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Abstract

Micali and Valiant proposed a mechanism for combinatorial auctions that is
dominant-strategy truthful, guarantees reasonably high revenue, and is very re-
silient against collusions. Their mechanism, however, uses as a subroutine the
VCG mechanism, that is not polynomial time.

We propose a modification of their mechanism that is efficient, while retaining
their collusion resilience and a good fraction of their revenue, if given as a subroutine
an efficient approximation of the VCG mechanism.



1 Introduction

Combinatorial Auctions 101 The following “summary” about combinatorial auc-
tions is taken from [MV07], essentially verbatim.

A (non-Bayesian, n×m) combinatorial-auction context is described as follows. There
is a set of players N = {1, . . . , n} and a set of m goods G. A valuation is a function
from G’s subsets to R

+, and each player i has a private valuation TVi, which we refer to
as i’s true valuation. An outcome consists of (1) a profile (i.e., a vector indexed by the
players) P = P1, . . . , Pn, where Pi ∈ R

+ is the price to be paid by player i, and (2) an
allocation A = A0, A1, . . . , An, where Ai is the subset of goods allocated to player i, and
A0 the set of unallocated goods. For each outcome Ω = (A, P ), the utility of player i is
defined via his utility function ui as follows: ui(TVi, Ω) = TVi(Ai)− Pi, that is, i’s true
value of the goods allocated to him minus the price he pays. Note that such a context is
fully described by just N , G, and the true-valuation profile TV , which in turn determine
the outcome space and the utility functions.

For such a context, a combinatorial-auction mechanism is a (possibly probabilistic)
function M mapping a profile of valuations V to an outcome (A, P ) such that Ai is
empty and Pi is 0 whenever Vi is the null valuation.1 An n×m context C = (N, G, TV )
and an n×m mechanism M define a (n×m) combinatorial auction: namely, the game
G = (C,M) envisaged to be played as follows. First, each player i (independently of the
others) chooses a valuation BIDi on inputs TVi, N , and G. Then, an outcome (A, P )
is obtained by evaluating M on BID, the profile of all such valuations. We refer to the
so chosen valuations as bids, to emphasize that they need not coincide with the players’
true valuations. In such a game, a strategy is a (possibly probabilistic) way for a player
to choose his bid. Say M is a dominant-strategy truthful (DST) mechanism, if for any
player i, (1) bidding his true valuation is at least as good as any other strategy (in the
sense of maximizing his own utility), no matter what bids the other players might choose;
and (2) i cannot be charged more than he bids.

To emphasize the underlying mechanism M, We consider M as two separate func-
tions: an allocation function Ma and a price function Mp, such that ∀BID,M(BID) =
(Ma(BID),Mp(BID)). For a probabilistic mechanism M, the expected revenue gen-
erated by M on bid profile BID is E[

∑n
i=1Mp(BID)i]. At last, if C ⊂ N , and V is a

profile, then VC is the sub-profile indexed by the players in C, that is, VC = {Vi : i ∈ C}.

Social Welfare Notation The social welfare relative to a valuation profile V and an
allocation A is denoted as SW (V, A) �

∑n
i=1 Vi(Ai). If A =Ma(V ) and the underlying

mechanism M is clear from context, we use SW (V ) for short. For the true valuation
profile TV , the notation is further shortened as SW � SW (TV ). The maximum social
welfare relative to a valuation profile V is MSW (V ) = maxA∈A(G) SW (V, A), where

A(G) is the set of all possible allocations of G. Again MSW � MSW (TV ). For any
sub-profile of V , VC , the notation is defined accordingly. For example, SWC � SW (TVC),

1This guarantees that any player can “opt out” (i.e., win no goods and pay nothing) by bidding the
null valuation.
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MSWC � MSW (TVC), etc. Particularly, for any i ∈ N , SW−i � SWN\{i}, and MSW−i

is defined analogously.

1.1 The MV Mechanism

In [MV07], Micali and Valiant put forward a mechanism that we refer to as the MV mech-
anism. This mechanism is DST and generates expected revenue greater than MSW−∗

log min{m,n}
from any n×m combinatorial auction context, where “∗” is the star player whose true
valuation for some bundle, S∗ ⊆ G, is higher than or equal to any player’s valuation for
any bundle, that is, ∀i and ∀S ⊆ G : TV∗(S∗) ≥ TVi(S). (Thus MSW−∗ � MSWN\{∗}).
Given a bid profile BID, the MV mechanism works as follows. First it runs the VCG
mechanism [V61, C71, G73] to get V CG(BID) = (A′, P ′). Then for each winner i, that
is, a player to whom the VCG allocates a non-empty subset of goods (A′

i �= ∅), the MV
mechanism raises i’s VCG price, P ′

i , to a proper fraction of MSW (BID−i). Specifically,
they choose a scaling factor α from a continuous exponential distribution, allocate A′

i to
i if and only if P ′

i + αMSW (BID−i) ≤ BIDi(A
′
i).

1.2 Computational Efficiency

The MV mechanism requires the exact computation of MSW and of all possible MSW−i,
quantities that have been shown to be NP-hard [RPH98] to compute, even in some very
simple case. Thus, ultimately, the MV mechanism is not polynomial-time. Traditionally,
game theory doesn’t care about computational efficiency. But an efficient version of the
MV mechanism will undoubtedly be more useful.

To discuss efficiency, one must decide on a suitable representation of valuations (i.e.,
bids). We assume that a valuation V is represented as a table, with each row correspond-
ing to a subset of goods S and containing the value V (S). Note that the computation of
MSW is still NP-hard in this representation.

1.3 Our Contribution

We notice that, although the maximum social welfare is hard to compute exactly, it could
possibly be efficiently approximated.

Definition 1. Let c > 1 be a constant and M be a combinatorial-auction mechanism.
We say that M is a c-MSW mechanism, if (1) M is DST, (2) M is polynomial-time,
and (3) for any bid profile BID, SW (BID, Ma(BID)) ≥ MSW (BID)/c. We refer to
c as the approximation ratio of M .

Notice that c-MSW mechanisms indeed exist in several contexts. For example, a√
m-MSW mechanism exists for single-minded auctions [OS02]2. Accordingly, we find

2A player i is single-minded if and only if there exists a single subset S ⊆ G and x ∈ R
+ such that

for any T ⊆ G, TVi(T ) = x whenever S ⊆ T and 0 otherwise. A single-minded auction is an auction
where all players are single-minded
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it important to show that the MV mechanism can be slightly modified to achieve both
revenue guarantee and computational efficiency. Specifically, we put forward the following
theorem.

Theorem 1. ∀c > 1, if there exists a c-MSW mechanism, there exists a DST and
polynomial-time mechanism whose expected revenue is greater than MSW−∗

c log min{m,n} .

2 The Modified MV Mechanism

The intuition is that instead of using the VCG mechanism, we use any c-MSW mechanism
M′. Also, instead of raising each winner i’s price to a fraction of MSW−i, we raise it
to a fraction of SW ′(BID−i), the social welfare achieved by M′ on input BID−i. This
is done by sampling the scaling factor α from a continuous exponential distribution, as
in [MV07]. However, αSW ′(BID−i) may not be sufficient to generate a good revenue,
as in the worst case, SW ′(BID−i) is only a 1/c fraction of MSW−i

3. To generate as
much revenue as possible, we act more aggressively and raise i’s price to a fraction of
c ·SW ′

−i, which is an upper-bound of MSW−i. Of course we need a balance some how to
prevent the adjusted price from going too high so that most players fail to pay. This is
achieved by changing the distribution of α a little so that this part is more conservative
than before.

Given explicit knowledge of c, our mechanism M on input BID, computes the allo-
cation and price (A, P ) as follows:

1. Pick a scaling factor α ∈ [0, 1] as follows:

(a) Let μ = min{m, n}, and cm,n solves the equation e(x/c2)−2 = xμ such that
cm,n > 2c2. Note that such a cm,n indeed exists and is unique, as discussed in
Section 3.

(b) r ← [−( cm,n

c2
− 2), 0].

(c) With probability p = 1
cm,n

c2
−1

, α = 0. With probability 1− p, α = er.

2. Compute provisional allocation A′ and corresponding price profile P ′ such that
(A′, P ′) = M′(BID). Let the set of provisional winners W ′ consist of all players
that obtain a non-empty subset of goods in A′.

3. ∀j �∈ W ′, Aj = ∅ and Pj = 0. Furthermore, ∀i ∈ W ′, Let P ′′
i = P ′

i + α · c ·
SW ′(BID−i). If P ′′

i ≤ BIDi(A
′
i), then i becomes a final winner, Ai = A′

i and
Pi = P ′′

i . Otherwise Ai = ∅ and Pi = 0.

Note that SW ′(BID−i) is the social welfare achieved by M′ with input BID−i,
which can be efficiently evaluated fromM′(BID−i).

3It may be sufficient, as the desired bound in Theorem 1 also contains a 1/c factor, but at least we
don’t know how to use it to do the proof.
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3 Sketch of Proof

Without loss of generality, we assume that c < μ. In fact, there exists a trivial μ-
MSW mechanism T : On input BID, T simply finds a player x and a subset of goods
Sx, such that ∀i and ∀S ⊆ G : BIDx(Sx) ≥ BIDi(S). T ’s allocation consists of
assigning Sx to player x and the empty set to all other players. T imposes a price
equal to the “second-highest bid” to x (i.e., Tp(BID)x = maxi�=x,S⊆G BIDi(S)), and
price 0 to all other players 4. It is easy to see that T is DST. Moreover, the social
welfare generated by T is SW (BID, Ta(BID)) = BIDx(Sx). Notice that in the VCG
mechanism, (1) the social welfare is SW (BID, V CGa(BID)) = MSW , (2) there are at
most μ winners and (3) for each winner i, BIDi(V CGa(BID)i) ≤ BIDx(Sx). Therefore
we have MSW ≤ μBIDx(Sx), and we conclude that T is indeed a μ-MSW mechanism.

Recall cm,n’s definition. W.l.o.g., μ ≥ 2. It is easy to verify that the continuous func-
tion f(x) = e(x/c2)−2−xμ is negative when x = 2c2, positive when x ≥ 2c2 log(2μc2)+2c2,
monotonically decreasing when x ∈ (2c2, c2 log μc2 + 2c2), and monotonically increasing
when x ∈ (c2 log μc2 + 2c2, 2c2 log(2μc2) + 2c2). Therefore the equation f(x) = 0 has
a unique solution, cm,n, when x > 2c2. More precisely, cm,n belongs to the interval
(c2 log μc2 + 2c2, 2c2 log(2μc2) + 2c2). As 1 ≤ c < μ, we know that c2 log μ < cm,n <
2c2 log(2μ3) + 2c2 = 6c2 log μ + 4c2 ≤ 10c2 log μ.

Claim 1. M is DST.
Proof Sketch. This follows directly from the fact that M′ is DST and the analysis in
[MV07].

Claim 2. M generates expected revenue greater than or equal to c·MSW−∗
cm,n

.

(Since cm,n = Θ(c2 log μ), this means thatM’s expected revenue is O(MSW−∗
c log µ

).)

Proof Sketch. We prove that whenever BID is a valuation profile for a n ×m auction,
the expected revenue generated byM with input BID satisfies that

E[
∑
i∈N

Mp(BID)i] ≥
c ·MSW (BID−∗)

cm,n
. (1)

Claim 2 then follows from this equation and Claim 1.

The technique used to prove Equation 1 is similar to that in the proof of Theorem 2b
in [MV07]. Recall that the proof there discusses the expected revenue generated by MV
in two cases.

In the first case, the star player’s bid for the bundle S ′
∗ allocated to him is large

enough, that is, BID∗(S ′
∗) > P ′

∗ + MSW (BID−∗). (Note that S ′
∗ may not be equal to

S∗.) This implies that the star player is a provisional winner, i.e., S ′
∗ �= ∅, since the right

part is always non-negative. Moreover, ∗ is also a final winner, as the highest possible
price for him (the right part) is still less than his bid. Therefore in this case, the expected
revenue generated by MV is lower-bounded only by the expected revenue generated by
∗, which already achieves the desired bound.

4Note that T is indeed polynomial-time using our representation of valuations.
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In the complementary case, every provisional winner i’s bid on the bundle S ′
i allocated

to him is not much larger than his provisional price P ′
i , or in other words, P ′

i is already a
good approximation to BIDi(S

′
i). Combined with the price-raising scheme, the expected

revenue generated by each provisional winner contributes a large enough fraction to the
final revenue, and the desired bound follows.

Our detailed analysis is given below.

Case 1: The ∗ player’s bid on S ′
∗ allocated to him by M′ on input BID satisfies

BID∗(S ′
∗) > P ′

∗ + c · SW ′(BID−∗). This implies that ∗ is a provisional winner as well as
a final winner, using the same analysis as in [MV07]. Therefore we can also lower-bound
the revenue ofM by using the revenue of ∗ alone, and it is easy to show that

E[Mp(BID)∗] ≥
c ·MSW (BID−∗)

cm,n
,

and we are done.

Case 2: BID∗(S ′
∗) ≤ P ′

∗ + c ·SW ′(BID−∗). We claim that in this case, ∀i ∈W ′ with
allocation S ′

i and price P ′
i ,

BIDi(S
′
i) ≤ P ′

i + c · SW ′(BID−i). (2)

This can be easily proven. If i = ∗, Equation 2 follows directly. ∀i �= ∗, we know that

BIDi(S
′
i) ≤ BID∗(S∗) ≤MSW (BID−i) ≤ c · SW ′(BID−i) ≤ P ′

i + c · SW ′(BID−i),

where the first inequality follows from the definition of ∗ player and S∗, the second one is
because ∗ ∈ N\{i}, and the third one is given by the fact thatM′ is a c-approximation
mechanism.

Now we can use the technology used in the second case of [MV07]. First, ∀i ∈ W ′,
if P ′

i + e−(
cm,n

c2
−2) · c · SW ′(BID−i) ≤ BIDi(S

′
i), then combining Equation 2, we have

−( cm,n

c2
− 2) ≤ log

BIDi(S′
i)−P ′

i

c·SW ′(BID−i)
≤ 0, and following [MV07] we get

E[Mp(BID)i] ≥
1

cm,n

c2
− 1

[
BIDi(S

′
i)− e−(

cm,n

c2
−2) · c · SW ′(BID−i)

]
. (3)

While if P ′
i + e−(

cm,n

c2
−2) · c ·SW ′(BID−i) > BIDi(S

′
i), then P ′

i > BIDi(S
′
i)− e−(

cm,n

c2
−2) ·

c · SW ′(BID−i). Therefore

E[Mp(BID)i] =
P ′

i
cm,n

c2
− 1

>
1

cm,n

c2
− 1

[
BIDi(S

′
i)− e−(

cm,n

c2
−2) · c · SW ′(BID−i)

]
. (4)

That means in Case 2, Equation 3 is satisfied for all i ∈ W ′. Summing this inequality
up over all i ∈W ′, following [MV07], we get

E[
∑
i∈N

Mp(BID)i] ≥
c ·MSW−∗(BID)

cm,n
.
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