resolu-

tion

This section describes the application of gesture similarity and conditional modality

fusion to the problem of noun phrase coreference. The first part of the section presents

the framework for this approach, which is based on existing text-based features and

techniques. Next, I describe the setup and results of experiments showing that gesture

similarity improves coreference resolution beyond traditional text-based approaches

and that conditional modality fusion dramatically increases the power of gesture

features by identifying salient gestures.

4.4.1 Verbal Features for Coreference

The selection of verbal features is guided by the extensive empirical literature on

text-based coreference resolution (Soon et al., 2001; Ng & Cardie, 2002; Strube &

Müller, 2003; Daumé III & Marcu, 2005). The proliferation and variety of features

that have been explored is a consequence of the fact that coreference is a complex

discourse phenomenon. Moreover, the way in which coreference is expressed depends
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feature type description

pairwise verbal features
np-dist centering-based the number of noun phrases between i and j in the

document
sent-dist centering-based the number of sentences between i and j in the doc-

ument
both-subj centering-based true if both i and j precede the first verb of their

sentences
same-verb centering-based true if the first verb in the sentences for i and j is

identical
exact-match similarity true if the two NPs are identical
overlap similarity true if there are any shared words between i and j
str-match similarity true if the NPs are identical after removing articles
nonpro-str similarity true if the antecedent i and the anaphor j are not

pronouns, and str-match is true
pro-str similarity true if i and j are pronouns, and str-match is true
j-substring-i similarity true if j is a substring of i
i-substring-j similarity true if i is a substring of j
edit-distance similarity a numerical measure of the string similarity between

the two NPs
number-match compatibility true if i and j have the same number

single-phrase verbal features
pronoun centering-based true if the NP is a pronoun
has-modifiers centering-based true if the NP has adjective modifiers
indef-np centering-based true if the NP is an indefinite NP (e.g., a fish)
def-np centering-based true if the NP is a definite NP (e.g., the scooter)
dem-np centering-based true if the NP begins with this, that, these, or those
count centering-based number of times the NP appears in the document
lexical features centering-based lexical features are defined for the most common

pronouns: it, that, this, and they

Table 4.2: The set of verbal features for multimodal coreference resolution. In this
table, i refers to the antecedent noun phrase and j refers to the anaphor.
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on the type of discourse in which it appears; relevant factors include the modality

(e.g., speech vs. language), genre (e.g., meeting vs. lecture) and topic (e.g., politics

vs. scientific subject). Although certain feature types are application-specific, three

classes of features – centering-based, similarity, and compatibility features – are use-

ful across most coreference applications. These classes form a basis for the verbal

features selected here. Table 4.2 provides a brief description of the verbal feature set.

Examples from the transcript in Appendix A.1 (page 133) provide a more detailed

explanation of these features and motivate their use.

• Centering-based features: This set of features captures the relative promi-

nence of a discourse entity, and its likelihood to act as a coreferent for a given

phrase. These features are inspired by the linguistic analysis formalized in Cen-

tering Theory, which models the inter-sentential coherence of discourse (Grosz,

Joshi, & Weinstein, 1995; Walker, Joshi, & Prince, 1998; Strube & Hahn, 1999;

Kibble & Power, 2004). Centering theory posits that at any point of a coherent

discourse, only one semantic entity is the focus of attention. Local discourse is

then characterized in terms of focus transitions between adjacent sentences.

Existing machine-learning based coreference systems generally do not attempt

to fully implement centering-style analysis.4 Instead, a number of centering-

related features are included. For example, the both-subj feature helps to

identify transitions in which the same entity remains in focus (these are known

as continue transitions). According to centering theory, such transitions are

common in locally-coherent discourse, and therefore coreference assignments

that are consistent with this principle may be preferable. Transitions are also

characterized in terms of their span (np-dist and sent-dist). Transitions that

involve short gaps are preferred over transitions with long gaps.

Another important set of Centering-related features is defined at the level of a

single phrase. The syntactic role of a phrase in a sentence – captured in fea-

4Such an implementation is challenging in several respects. As noted by Poesio, Stevenson, Euge-
nio, and Hitzeman (2004), centering theory permits multiple possible computational instantiations,
which may yield very different analyses. Additionally, implementing centering depends on obtaining
detailed syntactic information, which is difficult for spoken language.
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tures such as pronoun, has-modifiers and indef-np – indicates its discourse

prominence and therefore its likelihood to be a coreference antecedent. For ex-

ample, consider an utterance from lines 12 and 13 in Appendix A.1: “and this

spring is active meaning that it’s going up and down.” Here, the anaphor “it”

clearly refers to the antecedent “this spring.” The fact that the antecedent is a

demonstrative noun phrase (beginning with “this”)5 and that the anaphor is a

pronoun also suggest coreference is likely. In addition to the syntactic status,

frequency information is commonly used to approximate topical salience of an

entity in a text (Barzilay & Lapata, 2005). This phenomenon is modeled by the

count feature.

• Similarity features: A simple yet informative set of coreference cues are based

on string-level similarity between noun phrases. For example, the reference be-

tween “this spring” in line 12 of Appendix A.1 and the identical noun phrase

in line 5 can be resolved by the exact match of the surface forms. Unsur-

prisingly, string match is often found to be the single most predictive feature

because a discourse entity is commonly described using identical or similar noun

phrases (Soon et al., 2001).

Similarity information is captured in eight features that quantify the degree of

string overlap. For example, the feature (exact-match) indicates full over-

lap between noun phrases, while the feature (overlap) captures whether two

phrases share any common words. In the context of coreference resolution, noun

phrase match is more informative than pronoun match, so in each syntactic cat-

egory, distinct features for matching strings are applied (e.g., nonpro-str vs.

pro-str), following (Ng & Cardie, 2002). Surface similarity may also be quan-

tified in terms of edit-distance (Strube, Rapp, & Müller, 2002).

5Simple string matching techniques are used to assess phrase types: definite noun phrases are
those beginning with the article “the”; indefinite noun phrases begin with “a” or “an”; demonstrative
noun phrases begin with “this.” Bare plurals are not marked as indefinites, and proper names do
not appear in the dataset.
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• Compatibility features: An important source of coreference information is

compatibility between two noun phrases. For instance, the utterance “the ball”

in line 11 cannot refer to the preceding noun phrase “these things,” since they

are incompatible in number. The number-match feature captures this infor-

mation, using a hand-coded heuristic to determine whether each noun phrase

is singular or plural.

Because the topic of discourse in the corpus relates to mechanical devices, al-

most all noun phrases are neuter-gendered. This eliminates the utility of fea-

tures that measure gender compatibility. It is possible to use more complex

semantic compatibility features – for example, derived from resources such as

WordNet (Harabagiu, Bunescu, & Maiorano, 2001) or Wikipedia (Ponzetto &

Strube, 2007) – but this is outside the scope of this thesis.

Some features traditionally used in coreference were avoided here. Features that

depend on punctuation seem unlikely to be applicable in an automatic speech recog-

nition setting, at least in the near future. In addition, while many systems in the

MUC (Grishman & Sundheim, 1995) and ACE (Doddington et al., 2004) coreference

corpora use “gazetteers” that list the names of nations and business entities, such

features are not relevant to this corpus.

4.4.2 Salience Features

Salience features are observable properties of the speech and gesture that give clues

about whether the speaker is gesturing in a way that is meaningful for the language

language processing task at hand. In equations 4.4-4.6, these features are represented

by xh1 and xh2 . Unlike the similarity-based features described above, salience features

must be computable at a single instant in time, as they encode properties of individual

gestures and the associated noun phrases.

Previous research has investigated which types of verbal utterances are likely to

be accompanied by gestural communication (Melinger & Levelt, 2004; Kehler, 2000).
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Single-phrase gesture features
dist-to-rest distance of the hand from rest position
jitter sum of instantaneous motion across the NP
speed total displacement over the NP, divided by duration
rest-cluster true if the hand is usually in the cluster associated with rest position
movement-cluster true if the hand is usually in the cluster associated with movement

Table 4.3: The set of gesture features for multimodal coreference resolution

However, this thesis is the first attempt to formalize this relationship in the context

of a machine learning approach that predicts gesture salience.

Verbal Salience Features

Meaningful gesture has been shown to be more frequent when the associated speech

is ambiguous (Melinger & Levelt, 2004). Kehler (2000) finds that fully-specified

noun phrases are less likely to receive multimodal support. These findings lead us to

expect that salient gestures should be more likely to co-occur with pronouns, and less

likely to co-occur with definite noun phrases, particularly if they include adjectival

modifiers. Moreover, gestures are most likely to be helpful for coreference when the

associated noun phrase is ambiguous. To capture these intuitions, all single-phrase

verbal features (Table 4.2) are included as salience features.

Non-verbal Salience Features

The non-verbal salience features are described in Table 4.3. Research on gesture

has shown that semantically meaningful hand motions usually take place away from

“rest position,” which is located at the speaker’s lap or sides (McNeill, 1992). The

dist-to-rest feature computes the average Euclidean distance of the hand from the

rest position, over the duration of the NP. Here, rest position is computed from the

articulated upper body model; it is defined as the center of the body on the x-axis,

and at a predefined, speaker-specific location on the y-axis.

Hand speed may also be related to gesture salience. The speed feature cap-

tures the overall displacement (in pixels) divided by the length of the noun phrase.
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Writing x for the hand position and t ∈ {1, 2, . . . , T} for the time index, we define

speed = 1
T
(xT − x1)

2, which is the Euclidean distance between the start and end

positions, divided by time. The jitter feature captures the average instantaneous

speed: jitter = 1
T

∑T
t=2 (xt − xt−1)

T(xt − xt−1). This feature captures periodic or

jittery motion, which will not be quantified by the speed feature if the end position

is near the original position. Also, high jitter often indicates that the tracker has

lost the hand position, which would be reason to ignore the gesture features.

As described in Section 4.2.2, an HMM was used to perform a spatio-temporal

clustering on the hand positions and velocities. If the most frequently occupied state

during the NP is the one closest to the rest position, then the rest-cluster feature

is set to true. As noted earlier, rest position is very rarely used for communicative

gestures.

In addition, the HMM employs parameter tying to ensure that all states but

one are static holds, and this remaining state represents the transition movements

between those holds. Only this state is permitted to have an expected non-zero

speed. If the hand is most frequently in this transitional state during the NP, then

this is expressed through the movement-cluster feature, which then is set to true.

While transitioning between other holds, the hand position itself is less likely to be

meaningful.

4.4.3 Evaluation Setup

The goal of the evaluation is twofold: to determine whether gesture features im-

prove coreference resolution and to compare conditional modality fusion with other

approaches for gesture-speech combination. This section describes the dataset, eval-

uation metric, baselines for comparison, and parameter tuning.

Dataset

As described in Chapter 3, the dataset for all experiments in this thesis consists of a

set of videos of short dialogues. This chapter focuses on a subset of videos in which
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And this top one clears this area here, and goes
all the way up to the top...

2

So this moves up. And it – everything moves up.
1

Figure 4-4: An excerpt of an explanatory narrative from the dataset

one of the participants was provided a pre-printed diagram showing a schematic of a

mechanical device, which was the subject of discussion (see Figure 4-4).

The interpretation of gestures in this condition is often relatively straightforward;

many, if not most of the gestures involve pointing at locations on the diagram. Visual

aids such as printed or projected diagrams are common to important application areas,

including business presentations, classroom lectures, and weather reports. Thus, this

restriction does not seem overly limiting to the applicability of the work. Another

subset of the corpus contains dialogues in which no such visual aids were permitted.

Chapter 5 describes experiments that utilize this portion of the corpus.

For the experiments in this chapter, sixteen videos from nine different speakers

are used. Corpus statistics are given in Table B.1. The dataset includes a total of

1137 noun phrases; this is roughly half the number found in the MUC6 training set, a

text-only dataset that is also used for coreference resolution (Hirschman & Chinchor,

1998).

There are some important differences between this corpus and commonly-used

textual corpora in coreference resolution, such as MUC (Grishman & Sundheim,

1995). Topically, this corpus focuses on descriptions of mechanical devices rather

than news articles.6 Consequently, less emphasis is placed on disambiguating entities

such as people and organizations, and more on resolving references to physical objects.

6Four different mechanical devices were used as topics of discussion: a piston, candy dispenser,
latch box, and pinball machine. Images of each are shown in Appendix C (page 141).
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The corpora also differ in genre, with this corpus comprised of spontaneous speech,

while the MUC corpus includes edited text. Such genre distinctions are known to

play an important role in patterns of reference (Strube & Müller, 2003) and language

use generally (Biber, 1988).

Speech Transcription A wide range of possibilities exist regarding the fidelity

and richness of transcribed speech. Choices include transcription quality, existence

of punctuation and capitalization, the presence of sentence boundaries and syntac-

tic annotations. Here, a perfect transcription of words and sentence boundaries is

assumed,7 but no additional punctuation is given. This is similar to much of the

research on the Switchboard corpus of telephone conversations, e.g., (Kahn et al.,

2005; Li & Roth, 2001), although automatic speech recognition (ASR) transcripts

have also been used (e.g., Shriberg et al., 2000). Using ASR may more accurately

replicate the situation faced by an application developer trying to implement a de-

ployable automatic language processing system. However, such an approach would

also introduce a certain arbitrariness, as results would depend heavily on the amount

of effort spent tuning the recognizer. In particular, if the recognizer is not well-tuned,

this approach risks overstating the relative contribution of gesture features, because

the verbal features would then be of little value.

Noun Phrase and Coreference Annotations Coreference resolution requires

noun phrase boundaries as a preprocessing step, and we provide gold-standard noun

phrase annotation. For the goal of isolating the contribution of gesture features for

coreference, it seems undesirable to deliberately introduce noise in the noun phrase

boundaries. Gold standard noun phrase annotations have been used in previous

research on coreference resolution, (e.g., McCallum & Wellner, 2004; Haghighi &

Klein, 2007).8 In addition, automatic noun phrase chunking is now possible with high

7Sentence boundaries were annotated by the author according to the NIST Rich Transcription
Evaluation (NIST, 2003).

8The cited references do not include noun phrases unless they participate in coreference relations.
This substantially simplifies the coreference task by eliminating the need to disambiguate “singleton”
items. In the work described in this chapter, singleton noun phrases are included.
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accuracy. F-measures exceeding .94 have been reported on textual corpora (Kudo &

Matsumoto, 2001; Sha & Pereira, 2003); on transcripts of the Switchboard corpus,

state-of-the-art performance exceeds .91 (Li & Roth, 2001).

The annotation of noun phrases followed the MUC task definition for “markable”

NPs (Hirschman & Chinchor, 1998). Personal pronouns were not annotated, as the

discourse focused on descriptions of mechanical devices. Such pronouns could easily

be filtered out automatically. Annotation attempted to transcribe all other noun

phrases.

The gold standard coreference and markable annotation was performed by the

author, using both the audio and video information. Appendix A.1 (page 133) shows

the coreference annotations for one conversation in the dataset. Additional coref-

erence annotations were performed by a second rater, permitting an assessment of

interrater agreement. This rater is a native speaker of English, a graduate student

in computer science, and is not an author on any paper published in connection with

this research. She annotated two documents, comprising a total of 270 noun phrases.

Using the interrater agreement methodology described by Passonneau (1997), a

score of .65 is obtained on Krippendorf’s alpha. This level of agreement is typical for

coreference on spoken language. On a corpus of spoken monologues (“Pear Stories”;

Chafe, 1980), Passonneau (2004) reports coreference scores ranging from .49 to .74,

depending on the story. Using the Trains (Heeman & Allen, 1995) corpus of travel

planning dialogues, Poesio and Artstein (n.d.) investigate a number of variations of

interrater scoring schemes, though the maximum reported alpha score is .67. On

a corpus of multi-party spoken dialogues, Müller (2007) finds that agreement for

pronoun resolution is low, ranging from .43 to .52.

Evaluation Metric

Coreference resolution is often performed in two phases: a binary classification phase,

in which the likelihood of coreference for each pair of noun phrases is assessed; and

a global partitioning phase, in which the clusters of mutually-coreferring NPs are

formed (e.g., Cardie & Wagstaff, 1999; Soon et al., 2001). This dissertation does
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not address the global partitioning phase; it considers only the question of whether

each pair of noun phrases in the document corefer. Moving from pairwise noun phrase

coreference to global partitioning requires a clustering step to ensure that the pairwise

decisions are globally consistent. Because conditional modality fusion operates at the

level of binary coreference decisions, interposing another processing step only obscures

our ability to measure the contributions of this technique.

Moreover, a global evaluation depends on the choice of the clustering algorithm

and the mechanism for selecting the number of clusters (or, alternatively, the cut-off

value on merging clusters). This parametrization is particularly challenging for our

corpus because of the absence of a large dedicated development set, which could be

used to set the number of clusters. Consequently, the bulk of evaluation is performed

on the binary classification phase. However, for the purpose of comparing with prior

work on coreference, a global evaluation is also performed, measuring the overall

results after clustering.

For the binary evaluation, the area under the receiver-operating characteristic

(ROC) curve (auc) is used as a performance metric (Bradley, 1997). auc eval-

uates classifier performance without requiring the specification of a cutoff. This

metric penalizes misorderings – cases in which the classifier ranks negative exam-

ples more highly than positive examples. ROC analysis is increasingly popular, and

has been used in a variety of NLP tasks, including the detection of action items in

emails (Bennett & Carbonell, 2007) and topic segmentation (Malioutov & Barzilay,

2006).

The global evaluation uses the constrained entity-alignment f-measure (ceaf) for

evaluation (Luo, 2005). This metric avoids well-known problems with the earlier

MUC evaluation metric (Vilain, Burger, Aberdeen, Connolly, & Hirschman, 1995).

The clustering step is performed using two standard techniques from the literature,

described in Section 4.4.5. Future work may explore techniques that perform multi-

modal coreference resolution in a single joint step (e.g., Daumé III & Marcu, 2005).

In this case, a global metric would be more appropriate to measure the contributions

of gesture and conditional modality fusion.
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Baselines

Conditional modality fusion (cmf) is compared against traditional approaches to

modality combination for NLP tasks (see Section 2.3.2):

• Early fusion: The early fusion baseline includes all features in a single vec-

tor, ignoring modality. This is equivalent to standard maximum-entropy clas-

sification. Early fusion is implemented with a conditionally-trained log-linear

classifier. It uses the same code as the cmf model, but always includes all

features.

• Late fusion: Late fusion trains separate classifiers for gesture and speech and

then combines their posteriors. The modality-specific classifiers are conditionally-

trained log-linear classifiers, and again use the same code as the cmf model. For

simplicity, a parameter sweep identifies the interpolation weights that maximize

performance on the test set. Thus, it is likely that these results somewhat over-

estimate the performance of these baseline models. There are two versions of

late fusion: additive and multiplicative combination of the unimodal posteriors.

• No fusion: The “no fusion” baselines are unimodal classifiers for gesture

and speech. As with the other baselines, the learning algorithm is still a

conditionally-trained log-linear classifier. The implementation uses the same

code as the cmf model, but weights on features outside the target modality are

forced to zero.

An important question is how these results compare with existing state-of-the-

art coreference systems. The “no fusion, verbal features only” baseline provides a

reasonable representation of prior work on coreference, by applying a maximum-

entropy classifier to a set of typical textual features. A direct comparison with existing

implemented systems would be ideal, but all such available systems rely on textual

features that are inapplicable to our dataset, such as punctuation, capitalization,

and gazetteers of country names and corporations. All systems in the evaluation are

summarized in Table 4.4.
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cmf different-different (DD) Uses two different sets of weights for both
verbal and gestural features, depending on
the hidden variable (equation 4.6).

cmf different-zero (DZ) Uses different weights on the verbal fea-
tures depending on the hidden variable; if
the hidden variable indicates non-salience,
gesture weights are set to zero (equa-
tion 4.5).

cmf same-zero (SZ) Uses the same weights on verbal features
regardless of gesture salience; if the hid-
den variable indicates non-salience, gesture
weights are set to zero (equation 4.4).

Early fusion (E) Standard log-linear classifier. Uses the
same weights on verbal and gestural fea-
tures, regardless of hidden variable (equa-
tion 4.3).

Late fusion, multiplicative (LM) Trains separate log-linear classifiers for
gesture and verbal features. Combines
posteriors through multiplication.

Late fusion, additive (LA) Trains separate log-linear classifiers for
gesture and verbal features. Combines
posteriors through interpolation.

No fusion, verbal only (VO) Uses only verbal features for classification.
No fusion, gesture only (GO) Uses only gesture features for classifica-

tion.

Table 4.4: Summary of systems compared in the coreference evaluation

Parameter Tuning

As the small size of the corpus did not permit dedicated test and training sets,

results are computed using leave-one-out cross-validation, with one fold for each of

the sixteen documents in the corpus. Parameter tuning was performed using cross-

validation within each training fold. This includes the selection of the regularization

constant, which controls the trade-off between fitting the training data and learning

a model that is simpler (and thus, potentially more general). In addition, binning of

continuous features was performed within each cross-validation fold, using the method

described in Section 4.2.2. Finally, as noted above, model weights are initialized to

zero, enabling deterministic reproducibility of the experiments.
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model auc
1. cmf different-zero .8226
2. cmf different-different .8174
3. cmf same-zero .8084
4. Early fusion (same-same) .8109
5. Late fusion, multiplicative .8103
6. Late fusion, additive .8068
7. No fusion (verbal features only) .7945
8. No fusion (gesture features only) .6732

Table 4.5: Coreference performance, in area under the ROC curve (auc), for systems
described in Table 4.4

4.4.4 Results

Table 4.5 gives results for both the baseline and experimental conditions. The gesture-

only condition (line 8) is significantly better than chance, which is .5 auc (p <

.01, t(15) = 15.5). This shows that it is possible to predict noun phrase coreference

purely from gestural information, supporting the hypothesis that gestural similarity

correlates with this discourse phenomenon.

Moreover, the multimodal systems all outperform the verbal-only baseline. Even

the worst-performing model combination technique – additive late fusion (line 6) – is

significantly better than the verbal-only case (p < .01, t(15) = 3.44). This shows that

gestural similarity provides information not captured by the verbal features.

Conditional modality fusion outperforms all other model-combination approaches

by a statistically significant margin. Compared with early fusion, the different-zero

model for conditional modality fusion offers an absolute improvement of 1.17% in area

under the ROC curve (auc) – compare lines 1 and 4 in the table. A paired t-test

shows that this result is statistically significant (p < .01, t(15) = 3.73). cmf obtains

higher performance on fourteen of the sixteen cross-validation folds. Both additive

and multiplicative late fusion perform on par with early fusion. The p-values of the

significance tests for of all pairwise comparisons are shown in Table 4.6.

Early fusion with gesture features is superior to unimodal verbal classification by

an absolute improvement of 1.64% auc (p < .01, t(15) = 4.45) – compare lines 4 and
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DD SZ E LM LA VO GO
cmf different-zero (DZ) .01 .01 .01 .01 .01 .01 .01
cmf different-different (DD) .05 ns ns .05 .01 .01
cmf same-zero (SZ) ns ns ns .05 .01
Early fusion (E) ns ns .01 .01
Late fusion, multiplicative (LM) ns .01 .01
Late fusion, additive (LA) .01 .01
Verbal features only (VO) .01
Gesture features only (GO)

Table 4.6: P-values of the pairwise comparison between models. “ns” indicates that
the difference in model performance is not significant at p < .05. The parentheses in
the left column explain the abbreviations in the top line.

7 in Table 4.5. The additional 1.17% auc provided by conditional modality fusion

amounts to a relative 73% increase in the power of the gesture features.

The results are robust to variations in the regularization constant, which con-

trols the tradeoff between fitting the training data and learning simpler, more general

models. As shown in Figure 4-5, the performance of all methods are relatively con-

sistent across a wide range of values for the regularization constant, with conditional

modality fusion consistently outperforming the baseline alternatives.

As noted in Section 4.3.2, conditional modality fusion optimizes a non-convex

objective, meaning that local search is not guaranteed to find the global optimum.

One danger is that the observed results may be sensitive to initialization. This was

tested by re-running the cmf different-zero method with five randomized initializa-

tions. The resulting standard deviation of the auc is 1.09 ∗ 10−3, indicating that

performance is fairly stable. In all other experiments the weights were initialized to

zero, enabling the results to be reproduced deterministically.

4.4.5 Global Metric

Coreference is traditionally evaluated with a global error metric. However, the re-

search described in this chapter is directed specifically at the binary classification of

coreference between pairs of noun phrases. Thus, the focus of evaluation has been on
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Figure 4-5: Results with regularization constant

model first-antecedent best-antecedent
cmf (different-zero) 55.67 56.02
cmf (different-different) 54.71 56.20
cmf (same-zero) 53.91 55.32
Early fusion (same-same) 54.18 55.50
Late fusion, multiplicative 53.74 54.44
Late fusion, additive 53.56 55.94
No fusion (verbal features only) 53.47 55.15
No fusion (gesture features only) 44.68 44.85

Table 4.7: ceaf global evaluation scores, using best clustering threshold

that specific portion of the larger coreference problem. Nonetheless, for the purpose

of comparing with prior research on coreference, a more traditional global metric is

also considered.

To perform a global evaluation, the noun phrases in the document were clus-

tered using the pairwise coreference likelihoods as a similarity metric. Two clustering

methods from the literature are considered. The first-antecedent technique resolves

noun phrases to the first antecedent whose similarity is above a predefined thresh-

old (Soon et al., 2001). The best-antecedent technique resolves each noun phrase

to the most compatible prior noun phrase, unless none is above the threshold (Ng &

Cardie, 2002).

Figure 4-6 shows the global scores plotted against the value of the clustering
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Figure 4-6: Global coreference performance, measured using ceaf scores, plotted
against the threshold on clustering

threshold. For clarity, only the best performing system from each class is shown:

for conditional modality fusion, this is the different-zero model; from the multimodal

baselines, the additive late fusion model is plotted (the combination of additive late

fusion and the best-antecedent clustering method is the best performing multimodal

baseline); of the unimodal baselines, the verbal-features only system. Table 4.7 lists

the performance of each method at its optimum clustering threshold. Ng (2007)

reports a ceaf score of 62.3 on the ACE dataset, although the results are not directly

comparable due to the differences in corpora.

As shown in these results, performance is sensitive to both the clustering method

and the clustering threshold. Conditional modality fusion generally achieves the

best results, and best-antecedent clustering generally outperforms the first-antecedent

technique. Still, the advantage of conditional modality fusion is smaller here than with

ROC analysis. ROC analysis demonstrates the advantage of conditional modality fu-

sion more directly, while the global metric interposes a clustering step that obscures

differences between the classification techniques. Nonetheless, the global metric may

be a better overall measure of the quality of coreference for downstream applications

such as search or summarization. In the text domain, some researchers have demon-
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feature group + -
all gesture similarity features .8226 .8054
focus-distance .8200 .8200
DTW-agreement .8149 .8234
HMM-based .8183 .8198

Figure 4-7: An analysis of the contributions of each set of gestural similarity features.
The “plus” column on the left of the table shows results when only that feature set
was present – this information is also shown in the white bars in the graph. The
“minus” column shows results when only that feature was removed – this information
is shown in the shaded bars. As before, the metric is area under the ROC curve
(auc).

strated global models of coreference that do not require separate classification and

clustering phases (e.g., Daumé III & Marcu, 2005). Combining such models with

conditional modality fusion is a topic for future work.

4.4.6 Feature Analysis

This evaluation permits a novel analysis comparing the linguistic contribution of the

gesture similarity features in the presence of verbal features, enabling the investiga-

tion of which gesture features supply unique information over and above the verbal

features. All statistical significance results are based on two-tailed, paired t-tests.

Figure 4-7 shows the contribution of three classes of gestural similarity features:

focus-distance, DTW-agreement, and the two HMM-based features (same-

cluster and JS-div). The top dotted line in the graph shows performance of

the different-zero model with the complete feature set, and the bottom line shows

performance of this model without any gestural similarity features.9

9Note that the baseline of “no gesture features” is higher than the “no fusion (verbal features
only)” baseline from Table 4.5. Although the feature groups here are identical, the classifiers are
different. The “no fusion (verbal features only)” baseline uses a standard log-linear classifier, while
“no gesture features” uses conditional modality fusion, permitting two sets of weights for the verbal
features, as shown in equation 4.5.

80



Each feature group conveys useful information, as performance with any one fea-

ture group is always better than performance without gestural similarity features

(p < .01, t(15) = 3.86 for DTW-agreement, the weakest of the three feature

groups). The performance using only the focus-distance is significantly better

than when only the DTW-agreement feature is used (p < .05, t(15) = 2.44); other

differences are not significant. There appears to be some redundancy between the fea-

ture groups, as removing any individual feature group does not significantly impair

performance if the other two feature groups remain.

While the gains obtained from gesture features are significant, it is important to

ask whether this is the upper limit of information that can be obtained from gesture

for this task. One way to address this question would be to ask human annotators to

indicate what proportion of the noun phrases were disambiguated by gesture, though

it is not obvious that such a determination could be made in every case. From in-

spection, I believe that improved visual processing and feature engineering could yield

substantial performance gains. The tracking system has resolution on the order of the

size of the entire hand (see Figure 4-3, page 52), and not on the level of individual fin-

gers. However, the dataset contains many examples of gestures that refer to different

entities but are distinguished only by the angle of the wrist – such references could

not be distinguished by the current tracker. Another opportunity for improvement

relates to temporal segmentation. Currently, gestural features are computed over the

duration of the entire noun phrase. However, some pointing gestures are very brief,

and averaging the features over a long window may obscure the portion of the gesture

that conveys relevant information. Section 4.6 considers the possibility of learning

more structured models of gesture salience, which might help to focus on the most

critical portions of each gesture.

4.5 Keyframe Extraction

The previous sections show that estimating gesture salience through conditional

modality fusion can improve performance on coreference resolution. However, it is not
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clear whether these estimates of gesture salience cohere with human perception, or

whether they improve performance for some reason that is artifactual to the specific

implementation. This section explores the question of whether gestures judged to be

salient by conditional modality fusion are also useful for human viewers. Specifically,

gestures estimated to be salient are used to create keyframe summaries of video. The

keyframes selected in this way are shown to match those selected by human raters;

indeed, this technique outperforms comparable unsupervised text and image-based

algorithms from prior work.

Section 4.5.1 explains the keyframe-based summarization task. The basic mod-

eling approach is described in Section 4.5.2. The evaluation setup is presented in

Section 4.5.3, and Section 4.5.4 gives the experimental results.

4.5.1 Motivation

The goal of keyframe summarization is to produce a “comic book,” in which a tex-

tual transcript is augmented with panels, or keyframes – still images that clarify the

accompanying text. Keyframe-based summaries allow viewers to quickly review key

points of a video presentation, without requiring the time and hardware necessary to

view the actual video (Boreczky, Girgensohn, Golovchinsky, & Uchihashi, 2000). A

major assumption of this thesis is that textual transcriptions alone cannot capture

all relevant information. A keyframe-based summary may supplement the transcript

with the minimal visual information required for understanding. Figure 4-8 presents

an excerpt from a summary produced by the system described in this section.

Existing techniques for keyframe extraction have usually focused on edited videos

such as news broadcasts (e.g., Uchihashi, Foote, Girgensohn, & Boreczky, 1999;

Boreczky et al., 2000; Zhu, Fan, Elmagarmid, & Wu, 2003). Such systems seek

to detect large-scale changes in image features to identify different scenes, and then

choose a representative example from each scene. This approach is poorly suited to

unedited videos, such as recordings of classroom lectures or business presentations.

In such videos, the key visual information is not the variation in scenes or camera

angles, but the visual communication provided by the gestures of the speaker. Thus,
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a better approach may be to capture keyframes that include salient gestures, using

the model developed in Section 4.3.

4.5.2 Identifying Salient Keyframes

One possible method for identifying salient keyframes would be to formulate it as

a standard supervised learning task, using a corpus in which salient gestures are

annotated. However, such annotation can be avoided by bootstrapping from mul-

timodal coreference resolution, using conditional modality fusion. By learning to

predict the specific instances in which gesture helps coreference, we obtain a model of

gesture salience. For example, we expect that a pointing gesture in the presence of an

anaphoric expression would be found to be highly salient (as in Figure 4-1, page 48);

a more ambiguous hand pose in the presence of a fully-specified noun phrase would

not be salient. This approach does not identify all salient gestures, but does iden-

tify those that occur in the context of the selected language understanding task. In

coreference resolution, only gestures that co-occur with noun phrases are considered.

As noun phrases are ubiquitous in language, this should still cover a usefully broad

collection of gestures.

Using the model for coreference resolution introduced in Section 4.3, we obtain

a posterior distribution for the hidden variable, which controls whether the gesture

features are included for coreference resolution. The basic hypothesis is that gestures

that help coreference resolution are likely to be perceptually salient. The positive

results on the coreference task support this claim, but do not demonstrate a direct

link between the hidden variable and human perceptual judgments of gesture salience.

By building keyframe summaries using gestures rated as salient by the model, it is

possible to evaluate this hypothesis.

As described in section 4.3, models of coreference resolution and gesture salience

are learned jointly. After training, a set of weights wh is obtained, allowing the

estimation of gesture salience at each noun phrase. We sum over all possible values

for y and h2, obtaining
∑

y,h2
ψ(y,h,x;w) = h1w

T
hxh1 . The potential for the case
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when the gesture is salient is found by setting h1 = 1, yielding wT
hxh1 .

10 The key

assumption is that this potential is a reasonable proxy for the informativeness of a

keyframe that displays the noun phrase’s accompanying gesture.

This potential function is used to generate an ordering on the noun phrases in

the dialogue. Keyframes are selected from the midpoints of the top n noun phrases,

where n is specified in advance by the annotator. Providing the system with the

ground truth number of keyframes follows common practice from the textual sum-

marization literature – summaries of different lengths are difficult to compare, as the

summary duration is governed partially by the annotator’s preference for brevity or

completeness (Mani & Maybury, 1999). Each keyframe is given a caption that in-

cludes the relevant noun phrase and accompanying text, up to the noun phrase in the

next keyframe. A portion of the output of the system is shown in Figure 4-8.

4.5.3 Evaluation Setup

The evaluation methodology for keyframe summaries is similar to the intrinsic evalua-

tion developed for the Document Understanding Conference.11 The quality of the au-

tomatically extracted keyframes is assessed by comparing them to human-annotated

ground truth. This section describes the dataset, implementation, evaluation metric,

and baseline systems.

Dataset

The dataset consists of a subset of the videos used in the coreference evaluation,

described in Section 4.4.3. Of the sixteen videos used for the coreference evaluation,

nine were manually annotated for keyframes. Of these, three are used in developing

the system and the baselines, and the remaining six are used for final evaluation

(these are indicated by asterisks in Table B.1 in Appendix B, page 138). There is no

10Note an identical value is obtained by considering the same noun phrase as the anaphor (xh2)
and summing over all possible values of h1.

11http://duc.nist.gov
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it comes back.
6

and as soon as it passes this thing.
5

and it goes out.
4

so it goes down.
3

the spring brings this thing back in. and it
latches here. spring right here. this thing i don’t
know what that is. it goes like this.

2

um and then after this goes below the level here.
1

Figure 4-8: Example of the first six frames of an automatically-generated keyframe
summary
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R1 ↓, R2 → in-keyframe not-in-keyframe
in-keyframe 11992 5890
not-in-keyframe 9714 84305

Table 4.8: Agreement counts for the two raters, in numbers of frames

explicit training on the keyframe annotations, but the development set was used for

evaluation as the system was under construction.

The specification of the ground truth annotation required that the keyframes cap-

ture all static visual information that the annotator deems crucial to understanding

the content of the video. The number of selected frames was left to discretion; on

average, 17.8 keyframes were selected per document, out of an average total of 4296

frames per document. Annotation was performed by the author and by another

student who was not an author on any papers connected with this research. On a

subset of two videos annotated by both raters, the raw interrater agreement was 86%,

yielding a kappa of .52 (Carletta, 1996). Detailed statistics are given in Table 4.8.

One important difference between this multimodal corpus and standard sentence

extraction datasets is that many frames may be nearly identical, due to the high frame

rate of video. For this reason, the annotators marked regions rather than individual

frames. Regions define equivalence classes, such that any frame from a given region

conveys critical visual information, and the information conveyed by all keyframes in

a given region is the same. Thus, if a single keyframe were selected from every ground

truth region, the result would be the minimal set of keyframes necessary for a reader

to fully understand the discourse. On average, 17.8 regions were selected from each

video, spanning 568 frames, roughly 13% of the total number of frames per video.

Training Coreference Resolution

As described in Section 4.5.2, the current approach to keyframe extraction is based on

a model for gesture salience that is learned from labeled data on coreference resolution.

The training phase is performed as leave-one-out cross-validation: a separate set of

weights is learned for each presentation, using the other fifteen presentations as a
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Figure 4-9: An example of the scoring setup

training set. The learned weights are used to obtain the values of the hidden variable

indicating gesture salience, as described in Section 4.5.2.

Evaluation Metric

Figure 4-9 illustrates the scoring setup. The top row in the figure represents the

ground truth; the middle row represents the system response, with vertical lines

indicating selected keyframes; the bottom row shows how the response is scored.

For all systems the number of keyframes is fixed to be equal to the number of

regions in the ground truth annotation. If the system response includes a keyframe

that is not within any ground truth region, a false positive is recorded. If the system

response fails to include a keyframe from a region in the ground truth, this is a false

negative. A true positive is recorded for the first frame that is selected from a given

ground truth region, but additional frames from the same region are not scored. The

system is thus still penalized for each redundant keyframe, because it has “wasted”

one of a finite number of keyframes it is allowed to select. Still, such false positives

seem less grave than a true substitution error, in which a keyframe not containing

relevant visual information is selected. Performance is quantified using the F-measure,

which is the harmonic mean of recall and precision.

Baselines

The gesture salience keyframe extractor is compared against three baselines, presented

in order of increasing competitiveness.
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• Random-keyframe: The simplest baseline selects n keyframes at random

from the video. This is similar to the “random sentence” baseline common in

the textual summarization literature (Mani & Maybury, 1999). The number

of keyframes selected in this baseline is equal to the number of regions in the

ground truth. This baseline represents a lower bound on the performance that

any reasonable system should achieve on this task. The reported scores are

averaged across 500 independent runs.

• NP-salience: The NP-salience system is based on frequency-based ap-

proaches to identifying salient noun phrases (NPs) for the purpose of text sum-

marization (Mani & Maybury, 1999). The salience heuristic chooses the most

common representative tokens of the largest and most homogeneous coreference

clusters.12 The largest cluster is the one containing the most noun phrases; ho-

mogeneity is measured by the inverse of the number of unique surface forms.

This provides a total ordering on NPs in the document; we select keyframes at

the midpoint of the top n noun phrases, where n is the number of keyframe

regions in the ground truth. One project for future work is to explore finding

the best point within each noun phrase for keyframe selection.

• Pose-clustering: The final baseline is based purely on visual features. It

employs clustering to find a representative subset of frames with minimum mu-

tual redundancy. In a seminal paper on keyframe selection, Uchihashi et al.

(1999) perform clustering on all frames in the video, using the similarity of

color histograms as a distance metric. Representative images from each clus-

ter are then used as keyframes. More recent video summarization techniques

have improved the clustering algorithms (T. Liu & Kender, 2007) and the sim-

ilarity metric (Zhu et al., 2003), but the basic approach of choosing exemplar

keyframes from a clustering based on visual similarity is still widely used in

state-of-the-art research on this topic (see Lew, Sebe, Djeraba, & Jain, 2006,

for a survey).

12Here, coreference clusters are based on manual annotations.
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In the current dataset, there is a single fixed camera and no change in the

video except for the movements of the speaker. The color histograms are thus

nearly constant throughout, precluding the use of color as a clustering feature.

Instead, the tracked coordinates of the speaker’s hands and upper body are used

as the basic features; these are normalized, and a Euclidean distance metric is

applied. In this setting, clusters correspond to typical body poses, and segments

correspond to holds in these poses. Following Uchihashi et al. (1999), the video

is divided into segments in which cluster membership is constant, and keyframes

are taken at the midpoints of segments. The importance metric from this paper

is used to rank segments; the top n are chosen, where n is the number of

keyframes in the ground truth.

4.5.4 Results

The experimental results suggest that the estimates of gesture salience given by condi-

tional modality fusion cohere with human perception. Table 4.9 compares the perfor-

mance of the salience-based approach with the three baselines. Using paired t-tests,

Gesture-salience significantly outperforms all alternatives (p < .05 in all cases).

The Pose-clustering and NP-salience systems are statistically equivalent; both

are significantly better than the Random-keyframe baseline (p < .05).

This set of baselines is necessarily incomplete, as there are many ways in which

keyframes extraction could be performed. For example, prosodic features could be

used to identify moments of particular interest in the dialogue (Sundaram & Chang,

2003). In addition, a combination of baselines including visual and linguistic features

may also perform better than any individual baseline. However, developing more com-

plicated baselines is somewhat beside the point. The evaluation demonstrates that a

simple yet effective technique for selecting meaningful keyframes can be obtained as

a byproduct of conditional modality fusion.

A manual inspection of the system output revealed that in many cases our system

selects a noun phrase that is accompanied by a relevant gesture, but the specific

keyframe was slightly off. The current method always chooses the keyframe at the

89



Method F-Measure Recall Precision
GESTURE-SALIENCE .404 .383 .427
Pose-clustering .290 .290 .290
NP-salience .239 .234 .245
Random-keyframe .120 .119 .121

Table 4.9: Comparison of performance on keyframe selection task

midpoint of the accompanying noun phrase; often, the relevant gesture is brief, and

does not necessarily overlap with the middle of the noun phrase. Thus, one promising

approach to improving results would be to “look inside” each noun phrase, using local

gesture features to attempt to identify the specific frame in which the gesture is most

salient.

Other errors arise because some key gestures are not related to noun phrases. For

example, suppose the speaker says “it shoots the ball up,” and accompanies only

the word “up” with a gesture indicating the ball’s trajectory. This gesture might be

important to understanding the speaker’s meaning, but since it does not overlap with

a noun phrase, the gesture will not be identified by our system. Nonetheless, on bal-

ance the results show that focusing on noun phrases is a good start for linguistically-

motivated keyframe extraction, and that this unsupervised approach is successful at

identifying the noun phrases that require keyframes. As gesture is applied to other

language tasks, it will be possible to model gesture salience at other phrase types,

thus increasing the coverage for keyframe extraction.

4.6 Discussion

This chapter is motivated by the idea that gestural similarity sheds light on local

discourse phenomena. We find that when semantically related noun phrases are

accompanied by gestures, those gestures tend to be similar. Moreover, features that

quantify gesture similarity improve noun phrase coreference when applied in concert

with verbal features. This suggests that gesture provides a non-redundant source of

information. This is not merely an engineering improvement; when asked to build a
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visual summary of a dialog, human raters chose keyframes that were similar to those

deemed helpful by the coreference system.

A second key finding is that a structured approach to multimodal integration

is crucial to achieving the full linguistic benefits offered by gesture features. Rather

than building separate verbal and gesture interpretation units – or simply concatenat-

ing their features – conditional modality fusion enables the construction of potential

functions whose structure encodes the role of each modality. In particular, gesture

supplements speech only intermittently, and therefore gesture salience is represented

explicitly with a hidden variable. This approach yields a 73% relative improvement in

the contribution of the gesture features towards coreference resolution. This improve-

ment is attained by modeling gesture salience with a hidden variable and ignoring

gestures that are not salient.

Conditional modality fusion induces an estimate of gesture salience within the

context of a specific linguistic task. To test the generality of the salience model, the

derived estimates were transferred to a different task: keyframe extraction. Without

any labeled data on the keyframe task, this simple algorithm outperforms competitive

unimodal alternatives. This suggests that the model of gesture salience learned from

coreference coheres with human perception of gesture salience.

One interesting direction for future research to investigate richer models of gesture

salience. The structure explored in this chapter is minimal – a binary variable to

indicate the salience of a gesture for coreference resolution. I see this as a first step

towards more complex structural representations for gesture salience that may yield

greater gains in performance. For example, it is likely that gesture salience observes

some temporal regularity, suggesting a Markov state model. Indeed, just such a state

model is suggested by Kendon’s taxonomy of “movement phases,” as discussed in

Section 2.1.3.
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5
Gestural Cohesion and High-Level

Discourse Structure

We now move from local discourse processing to document-level discourse structure.

The concept of gestural similarity – measured over pairs of gestures – is extended

to gestural cohesion, which describes the consistency of an entire set of gestures.

Applying gestural cohesion to the task of topic segmentation yields a multimodal

segmenter that performs substantially better than comparable text-only alternatives.

A related approach is used to investigate the influence of discourse topic on gestural

form. When multiple speakers describe a single topic, their gestures are significantly

more similar than when each speaker describes a different topic. This shows that the
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influence of discourse topic on gestural form can generalize across speakers.1

5.1 Introduction

This chapter will focus on gestural cohesion, which extends the idea of gestural similar-

ity beyond pairs of gestures, allowing us to examine the self-consistency of the entire

set of gestures accompanying a dialogue or discourse segment. The term “gestural

cohesion” is chosen to evoke the parallel concept of lexical cohesion, which captures

the self-consistency of word usage within a document or segment (Halliday & Hasan,

1976). Lexical cohesion is a powerful tool for high-level discourse analysis, and has

been used repeatedly in tasks such as topic segmentation (e.g. Hearst, 1994; Tur,

Hakkani-Tur, Stolcke, & Shriberg, 2001). The key observation in lexical cohesion-

based approaches is that topically-coherent text is characterized by the repeated use

of a consistent, limited subset of lexical items. When the distribution of lexical items

changes abruptly – that is, when a large number of new words enter the discourse –

this is taken to indicate that the discourse topic has changed.

Lexical cohesion is effective because meaning is partially expressed through word

choice. A complete semantic analysis would also require syntactic and higher-level

processing, but lexical cohesion provides a lightweight alternative that can be easily

implemented for any text. If gestures communicate semantically relevant informa-

tion, the discourse structure of a dialogue should also be mirrored in the cohesion

structure of gestural features. In this chapter, gestural codewords are extracted from

raw video, forming a visual lexicon.2 Techniques from lexical analysis can then be

applied directly to gestural features.

This chapter presents two sets of experiments centered on the idea of gestural

cohesion. The first experiment focuses on discourse segmentation: the task of divid-

ing a dialogue into sections with unique discourse topics. Both lexical and gestural

1Some of the work in this section was published previously (Eisenstein, Barzilay, & Davis, 2008b,
2008a).

2This is not a lexicon in the traditional sense, because there is no symbolic meaning assigned to
each codeword.
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cohesion are applied to this task, using a new, Bayesian approach that facilitates

multimodal integration. The results demonstrate that gestural cohesion effectively

supplements lexical analysis; the combined multimodal system outperforms lexical-

only alternatives, for both manual and automatic transcripts.

Figure 5-1 gives some intuition about how lexical and gestural cohesion correlate

with discourse segmentation. The upper part of the figure shows the distribution

of lexical items in a single dialogue, with the manually annotated topic boundaries

indicated by vertical red lines. Each column represents a sentence, and the blocks

in a column indicate the words that the comprise the sentence. The lower part of

the figure shows the distribution of automatically extracted gestural codewords for

the same video – each column shows the codewords that occur during the duration

of the sentence. While noisy, it is possible even from visual inspection to identify

some connections between the segmentation and the distribution of codewords – for

example, the second-to-last segment has a set of codewords starkly different from its

neighbors.

Even if gesture mirrors discourse structure within a dialogue, the mapping be-

tween gesture and topic may not be consistent across speakers. Gestures express

meaning through spatial metaphors; the extent to which they can be interpreted

across speakers depends on the speaker-specificity of these spatial metaphors. The

second technical portion of the chapter explores the existence of speaker-general ges-

tural themes that characterize specific topics in this dataset, finding that a small but

consistent percentage of gestural forms occur across speakers when they discuss a

shared topic. This analysis is performed both in a Bayesian and classical framework.

The previous chapter used a portion of the dataset in which speakers had access

to visual aids, emphasizing deictic gestures in which location was the principle com-

municative gestural feature. This chapter considers another portion of the dataset, in

which no visual aids are permitted. Thus, a greater proportion of “iconic” or “illus-

trative” gestures are observed (McNeill, 1992, see also Section 2.1.3).3 Consequently,

3Even without visual aids, speakers still perform some abstract deictic gestures, assigning space
to ideas or concepts. (McNeill, 1992)
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Figure 5-1: Distribution of gestural and lexical features by sentence. Each dark cell
means that the word or keyword (indexed by row) is present in the sentence (indexed
by the column). Manually annotated segment breaks are indicated by red lines.
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Figure 5-2: The visual processing pipeline for the extraction of gestural codewords
from video

a new visual feature set is applied, emphasizing low-level descriptions of physical

motion.

The chapter is structured as follows. Section 5.2 describes the visual features used

in the experiments in this chapter. This section explains the extraction of low-level

image descriptors, and shows how these image descriptors are converted into a lexicon

of gestural forms. Gestural and lexical cohesion are applied to topic segmentation in

Section 5.3, and a new Bayesian segmentation method is presented. Section 5.4

explores the question of whether gestural forms are shared across speakers for a given

topic. A summary of these results is presented in Section 5.5.

5.2 A Codebook of Gestural Forms

This section describes the process of building a codebook representation, which per-

mits the assessment of gestural cohesion. The core image-level features are based on

spatiotemporal interest points, which provide a sparse representation of the motion in

the video. At each interest point, visual, spatial, and kinematic characteristics are

extracted and then concatenated into vectors. Principal component analysis (PCA)

reduces the dimensionality to a feature vector of manageable size (Bishop, 2006). The

feature vectors are then clustered, yielding a codebook of gestural forms. This video

processing pipeline is shown in Figure 5-2; the remainder of the section describes the

individual steps in greater detail.

96



5.2.1 Spatiotemporal Interest Points

Spatiotemporal interest points (Laptev, 2005) provide a sparse representation of

video. The idea is to select a few local regions that contain high information content

in both the spatial and temporal dimensions. The image features at these regions

should be relatively robust to lighting and perspective changes, and they should cap-

ture the relevant movement in the video. Thus, the set of spatio-temporal interest

points should provide a highly compressed representation of the key visual-kinematic

features. Purely spatial interest points have been widely successful in a variety of im-

age processing tasks (Lowe, 1999), and spatio-temporal interest points are beginning

to show similar advantages for video processing (Laptev, 2005).

The use of spatiotemporal interest points is motivated by research in the computer

vision domain of activity recognition (Efros, Berg, Mori, & Malik, 2003; Niebles,

Wang, & Fei-Fei, 2006). The goal of activity recognition is to classify video sequences

into semantic categories: e.g., walking, running, jumping. As a simple example,

consider the task of distinguishing videos of walking from videos of jumping. In the

walking videos, the motion at most of the interest points will be horizontal, while in

the jumping videos it will be vertical. Spurious vertical motion in a walking video

is unlikely to confuse the classifier, as long as the majority of interest points move

horizontally. The hypothesis of this section is that just as such low-level movement

features can be applied in a supervised fashion to distinguish activities, they can

be applied in an unsupervised fashion to group co-speech gestures into perceptually

meaningful clusters.

The Activity Recognition Toolbox (Dollár, Rabaud, Cottrell, & Belongie, 2005)4

is used to detect spatiotemporal interest points for our dataset. This toolbox ranks

interest points using a difference-of-Gaussians filter in the spatial dimension, and a

set of Gabor filters in the temporal dimension. The total number of interest points

extracted per video is set to equal the number of frames in the video. This bounds the

complexity of the representation to be linear in the length of the video; however, the

system may extract many interest points in some frames and none in other frames.

4http://vision.ucsd.edu/∼pdollar/research/cuboids doc/index.html
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Figure 5-3: Circles indicate the interest points extracted at this frame in the video.

Figure 5-3 shows the interest points extracted from a representative video frame

from the segmentation corpus. Note that the system has identified high contrast

regions of the gesturing hand. From manual inspection, the large majority of interest

points extracted in our dataset capture motion created by hand gestures. Thus, for

this dataset it is reasonable to assume that an interest point-based representation

expresses the visual properties of the speakers’ hand gestures. In videos containing

other sources of motion, preprocessing may be required to filter out interest points

that are extraneous to gestural communication.

5.2.2 Visual Features

At each interest point, temporal and spatial brightness gradients are constructed

across a small space-time volume of nearby pixels. Brightness gradients have been

used in a variety ofcomputer vision applications (Forsyth & Ponce, 2003), and provide

a fairly general way to describe the visual appearance of small image patches. How-

ever, even for a small space-time volume, the resulting dimensionality is still quite
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large: a 10-by-10 pixel box across 5 video frames yields a 500-dimensional feature

vector for each of the three gradients. For this reason, principal component analy-

sis (Bishop, 2006) is used to reduce the dimensionality to a more manageable size.

The spatial location of the interest point is added to the final feature vector.

This visual feature representation is at a lower level of abstraction than the artic-

ulated model used in Chapter 4; it is substantially lower-level than the descriptions

of gestural form found in both the psychology and computer science literatures. For

example, when manually annotating gesture, it is common to employ a taxonomy

of hand shapes and trajectories, and to describe the location with respect to the

body and head (McNeill, 1992; Martell, 2005). Working with automatic hand track-

ing, Quek et al. automatically compute perceptually-salient gesture features, such as

holds (Bryll et al., 2001) and oscillatory repetitions (Xiong & Quek, 2006).

In contrast, the interest point representation takes the form of a vector of continu-

ous values and is not easily interpretable in terms of how the gesture actually appears.

However, this low-level approach offers several important advantages. Most critically,

it requires no initialization and comparatively little tuning: it can be applied directly

to any video with a fixed camera position and static background. Second, it is ro-

bust: while image noise may cause a few spurious interest points, the majority of

interest points should still guide the system to an appropriate characterization of the

gesture. In contrast, hand tracking can become irrevocably lost, requiring manual

resets (Gavrila, 1999). Finally, the success of similar low-level interest point rep-

resentations at the activity-recognition task provides reason for optimism that they

may also be applicable to unsupervised gesture analysis.

5.2.3 Gesture Codewords for Discourse Analysis

The previous section describes the extraction of low-dimensional feature vectors that

characterize the visual appearance at sparse spatiotemporal interest points. Using

k-means clustering (Bishop, 2006), these feature vectors are grouped into codewords:

a compact, lexicon-like representation of salient visual features in video. The number

of clusters is a tunable parameter.
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Codewords capture frequently-occurring patterns of motion and appearance at a

local scale. For example, Figure 5-6 (page 115) shows three examples of a single

codeword; in all cases, the salient visual characteristic is upward motion of a light

object against a dark background.5 Instances of codewords are detected at specific

locations and times throughout each video. By grouping together visually similar

interest points, the set of codeword types forms a sort of visual vocabulary for each

video.

The codewords that occur during a given period of time, such as a spoken sen-

tence, provide a succinct representation of the ongoing gestural activity. Distributions

of codewords over time can be analyzed in similar terms to the distribution of lexical

features. A change in the distribution of codewords indicates new visual kinematic

elements entering the discourse. If the codeword representation succeeds at captur-

ing salient perceptual features of gesture, then it will allow gestural cohesion to be

assessed in much the same way as lexical cohesion.

5.3 Discourse Segmentation

This section describes how lexical and gestural cohesion can be combined to predict

discourse segmentation. The goal is to divide each dialogue into topically coher-

ent units. While a variety of algorithms have been applied to discourse segmen-

tation, features based on lexical cohesion have formed the backbone of many such

approaches (e.g. Hearst, 1994; Beeferman, Berger, & Lafferty, 1999). This section

describes a new algorithm for discourse segmentation, permitting the flexible combi-

nation of lexical and gestural cohesion features in an integrated Bayesian framework.

The resulting multimodal segmentation system outperforms unimodal, lexical-only

approaches.

Previous approaches to discourse segmentation – including multimodal segmen-

tation using prosody – are presented in Section 5.3.1. Section 5.3.2 describes the

5Note that in the topic segmentation experiments in Section 5.3, clustering is performed only
within a single video, and not across speakers. Clustering across multiple videos and speakers is
performed in Section 5.4.

100



Bayesian discourse segmentation model. Experiments for evaluating the contribution

of gestural cohesion for discourse segmentation are presented in Section 5.3.3, with

results given in Section 5.3.4.

5.3.1 Prior Work

Lexical Cohesion for Discourse Segmentation Hearst (1994) showed that lex-

ical cohesion can be applied to discourse segmentation. Her approach, called TextTil-

ing, computes an evolving metric of lexical cohesion and places segment boundaries at

local minima of this metric. Later approaches use similar feature sets, but apply other

segmentation algorithms, such as exponential models (Beeferman et al., 1999) and

graph-theoretic techniques (Utiyama & Isahara, 2001; Malioutov & Barzilay, 2006).

Of particular relevance to this chapter are segmentation algorithms based on hid-

den Markov models (HMMs). One early example is the work of Yamron, Carp, Gillick,

Lowe, and Mulbregt (1998), who construct an HMM by building topic-specific lan-

guage models and then perform segmentation by finding the maximum likelihood

path through the topics, for each document. Tur et al. (2001) apply a similar ap-

proach, but add special states to model features that occur at the beginning and

end of segments. Both of these approaches train the topic models off-line, which is

suboptimal, rather than learning them jointly with the segmentation.

Purver, Griffiths, Körding, and Tenenbaum (2006) overcome this problem, infer-

ring the segmentation and topic models jointly via Gibbs sampling. However, like the

earlier HMM-based approaches, they model topics across multiple documents. This

means that new documents cannot be segmented unless they contain topics already

observed in the training set. In addition, all known HMM-based approaches search in

the space of segment labels, rather than in the space of segmentations. Each segmen-

tation implies multiple possible labellings, because the label indices can be permuted;

thus, the space of labellings is larger by a factor of N !, where N is the number of

segments. The algorithm presented in Section 5.3.2 avoids both problems. It does

not require a document-general model of topics, and so can operate on individual

documents. In addition, it searches directly in the space of segmentations.
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Nonverbal Features for Segmentation Research on nonverbal features for topic

segmentation has focused primarily on prosody, under the assumption that a key

prosodic function is to mark structure at the discourse level (Steedman, 1990; Grosz

& Hirshberg, 1992; Swerts, 1997). The ultimate goal of such research is to find cor-

relates of hierarchical discourse structure in phonetic features. Today, research on

prosody has converged on a set of prosodic cues that correlate with discourse struc-

ture. Such markers include pause duration, fundamental frequency, and pitch range

manipulations (Grosz & Hirshberg, 1992; Hirschberg & Nakatani, 1998). These stud-

ies informed the development of applications such as segmentation tools for meeting

analysis, e.g. (Tur et al., 2001; Galley, McKeown, Fosler-Lussier, & Jing, 2003).

In general, attempts to apply prosody to discourse segmentation have focused on

identifying prosodic markers of segment boundaries. Such markers are similar to cue

phrases (Litman, 1996) – words or phrases that explicitly mark segment boundaries.

In contrast, gestural cohesion seeks to identifying segmentation points that preserve

intra-segmental consistency, paralleling lexical cohesion of Hearst (1994). This sug-

gests that prosody and gesture convey discourse information in orthogonal ways.

Thus, the combination of these two modalities may further improve performance,

suggesting interesting possibilities for future work.

The connection between gesture and discourse structure is a relatively unexplored

area, at least with respect to computational approaches. Quek et al. investigate the

relationship between discourse segmentation and symmetric hand movements (Quek,

Xiong, & McNeill, 2002) and the use of space (Quek, McNeill, Bryll, & Harper, 2002).

While these papers demonstrate correlations between gestural features and segment

boundaries, neither shows that gesture can be used to predict segment boundaries

on unlabeled text. Another difference is that this prior work does not investigate

whether gestural features supplement lexical cues with novel information. This line

of research is discussed in more detail in Section 2.1.2.
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5.3.2 Bayesian Topic Segmentation

Topic segmentation is performed in a Bayesian framework, with each sentence’s seg-

ment index encoded in a hidden variable, written zt. The hidden variables are assumed

to be generated by a linear segmentation, such that zt ∈ {zt−1, zt−1+1}. Observations

– the words and gesture codewords – are generated by multinomial language mod-

els that are indexed according to the segment. In this framework, a high-likelihood

segmentation will include language models that are tightly focused on a compact vo-

cabulary. Such a segmentation maximizes the lexical cohesion of each segment. This

model thus provides a principled, probabilistic framework for cohesion-based segmen-

tation, and we will see that the Bayesian approach is particularly well-suited to the

combination of multiple modalities.

Formally, our goal is to identify the best possible segmentation S, where S is a

tuple: S = 〈z, θ, φ〉. The segment indices for each sentence are written zt; for segment

i, θi and φi are multinomial language models over words and gesture codewords

respectively. For each sentence, xt and yt indicate the words and gestures that appear.

We seek to identify the segmentation Ŝ = argmaxSp(S,x,y), conditioned on priors

that will be defined below. The joint probability is written,

p(S,x,y) = p(x,y|S)p(S),

where

p(x,y|S) =
∏

i

p({xt : zt = i}|θi)p({yt : zt = i}|φi), (5.1)

p(S) = p(z)
∏

i

p(θi)p(φi). (5.2)

The language models θi and φi are multinomial distributions, so the log-likelihood

of the observations xt is log p(xt|θi) =
∑W

j n(t, j) log θi,j, where n(t, j) is the count

of word j in sentence t, and W is the size of the vocabulary. An analogous equa-

tion is used for the gesture codewords. Each language model is given a symmetric
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Dirichlet prior α. As we will see shortly, the use of different priors for the verbal and

gestural language models allows us to weight these modalities in a Bayesian frame-

work. Finally, we model the probability of the segmentation z by considering the

durations of each segment: p(z) =
∏

i p(dur(i)|ψ). A negative-binomial distribution

with parameter ψ is applied to discourage extremely short or long segments.

Inference Crucially, both the likelihood (equation 5.1) and the prior (equation 5.2)

factor into a product across the segments. This factorization enables the optimal

segmentation to be found using a dynamic program, similar to those demonstrated

by Utiyama and Isahara (2001) and Malioutov and Barzilay (2006). For each set

of segmentation points z, the associated language models are set to their posterior

expectations, e.g., θi = E[θ|{xt : zt = i}, α].

The Dirichlet prior is conjugate to the multinomial, so this expectation can be

computed in closed form:

θi,j =
n(i, j) + α

N(i) +Wα
, (5.3)

where n(i, j) is the count of word j in segment i and N(i) is the total number of

words in segment i (Bernardo & Smith, 2000). The symmetric Dirichlet prior α acts

as a smoothing pseudo-count. In the multimodal context, the priors act to control the

weight of each modality. If the prior for the verbal language model θ is high relative

to the prior for the gestural language model φ then the verbal multinomial will be

smoother, and will have a weaker impact on the final segmentation. The impact of

the priors on the weights of each modality is explored in Section 5.3.4.

Estimation of priors The distribution over segment durations is negative-

binomial, with parameter ψ = 〈x̄, k〉, where x̄ is the expected duration and k is a

dispersion parameter.6 In general, the maximum likelihood estimate of the dispersion

parameter k cannot be found in closed form (Gelman et al., 2004).

Suppose we have a set of durations generated from the negative-binomial distribu-

tion, written x1 . . . xM . Assuming a non-informative prior on k, p(k|x, x̄) ∝ p(x|x̄, k),
6This is different from the standard parametrization (Gelman, Carlin, Stern, & Rubin, 2004), but

as the expectation can be found in closed form, such a reparametrization can easily be performed.
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with the likelihood written as,

p(x|x̄, k) =
M∏
i

Γ(kx̄+ xi)
xi!Γ(kx̄)

(
k

k + 1

)kx̄ (
1

k + 1

)xi

=
M∑
i

log Γ(kx̄+ xi)− log(xi!)− logΓ(kx̄) + kx̄[log k − log(k + 1)]− xi log(k + 1).

(5.4)

We can maximize the log-likelihood in equation 5.4 using L-BFGS (D. C. Liu &

Nocedal, 1989) a gradient-based search method. The gradient of the log-likelihood is,

dl/dk =
M∑
i

x̄Ψ(kx̄+ xi)− x̄Ψ(kx̄) + (x̄ log k + kx̄
1
k
)− (x̄ log(k + 1) + kx̄

1
k + 1

)− xi
1

k + 1

=
M∑
i

x̄[Ψ(kx̄+ xi)−Ψ(kx̄) + log k − log(k + 1)] +
x̄

k + 1
− xi

k + 1

= Mx̄[−Ψ(kx̄) + log k − log(k + 1)] + x̄

M∑
i

Ψ(kx̄+ xi).

Using this gradient, it is possible to find the maximum likelihood parameters

〈x̄, k〉 for any given set of segmentations. To jointly perform segmentation and pa-

rameter estimation, we iteratively segment and update the parameter estimates until

convergence. This is equivalent to hard expectation-maximization (Bishop, 2006).

The other parameters are the symmetric Dirichlet priors on the language models.

In the following experiments, these parameters are set using cross-validation. Sam-

pling or gradient-based techniques may also be used to estimate these parameters,

but this is left for future work.

Relation to other segmentation models Other cohesion-based techniques have

typically focused on hand-crafted similarity metrics between sentences, such as cosine

similarity (Galley et al., 2003; Malioutov & Barzilay, 2006). In contrast, the model

described here is probabilistically motivated, maximizing the joint probability of the
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segmentation with the observed words and gestures. Our objective criterion is similar

in form to that of Utiyama and Isahara (2001); however, in contrast to this prior work,

our criterion is justified by a Bayesian approach. Also, while the smoothing in our

approach arises naturally from the symmetric Dirichlet prior, Utiyama and Isahara

apply Laplace’s rule and add pseudo-counts of one in all cases. Such an approach

would be incapable of flexibly balancing the contributions of each modality.

5.3.3 Evaluation Setup

Dataset The dataset for the segmentation experiments is composed of fifteen audio-

video recordings drawn from the corpus described in Chapter 3. As before, the videos

are limited to three minutes in duration, and speakers mainly describe the behavior

of mechanical devices – though the dataset for this section also includes four videos

in which the speakers narrate the plot of a short “Tom and Jerry” cartoon. In this

portion of the dataset, speakers were not permitted to use any visual aids; thus,

there is no overlap between this dataset and the videos used in the previous chapter.

Corpus statistics are found in Table B.2 (page 139).

Annotations and Data Processing All speech was transcribed by hand by the

author, and time stamps were obtained using the Sphinx-II speech recognition sys-

tem for forced alignment (Huang et al., 1993). Sentence boundaries are annotated

according to the NIST (2003) specification, and additional sentence boundaries are

automatically inserted at all turn boundaries. A stoplist of commonly-occurring terms

unlikely to impact segmentation are automatically removed.

For automatic speech recognition (ASR), the default Microsoft speech recognizer

was applied to each sentence and the top-ranked recognition result was reported. As

is sometimes the case in real-world applications, no speaker-specific training data is

available, so the recognition quality is very poor – the word error rate is 77%. An

example of some output from the recognizer is shown in Figure 5-4.

Segmentation annotations were performed by the author, with the goal of select-

ing segment boundaries that divide the dialogue into coherent topics. Segmentation
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Reference Transcript ASR Transcript
1 So this one’s going to be kind of

rough
So what can they can arise

2 Um so you got a it’s another dia-
gram

Ah

3 Like the ones we’ve been seeing Like has been seeing
4 There’s a kind of bucket thing Has it that a bucket thing
5 Um there’s a large block and three

smaller blocks sitting on top of it
A and that there is a large block of
three smaller blocks sitting on top
of the

6 They’re just free form They just they form
7 And there’s a a spring And there’s a day in the spring

Figure 5-4: A partial example of output from the Microsoft Speech Recognizer, tran-
scribed from a video used in this experiment

boundaries are required to coincide with sentence or turn boundaries. A second an-

notator – a graduate student who is not an author on any paper connected with this

research – provided an additional set of segment annotations on six documents. On

this subset of documents, the Pk between annotators was .306, and the WindowDiff

was .325 (these metrics are explained in the next subsection). This is similar to the

interrater agreement reported by Malioutov and Barzilay (2006) – on a dataset of

physics lectures, they found agreement ranging from .22 to .42 using the Pk metric.

Over the fifteen dialogues, a total of 7458 words were transcribed (497 per dia-

logue), spread over 1440 sentences or interrupted turns (96 per dialogue). There were

a total of 102 segments (6.8 per dialogue), from a minimum of four to a maximum

of ten. This rate of fourteen sentences or interrupted turns per segment indicates

relatively fine-grained segmentation. In the physics lecture corpus used by Malioutov

and Barzilay (2006), there are roughly 100 sentences per segment. On the ICSI cor-

pus of meeting transcripts, Galley et al. (2003) report 7.5 segments per meeting,

with 770 “potential boundaries,” suggesting a similar rate of roughly 100 sentences

or interrupted turns per segment.

The size of this multimodal dataset is orders of magnitude smaller than many other

segmentation corpora. For example, the Broadcast News corpus used by Beeferman

et al. (1999) and others contains two million words. The entire ICSI meeting corpus
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contains roughly 600,000 words, although only one third of this dataset was anno-

tated for segmentation (Galley et al., 2003). The physics lecture corpus of Malioutov

and Barzilay (2006) contains 232,000 words. The task considered in this section is

thus more difficult than much of the previous discourse segmentation work on two

dimensions: there is less training data, and a finer-grained segmentation is required.

Metrics All experiments are evaluated in terms of the commonly-used Pk (Beeferman

et al., 1999) and WindowDiff (WD) (Pevzner & Hearst, 2002) scores. These metrics

are penalties, so lower values indicate better segmentations.

The Pk metric expresses the probability that any randomly chosen pair of sentences

is incorrectly segmented, if they are k sentences apart (Beeferman et al., 1999). This

is implemented by sliding a window of k sentences across the text and considering

whether the sentences at the ends of the window are in the same segment. The

Pk measure is the frequency with which that the reference and hypothesized segmen-

tations disagree. Following tradition, k is set to half of the mean segment length.

The WindowDiff metric is a variation of Pk (Pevzner & Hearst, 2002). The

Pk metric does not report an error if both the reference and hypothesized segmenta-

tions agree that the sentences at the endpoints of the sliding window are in different

segments – even if the number of intervening segments between the endpoints is dif-

ferent. WD corrects this by again sliding a window of size k, but applying a penalty

whenever the number of segments within the window differs for the reference and

hypothesized segmentations.

Baselines Two näıve baselines are considered. Given that the annotator has di-

vided the dialogue into K segments, the random baseline arbitrary chooses K random

segmentation points. The results of this baseline are averaged over 1000 iterations.

The equal-width baseline places boundaries such that all segments contain an equal

number of sentences. Both the experimental systems and these näıve baselines were

given the correct number of segments, and also were provided with manually anno-
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Method Pk WD
1. Gesture only .486 .502
2. ASR only .462 .476
3. ASR + Gesture .388 .401
4. Transcript only .382 .397
5. Transcript + Gesture .332 .349
6. random .473 .526
7. equal-width .508 .515

Table 5.1: For each method, the score of the best performing configuration is shown.
Pk and WD are penalties, so lower values indicate better performance.
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Figure 5-5: The multimodal and verbal-only performance using the reference tran-
script. The x-axis shows the logarithm of the verbal prior; the gestural prior is held
fixed at the optimal value.

tated sentence boundaries – their task is to select the k sentence boundaries that

most accurately segment the text.

5.3.4 Results

Table 5.1 shows the segmentation performance for a range of feature sets, as well as

the two baselines. Given only gesture features, the segmentation results are poor (line

1), barely outperforming the baselines (lines 6 and 7). However, gesture proves highly

effective as a supplementary modality. The combination of gesture with automatic

speech recognition (ASR) transcripts (line 3) yields an absolute 7.4% improvement

over ASR transcripts alone (line 4). Paired t-tests show that this result is statistically
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significant (t(14) = 2.71, p < .01 for both Pk and WindowDiff).

As expected, segmentation quality is much higher when manual speech transcripts

are available, compared to automatically recognized transcripts: without gesture fea-

tures, both Pk and WindowDiff are roughly eight points better for manual transcripts

than for ASR. However, even in this case, gesture features yield a substantial im-

provement, further reducing Pk and WD by roughly 5%. This result is statistically

significant for both Pk (t(14) = 2.00, p < .05) and WindowDiff (t(14) = 1.94, p < .05).

This suggests that gesture is not merely compensating for inadequate ASR transcripts,

but adding new information not present in the lexical features.

Interactions of verbal and gesture features We now consider the relative

contribution of the verbal and gestural features. In a discriminative setting, the

contribution of each modality would be explicitly weighted. In a Bayesian generative

model, the same effect is achieved through the Dirichlet priors, which act to smooth

the verbal and gestural multinomials (see equation 5.3, page 104). For example, when

the gesture prior is high and verbal prior is low, the gesture counts are smoothed and

the verbal counts play a greater role in segmentation. When both priors are very high,

the model will simply try to find equally-sized segments, satisfying the distribution

over durations.

The effects of these parameters can be seen in Figure 5-5. The gesture model prior

is held constant at its ideal value, and the segmentation performance is plotted against

the logarithm of the verbal prior. Low values of the verbal prior cause it to dominate

the segmentation; this can be seen at the left of both graphs, where the performance

of the multimodal and verbal-only systems are nearly identical. High values of the

verbal prior cause it to be over-smoothed, and performance thus approaches that of

the gesture-only segmenter.

Comparison to other models Many models of cohesion-based topic segmenta-

tion have been proposed, though never for the multimodal case. While the focus of

this thesis is not on topic segmentation algorithms, it is important to show that the

technique applied here is competitive with the state of the art. Because the gestural
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Method Pk WD
1. Gesture only .423 .439
2. ASR only .411 .565
3. ASR + Gesture .399 .421
4. Transcript only .390 .538
5. Transcript + Gesture .399 .411

Table 5.2: Segmentation performance using TextSeg, with pre-specified number of
segments

features are represented in a lexicon-like form, it is possible to apply previously imple-

mented segmentation techniques without modification: in the multimodal conditions,

the “sentence” is composed of both the spoken words and the gestural codewords that

occur during the sentence duration.

Two alternative segmenters are considered. TextSeg (Utiyama & Isahara, 2001)

uses a probabilistic approach that is somewhat similar to my Bayesian framework,

as described at the end of Section 5.3.2. MinCutSeg (Malioutov & Barzilay, 2006)

uses a somewhat different cohesion metric, but is specifically designed to segment

speech transcripts. Another factor in the selection of these systems for comparison is

that executables are publicly available online.7

Table 5.2 shows the performance of the TextSeg segmenter, using an evaluation

setup in which the number of segments was specified by the annotator; an equivalent

setup was used to generate the results for my technique shown in Table 5.1. The

comparison is mixed: TextSeg is worse in all evaluations that include speech tran-

scripts, but better in the Gesture only condition (line 1 in Tables 5.1 and 5.2). In

the ASR + Gesture condition (line 3), TextSeg is only slightly worse, but it is

several points worse in the Transcript + Gesture condition (line 5). In the uni-

modal verbal conditions, the TextSeg system scores very poorly on the WindowDiff

metric – worse than the näıve baselines.

7For the Utiyama and Isahara segmenter, see http://www2.nict.go.jp/x/x161/members/
mutiyama/software.html#textseg. For MinCutSeg, see http://people.csail.mit.edu/
igorm/acl06code.html. Additional copies of each package, in the version used for this evaluation,
can be found at http://people.csail.mit.edu/jacobe/thesis/segmentation-baselines.html
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Method Pk WD
1. Gesture only .547 2.057
2. ASR only .398 .406
3. ASR + Gesture .436 .489
4. Transcript only .390 .397
5. Transcript + Gesture .441 .561

Table 5.3: Segmentation performance using TextSeg, with automatically deter-
mined number of segments

From inspection, TextSeg generates many segments that include only a single

sentence. It is possible that this behavior arises because TextSeg is not designed for

conversational speech, which may include very short sentences when the conversants

interrupt each other (see Appendix A.2, page 135). TextSeg is capable of determin-

ing the number of segments automatically – this may improve performance, as choos-

ing a smaller-than-optimal number of segments may yield better performance than

including many single-sentence segments. The results of this evaluation are shown

in Table 5.3. While the transcript-only conditions (line 2) are much improved, the

gesture-only and multimodal performance are substantially worse. From inspection,

TextSeg does indeed generate fewer segments for the ASR only and Transcript

only conditions, improving performance. However, on the multimodal and gesture-

only conditions, it generates a much finer segmentation than desired, yielding very

poor performance.

Overall, TextSeg segments the gestural and multimodal data fairly well when

the number of segments is pre-specified and segments the lexical data well when the

number of segments is determined automatically. It is possible that there may be

some configuration of parameters that performs well on all data, but that is beyond

the scope of this evaluation. TextSeg treats lexical and gestural features identically,

making it incapable of modeling the different levels of noise in the two modalities.

This suggests that the difficulties in applying TextSeg to multimodal data may be

fundamental, and not correctable through alternative parameter settings.

MinCutSeg is another text segmentation algorithm, designed to handle the noise
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Method Pk WD
1. Gesture only .450 .488
2. ASR only .433 .485
3. ASR + Gesture .460 .502
4. Transcript only .463 .504
5. Transcript + Gesture .459 .500

Table 5.4: Segmentation performance using MinCutSeg, with pre-specified number
of segments

inherent in automatic speech transcripts (Malioutov & Barzilay, 2006). MinCutSeg

uses dynamic programming to search for the maximally cohesive segmentation, as in

TextSeg and Section 5.3.2. However, MinCutSeg uses a smoothed cosine similar-

ity metric to measure cohesion, rather than a probabilistic or Bayesian approach.

The results of applying MinCutSeg to the multimodal dataset are shown in

Table 5.4 – in general they are poor, particularly in terms of the stricter WindowD-

iff metric. This may be because MinCutSeg is not designed for the fine-grained

segmentation demanded by the multimodal dataset – Malioutov and Barzilay (2006)

report an average segment length of 100 sentences on their physics lecture dataset,

versus fourteen in the multimodal dataset. Malioutov and Barzilay (2006) also present

results for a more finely segmented corpus of artificial intelligence lectures (the av-

erage segment includes 673 words, versus 1176 in the physics lectures; the number

of sentences per segment is not reported). On this dataset, both MinCutSeg and

TextSeg achieve a Pk of .37 and .38, and WindowDiff of .42. For TextSeg, these

results are comparable to the transcript-only segmentation on the multimodal dataset

(Table 5.3, lines 2 and 4); however, the performance of MinCutSeg is much worse

on my dataset.

Summary The experiments described in this section show a novel relationship be-

tween gestural cohesion and discourse structure. Adding gestural cohesion substan-

tially improves segmentation performance of text-only segmentation systems. This

suggests that gestures provide unique information not present in the lexical features

alone, even when perfect transcripts are available. These performance gains are made
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possible by a novel Bayesian segmentation architecture, which outperforms alternative

models for multimodal data.

5.4 Detecting Speaker-General Gestural Forms

Thus far, the research in this thesis has emphasized patterns of gestural forms within

each dialogue. Crucially, this approach makes no assumption that multiple speakers

will use similar gestures when describing the same semantic idea. Indeed, the proposed

methods can succeed even if gestures are completely idiosyncratic, as long as each

speaker exhibits some degree of self-consistency.

Nevertheless, the gestural codeword representation permits a novel cross-speaker

analysis of the relationship between semantics and gestural form. By examining the

distribution of codewords across speakers and dialogues with varying semantic topics8,

it is possible to quantify the extent to which speaker and topic shape the gestures that

the speaker produces. This investigation is made possible by the visual processing

pipeline described in Section 5.2, now applied to an entire dataset of videos rather

than a single dialogue. An example of three interest points that are clustered together

across speakers is shown in Figure 5-6.

The implications of such an investigation are both practical and theoretical. If each

speaker employs a distinct, idiosyncratic set of gestural patterns for a given topic, then

any attempt to process the semantics of gesture in a speaker-general fashion is likely

to fail. On the theoretical side, this research is germane to the question of how human

viewers extract content from co-speech gesture. Prior empirical research suggests that

viewers are sensitive to the relationship between gesture and semantics (Kelly et al.,

1999). But it is unknown whether viewers are interpreting gestures according to

some speaker-general system, or if they dynamically build a speaker-specific model of

gesture over the course of a conversation.

8The previous section described segment-level topics that describe a portion of a dialogue; we are
now concerned with document-level topics that describe an entire dialogue.

114



Figure 5-6: The three rows show examples of interest points that were clustered
together; all three include upward motion against a dark background. The center
panel of each row shows the time when the interest point is detected; the left and
right panels are 5 frames before and after, respectively.
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The relationship between gestural form and meaning is an open question in psy-

chology and cognitive science. Indeed, even the extent to which co-speech gesture

affects listeners’ comprehension is a subject of debate (see Section 2.1.1). Many

researchers have focused on a micro-scale study of individual gestures and their rela-

tionship to discourse structure and semantics (e.g., Quek et al., 2000). An important

complementary approach would be to investigate this phenomenon across a broad

range of speakers and discourse topics, which is possible only with automated meth-

ods that can easily be applied to a large dataset.

This section describes a set of experiments using the codebook representation

described in Section 5.2. Section 5.4.1 describes a hierarchical Bayesian model that

learns a lexicon of gestural codewords, while jointly learning to associate codewords

with specific speakers and topics. In Section 5.4.3, I describe a set of experiments

that use this model to quantify the relative contribution of speaker and gesture.

Section 5.4.4 presents results showing that discourse topic exerts a consistent influence

on gestural form, even across speakers.

5.4.1 An Author-Topic Model of Gestural Forms

A hierarchical Bayesian model (Gelman et al., 2004) is employed to assess the relative

contributions of speaker and topic to the form of the gesture. Hierarchical Bayesian

models permit joint inference over sets of related random variables. In this case, the

variables include the cluster memberships of each interest point, and an assignment

of each interest point as generated by either the speaker or topic. This model thus

allows us to estimate the proportion of interest points generated in a topic-specific,

speaker-general fashion.

Inference begins with the following observed data: the speaker and topic for each

dialog, and a low-dimensional description of each spatio-temporal interest point. This

is the representation obtained after the dimensionality reduction step in Figure 5-2

(page 96). Each interest point is assumed to be generated from a mixture model.

Interest points that are generated by the same mixture component should be visually

similar. These components serve as cluster centers and are another instantiation of
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gestural codewords. However, in this model, clustering is performed jointly in the

hierarchical Bayesian model; this differs from the clustering in Section 5.2.3, which

used the k-means algorithm as a preprocessing step. The sufficient statistics of the

mixture components are shared across all dialogues, but the component weights vary

by both topic and speaker. In this way, the model learns a global lexicon of visual

forms, while jointly learning the distribution of visual forms with respect to speaker

and topic.

The distribution over components for each speaker and topic is represented by a

multinomial. A hidden auxiliary variable decides whether each codeword is drawn

from the speaker-specific or topic-specific distributions. The parameter governing this

hidden variable indicates the model’s assessment of the relative importance of speaker

and topic for gestural form.

The plate diagram for the model is shown in Figure 5-7. Each of the D dialogues

is characterized by Nd visual features, which are written xd,i. Each visual feature

vector xd,i is generated from a multivariate Gaussian, xd,i ∼ N (µzd,i
, σzd,i

), where

zd,i indicates the codeword and σ is a diagonal covariance matrix. This induces a

standard Bayesian mixture model over gesture features (Bishop, 2006). Each zd,i is

drawn from either a speaker- or topic-specific multinomial, depending on the auxiliary

variable cd,i. If cd,i = 0, then zd,i ∼ φsd
, where sd is the identity of the speaker for

document d. If cd,i = 1, then zd,i ∼ θtd , where td is the topic of document d. The

distribution of c is governed by a binomial distribution with parameter λ.

Weakly informative conjugate priors are employed for all model parameters (Gelman

et al., 2004). Specifically, the parameters µ and σ are drawn from a Normal-Inverse-

Wishart distribution centered at the mean and variance of the observed data (Bishop,

2006). The multinomials φ and θ are drawn from symmetric Dirichlet priors, with

parameter φ0 = θ0 = .1. The binomial parameter λ is drawn from a weakly informa-

tive beta prior with parameters (.1, .1). As shown below, the use of conjugate priors

ensures that standard closed-form posteriors can easily be found.

Our goal is to learn the relative importance of speaker versus topic, captured in

the posterior distribution of the parameter λ, given observed data x, s,d. Gibbs sam-
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Figure 5-7: A plate diagram showing the dependencies in our model. Filled circles indicate
observed variables, empty circles indicate hidden variables, and rounded rectangles indicate
priors.

pling is a widely-used and easily-implemented technique for inference in hierarchical

Bayesian models (Gelman et al., 2004); it involves repeatedly sampling over the pos-

terior for each hidden variable with respect to the rest of the model configuration. Af-

ter initializing the parameters randomly, Gibbs sampling is guaranteed in the limit to

converge to the true distribution over the hidden variables, p(z, c, µ, σ, λ, φ, θ|x, s, t).

The resulting sample set can be used to construct Bayesian confidence intervals for

λ.

5.4.2 Sampling Distributions

Gibbs sampling requires posterior sampling distributions for all of the hidden vari-

ables. Rao-Blackwellization (Bishop, 2006) is used to reduce sampling variance by

integrating out the parameters θ, φ, µ, σ and λ. This is possible through the use of

conjugate priors. Thus it is necessary to sample only the hidden variables z and c.
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The probability distribution of zd,i given all the variables in the model is written

p(zd,i| . . .); z−(d,i) denotes all z except zd,i, and will be used later. N(zd,i, td, cd,i) de-

notes the count of times the codeword zd,i was drawn from the topic-specific distribu-

tion for topic td. This is computed as
∑

d′≤D δ(t
′
d, td)

∑
i′≤Nd′ δ(zd′,i′ , zd,i)δ(cd′,i′ , cd,i),

where the delta function takes the value one if the arguments are equal, and zero

otherwise.

p(zd,i = j| . . .) ∝ p(xd,i|µj , σj)p(zd,i = j|cd,i, φsd
, θtd) (5.5)

p(zd,i = j|cd,i, φsd
, θtd) =


φsd

[j] if cd,i = 0

θtd [j] if cd,i = 1,

where φsd
is the multinomial distribution indexed by the speaker sd, and φsd

[j] is

the entry for zd,i = j in that distribution. A student-T distribution is obtained by

integrating out the parameters µ and σ from the first part of equation 5.5. This may

be approximated by a moment-matched Gaussian (Gelman et al., 2004). Integrating

out the parameters φ and θ,

p(zd,i = j|cd,i, z−(d,i), sd, td, φ0, θ0) ∝∫
dφdθp(zd,i = j|cd,i, φsd

, θtd)p(φsd
|z−(d,i), φ0)p(θtd |z−(d,i), θ0)

=
∫
dφdθ(φsd

[j]δ(cd,i, 0) + θtd [j]δ(cd,i, 1))p(φsd
|z−(d,i), φ0)p(θtd |z−(d,i), θ0)

=δ(cd,i, 0)
∫
φsd

[j]p(φsd
|z−(d,i), φ0)dφ+ δ(cd,i, 1)

∫
θtd [j]p(θtd |z−(d,i), θ0)dθ (5.6)

=δ(cd,i, 0)
N(j, sd, cd,i = 0) + φ0

N(., sd, cd,i = 0) +Kφ0
+ δ(cd,i, 1)

N(j, td, cd,i = 1) + θ0
N(., td, cd,i = 1) +Kθ0

. (5.7)

The derivation of line 5.7 from line 5.6 follows from standard Dirichlet-Multinomial

conjugacy (Gelman et al., 2004), enabling the computation of the posterior probability

of zd,i in a ratio of counts. Sampling c is more straightforward:
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p(cd,i|c−(d,i), zd,i, λ0, . . .) ∝ p(zd,i|cd,i, z−(d,i), td, sd, φ0, θ0)
∫
p(cd,i|λ)p(λ|c−(d,i)λ0)dλ.

The first part of the product is defined in equation 5.7. The integral can be handled

analogously, as Beta-Binomial conjugacy is a special case of Dirichlet-Multinomial

conjugacy,

∫
p(cd,i|λ)p(λ|c−(d,i)λ0)dλ =

N(cd,i) + λ0

N + 2λ0
. (5.8)

Both zd,i and cd,i are categorical variables, so it is possible to sample them jointly

by considering all possible pairs of values. These parameters are tightly coupled, and

sampling them together is thus likely to speed convergence (Gelman et al., 2004).

The joint sampling distribution is given by

p(zd,i, cd,i| . . .) = p(zd,i|cd,i, z−(d,i), sd, td, φ0, θ0)p(cd,i|c−(d,i), λ0),

where the first part of the product is defined in equation 5.7 and the second part

is defined in equation 5.8.

5.4.3 Evaluation Setup

Dataset

The dataset for this experiment is composed of 33 short videos from the corpus

described in Chapter 3. As before, the topics consist of mechanical devices and a

cartoon narrative, and dialogues were limited to three minutes in duration. As in the

topic segmentation experiments in Section 5.3.3, speakers were not permitted to use

visual aids. Many of the videos that were initially recorded could not be used in the
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topic segmentation study because the audio was corrupted. Since audio plays no part

in the experiments in this section, these videos can now be used. The parameters of

this dataset are described in Table B.3 (page 140).

Implementation Details

The model from Section 5.4.1 includes four tunable parameters: the number of itera-

tions of Gibbs sampling to run, the number of interest points to extract, the number

of mixture components K, and the dimensionality of the gesture features after PCA.

Gibbs sampling is performed along five parallel runs for 15000 iterations each. The

first 5000 iterations are considered a “burn-in” period, and confidence intervals are

estimated from the remaining 10000. The number of interest points extracted is set

to 1/10 the number of frames in each video; on average, 390 interest points were

extracted per video. The number of components was set to 100, and the dimension-

ality of the gesture features after PCA was set to 5. These parameter settings were

made before the experiments were run and were not tuned with respect to the results,

though the settings did reflect a desire for tractability in terms of speed and memory.

In general, these settings impact the gesture clustering and do not directly affect the

assignment of codewords to the speaker or topic; however, alternative settings may

be considered in future work.

Experiments

The experiments analyze the influence of topic and speaker on gestural form from

both Bayesian and frequentist perspectives.

Bayesian Analysis The first experiment estimates the number of gestural fea-

tures that are generated in a topic-specific manner, using the model described in

Section 5.4.1. This proportion should be represented by the parameter λ, the prior

on the likelihood that each gestural feature is generated from the topic-specific model.

However, even if there were no topic-specific, speaker-general patterns, it is pos-

sible that the topic-specific model θ might somehow be used to overfit the data.
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To isolate the extent to the which the topic-specific model is used for overfitting, the

topic indicators were randomly shuffled in five baseline conditions. If the topic-specific

model is used more frequently with the true topic indicators than in the randomized

conditions, then this would suggest that the effect is due to a real correlation between

topic and gestural form, and not simply to overfitting.

Frequentist Analysis Just as in text, lexical distributions are indicative of dis-

course topic (Hearst, 1994); thus, it may be helpful to examine the distribution of

gestural codewords across topics. The Bayesian model builds a lexicon of gestures by

clustering gesture features; this is done jointly with the assignment of gesture features

to speakers and topics. Such a joint model is advantageous because it is possible to

integrate over uncertainty in the clustering, rather than propagating the effects of a

bad clustering decision to the other stages. However, it is illustrative to consider the

maximum a posteriori (MAP) clustering induced by the model (Bishop, 2006) and

investigate how the distribution of cluster tokens varies by topic.

To this end, the second experiment performs chi-squared analysis of the distri-

bution of cluster membership, with respect to both topic and speaker. Chi-squared

analysis allows us to test the null hypothesis that gestural forms are generated in a

way that is independent of the discourse topic.

5.4.4 Results

The results of the Bayesian analysis are shown in Table 5.5 and Figure 5-8. With the

correct topic labels, 12% of gestures are classified as topic-specific. When the topic

labels are randomized, this average drops to less than 3%. Thus, the model uses

the topic-specific codeword distributions mainly when the topic labels are actually

informative, supporting the hypothesis of a connection between discourse topic and

gestural form that transcends individual speakers.

Bayesian confidence intervals constructed from the samples show that these differ-

ences are robust. As indicated in Table 5.5, the confidence interval for the randomized

conditions is much larger. This is expected, as each randomization of topic labels
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condition mean upper lower
true topic labels .120 .136 .103
random topic labels .0279 .0957 0

Table 5.5: Proportion of gestures assigned to the topic-specific model, with 95%
confidence intervals

1 2 3 4 5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

P
ro

po
rt

io
n 

of
 g

es
tu

re
s 

dr
aw

n 
fr

om
 th

e 
to

pi
c 

m
od

el

Gibbs sampling run

Correct topic labels

1 2 3 4 5

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

Gibbs sampling run

Random topic labels

Figure 5-8: Proportion of gestures assigned to the topic model, per run

varies from the true labels to a different extent. Figure 5-8 illustrates this situation,

showing the confidence intervals from each randomized run. In the topic-randomized

condition, there is substantial between-run variance; in three of the runs, the topic

exerts no influence whatsoever. In contrast, in the condition with correct topic labels,

the influence of the topic-specific model is consistently in the range of 12%.

Next, the influence of topic and speaker on gestural form is analyzed using the clas-

sical chi-squared test. The maximum a posteriori (MAP) gesture feature clustering

is obtained by selecting the iteration of Gibbs sampling with the highest likelihood.9

The chi-squared test is used to determine whether the distribution of clusters differs

9In sampling-based inference, MAP estimates are often found by taking a mean or mode over
multiple samples. In the case of estimating a clustering, this technique suffers from non-identifiability.
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significantly according to topic and speaker (De Groot & Schervish, 2001).

Strong effects were found for both topic and speaker. For topics, p < .01, χ2 =

1.12 ∗ 104, dof = 439.10 For speakers, p < .01, χ2 = 5.94 ∗ 104, dof = 1319. While

the chi-squared values are not directly comparable – due to the different degrees of

freedom – this experiment indicates an important effect from both the topic and

speaker.

5.5 Discussion

This chapter demonstrates a novel relationship between gesture and high-level dis-

course structure. Within a dialogue, topically-coherent discourse segments are char-

acterized by gestural cohesion. This internal consistency of gestural forms mirrors the

well-known phenomenon of lexical cohesion. These results are obtained using a code-

book representation, which clusters local video features into characteristic gestural

forms. This same representation shows a connection between gesture and document-

level topics, which generalizes across multiple speakers. In addition, this chapter

demonstrates that even with a relatively lightweight visual analysis it is still possible

to capture semantically-relevant aspects of gesture.

Cohesion is only one possibility for how gesture might predict topic segmenta-

tion. An alternative is gesture as “visual punctuation” – explicit discourse cues that

predict segment boundaries. This is analogous to research on prosodic signatures

of topic boundaries (e.g., Hirschberg & Nakatani, 1998). By design, the model pre-

sented in this chapter is incapable of exploiting such phenomena, as this thesis focuses

on gestures that communicate narrative content. Thus, the performance gains ob-

tained here cannot be explained by such punctuation-like phenomena; they are due

to the consistent gestural themes that characterize coherent segments. However, the

use of visual punctuation should be explored in the future, as the combination of

For example, two data points may appear in many different clusters, though usually together; even
so, their modal cluster memberships may differ, causing them to be separated in the MAP estimate.

10Clusters with fewer than five examples were excluded, as the chi-squared text is not accurate
for small bin values. Thus, the number of degrees of freedom is less than the expected KT − 1.
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visual punctuations and cohesion may further improve segmentation performance.

The interaction of the gesture and prosodic modalities suggests additional avenues of

potentially fruitful research.

The results in Section 5.4 support the view that topic-specific gestural forms

are shared across speakers. The frequency of such shared gestural forms is likely

influenced by both the population of speakers and the topics of discussion. The

speakers in the dataset are all American residents and fluent speakers of English.

The extent to which gestural forms are shared across cultures is a key area for future

research. Another important question is whether gestural forms are shared when the

discourse topics are less concrete. Do multiple speakers use similar gestures when

talking about, say, their circle of friends, or their ideas on politics?

While the dataset was designed to encourage speaker-general gestures, it is also

true that any automatic vision-based technique for gesture analysis is likely to over-

state speaker-specific factors. This is because it is difficult – if not impossible – to

abstract away all features of the speaker’s appearance. The visual features used here

are brightness gradients and the location of movement. Brightness gradients are in-

fluenced by the speaker’s skin tone and clothing; location of movement is influenced

by anatomical factors such as the speaker’s height. Thus, the likelihood of such visual

features being clustered in a speaker-dependent manner is artificially inflated. With

the development of robust vision techniques that describe gesture’s visual form on a

more abstract level, future work may show that topic exerts a greater influence than

reported here.

Interest point features have not previously been used to describe co-speech ges-

ture. This chapter demonstrates that they can be an effective technique to identify

semantically-relevant gestural patterns. This result is encouraging, because such in-

terest points are more robust and easier to compute than the tracking-based tech-

niques used both in Chapter 4 and in other related work (e.g., Quek, McNeill, Bryll,

Duncan, et al., 2002).

Still, the interest point representation can be extended in various ways. Individual

interest points, as used here, are sufficient to describe a range of gestural forms, such
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as handshapes and paths of motion. However, they do not account for higher-level

phenomena, such as when both hands move in a synchronized or anti-synchronized

fashion. Rather than assigning codewords to local visual features, it may be advan-

tageous to consider sets of local features that frequently co-occur. Such an approach

may result in a characterization of gesture that better coheres with human perception.
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6
Conclusion

In face-to-face dialogue, meaning is communicated through a range of behaviors.

Natural language processing research has long emphasized speech, but this thesis

demonstrates that gesture plays an important role: hidden structures in discourse

reveal themselves through patterns in gesture. Such gestural patterns are extracted

from raw visual features, and the resulting multimodal discourse processing systems

outperform state-of-the-art text-only alternatives.

The use of gestures to identify patterns in narrative content is a novel approach

to multimodal language processing. This marks a substantial departure from prior

computational research on prosody and gesture, which focused on building recognizers

for specific pragmatic cues. However, the approach is well-supported by a tradition of

psycholinguistic research on gestural catchments (McNeill, 1992). This thesis marks

the first time that catchment theory has been used to predict discourse structure in
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a computational framework.

This thesis has focused on two gestural patterns: cohesion across sets of gestures,

and similarity of gestural pairs. Gestural similarity – computed from the output of

an articulated upper-body tracker – was shown to predict noun phrase coreference

in Chapter 4. Moreover, by identifying a subset of salient gestures among all other

hand movements, a more refined model of gestural similarity was acquired, further

improving the linguistic contribution. Chapter 5 introduced the idea of gestural co-

hesion, extending pairwise similarity to larger sets of gestures. Gestural cohesion –

computed from spatiotemporal interest points – was demonstrated to improve unsu-

pervised topic segmentation.

Throughout this thesis, models of gesture were learned without gesture-specific

annotations. In Chapter 4, learning was driven by linguistic coreference annotations,

which were exploited to learn both gesture similarity and gesture salience. Chapter 5

applied unsupervised learning in a joint model that incorporates both gesture and

speech. While the details of the machine learning algorithms differ, both are struc-

tured models that explicitly encode the relationship between the gesture and speech

modalities. This approach is motivated by the intuition that the interpretation of

gesture depends crucially on the surrounding linguistic context.

6.1 Limitations

In general, the temporal segmentation of gestures in this dissertation has been com-

pletely driven by the speech. In Chapter 4, gesture features are computed over the

duration of the noun phrase; in Chapter 5, interest points are computed over the

duration of the sentence. In light of the well-known synchrony between gesture and

speech (Condon & Ogston, 1967; Loehr, 2007), such an approach seems a reasonable

way to approximate the temporal extent of gestures. However, a more precise and

fine-grained model of gesture segmentation may be obtained by considering visual

features of the gesture, and this may improve performance on linguistic processing.
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While computer vision is not the focus of this dissertation, it is worth noting that

the vision techniques used here are limited in ways that prevent their application to

many of the videos currently available online. The articulated tracker described in

Chapter 4 is heavily dependent on the colored gloves worn by the speakers. More

robust hand tracking techniques would have to be applied to extend this application

to more realistic videos. In addition, the vision techniques in both chapters rely on the

fact that the speaker is the only source of motion in the video. The implementation

of the articulated tracker and the use of spatiotemporal interest points would be

substantially complicated by camera movement (e.g., panning and zooming) or the

presence of moving entities other than the speaker.

Overall, these requirements made existing audio-video data unusable, forcing the

acquisition of a new dataset. The resulting corpus is smaller than datasets used

in other areas of natural language processing. Many researchers are interested in

increasing the robustness and generality of computer vision. As new vision methods

become more accessible to non-specialists, it is likely that such limitations can be

overcome.

The topics of discussion in my dataset were deliberately restricted so as to en-

courage the use of direct, concrete gestures. To what extent do the gestural patterns

observed and exploited in this thesis depend on having a topic of discourse that is

directly physical? When the topic of discussion is more abstract, representational

gestures employ physical metaphors (McNeill, 1992). It remains unknown how often

such metaphoric gestures are used, and whether they can be exploited as effectively

as the more straightforward iconic and deictic gestures that dominate this dataset.

Finally, the speakers in this dataset are permitted only to speak and gesture. In

many real-world scenarios, speakers do a variety of other things: they pace around

the room, draw on chalkboards, change slides, perform physics demonstrations, drink

coffee, etc. The problem of identifying salient gestures becomes more complicated –

and more crucial – when such additional activities are permitted. The application of

this research to key target domains, such as classroom lectures and business meetings,

depends on addressing this problem.
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6.2 Future Work

Some future work has already been discussed; extensions that follow naturally from

the technical content were presented at the end of the relevant chapters (Sections 4.6

and 5.5) so that the necessary details would remain fresh in the reader’s mind. In this

section, I consider future research that is somewhat further afield from the specific

projects demonstrated in the thesis but is a continuation of the underlying ideas.

Contrastive Catchments From a theoretical perspective, much of this disser-

tation is motivated by David McNeill’s concept of the gestural catchment. Mc-

Neill (1992) defines a catchment as a pair of gestures which, through their relationship

to one another, convey some information about the discourse structure. I have fo-

cused exclusively on one type of catchment: the identity relationship. But catchments

are also used to indicate contrastive relationships between discourse elements. Mc-

Neill describes many examples in which a speaker repeats a gesture but modulates

some critical element, such as the speed or the handshape, indicating a key seman-

tic distinction. Building an automatic system that could recognize such catchments

requires a more fine-grained model of gesture, as well as a richer treatment of seman-

tics. However, such an effort could substantially improve discourse processing, and

may also help to answer fundamental linguistic questions about the frequency of such

contrastive catchments and the situations in which they are used.

Richer Models of Similarity and Salience In a related vein, I have assumed that

gesture similarity and salience are both separate and atomic. In fact they are likely

neither: any pair of gestures will be similar in some ways and different in others, and

whether the gestures are judged to be holistically similar depends on which features

are salient. For example, if I produce a gesture with a complicated trajectory while

standing in one part of the room, and then walk across the room and repeat it, do these

two gestures mean the same thing? Only the absolute hand position has changed;

if I am simply pacing across the room, this is probably irrelevant, but if I happen

to be pointing at different regions on a large map, then the change in position may
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be crucial. The similarity of two gestures can only be considered as a single atomic

concept if we can simultaneously identify which features of the gesture are salient –

that is, which features count towards a holistic assessment of similarity.

In principle, this model of gesture interpretation seems to require the ability to

read the speaker’s mind, so as to determine which aspects of the visual presentation

are intended to be communicative. It is important to remember that human viewers

appear to solve this problem effortlessly. While the relationship between gestural

form and meaning is not generally conventionalized, it may be the case that the

use of visual features to convey meaning does demonstrate some regularity – either

through social convention or on some deeper cognitive level. One simple way in which

it could be standardized is through a salience ordering of visual features – for example,

movement patterns may always be more salient than handshapes. If this is the case,

then viewers may not attend to handshape if the movement patterns of the gestures

are different, but will attend to the handshape if the movement patterns are identical.

Such a salience ordering is only one of many possibilities, and empirical research is

required to understand how human viewers pick out the salient characteristics of

gesture. Such research could directly inform automatic gesture processing systems,

leading to dynamic models of gestural similarity that attend only to perceptually

salient gestural features.

Learning Across Multiple Tasks One of the key ideas of this thesis is that models

of gesture should be learned in the context of language processing, rather than in

isolation. There are two main motivations for this view. First, learning about gesture

in isolation would seem to require training from some general-purpose annotation of

gestural form. Such annotations would be difficult to define and costly to produce.

Second, as our ultimate goal and evaluation metric is performance on discourse-

processing tasks, it is advantageous to train on these metrics directly, particularly

since their annotation schemes are already well-defined.

But even while rejecting the idea of learning about gesture in isolation from lan-

guage, we need not abandon the hope of learning models of gesture that generalize
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across linguistic contexts. The projects described in this thesis leverage annotations

from individual linguistic tasks, but more complex models may leverage multiple types

of annotations. For example, given annotations for both noun phrase coreference and

discourse segmentation, it may be possible to learn a model of gesture salience that

applies to both tasks. If gesture salience is indeed a coherent concept outside the

setting of noun phrase coreference, then combining linguistic annotations in this way

should yield a more robust model, and increase the effective training set size.

In a sense, this approach amounts to learning task-general models of gesture, but

in a bottom-up, data-driven way. In addition to the engineering advantages just

mentioned, such research may be relevant from a purely linguistic standpoint. Such

a model would, for example, permit an investigation of which language phenomena

share coherent notions of gesture salience, and how gesture salience is expressed in

visual and linguistic features. This thesis has shown that structured learning models

can be used to incorporate linguistic ideas about gesture in a principled way. Future

work may show that such models can also provide a new tool to study the linguistics

of gesture.
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A
Example Transcripts

A.1 Coreference Example

This section presents an example of the coreference annotations for a single conver-

sation. Of the two participants, only the speech from the “presenter” is shown here –

this is the participant who has seen a simulation of the relevant device, and is asked

to explain it to the other participant. Annotated noun phrases are indicated using

square brackets, and an index for the relevant coreference chain is indicated in paren-

theses. Note that first and second person pronouns are not annotated. The lines are

numbered for reference in Section 4.4.

The topic of this converation was the pinball device, and the presenter was pro-

vided with the a printed version of the diagram shown in Figure C-3 (page 143).

1 ok so [(0) this object right here].
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2 i’m going to attempt to explain what [(0) this] does to you.
3 [(1) this ball right here] is the only
4 [(1) this ball]
5 [(2) this spring]
6 [(3) this long arm]
7 and [(4) this] are [(5) the only objects that actually move].
8 no i take [(6) that] back.
9 [(7) this] rotates as well.
10 while [(8) these things] stay fixed.
11 what happens is [(1) the ball] comes down [(9) here].
12 and [(2) this spring] is active.
13 meaning that [(2) it’s] going up and down.
14 because [(4) this] will come up.
15 jostle [(3) that].
16 and then go around.
17 so [(3) it’ll] as [(4) this] raises [(3) it] up.
18 [(10) this hand] goes down.
19 and then [(10) it’ll] spring back up.
20 [(1) the ball] typically goes up [(11) here].
21 bounces off [(12) here].
22 gets caught in like [(13) a groove].
23 [(7) this] is continually moving around in [(14) a circle]
24 then [(15) this] happened three times
25 i watched [(16) a video] and [(15) it] happened [(17) three times]
26 [(1) the ball] never went through [(18) there] or [(19) over here]
27 [(1) it] always would get down back to [(20) here]
28 and then down through [(9) here]
29 sometimes [(21) this thing] would hit [(1) it] harder
30 and [(1) it] would go higher up
31 and sometimes [(1) it] would just kind of loop over
32 no no [(1) it] only came down through [(9) here]
33 i have no idea why there’s [(22) anchors] on [(23) here]
34 [(24) that] wasn’t really made clear to me
35 and yeah [(25) that’s] pretty much [(26) it]
36 [(1) it’s] essentially [(1) a bouncy ball]
37 but [(1) it] just pretty much drops like [(27) dead weight]
38 when [(1) it] hits [(28) something]
39 and that was [(26) it]
40 [(16) it] was probably like [(16) a forty five second video] at most
41 and [(29) it] happened [(17) three times] in [(16) that video]
42 so [(16) it] moves relatively quickly
43 not so much lodged as just like [(1) it] would like come down [(13) here]
44 and as [(7) this] is moving [(7) it] would
45 just kind of like dump [(1) it] into [(20) here]
46 [(7) it’s] more of something that’s in [(30) the way]
47 than actually [(31) a transfer]
48 because if [(7) this] wasn’t [(32) here]
49 [(1) it] would still fall down [(20) here] and then get in [(9) here]
50 that’s it
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51 i’m not actually sure what [(0) this] does
52 [(0) it] looks like [(0) it] looks just like
53 [(0) this] on [(33) the computer screen]
54 so so um [(0) it] basically looks like
55 [(34) kind of a so so game of pinball]
56 [(35) that] was [(36) my understanding of it]
57 i’m not sure what else [(37) it’s] supposed to do
58 ok we’re done guys with [(37) this one]

A.2 Segmentation Example

This section presents an example of the topic segmentation annotations for a single

conversation. Speaker A is tasked with explaining the behavior of a piston (Figure C-

4, page 143) to speaker B, after watching a video demonstration. Speaker A is not

permitted to use visual aids in this conversation.

When the participants interrupt each other, this is indicated by “...” after the

speech. The start and end times are given in milliseconds in square brackets at the

end of each line.

TOPIC: intro and wheel

A: ok [18103 18483]
A: this one is actually pretty difficult to explain [20173 22693]
A: i wish they gave us something [23425 24385]
A: um ok just try to imagine what i’m going to point out to you here

[25025 30965]
A: there’s a circle right here attached to a straight brick and then

another straight brick [30975 39705]
A: but at the end of this second straight brick is like a bar like

this [39715 44475]
A: ok so we have a circle [44933 46063]
A: these are all connected by like a screw [46443 48403]
A: so there’s a a wheel a bar coming off of it another bar and then

like a t basically at the end of it [49675 59638]
B: uhum a long bar [60021 61361]
A: yeah [61390 61770]
B: go on [61761 62061]

TOPIC: the container
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A: this is all inside of basically just picture a big square
[62420 66740]

A: ok but there’s an opening in the square right here for the bars to
go through [67436 71376]

A: and then that big t thing is the width of the square [72065 76045]
A: want me to repeat some of that [79130 80520]
B: uhum the t thing [80641 81591]
B: but i [81601 81931]
B: is it [81971 82291]
B: you mean the vertical thing at the end of the two bricks

[82401 84721]
A: yes exactly that is going vertical [84336 87096]
A: and everything else here is going ... [87166 88286]
B: but ... [88191 88351]
A: horizontal [88296 89166]
B: to the height of the whole square [88391 90001]

TOPIC: the function

A: what this machine does is it [90208 94998]
A: it’s essentially a press [95068 96428]
A: that would be the easiest way to explain it [97330 98970]
A: um [99380 100040]
A: everything the wheel and the two bars are connected by one

[102800 108340]
A: shit this is hard to explain [109090 110550]
A: in the wheel there’s a screw [111615 115545]
A: that’s attached to the [115961 116711]
A: wait just need to look at this [116781 117851]
A: there’s a screw that’s attached to the bar [118170 120520]
A: as the wheel turns [122273 123613]
A: the bar goes in [124143 125683]
A: but as the wheel turns out [126863 128403]
A: this arm will go out as well [129413 131073]
A: because they’re connected [131083 132073]
A: so as the wheel like [132083 132943]
A: you know as that screw was back here [133053 134413]
A: the whole t thing is kind of back here [135180 136860]
A: but as it comes around [137160 138420]
A: everything goes out [138540 139540]
B: got it [139611 140091]
A: ok [141396 141806]
A: so the press works according to how the wheel’s position is

[142006 145476]
A: as the screw of the wheel comes facing as far as it can towards the

press [146205 151145]
A: the t let’s call it is pressing against the end of the ...

[151753 154533]
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TOPIC: comparison to a nut cracker

B: sort ... [154526 154836]
A: square [154543 155133]
B: of like one of those old fashion nut crackers [154846 157146]
A: i was actually thinking of a wine vinyard like [157096 159336]
A: just like that [159346 160066]
A: but a nut cracker is good ... [160563 161573]
B: you ... [161583 161723]
A: as well [161583 161943]
B: know [161733 161833]
B: where the like you twist it [161843 163473]
B: and the thing just presses the nut up against the end of the

[163513 166963]
A: yeah ... [167073 167313]
B: ok ... [167433 167763]
A: except [167433 167733]
A: for there’s no screw in this [167743 169193]
A: it’s just a wheel [169203 170193]
A: and the nut crackers have a screw [171388 172838]
A: that you twist [172848 173638]
B: right but ... [173871 174671]
A: but the same philosophy [174866 176306]
A: and if something was in this square in the end of it

[176536 178326]
A: it would get [178366 178816]
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B
Dataset Statistics
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number speaker topic duration words sentences
1 03 pinball 3:02 455 95
2 03 candy 2:27 428 101
3* 04 latch 1:19 104 27
4 04 pinball 2:31 283 65
5* 06 pinball 3:05 325 69
6 07 pinball 2:23 192 47
7* 07 piston 0:47 48 8
8* 09 candy 3:02 404 100
9 09 pinball 3:01 421 109
10 10 pinball 3:01 362 89
11* 10 piston 3:02 313 69
12* 11 pinball 3:03 315 71
13 13 latchbox 2:20 347 72
14 13 pinball 3:11 221 51
15 15 pinball 2:30 378 87
16 15 candy 2:43 358 77
total 41:34 4954 1137

Table B.1: Corpus statistics for the dataset used in the experiments from Chapter 4.
All videos were used in the coreference evaluation; asterisks indicate videos that were
used in the keyframe evaluation.

number speaker topic duration words sents segments
1 03 cartoon 1:34 248 32 5
2 03 latchbox 2:41 393 54 6
3 04 piston 2:16 323 46 5
4 06 latchbox 3:04 461 91 9
5 07 latchbox 1:47 260 45 6
6 09 cartoon 3:01 691 186 10
7 09 toy 3:03 703 140 10
8 09 piston 3:10 673 153 9
9 10 cartoon 3:04 579 102 8
10 10 candy 2:47 488 100 6
11 10 toy 3:04 616 127 6
12 11 candy 3:05 530 93 6
13 13 cartoon 2:51 443 95 7
14 13 candy 3:02 604 104 5
15 15 piston 3:03 446 72 4
total 41:40 7458 1440 102

Table B.2: Corpus statistics for the experiments on discourse segmentation in Sec-
tion 5.3
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number speaker topic duration start end
1 01 cartoon 0:38 0:00 0:38
2 01 pez 1:23 0:05 1:29
3 02 cartoon 1:06 0:01 1:07
4 02 pez 1:28 0:01 1:30
5 03 cartoon 1:09 0:05 1:15
6 03 latchbox 2:34 0:05 2:40
7 04 cartoon 2:49 0:04 2:53
8 04 piston 2:01 0:05 2:06
9 04 toy 2:58 0:05 3:03
10 05 cartoon 0:21 0:01 0:23
11 05 piston 1:27 0:02 1:30
12 05 toy 0:45 0:01 0:46
13 06 cartoon 2:53 0:03 2:56
14 06 latchbox 2:58 0:05 3:03
15 07 cartoon 0:52 0:04 0:56
16 07 latchbox 1:34 0:05 1:40
17 08 cartoon 1:26 0:04 1:30
18 09 cartoon 2:53 0:06 3:00
19 09 piston 3:07 0:03 3:11
20 09 toy 2:58 0:05 3:03
21 10 cartoon 2:56 0:06 3:03
22 10 pez 2:36 0:03 2:40
23 10 toy 2:56 0:06 3:03
24 11 cartoon 2:57 0:07 3:05
25 11 pez 2:37 0:27 3:05
26 12 cartoon 2:08 0:05 2:13
27 12 pez 2:51 0:13 3:05
28 12 toy 2:58 0:03 3:01
29 13 cartoon 2:19 0:07 2:26
30 13 pez 2:56 0:05 3:02
31 14 cartoon 1:26 0:10 1:36
32 14 latchbox 1:05 0:08 1:14
33 15 piston 2:40 0:21 3:01
total 70:02

Table B.3: Corpus statistics for the experiments on speaker and topic-specific gestures
in Section 5.4. To avoid including motion from the speaker entering or leaving the
scene, only data between the start and end times are included, as indicated in the
right two columns of the table.
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C
Stimuli

This appendix includes still images of the six stimuli shown to the speakers in the

dataset described in Chapter 3. For the first four stimuli, speakers were shown video

simulations, using the Working Model software application (http://www.design-simulation

.com/WM2D/). For the Star Wars toy, participants were able to see and manipulate

the actual physical object. The final stimulus is a short “Tom and Jerry” cartoon.
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Figure C-1: Latching box

Figure C-2: Candy dispenser
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Figure C-3: Pinball machine

Figure C-4: Piston
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Figure C-5: Star Wars toy

Figure C-6: Tom and Jerry cartoon
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