

# Generalization of the MV Mechanism

### Jing Chen

#### April 30, 2008

#### Abstract

Micali and Valiant proposed a mechanism for combinatorial auctions that is dominant-strategy truthful, guarantees reasonably high revenue, and is very resilient against collusions. Their mechanism, however, uses as a subroutine the VCG mechanism, that is not polynomial time.

We propose a modification of their mechanism that is efficient, while retaining their collusion resilience and a good fraction of their revenue, if given as a subroutine an efficient approximation of the VCG mechanism.

### 1 Introduction

**Combinatorial Auctions 101** The following "summary" about combinatorial auctions is taken from [MV07], essentially verbatim.

A (non-Bayesian,  $n \times m$ ) combinatorial-auction *context* is described as follows. There is a set of *players*  $N = \{1, \ldots, n\}$  and a set of m goods G. A valuation is a function from G's subsets to  $\mathbb{R}^+$ , and each player i has a private valuation  $TV_i$ , which we refer to as i's true valuation. An outcome consists of (1) a profile (i.e., a vector indexed by the players)  $P = P_1, \ldots, P_n$ , where  $P_i \in \mathbb{R}^+$  is the price to be paid by player i, and (2) an allocation  $A = A_0, A_1, \ldots, A_n$ , where  $A_i$  is the subset of goods allocated to player i, and  $A_0$  the set of unallocated goods. For each outcome  $\Omega = (A, P)$ , the utility of player i is defined via his utility function  $u_i$  as follows:  $u_i(TV_i, \Omega) = TV_i(A_i) - P_i$ , that is, i's true value of the goods allocated to him minus the price he pays. Note that such a context is fully described by just N, G, and the true-valuation profile TV, which in turn determine the outcome space and the utility functions.

For such a context, a combinatorial-auction mechanism is a (possibly probabilistic) function  $\mathcal{M}$  mapping a profile of valuations V to an outcome (A, P) such that  $A_i$  is empty and  $P_i$  is 0 whenever  $V_i$  is the null valuation.<sup>1</sup> An  $n \times m$  context  $\mathcal{C} = (N, G, TV)$ and an  $n \times m$  mechanism  $\mathcal{M}$  define a  $(n \times m)$  combinatorial auction: namely, the game  $\mathcal{G} = (\mathcal{C}, \mathcal{M})$  envisaged to be played as follows. First, each player *i* (independently of the others) chooses a valuation  $BID_i$  on inputs  $TV_i$ , N, and G. Then, an outcome (A, P)is obtained by evaluating  $\mathcal{M}$  on BID, the profile of all such valuations. We refer to the so chosen valuations as *bids*, to emphasize that they need not coincide with the players' true valuations. In such a game, a *strategy* is a (possibly probabilistic) way for a player to choose his bid. Say  $\mathcal{M}$  is a *dominant-strategy truthful* (DST) mechanism, if for any player *i*, (1) bidding his true valuation is at least as good as any other strategy (in the sense of maximizing his own utility), no matter what bids the other players might choose; and (2) *i* cannot be charged more than he bids.

To emphasize the underlying mechanism  $\mathcal{M}$ , We consider  $\mathcal{M}$  as two separate functions: an allocation function  $\mathcal{M}_a$  and a price function  $\mathcal{M}_p$ , such that  $\forall BID, \mathcal{M}(BID) = (\mathcal{M}_a(BID), \mathcal{M}_p(BID))$ . For a probabilistic mechanism  $\mathcal{M}$ , the expected revenue generated by  $\mathcal{M}$  on bid profile BID is  $E[\sum_{i=1}^n \mathcal{M}_p(BID)_i]$ . At last, if  $C \subset N$ , and V is a profile, then  $V_C$  is the sub-profile indexed by the players in C, that is,  $V_C = \{V_i : i \in C\}$ .

Social Welfare Notation The social welfare relative to a valuation profile V and an allocation A is denoted as  $SW(V, A) \triangleq \sum_{i=1}^{n} V_i(A_i)$ . If  $A = \mathcal{M}_a(V)$  and the underlying mechanism  $\mathcal{M}$  is clear from context, we use SW(V) for short. For the true valuation profile TV, the notation is further shortened as  $SW \triangleq SW(TV)$ . The maximum social welfare relative to a valuation profile V is  $MSW(V) = \max_{A \in \mathcal{A}(G)} SW(V, A)$ , where  $\mathcal{A}(G)$  is the set of all possible allocations of G. Again  $MSW \triangleq MSW(TV)$ . For any sub-profile of  $V, V_C$ , the notation is defined accordingly. For example,  $SW_C \triangleq SW(TV_C)$ ,

 $<sup>^{1}</sup>$ This guarantees that any player can "opt out" (i.e., win no goods and pay nothing) by bidding the null valuation.

 $MSW_C \triangleq MSW(TV_C)$ , etc. Particularly, for any  $i \in N$ ,  $SW_{-i} \triangleq SW_{N\setminus\{i\}}$ , and  $MSW_{-i}$  is defined analogously.

#### 1.1 The MV Mechanism

In [MV07], Micali and Valiant put forward a mechanism that we refer to as the MV mechanism. This mechanism is DST and generates expected revenue greater than  $\frac{MSW_{-*}}{\log \min\{m,n\}}$ from any  $n \times m$  combinatorial auction context, where "\*" is the *star player* whose true valuation for some bundle,  $S_* \subseteq G$ , is higher than or equal to any player's valuation for any bundle, that is,  $\forall i$  and  $\forall S \subseteq G : TV_*(S_*) \geq TV_i(S)$ . (Thus  $MSW_{-*} \triangleq MSW_{N\setminus\{*\}}$ ). Given a bid profile BID, the MV mechanism works as follows. First it runs the VCG mechanism [V61, C71, G73] to get VCG(BID) = (A', P'). Then for each winner *i*, that is, a player to whom the VCG allocates a non-empty subset of goods  $(A'_i \neq \emptyset)$ , the MV mechanism raises *i*'s VCG price,  $P'_i$ , to a proper fraction of  $MSW(BID_{-i})$ . Specifically, they choose a scaling factor  $\alpha$  from a continuous exponential distribution, allocate  $A'_i$  to *i* if and only if  $P'_i + \alpha MSW(BID_{-i}) \leq BID_i(A'_i)$ .

#### **1.2** Computational Efficiency

The MV mechanism requires the exact computation of MSW and of all possible  $MSW_{-i}$ , quantities that have been shown to be NP-hard [RPH98] to compute, even in some very simple case. Thus, ultimately, the MV mechanism is not polynomial-time. Traditionally, game theory doesn't care about computational efficiency. But an efficient version of the MV mechanism will undoubtedly be more useful.

To discuss efficiency, one must decide on a suitable representation of valuations (i.e., bids). We assume that a valuation V is represented as a table, with each row corresponding to a subset of goods S and containing the value V(S). Note that the computation of MSW is still NP-hard in this representation.

#### **1.3 Our Contribution**

We notice that, although the maximum social welfare is hard to compute exactly, it could possibly be efficiently approximated.

**Definition 1.** Let c > 1 be a constant and M be a combinatorial-auction mechanism. We say that M is a c-MSW mechanism, if (1) M is DST, (2) M is polynomial-time, and (3) for any bid profile BID,  $SW(BID, M_a(BID)) \ge MSW(BID)/c$ . We refer to c as the approximation ratio of M.

Notice that c-MSW mechanisms indeed exist in several contexts. For example, a  $\sqrt{m}$ -MSW mechanism exists for single-minded auctions [OS02]<sup>2</sup>. Accordingly, we find

<sup>&</sup>lt;sup>2</sup>A player *i* is single-minded if and only if there exists a single subset  $S \subseteq G$  and  $x \in \mathbb{R}^+$  such that for any  $T \subseteq G$ ,  $TV_i(T) = x$  whenever  $S \subseteq T$  and 0 otherwise. A single-minded auction is an auction where all players are single-minded

it important to show that the MV mechanism can be slightly modified to achieve both revenue guarantee and computational efficiency. Specifically, we put forward the following theorem.

**Theorem 1.**  $\forall c > 1$ , if there exists a c-MSW mechanism, there exists a DST and polynomial-time mechanism whose expected revenue is greater than  $\frac{MSW_{-*}}{c \log \min\{m,n\}}$ .

### 2 The Modified MV Mechanism

The intuition is that instead of using the VCG mechanism, we use any c-MSW mechanism  $\mathcal{M}'$ . Also, instead of raising each winner *i*'s price to a fraction of  $MSW_{-i}$ , we raise it to a fraction of  $SW'(BID_{-i})$ , the social welfare achieved by  $\mathcal{M}'$  on input  $BID_{-i}$ . This is done by sampling the scaling factor  $\alpha$  from a continuous exponential distribution, as in [MV07]. However,  $\alpha SW'(BID_{-i})$  may not be sufficient to generate a good revenue, as in the worst case,  $SW'(BID_{-i})$  is only a 1/c fraction of  $MSW_{-i}$ <sup>3</sup>. To generate as much revenue as possible, we act more aggressively and raise *i*'s price to a fraction of  $c \cdot SW'_{-i}$ , which is an upper-bound of  $MSW_{-i}$ . Of course we need a balance some how to prevent the adjusted price from going too high so that most players fail to pay. This is achieved by changing the distribution of  $\alpha$  a little so that this part is more conservative than before.

Given explicit knowledge of c, our mechanism  $\mathcal{M}$  on input *BID*, computes the allocation and price (A, P) as follows:

- 1. Pick a scaling factor  $\alpha \in [0, 1]$  as follows:
  - (a) Let  $\mu = \min\{m, n\}$ , and  $c_{m,n}$  solves the equation  $e^{(x/c^2)-2} = x\mu$  such that  $c_{m,n} > 2c^2$ . Note that such a  $c_{m,n}$  indeed exists and is unique, as discussed in Section 3.
  - (b)  $r \leftarrow [-(\frac{c_{m,n}}{c^2} 2), 0].$
  - (c) With probability  $p = \frac{1}{\frac{cm,n}{c^2}-1}$ ,  $\alpha = 0$ . With probability 1 p,  $\alpha = e^r$ .
- 2. Compute provisional allocation A' and corresponding price profile P' such that  $(A', P') = \mathcal{M}'(BID)$ . Let the set of provisional winners W' consist of all players that obtain a non-empty subset of goods in A'.
- 3.  $\forall j \notin W', A_j = \emptyset$  and  $P_j = 0$ . Furthermore,  $\forall i \in W'$ , Let  $P''_i = P'_i + \alpha \cdot c \cdot SW'(BID_{-i})$ . If  $P''_i \leq BID_i(A'_i)$ , then *i* becomes a final winner,  $A_i = A'_i$  and  $P_i = P''_i$ . Otherwise  $A_i = \emptyset$  and  $P_i = 0$ .

Note that  $SW'(BID_{-i})$  is the social welfare achieved by  $\mathcal{M}'$  with input  $BID_{-i}$ , which can be efficiently evaluated from  $\mathcal{M}'(BID_{-i})$ .

<sup>&</sup>lt;sup>3</sup>It may be sufficient, as the desired bound in Theorem 1 also contains a 1/c factor, but at least we don't know how to use it to do the proof.

#### 3 **Sketch of Proof**

Without loss of generality, we assume that  $c < \mu$ . In fact, there exists a trivial  $\mu$ -MSW mechanism  $\mathcal{T}$ : On input *BID*,  $\mathcal{T}$  simply finds a player x and a subset of goods  $S_x$ , such that  $\forall i$  and  $\forall S \subseteq G : BID_x(S_x) \geq BID_i(S)$ .  $\mathcal{T}$ 's allocation consists of assigning  $S_x$  to player x and the empty set to all other players.  $\mathcal{T}$  imposes a price equal to the "second-highest bid" to x (i.e.,  $\mathcal{T}_p(BID)_x = \max_{i \neq x, S \subseteq G} BID_i(S)$ ), and price 0 to all other players <sup>4</sup>. It is easy to see that  $\mathcal{T}$  is DST. Moreover, the social welfare generated by  $\mathcal{T}$  is  $SW(BID, \mathcal{T}_a(BID)) = BID_x(S_x)$ . Notice that in the VCG mechanism, (1) the social welfare is  $SW(BID, VCG_a(BID)) = MSW$ , (2) there are at most  $\mu$  winners and (3) for each winner i,  $BID_i(VCG_a(BID)_i) \leq BID_x(S_x)$ . Therefore we have  $MSW \leq \mu BID_x(S_x)$ , and we conclude that  $\mathcal{T}$  is indeed a  $\mu$ -MSW mechanism.

Recall  $c_{m,n}$ 's definition. W.l.o.g.,  $\mu \geq 2$ . It is easy to verify that the continuous function  $f(x) = e^{(x/c^2)-2} - x\mu$  is negative when  $x = 2c^2$ , positive when  $x \ge 2c^2 \log(2\mu c^2) + 2c^2$ , monotonically decreasing when  $x \in (2c^2, c^2 \log \mu c^2 + 2c^2)$ , and monotonically increasing when  $x \in (c^2 \log \mu c^2 + 2c^2, 2c^2 \log(2\mu c^2) + 2c^2)$ . Therefore the equation f(x) = 0 has a unique solution,  $c_{m,n}$ , when  $x > 2c^2$ . More precisely,  $c_{m,n}$  belongs to the interval  $(c^2 \log \mu c^2 + 2c^2, 2c^2 \log(2\mu c^2) + 2c^2)$ . As  $1 \le c < \mu$ , we know that  $c^2 \log \mu < c_{m,n} < c_{m,n}$  $2c^2 \log(2\mu^3) + 2c^2 = 6c^2 \log \mu + 4c^2 < 10c^2 \log \mu.$ 

#### Claim 1. $\mathcal{M}$ is DST.

*Proof Sketch.* This follows directly from the fact that  $\mathcal{M}'$  is DST and the analysis in [MV07].

Claim 2.  $\mathcal{M}$  generates expected revenue greater than or equal to  $\frac{c \cdot MSW_{-*}}{c_{m,n}}$ . (Since  $c_{m,n} = \Theta(c^2 \log \mu)$ , this means that  $\mathcal{M}$ 's expected revenue is  $O(\frac{MSW_{-*}}{c \log \mu})$ .)

*Proof Sketch.* We prove that whenever *BID* is a valuation profile for a  $n \times m$  auction, the expected revenue generated by  $\mathcal{M}$  with input *BID* satisfies that

$$E[\sum_{i\in N} \mathcal{M}_p(BID)_i] \ge \frac{c \cdot MSW(BID_{-*})}{c_{m,n}}.$$
(1)

Claim 2 then follows from this equation and Claim 1.

The technique used to prove Equation 1 is similar to that in the proof of Theorem 2b in [MV07]. Recall that the proof there discusses the expected revenue generated by MV in two cases.

In the first case, the star player's bid for the bundle  $S'_*$  allocated to him is large enough, that is,  $BID_*(S'_*) > P'_* + MSW(BID_{-*})$ . (Note that  $S'_*$  may not be equal to  $S_*$ .) This implies that the star player is a provisional winner, i.e.,  $S'_* \neq \emptyset$ , since the right part is always non-negative. Moreover, \* is also a final winner, as the highest possible price for him (the right part) is still less than his bid. Therefore in this case, the expected revenue generated by MV is lower-bounded only by the expected revenue generated by \*, which already achieves the desired bound.

<sup>&</sup>lt;sup>4</sup>Note that  $\mathcal{T}$  is indeed polynomial-time using our representation of valuations.

In the complementary case, every provisional winner *i*'s bid on the bundle  $S'_i$  allocated to him is not much larger than his provisional price  $P'_i$ , or in other words,  $P'_i$  is already a good approximation to  $BID_i(S'_i)$ . Combined with the price-raising scheme, the expected revenue generated by each provisional winner contributes a large enough fraction to the final revenue, and the desired bound follows.

Our detailed analysis is given below.

**Case 1:** The \* player's bid on  $S'_*$  allocated to him by  $\mathcal{M}'$  on input *BID* satisfies  $BID_*(S'_*) > P'_* + c \cdot SW'(BID_{-*})$ . This implies that \* is a provisional winner as well as a final winner, using the same analysis as in [MV07]. Therefore we can also lower-bound the revenue of  $\mathcal{M}$  by using the revenue of \* alone, and it is easy to show that

$$E[M_p(BID)_*] \ge \frac{c \cdot MSW(BID_{-*})}{c_{m,n}},$$

and we are done.

**Case 2:**  $BID_*(S'_*) \leq P'_* + c \cdot SW'(BID_{-*})$ . We claim that in this case,  $\forall i \in W'$  with allocation  $S'_i$  and price  $P'_i$ ,

$$BID_i(S'_i) \le P'_i + c \cdot SW'(BID_{-i}).$$
<sup>(2)</sup>

This can be easily proven. If i = \*, Equation 2 follows directly.  $\forall i \neq *$ , we know that

$$BID_i(S'_i) \le BID_*(S_*) \le MSW(BID_{-i}) \le c \cdot SW'(BID_{-i}) \le P'_i + c \cdot SW'(BID_{-i}),$$

where the first inequality follows from the definition of \* player and  $S_*$ , the second one is because  $* \in N \setminus \{i\}$ , and the third one is given by the fact that  $\mathcal{M}'$  is a *c*-approximation mechanism.

Now we can use the technology used in the second case of [MV07]. First,  $\forall i \in W'$ , if  $P'_i + e^{-(\frac{cm,n}{c^2}-2)} \cdot c \cdot SW'(BID_{-i}) \leq BID_i(S'_i)$ , then combining Equation 2, we have  $-(\frac{cm,n}{c^2}-2) \leq \log \frac{BID_i(S'_i)-P'_i}{c \cdot SW'(BID_{-i})} \leq 0$ , and following [MV07] we get

$$E[\mathcal{M}_p(BID)_i] \ge \frac{1}{\frac{Cm,n}{c^2} - 1} \left[ BID_i(S'_i) - e^{-(\frac{Cm,n}{c^2} - 2)} \cdot c \cdot SW'(BID_{-i}) \right].$$
(3)

While if  $P'_i + e^{-(\frac{c_{m,n}}{c^2} - 2)} \cdot c \cdot SW'(BID_{-i}) > BID_i(S'_i)$ , then  $P'_i > BID_i(S'_i) - e^{-(\frac{c_{m,n}}{c^2} - 2)} \cdot c \cdot SW'(BID_{-i})$ . Therefore

$$E[\mathcal{M}_p(BID)_i] = \frac{P'_i}{\frac{c_{m,n}}{c^2} - 1} > \frac{1}{\frac{c_{m,n}}{c^2} - 1} \left[ BID_i(S'_i) - e^{-(\frac{c_{m,n}}{c^2} - 2)} \cdot c \cdot SW'(BID_{-i}) \right].$$
(4)

That means in Case 2, Equation 3 is satisfied for all  $i \in W'$ . Summing this inequality up over all  $i \in W'$ , following [MV07], we get

$$E[\sum_{i \in N} \mathcal{M}_p(BID)_i] \ge \frac{c \cdot MSW_{-*}(BID)}{c_{m,n}}$$

## References

- [MV07] S. Micali and P. Valiant, Collusion-Resilient Revenue In Combinatorial Auctions, Technical Report, MIT-CSAIL-TR-2007-052.
- [V61] W. Vickrey, Counterspeculation, Auctions, and Competitive Sealed Tenders, J. of Finance, 16:8-37, 1961.
- [C71] E.H. Clarke, Multipart Pricing of Public Goods, Public Choice 11:17-33, 1971.
- [G73] T. Groves, Incentives in Teams, Econometrica, 41:617-631, 1973.
- [RPH98] M.H. Rothkopf, A. Pekeč and R.M. Harstad, Computationally manageable combinatorial auctions, Manage. Sci. 44, 8, 1131-1147, 1998.
- [OS02] L. I. O'Callaghan and Y. Shoham, Truth Revelation in Approximately Efficient Combinatorial Auctions, Journal of the ACM, Vol.49, No.5, 577-602, 2002.

