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Abstract

The research reported here concerns the principles
used to automatically generate three-dimensional
representations from line drawings of scenes.
The computer programs involved look at scenes which
consist of polyhedra and which may contain shadows and
various kinds of coincidentally aligned scene features.
Each generated description includes informationabout
edge shape (convex, concave, occluding, shadow, etc.),
about the decomposition of the scene into bodies, about
the type of illumination for each region (illuminated,
projected shadow, or oriented away from the light
source), and about the spacial orientation of regions.
The methods used are based on the labeling schemes of
Huffman and Clowes; this research provides a
considerable extension to their work and also gives
theoretical explanations to the heuristic scene
analysis work of Guzman, Winston, and others.

*This report reproduces a thesis of the same title
submitted to the Department of Electrical Engineering,
Massachusetts Institute of Technology, in partial
fulfillment of the requirements for the degree of
Doctor of Philosophy, September 1972.
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1.0 INTRODUCTION

How do we ascertain the shapes of unfamiliar objects?

Why do we so seldom confuse shadows with real things? How do

we "factor out" shadows when looking at scenes? How are we

able to see the world as essentially the same whether it is a

bright sunny day, an overcast day, or a night with only

streetlights for illumination? In the terms of this paper,

how can we recognize the identity of figures 1.1 and 1.2? Do

we use learning and knowledge to Interpret what we see, or do

we somehow automatically see the world as stable and

independent of lighting? What portions of scenes can we

understand from local features alone, and what configurations

require the use of global hypotheses?

Various theories have been proposed to explain how

people extract three-dimensional Information from scenes

(Gibson 1950 is an excellent reference). It is well known

that we get depth and distance information from motion

parallax and, for objects fairly close to us, from eye focus

feedback and parallax. But this does not explain how we are

able to understand the three-dimensional nature of

photographed scenes. Perhaps we acquire knowledge of the

shapes of objects by handling them and moving around them,
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SECTION 1.0 9

and use rote memory to assign shape to those objects when we

recognize them in scenes. But this does not explain how we

can perceive the shapes of objects we have never seen before.

Similarly, the fact that we can tell the shapes of many

objects from as simple a representation as a line drawing

shows that we do not need texture or other fine details to

ascertain shape, though we may of course use texture

gradients and other details to define certain edges.

I undertook this research with the belief that it is

possible to discover rules with which a program can obtaina

three-dimensional model of a scene, given only a reasonably

good line drawing of a scene. Such a program might have

applications both in practical situations and in developing

better theories of human vision. Introspectively, I do not

feel that there is a great difference between seeing

"reality" and seeing line drawings.

Moreover, there are considerable difficulties both in

processing stereo Images (such as the problem of deciding

which points on each retina correspond to the same scene

point; see Guzman 1968, Lerman 1970) and in building a system

incorporating hand-eye coordination which could be used to

help explore and disambiguate a scene (Gaschnig 1971). It
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seems to me that while the use of range finders, multiple

light sources to help eliminate shadows (Shirai 1971), and

the restriction of scenes to known objects may all prove

useful for practical robots, these approaches avoid( ming to

grips with the nature of human perception vis-a-vis the

implicit three-dimensional Information in line drawings of

real scenes. While I would be very cautious about claiming

parallels between the rules in my program and human visual

processes, at the very least I have demonstrated a number of

capable vision programs which require only fixed, monocular

line drawings for their operation.

In this thesis I describe a working collection of

computer programs which reconstruct three-dimensional

descriptions from line drawings which are obtained from

scenes composed of plane-faced objects under various lighting

conditions. In this description the system Identifies shadow

lines and regions, groups regions which belong to the same

object, and notices such relations as contact or lack of

contact between the objects, support and in-front-of/behind

relations between the objects as well as information about

the spacial orientation of various regions, all using the

description it has generated.
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1.1 DESCRIPTIONS

The overall goal of the system Isto provide a precise

description of a plausible scene which could give rise to a

particular line drawing. It is therefore important to have a

good language in which to describe features of scenes. Since

I wish to have the program operate on unfamiliar objects, the

language must be capable of describing such objects. The

language I have used is an expansion of the labeling system

developed by Huffman (Huffman 1971) In the United States and

Clowes (Clowes 1971) in Great Britain.

The language employs labels which are assigned to line

segments and regions in the scene. These labels describe the

edge geometry, the connection or lack of connection between

adjacent regions, the orientation of each region in three

dimensions, and the nature of the illumination for each

region (illuminated, projected shadow region, or region

facing away from the light source). The goal of the program

is to assign a single label value to each line and region in

the line drawing, except in cases where humans also find a

feature to be ambiguous.
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This language allows precise definitions of such

concepts as supported by, In front of, behind, rests against,

shadows, is shadowed by, is capable of supporting, leans on,

and others. Thus, if it is possible to label each feature of

a scene uniquely, then it is possible to directly extract

these relations from the description of the scene based on

this labeling.

1.2 JUNCTION LABELS

Much of the program's power is based on access to lists

of possible line label assignments for each type ofjunction

in a line drawing. While a natural language analogy to these

labels could be misleading, I think that it helps in

explaining the basic operation of this portion of the

program.

If we think of each possible label for a line as a
letter in the alphabet, then each junction must be
labeled with an ordered list of "letters" to form a
legal "word" in the language. Thus each "word"
represents a physically possible interpretation for a
given junction. Furthermore, each "word" must match the
"words" for surrounding junctions in order to form a
legal "phrase", and all "phrases" in the scene must
agree to form a legal "sentence" for the entire scene.
The knowledge of the system Is contained in (1) a
dictionary made up of every legal "word" for ech type
of junction, and (2) rules by which "words" can legally
combine with other "words". The range of the dictionary
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entries defines the universe of the program; this
universe can be expanded by adding new entries
systematically to the dictionary.

In fact, the "dictionary" need not be a stored list.

The dictionary can consist of a relatively small list of

possible edge geometries for each junction type, and a set of

rules which can be used to generate the complete dictionary

from the original lists. Depending on the amount of computer

memory available, it may either be desirable to store the

complete lists as compiled knowledge or to generate the lists

when they are needed. In my current program the lists are

for the most part precompiled.

The composition of the dictionary isinteresting in its

own right. While some basic edge geometries give rise to

many dictionary entries, some give rise to very few. The

total number of entries sharing the same edge geometry can be

as low as three for some ARROW junctions, including shadow

edges, while the number generated by some FORK junction edge

geometries is over 270,000 (Including region orientation and

illumination values).
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1.3 JUNCTION LABEL ASSIGNMENT

There is a considerable amount of local information

which can be used to select a subset of the total number of

dictionary entries which are consistent with a particular

junction. The first piece of information isalready included

implicitly in the idea of junction type. Junctions are typed

according to the number of lines which make up the junction

and the two dimensional arrangement of these lines. Figure

1.3 shows all the junction types which can occur in the

universe of the program. The dictionary is arranged by

junction type, and a standard ordering is assigned to all the

line segments which make up junctions (except FORKS and

MULTIS).

The program can also use local region brightness and

line segment direction to preclude the assignment of certain

labels to lines. For example, if it knows that one region Is

brighter than an adjacent region, then the line which

separates the regions can be labeled as a shadowreglon in

only one way. There are other rules which relate region

orientation, light placement and region illumination as well

as rules which limit the number of labels which can be

assigned to line segments which border the support surface
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for the scene. The program is able to combine all these

types of information in finding a list of appropriate labels

for a single junction.

1.4 COMBINATION RULES

Combination rules are used to select from the initial

assignments the label, or labels, which correctly describe

the scene features that could have produced each junction in

the given line drawing. The simplest type of combination

rule merely states that a label is a possible description for

a junction if and only if there is at least one label which

"matches" it assigned to each adjacent junction. Two

junction labels "match" If and only if the line segment which

joins the junctions gets the same interpretation from both of

the junctions at its ends.

Of course, each interpretation (line label) is really a

shorthand code for a number of properties of the line and its

adjoining regions. If the program can show that any one of

these constituent values cannot occur in the given scene

context, then the whole complex of values for that line

expressed implicitly in the Interpretation cannot be possible

either and, furthermore, any junction label which assigns
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this interpretation to the line segment can be eliminated as

well. Thus, when it chooses a label to describe a

particular junction, it constrains all the junctions which

surround the regions touching this junction, even though the

combination rules only compare adjacent junctions.

More complicated rules are needed if it Is necessary to

relate junctions which do not share a visible region or line

segment. For example, I thought at the outset of my work

that it might be necessary to construct models of hidden

vertices or features which faced away from the eye in order

to find unique labels for the visible features. The

difficulty in this is that unless a program can find which

lines represent obscuring edges, it cannot know where to

construct hidden features, but if it needs the hidden

features to label the lines, itmay not be able to decide

which lines represent obscuring edges. As it turns out, no

such complicated rules and constructions are necessary in

general; most of the labeling problem can be solved by a

scheme which only compares adjacent junctions.
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1.5 EXPERIMENTAL RESULTS

When I began to write a program to implement the system

I had devised, I expected to use a tree search system to find

which labels or "words" could be assigned to each junction.

However, the number of dictionary entries for each type of

junction is very high, (there are almost 3000 different ways

to label a FORK junction before even considering the possible

region orientations!) so I decided to use a sort of

"filtering program" before doing a full tree search.

The program computes the full list of dictionary entries

for each junction in the scene, eliminates from the list

those labels which can be precluded on the basis of local

features, assigns each reduced list to its junction, and then

the filtering program computes the possible labels for each

line, using the fact that a line label is possible If and

only if there is at least one junction label at each end of

the line which contains the line label. Thus, the list of

possible labels for a line segment is the intersection of the

two lists of possibilities computed from the junction labels

at the ends of the line segment. If any junction label would

assign a interpretation to the line segment which is not In

this intersection list, then that label can be eliminated
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from consideration. The filtering program uses a network

Iteration scheme to systematically remove all the

interpretations which are precluded by the elimination of

labels at a particular junction.

When I ran this filtering program I was amazed to find

that in the first few scenes I tried, this program found a

unique label for each line. Even when I tried considerably

more complicated scenes, there were only a few lines in

general which were not uniquely specified, and some of these

were essentially ambiguous, i.e. I could not decide exactly

( what sort of edge gave rise to the line segment myself. The

other ambiguities, i.e. the ones which I could resolve

myself, in general require that the program recognize lines

which are parallel or collinear or regions which meet along

more than one line segment, and hence require more global

agreement.

I have been able to use this system to Investigate a

large number of line drawings, including ones with missing

lines and ones with numerous accidentally aligned junctions.

From these investigations I can say with some certainty which

types of scene features can be handled by the filtering

program and which require more complicated processing.
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Whether or not more processing is required, the filtering

system provides a computationally cheap method for acquiring

a great deal of information. For example, in most scenes a

large percentage of the line segments are unambiguously

labeled, and more complicated processing can be directed to

the areas which remain ambiguous. As another example, if I

only wish to know which lines are shadows or which lines are

the outside edges of objects or how many objects there are in

the scene, the program may be able to get this information

even though some ambiguities remain, since the ambiguity may

only involve region illumination type or region orientation.

Figure 1.4 shows some of the scenes which the program is

able to handle. The segments which remain ambiguous after

Its operation are marked with stars, and the approximate

amount of time the program requires to label each scene is

marked below it. The computer Is a PDP-10, and the program

is written partially in MICRO-PLANNER (Sussman et al 1971)

and partially In compiled LISP.
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1.6 COMPARISON WITH OTHER VISION PROGRAMS

My system differs from previously proposed ones in

several important ways:

First, it is able to handle a much broader range of

scene types than have previous programs. The program

"understands" shadows, some junctions which have missing

lines, and apparent alignment of edges caused by the

particular placement of the eye with respect to the scene, so

that no special effort needs to be made to avoid problematic

"( features.

Second, the design of the program facilitates Its

integration with line-finding programs and higher-level

programs such as programs which deal with natural language or

overall system goals. The system can be used to write a

program which automatically requests and uses many different

types of information to find the possible Interpretations for

a single feature or portion of a scene.

Third, the program is able to deal with ambiguity in a

natural manner. Some features in a scene can be ambiguous to

a person looking at the same scene and the orogram oreservesr
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these various possiblities. This tolerance for ambiguity is

central to the philosophy of the program; rather than trying

to pick the "most probable" interpretation of any features,

the program operates by trying to eliminate impossible

interpretations. If it has been given insufficient

information to decide on a unique possibility, then it

preserves all the active possibilities It knows. Of course

if a single interpretation is required for some reason, one

can be chosen from this list by heuristic rules.

Fourth, the program is algorithmic and does not require

facilities for back-up if the filter program finds an

adequate description. Heuristics have been used in all

previous vision programs to approximate reality by the most

likely interpretation. This may simplify some problems, but

sophisticated programs are needed to patch up the cases where

the approximation is wrong; in my program I have used as

complete a description as I could devise with the result that

the programs are particularly simple, transparent and

powerful.

Fifth, because of this simplicity, I have been able to

write a program which operates very rapidly. As a practical

matter this is very useful for debugging the system, and
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allows modifications to be made with relative.ease.

Moreover, because of its speed, I have been able to test the

program on many separate line drawings and have thus been

able to gain a clearer understanding of the capabilities and

ultimate limitations of the program. In turn, this

understanding has led and should continue to lead to useful

modifications and a greater understanding of the nature and

complexity of procedures necessary to handle various types of

scene features.

Sixth, as explained In the next section, the descriptive

language provides a theoretical foundation of considerable

value in explaining previous work.

1.7 HISTORICAL PERSPECTIVE

One of the great values of the extensive descriptive

apparatus I have developed is 1-ts ability to explain the

nature and shortcomings of past work. I will discuss In

Chapter 9 how my system helps in understanding the work of

Guzman (Guzman 1968), Rattner (Rattner 1970), Huffman

(Huffman 1971), Clowes (Clowes 1971), and Orban (Orban 1970);

and to explain portions of the work of Winston (Winston 1970)

and Finin (Finin 1971a, 1971b). For example, I show how
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various concepts such as support can be formalized in my

descriptive language. From this historical comparison

emerges a striking demonstration of the ability of good

descriptions to both broaden the range of applicability of a

program, and simplify the program structure.

1.8 IMPLICATIONS FOR HUMAN PERCEPTION

My belief that the rules which govern the interpretation

of a line drawing should be simple is based on the subjective

impression that little abstraction or processing of any type

seems to be required for me to be able to recognize the

shadows, object edges, etc. in such a drawing, in cases where

the drawing is reasonably simple and complete. I do not

believe that human perceptual processes necessarily resemble

the processes in my program, but there are various apects of

my solution which appeal to my intuition about the nature of

that portion of the problem which is independent of the type

of perceiver. I think it is significant that my program is

as simple as it is, and that the information stored in it is

so independent of particular objects. Back-up is not

necessary in general; the system works for picture fragments

as well as for entire scenes; the processing time required

is proportional to the number of line segments and not an
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exponential function of the number; all these facts lead me

to believe that my research has been in the right directions.

Clearly there are considerable obstacles to be overcome

in extending this work to general scenes. For simple curved

objects such as cylinders, spheres, cones, and conic

sections, there should be no particular problem in using the

type of program I have written. (For a quite different

approach to the handling of curved objects, see Horn 1970.)

I also believe that it will be possible to handle somewhat

more general scenes (for Instance scenes containing

furniture, tools and household articles) by approximating the

objects In them by simplified "envelopes" which preserve the

gross form of the objects yet which can be described in terms

like those I have used. In my estimation such processing

cannot be done successfully until the problem of

reconstructing the invisible portions of the scene is solved.

This problem is intimately connected with the problem of

using the stored description of an object to guide the search

for instances of this object, or similar objects In a scene.

The ability to label a line drawing in the manner I describe

greatly simplifies the specification and hopefully will

simplify the solution of these problems. Chapter 8 deals

with natural extensions of my program which I believe will
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lead toward the eventual solution of these problems.



SECTION 2.0 29

2.0 QUICK SYNOPSIS

This chapter provides a quick look at some of the

technical aspects of my work. All topics covered here are

treated either in greater detail or from a different

perspective in later chapters. For a hurried reader this

chapter provides a map to the rest of the paper, and enough

background to understand a later chapter without reading all

the intervening ones.

2.1 THE PROBLEM

In what follows I frequently make a distinction between

the scene Itself (objects, table, and shadows) and the

retinal representation of the scene as a two-dimensional line

drawing. I will use the terms vertex, edge and surface to

refer to the scene features which map into junction, line and

region respectively in the line drawing.

Our first subproblem Is to develop a language that

allows us to relate these two worlds. I have done this by

assigning names called labels to lines in the line drawing,

after the manner of Huffman (Huffman 1971) and Clowes (Clowes

1971). Thus, for example, in figure 2.1 line segment J1-J2
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is labeled as a shadow edge, line J2-J3 is labeled as a

concave edge, line J3-J14 is labeled as a convex edge, line

J4-J5 is labeled as an obscuring edge and line J12-J13 is

labeled as a crack edge. Thus, these terms are attached to

parts of the drawing, but they designate the kinds of things

found in the three-dimensional scene.

When we look at a line drawing of this sort, we usually

can easily understand what the line drawing represents. In

terms of a labeling scheme either (1) we are able to assign

labels uniquely to each line, or (2) we can say that no such

(scene could exist, or (3) we can say that although it is

impossible to decide unambiguously what the label of an edge

should be, it must be labeled with one member of some

specified subset of the total number of labels. What

knowledge is needed to enable the program to reproduce such

labeling assignments?

Huffman and Clowes provided a partial answer in their

papers. They pointed out that each type of junction can only

be labeled in a few ways, and that if we can say with

certainty what the label of one particular line is, we can

greatly constrain all other lines which intersect that line

segment at its ends. As a specific example, if one branch of
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an L junction is labeled as a shadow edge, then the other

branch must be labeled as a shadow edge as well.

Moreover, shadows are directional, i.e. In order to

specify a shadow edge, it must not only be labeled "shadow"

but must also be marked to indicate which side of the edge is

shadowed and which side is illuminated. Therefore, not only

the type of edge but the nature of the regions on each side

can be constrained.

These facts can be illustrated in a jigsaw puzzle

analogy, shown In figure 2.2. Given the five different edge

types I have discussed so far, there are seven different ways

to label any line segment. This implies that if all line

labels could be assigned independently there would be 72 = 49

different ways to label an L, 73 = 343 ways to label a

three-line junction, etc. In fact there are only 9 ways in

which real scene features can map Into Ls on a retinal

projection. Table 2.1 summarizes the ways in which junctions

can be assigned labelings from this set. In figure 2.3, I

show all the possible labelings for each junction type,

limiting myself to vertices which are formed by no more than

three planes (trihedral vertices) and to junctions of five or

fewer lines. In Chapter 3 I explain how to obtain the
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junctions in figure 2.3; I do not expect that it should be

obvious to you how one could obtain these junctions. In

general, for clarity, I have tried to use the word labeling

to refer to the simultaneous assignment of a number of line

labels. Labels thus refer to line interpretations, and

labelings refer to junction or scene Interpretations.

2.2 SOLVING THE LABEL ASSIGNMENT PROBLEM

Labels can be assigned to each line segment by a tree

search procedure. In terms of the jigsaw puzzle analogy,

( Imagine that we have the following items:

1. A board with channels cut to represent the line
drawing; the board space can accept only L pieces at each
place where the line drawing has an L, only ARROW pieces
where the line drawing has an ARROW, etc. Next to each
junction are three bins, marked "junction number", "untried
labels", and "tried labels".

2. A full set of pieces for every space on the board. If
the line drawing represented by the board has five Ls then
there are five full sets of L pieces with nine pieces in each
set.

3. A set of junction number tags marked Jd, J2, J3,
... , Jn, where n is the number of junctions on the board.

4. A counter which can be set to any number between 1
and n.

The tree search procedure can then be visualized as
follows:
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Step 1: Name each junction by placing a junction number tag
in each bin marked "junction number".

Step 2: Place a full set of the appropriate type of pieces In
the "untried labels" bin of each junction.

Step 3: Set the counter to 1. From here on in Nc will be
used to refer to the current value of the counter. Thus if
the counter is set to 6, then J(Nc) = 6.

Step 4: Try to place the top piece from the "untried labels"
bin of junction J(Nc) in board space J(Nc). There are
several possible outcomes:

4A. If the piece can be placed (i.e. the piece matches
all adjacent pieces already placed, if any), then

Al. If Nc < n, Increase the counter by one and
repeat Step 4.

A2. If Nc = n, then the pieces now on the board
represent one possible labeling for the line drawing. If
this is true then

I. Write down or otherwise remember the
labeling, and

ii. Transfer the piece in space n back into the
n-th "untried labels" bin, and

ili. Go to Step 5.

kB. If the piece cannot be placed, put it in the "tried
labels" bin and repeat Step 4.

4C. If there are no more pieces in the "untried labels"
bin, then

C2. If Nc a 1, we have found all (if any) possible
labelings, and the procedure is DONE.

C2. Otherwise, go to Step 5.

Step 5: Do all the following steps:
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1. Transfer all the pieces from the Nc-th
"tried labels" bin into the Nc-th "untried labels" bin, and

iT. Transfer the piece in space Nc-1 Into its
"tried labels" bin, and

ill. Set the counter to Nc-1, and go to Step 4.

To see how this procedure works in practice, see figure

2.4. For this example assume that the pieces are piled so

that the order in which they are tried is the same as the

order in which the pieces are listed in figure 2.3. The

example Is carried out only as far as the first labeling

obtained by the procedure. There is, of course, at least one

other labeling, namely the one we could assign by inspection.

The "false" labeling found first could be eliminated in this

case by a program if it knew that R3 is brighter than R1i or

that R2 is brighter than R1. It could then use heuristics

which only allow it to fit a shadow edge in one orientation,

given the relative illumination on both sides of a line.

However, If the object happened to have a darker surface than

the table, this heuristic would not help.

Clearly this procedure leaves many unsolved problems.

In general there will be a number of possible labelings from

which a program must still choose one. What rulps can it use

to make the choice? Even after choosing a labeling, in order
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to answer questions (about the number of objects in the

scene, about which edges are shadows, about whether or not

any objects support other objects, etc.) a program must use

rules of some sort to deduce the answers from the information

it has.

I will argue that what Is needed to find a single

reasonable Interpretation of a line drawing Is not a more

clever set of rules or theorems to relate various features of

the line drawing, but merely a hetter description of the

scene features. In fact, it turns out that we can use a

( parsing procedure which Involves less computation than the

tree search procedure.

2.3 BETTER EDGE DESCRIPTION

So far I have classified edges only on the basis of

geometry (concave, convex, obscuring or planar) and have

subdivided the planar class into crack and shadow

sub-classes. Suppose that I further break down each class

according to whether or not each edge can be the bounding

edge of an object. Objects can be bounded by obscuring

edges, concave edges, and crack edges. Figure 2.5 shows the

results of appending a label analogous to the "obscuring
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edge" mark to crack and concave edges. This approach is

similar to one first proposed by Freuder (Freuder 1971a).

Each region can also be labeled as belonging to one of

the three following classes:

I - Illuminated directly by the light source.

SP - A projected shadow region; such a region would be

illuminated if no object were between it and the light

source.

SS - A self-shadowed region; such a region Is oriented

away from the light source.

Given these classes, I can define new edge labels which

also include information about the lighting on both sides of

the edge. Notice that In this way I can include at the edge

level, a very local level, Information which constrains all

edges bounding the same two regions. Put another way,

whenever a line can be assigned a single label which includes

this lighting Information, then a program has powerful

constraints for the junctions which can appear around either

of the regions which bound this line.
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Figure 2.6 Is made up of tables which relate the region

illumination types which can occur on both sides of each edge

type. For example, if either side of a concave or crack edge

is illuminated, both sides of the edge must be illuminated.

These tables can be used to expand the set of allowable

junction labels; the new set of labels can have a number of

entries which have the same edge geometries but which have

different region illumination values. It is very easy to

write a program to expand the set of labelings; the

principles of its operation are (1) each region in a given

junction labeling can have only one illumination value of the

three, and (2) the values on either side of each line of the

junction must satisfy the restrictions in the tables of

figure 2.6.

An interesting result of this further subdivision of the

line labels is that, with four exceptions, each

shadow-causing junction has only one possible illumination

parsing, as shown in figure 2.7. Thus whenever a scene has

shadows and whenever a program can find a shadow causing

junction in such a scene, it can greatly constrain all the

lines and regions which make up this junction. In figure 2.7
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I have also marked each shadow edge which is part of a

shadow-causing junction with an "L" If the arrow on the

shadow edge points counter-clockwise and an "R" If the arrow

points clockwise. No "L" shadow edge can match an "R" shadow

edge, corresponding to the physical fact that it is

impossible for a shadow edge to be caused from both of its

ends.

There are two extreme possibilities that this

partitioning may have on the number of junction labelings now

needed to describe all real vertices:

(1) Each old junction label which has n concave edges, m

crack edges, p clockwise shadow edges, q counterclockwise

shadow edges, s obscuring edges and t convex edges will have

to be replaced by (20)f1 6(3)P(3)(9)g(8)t new junctions, or

(2) Each old junction will give rise to only one new

junction (as in the shadow-causing junction cases).

If (1) were true then the partition would be worthless,

since no new information could be gained. If (2) were true,

the situation would be greatly Improved, since in a sense all

the much more precise information was implicitly included in
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the original junctions but was not explicitly stated.

Because the information is now more explicitly stated, many

matches between junctions can be precluded; for example, if

in the old scheme some line segment LI of junction label Q1

could have been labeled concave, as could line segment L2 of

junction label Q2, a line joining these two junctions could

have been labeled concave. But in the new scheme, if each

junction label gives rise to a single new label, both L1 and

L2 would take on one of the twenty possible values for a

concave edge. Unless both Ll and L2 gave rise to the same

new label, the line segment could not be labeled concave

using Q1 and Q2. The truth lies somewhere between the two

extremes, but the fact that it is not at the extreme of (1)

means that there is a net Improvement. In Table 2.2 I

compare the situation now to cases (1) and (2) above and also

to the situation depicted in Table 2.1.

I have also used the better descriptions to express the

restriction that each scene Is assumed to be on a horizontal

table which has no holes in it and which is large enough to

fill the retina. This means that any line segment which

separates the background (table) from the rest of the scene

can only be labeled as shown in figure 2.8. Because of this

fact the number of junction labels which could be used to
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label junctions on the scene/background boundary can be

greatly restricted.

The value of a better description should be immediately

apparent. In the old classification scheme three out of the

seven line labels could appear on the scene/background

boundary, whereas in the new classification, only seven out

of fifty labels can occur. Moreover, since each junction

must have two of its line segments bounding any region, the

fraction of junctions which can be on the scene/background

boundary has Improved roughly from (3/7)(3/7) - 9/49 * 18.4%

to (7/57)(7/57) * 49/3149 = 1.6%. The results of these

improvements will become obvious in the next section.

2.4 PROGRAMMING CONSEQUENCES

There are so many possible labels for each type of

junction that I decided to begin programming a labeling

system by writing a sort of filtering program to eliminate as

many junction labels as possible before beginning a tree

search procedure.



SECTION 2.4 56

The filter procedure depends on the following

observation, given in terms of the jigsaw puzzle analogy:

Suppose that we have two junctions, J1 and J2 which are
joined by a line segment L-J1-J2. J1 and J2 are
represented by adjacent spaces on the board and the
possible labels for each junction by two stacks of
pieces. Now for any piece M In J1's stack either (1)
there is a matching piece N in J2's stack or (2) there
is no such piece. If there is no matching piece for M
then M can be thrown away and need never be considered
again as a possible junction label.

The filter procedure below Is a method for

systematically eliminating all junction labels for which

there can never be a match. All the equipment is the same as

that used in the tree search example, except that this time I

have added a card marked "junction modified" on one side and

"no junction modified" on the other.

Step 1: Put a junction number tag between 1 and n in
each "junction number" bin. Place a full set of pieces
in the "untried labels" bin of each junction.

Step 2: Set the counter to Nc = 1, and place the card so
that it reads "no junction modified".

Step 3: Check the value of Nc:

A. If Nc - n + 1, and the card reads'ho junction
modified" then go to SUCCEED.

B. If Nc - n + 1, and the card reads "junction
modified" then go to Step 2. (At least one piece was
thrown away on the last pass, and therefore it is
possible that other pieces which were kept only because
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this piece was present will now have to be thrown away
also.)

C. Otherwise, go to Step 4.

Step 4: Check the "untried labels" bin of junction
J(Nc):

A. If there are no pieces left in the Nc-th
"untried labels" bin, then

Al. If there are no pieces in the Nc-th
"tried labels" bin, go to FAILURE.

A2. Otherwise, transfer the pieces from the
Nc-th "tried labels" bin back into the Nc-th "untried
labels" bin, add 1 to the counter (Nc) and go to Step 3.

B. If there are pieces left in the Nc-th "untried
labels" bin, take the top piece from the bin and place
it In the board, and go to Step 5.

( Step 5: Check the spaces adjacent to space Nc:

A. If the piece in the Nc-th space has matching
pieces in each neighboring junction space, transfer the
piece from space Nc into the Nc-th "tried labels" bin,
and transfer the pieces from the neighboring spaces and
the neighboring "tried labels" bins back into their
"untried labels" bins.

B. If there are empty neighboring spaces, then

B1. If there are no more junctions In the
neighboring "untried labels" bins which could fit with
the piece In space Nc, then that piece is not a possible
label. Throw it away, and arrange the card to read
"junction modified" If it doesn't already.

B2. Try pieces from the neighboring "untried
labels" piles until either a piece fits or the pile is
exhausted, and then go to Step 5 again.

SUCCEED: The pieces in the "untried labels" bins of each
junction have passed the filtering routine and
constitute the output of this procedure.
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FAILURE: There is no way to label the scene given the
current set of pieces.

In the program I wrote, I used a somewhat more complex

variation of this procedure which only requires ne pass

through the junctions. This procedure is similar to the one

used to generate figure 2.9, and is described below.

When I ran the filter program on some simple line

drawings, I found to my amazement that the filter procedure

yielded unique labels for each junction in most cases! In

fact in every case I have tried, the results of this

filtering program are the same results which would be

obtained by running a tree search procedure, saving all the

labelings produced, and combining all the resulting

possibilities for each junction. In other words, the filter

program in general eliminates all labels except those which

are part of some tree search labeling for the entire scene.

It is not obvious that this should be the case. For

example, if this filter procedure is applied to the simple

line drawing shown in figure 2.4 using the old set of labels

given in figure 2.3, It produces the results shown in figure

2.9. In this figure, each junction has labels attached which

would not be part of any total labeling produced by a tree



TAGE 59

T7

7

- -

I FTG UE 29

-4

_4

I

--ý(z 3)



SECTION 2.4 60

search. This figure Is obtained by going through the

junctions in numerical order and:

(1) Attaching to a junction all labels which do not

conflict with junctions previously assigned; I.e. If it is

known that a branch must be labeled from the set S, do not

attach any junction labels which would require that the

branch be labeled with an element not in S.

(2) Looking at the neighbors of this junction which have

already been labeled; if any label does not have a

corresponding assignment for the same branch, then eliminate

it.

(3) Whenever any label is deleted from a junction, look

at all its neighbors In turn, and see If any of their labels

can be eliminated. If they can, continue this process

iteratively until no more changes can be made. Then go on to

the next junction (numerically). The junction which was

being labeled (as in step (1)) at the time a label was

eliminated (struck out in the figure) is noted next to each

eliminated label In figure 2.9.
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The fact that these results can be produced by the

filtering program says a great deal about line drawings

generated by real scenes and also about the value of precise

descriptions. There Is sufficient local information in a

line drawing so that a program can use a procedure which

requires far less computation than does a tree search

procedure. To see why this is so, notice that if the

description the program uses is good enough, then many

junctions must always be given the same unique label in each

tree search solution; the filtering program needs to find

such a label only once, while a tree search procedure must go

through the process of finding the same solution on each pass

through the tree.

Quite remarkably, all these results are obtained using

only the topology of line drawings plus knowledge about which

region is the table and about the relative brightness of each

region. No use is made (yet) of the direction of line

segments (except that some directional information Is used to

classify the junctions as ARROWs, FORKs, etc.), nor is any

use made of the length of line segments, microstructure of

edges, lighting direction or other potentially useful cues.
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2.5 HANDLING BAD DATA

So far I have treated this subject as though the program

would always be given perfect data. In fact there are many

types of errors and degeneracies which occur frequently.

Some of these can be corrected through use of better line

finding programs and some can be eliminated by using stereo

information, but I would like to show that the program can

handle various problems by simple extensions of the list of

junction labels. In no case do I expect the program to be

able to sort out scenes that people cannot easily understand.

Two of the most common types of bad data are (1) edges

missed entirely due to equal region brightness on both sides

of the edge, and (2) accidental alignment of vertices and

lines. Figure 2.10 shows a scene containing Instances of

each type of problem.

The program handles these problem junctions by

generating labels for them, just as it does for normal

junctions. It is important to be able to do this, since it

is in general very difficult to identify the particular

junction which causes the program to fail to find a parsing

of the scene. Even worse, the program may find a way of
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interpreting the scene as though the data were perfect and it

would then not even get an indication that it should look for

other Interpretations.

2.6 ACCIDENTAL ALIGNMENT

Chapter 7 treats a number of different types of

accidental alignment. Figure 2.11 shows three of the most

common types which are Included in the program's repertoire;

consider three kinds of accidental alignment:

(1) cases where a vertex apparently has an extra line

because an edge obscured by the vertex appears to be part of

the vertex (see figure 2.11a),

(2) cases where an edge which is between the eye and a

vertex appears to Intersect the vertex (see figure 211b),

and

(3) cases where a shadow is projected so that it

actually does Intersect a vertex (see figure 2.11c).
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2.7 MISSING LINES

I have not attempted to systematically include all

missing line possibilities, but have only included labels for

.the most common types of missing lines. I require that any

missing line be in the interior of the scene; no line on the

scene/background boundary can be missing. I also assume that

all objects have approximately the same reflectivity on all

surfaces. Therefore, if a convex line is missing, I assume

that either both sides of the edge were illuminated or that

both were shadowed. I have not really treated missing lines

in a complete enough way to say much about them. There i11

have to be facilities in the program for filling in hidden

surfaces and back faces of objects before missing lines can

be treated satisfactorily.

In general the program will report that it isunable to

label a scene if more than a few lines are missing and the

missing line labels are not included in the set of possible

junction labels. This is really a sign of the power of the

program, since if the appropriate labels for the missing line

junctions were included, the program would find them

uniquely. As an example, the simple scene in figure 2.12

cannot be labeled at all unless the missing line junctions
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are included.

2.8 REGION ORIENTATIONS

Regions can be assigned labels which give quantized

values for region orientations in three dimensions. These

labels can be added to the junction labels In very much the

same way that the region illumination values were added. It

is impossible to do justice to the topic here, but region

orientations are treated In considerable detail in Chapter 8.
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3.0 TRIHEDRAL JUNCTION LABELS

The knowledge of this system is expressed in several

distinct forms:

(1) A list of possible junction labels for each type of

junction geometry includes the a priori knowledge about the

possible three dimensional interpretations of a junction.

(2) Selection rules which use junction geometry,

knowledge about which region is the table, and region

brightness. These can easily be extended to use line segment

directions to find the subset of the total list of possible

junction label ings which could apply at a particular junction

in a line drawing.

(3) A program to find the possible labelings; it knows

how to systematically eliminate impossible combinations of

labels in a line drawing and, as such, contains implicit

knowledge about topology.

(4) Optional heuristics which can be Invoked to select

a single labeling from among those which remain after all the

other knowledge in the program has been used. These
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heuristics find a "plausible" Interpretation If required.

For example, one heuristic eliminates Interpretations that

involve concave objects in favor of ones that involve convex

objects, and another prefers interpretations which have the

smallest number of objects; this heuristic prefers a shadow

interpretation for an ambiguous region to the Interpretation

of the region as a piece of an object.

In this chapter I show how to express the first type of

knowledge, and give hints about some of the others. A large

proportion of my energy and thought has gone into the choice

of the set of possible line labels and the sets of possible

junction labels. In this I have been guided by experiment

with my program, since there are simply too many labels to

hand simulate the program's reaction to a scene. The

program, the set of edge labels, and the sets of junction

labelings have each gone through an evolution involving

several steps. At each step I noted the ambiguities of

interpretation which remained, and then modified the system

appropriately.

The changes have generally Involved (1) the subdivision

of one or more edge labels into several new labels embodying

finer distinctions, and (2) the recomputation of the junction
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label lists to include these new distinctions. In each case

I have been able to test the new scheme to make sure that It

solves the old problems without creating any unexpected new

ones. For example, the initial data base contained only

junctions which (1) represented trihedral vertices (i.e.

vertices caused by the intersection of exactly three planes

at a point in space) and (2) which could be constructed using

only convex objects. The present data base has been expanded

to include all trihedral junctions and a number of other

junctions caused by vertices where more than three planes

meet.

Throughout this evolutionary process I have tried to

systematically include in the lists every possibility under

the stated assumptions. In this part of the system I have

made only one type of judgement: if a junction can represent

a vertex which Is physically possible, include that junction

in the data base.

3.1 EDGE GEOMETRY

The first problem is to find all possible trihedral

vertices. Huffman observed that three intersecting planes,

whether mutually orthogonal or not, divide space into eight
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parts so that the types of trihedral vertex can be

characterized by the octants of space around the vertex which

are filled by solid material (Huffman 1971).

Dowson (Dowson 1971a) went a little further In

discussing how one could write an algorithm to find all

possible trihedral junctions and their labels (using the

simple three-label model of Huffman and Clowes). In fact he

never used his system to generate every class of junction

geometry but was satisfied to show that it could generate the

twelve labels which Huffman and Clowes originally used.

These twelve labels represent four different ways of filling

in the octants (where I have not counted ways of filling the

octants which differ only by rotation as different).

Dowson's scheme is useful for visualizing how to

generate the ten different ways of filling the octants which

I use. Consider the general Intersection of three planes as

shown in figure 3.1. These planes divide space into octants,

which can be uniquely Identified by three-dimensional binary

vectors (x y z) where the x, y, and z directions are

specified as shown. The vectors make it easy to describe the

various geometries precisely. I can then generate all

possible geometries and non-degenerate views by Imagining
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various octants to be filled In with solid material. There

are junctions which correspond to having 1, 2, 3, 4, 5, 6, or

7 octants filled. Figure 3.2 shows the twenty possible

geometries that result from filling various octants, and in

Appendix 1 I have shown all the junction labelings (not

including shadow variations) which can result from the

geometries In figure 3.2A. The result of this process is 196

different junction labels. Figure 3.2B consists of the

geometries which I have chosen not to use to generate

junction labels. I have not included these geometries because

each Involves objects which touch only along one edge, and

whose faces are nonetheless aligned, an extremely unlikely

arrangement when compared to the other geometries. (In

addition, some of the geometries are physically impossible

unless one or more objects are cemented together along an

edge or supported by invisible means.)

The four geometries recognized by Huffman, Clowes, and

Dowson correspond to my numbers 1, 3, 5, and 7 In figure

3.2A.

In figure 3.3 I show how the 20 different labels with

type 3 geometry can be generated. Basically this process

involves taking a geometry from figure 3.2A, finding all the
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ways that the solid segments can be connected or separated,

and finding all the possible views for each partitioning of

the quadrants. To generate all the possible views one can

either draw or Imagine the particular geometry as it appears

when viewed from each octant. From some viewing octants the

central vertex is blocked from view by solid material, and

therefore not every viewing position adds new labelings.

Appendix 1 is obtained by applying this process to each of

the geometries in figure 3.2A.

Whenever one of the regions at a junction could

( correspond to the background (i.e. the region is not part of

one of the three planes which Intersect at the vertex) I have

marked the region with a star (*) both in figure 3.3 and

Appendix 1. Later I will show how to use this Information to

aid the selection rules. Only 37 out of the 196 labels in

Appendix 1 can occur on the scene/background boundary.

3.2 A USEFUL HEURISTIC

This section previews the general discussion later

concerning how to choose a single labeling if ambiguities are

still left at the end of the regular program's operation.

The regular program keeps every conceivable interpretation.
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Clearly in some cases the scene is essentially ambiguous,

i.e. human beings can interpret the scene in more than one

way.

Given the line drawing shown In figure 3.4, how can a

program decide which of the interpretations, A, B, C or D, is

"correct"? In a picture there may be cues about how the

objects should be separated in the details of the edges

L-J1-J2 and L-J2-J3 of figure 3.4. But given only the line

drawing of figure 3.4, the program will find the four

interpretations listed. Because we generally prefer the

scene interpretation which has the smallest number of convex

objects, I have appropriately marked all junction labelings

which include either concave edges (whether visible or not)

or three-object edges.. The output of the regular program is

then a single label or list of labels for each junction.

Obviously if there is only a single label, then there is

nothing left to do. But If more than one 1,abel is left, It

can purge labels corresponding to concave or three-edge

junctions.

This heuristic correctly labels all the scenes shown In

figure 3.5A, but finds the wrong labeling for figure 3.5B

because it always prefers to interpret scenes as made up of
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convex objects, and does not know enough to preclude the

convex labeling In this case because object A in figure 3.5B

has no support. Of course, for ambiguous scenes like figure

3.4 the heuristic selects interpretation A.

3.3 SHADOWS AT TRIHEDRAL VERTICES

To find all the variations of these verticesvhich

Include shadow edges, first note that vertices with 1, 2, 6

or 7 octants filled cannot cause shadows such ~at the shadow

edges appear as part of the vertex. This can be stated more

generally: In order to be a shadow-causing vertex (i.e. a

vertex where the caused shadow edge radiates from the vertex)

there must exist some viewing position for the vertex from

which either two concave edges and one convex edge or one

concave edge and two convex edges are visible. Consider the

geometries listed In figure 3.2A. First, a shadow-causing

edge must be convex. Second, unless there is at least one

concave edge adjacent to this convex edge, there can be no

surface which can have a shadow projected onto it by the

light streaming by the convex edge. Finally, a junction

which has one convex and one concave edge must have at least

one other convex or concave edge, since the convex edge and

concave edge define at least three planes which cannot meet
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at any vertex with only two edges.

This immediately eliminates 73 out of 196 d the labels

in Appendix 1 from consideration. Appendix 2 shows the

shadow edges (if any) which can occur at each of the

remaining vertices. Appendix 2 Is constructed in the manner

illustrated in figure 3.6; for each potential shadow-causing

vertex, Imagine the light source to be In each of the octants

surrounding the vertex, and record all the resulting

junctions. I have marked each shadow edge which is part of a

shadow-causing junction with an "L" or "R" according to

whether the arrow on the shadow edge points counterclockwise

or clockwise respectively.

Any junction which contains either a clockwise shadow

edge, marked "R," or a counterclockwise shadow edge, marked

"L," Is defined as a shadow-causing junction. The reason for

distinguishing between the L and R shadow edges is that this

prevents labeling an edge as if it were a shadow caused from

both its vertices. Without this device there would be no way

to prevent figure 3.7 from being labeled as shown, with line

segment L-A-B interpreted as a shadow edge. (I use "L-" as a

prefix to mean "line segment(s) joining the following

points"; thus L-A-B is the line segment joining points A and
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B.) When the "L" and "R" marks are attached to each shadow

causing junction, then the two shadow causing junctions at A

and B in figure 3.7 no longer are compatible, and therefore

the labeling shown will not be considered possible by the

program.

3.4 OTHER NON-DEGENERATE JUNCTIONS

I now must describe vertices which do not fall into the

categories I have described so far. These include (1) all

the rest of the combinations that shadow edges can form and

(2) obscured edges.

In figure 3.8A I show all the other non-degenerate

vertices which involve shadow edges, and in figure 3.8B I

show all the obscured edges.

Later I return to the topic of junction labels and show

how it is possible to also include junctions representing

common degeneracies and accidental alignments as well as

junctions with missing lines. In the degenerate cases I do

not include every labeling possibility; instead I include

the most common occurrences using certain observations about

junctions. This is Important since I do not want to limit the
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program to any particular set of objects. Fortunately

certain types of junctions are rare no matter what types of

objects are in a scene; for example, many junctions can only

occur when the eye, light and object are aligned to within a

few degrees, and when these junctions also contain unusual or

aligned edges the combined likelihood of the junctions is low

enough so that they can be safely omitted. As shown In

Chapter 7, the program can still give Information about

junctions even if they do not have proper labellngs listed in

the data base, provided that not too many of these occur

together in a single scene. Moreover, this approach Is

reasonable, since any additional ability to use stereo Images

or to move the eye or range-finding ability will allow a

program to disambiguate most of these types of features.

3.5 A CLASS OF DEGENERACIES

As a final topic, I include one type of degeneracy which

cannot be resolved by eye motion or stereo. This type of

degeneracy results when the light source is placed in the

plane defined by one of an object's faces. In this case,

shadows are aligned with edges to produce junctions which are

unlabelable given only the normal set of labels described so

far. Two examples of such alignment are shown in figure 3.9A
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and figure 3.9B and a complete listing of this type of

junction is found in Appendix 3. I have excluded cases where

a shadow edge is projected directly onto an edge of some

other type (as in figure 3.9C). These cases are excluded

since they would require me to define new edge labels which

are of very limited value, although there is no technical

difficulty in defining such edges and junctions. I also have

excluded, for the time being, cases like the one shown in

figure 3.9D, since the two junctions marked only appear to be

T junctions when the eye is in the plane defined by the light

source and the shadow-causing edge (L-A-B or L-C-D in figure

3.9D). If the eye is moved to the right, the shadow-causing

junctions change to ARROWs or FORKs as illustrated In figure

3.9E. In contrast, notice that for the scenes shown in

figures 3.9A and 3.9B, no change in eye position can make any

difference in the apparent geometry of the shadow-causing

junctions.

Later (in Chapter 6) I consider some of the common

non-trihedral junctions which the program is likely to

encounter. Some of these require me to define extra labels.
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The grand total number of legal trihedral junctions

listed in this chapter is 505. The Interesting thing in my

estimation is that the number of junction labels, while

fairly large, Is very small compared to the number of

possibilities if the branches of these junctions were labeled

independently; moreover, even though I have not yet shown

how to Include various degeneracies and alignments, I believe

that the set I have described already is sufficient for most

scenes which a person would construct out of plane-faced

objects, provided that he did not set out to deliberately

confuse the program.

Since it may not be obvious what types of common

vertices are non-trihedral, figure 3.10 contains a number of

such vertices. Later sections show how to handle all of

them.
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4.0 COMPLETING THE REGULAR DATA BASE

It would be hard to devise a program which could start

with a few pieces of Information and eventually yield the

list of junctions described in Chapter 2. Moreover, even if

such a program were written (which would Indeed be

theoretically interesting), it would be rather pointless to

generate labels with it every time the labels are needed In

an analysis. Instead the generating program could run once

and save its results in a table. In this form the junction

labelings table is a sort of compiled knowledge, computed

( once using a few general facts and methods. The knowledge h

the current program is almost totally in this compiled form;

this is the reason for its rapid operation, but I have paid a

price for this speed in that I require a large amount of

memory (about 14,000 words) to store the junction labelings.

(All the rest of the labellng program occupies only about

4000 words of memory even though it is written In

MICRO-PLANNER and LISP, neither of which are particularly

noted for space efficiency.)
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4.1 REGION ILLUMINATION ASSIGNMENTS

Given tables of allowable region illumination values

(figure 1.6), it is easy to show how to write a program which

expands the data base to include this information. Suppose

that I wish to expand the labeling of the junction shown in

figure 4.1 to include region illumination values. As coded

for the data base, this labeling is:

(OCRM PLUS OCLM SHCCL)

where OCRM stands for OCclude Right Minus (see L-J-A in

figure 4.1), PLUS represents the convex edge (see L-J-B in

figure 4.1), OCLM stands for OCclude Left Minus (see L-J-C in

figure 4.1), and SHCCL stands for SHadow CounterClockwise

type L (see L-J-D in figure 4.1).

Each of these edges can separate regions which have the

following values (the first element is the value of the

region located counterclockwise with respect to the edge, the

second element is the value of the region located clockwise

with respect to the edge):
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<The list of region illumination pairs for OCRM or OCLM>

= L1

= ((I I) (SP SP) (SP SS) (SS SP) (SS SS)).

<The list of region illumination pairs for PLUS>

a L2

- ((I I) (I SS) (SS I)

(SP SP) (SP SS) (SS SP) (SS SS)).

<The list of region illumination pairs for SHCCL>

a L3

- ((SP I)).

ILLUMINE Is a function which takes two Input lists as

arguments, and returns a single output list. Each member of

the output list is formed as follows: take a member of the

second input list whose first element is the same as the last

element of some member of the first Input list. Concatenate

these two and eliminate the duplication of the matching

element. The ouput list is made up of every possible element

which can be formed in this manner. While a verbal

description may be somewhat difficult to understand, the

function is not really very complicated, and I think the

following example should make its operation clear. Using the
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lists L1 and L2 that I defined earlier:

ILLUMINE (L1, L2)

= ((I I I) (I
(SP SP SP) (S
(SP SS I) (S
(SS SP SP) (S.
(SS SS 1) (S

I SS)
P SP SS)
P SS SP) (SP SS SS)
S SP SS)
S SS SP) (SS SS SS))

a L4.

L4 Is a list of triples which gives all the possible

values for region illuminations in the regions RO, RI, and R2

In figure 4.1. To Include R3, compute L5:

ILLUMINE (L4, L1)

= ((II I I)
(I I SS SP)
(SP SP SP SP)
(SP SP SS SP)
(SP SS I I)
(SP SS SP SP)
(SP SS SS SP)
(SS SP SP SP)
(SS SP SS SP)
(SS SS I 1)
(SS SS SP SP)
(SS SS SS SP)

(I I SS SS)
(SP SP SP SS)
(SP SP SS SS)

(SP SS SP SS)
(SP SS SS SS)
(SS SP SP SS)
(SS SP SS SS)

(SS SS SP SS)
(SS SS SS SS))

* LS.

Now I only need to Include the pairs for the line L-J-D,

the shadow edge. Notice that very few of the possibilities

for illumination can agree with R3 when R3 is forced to be a
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type SP region:

ILLUMINE (L5, L3)

= ((I SS SP I)
(SP SP SP SP 1)
(SP SP SS SP I)
(SP SS SP SP I)
(SP SS SS SP I)
(SS SP SP SP 1)
(SS SP SS SP I)
(SS SS SP SP I)
(SS S SSS SP I))

* L6.

Now, to find the labelings for this junction, the last

condition requires that since the first and last elements of

each labeling in L6 both refer to RO, their values must be

the same. Therefore I apply function FINALIZE, which only

keeps members of a list whose first and last elements are the

same:

FINALIZE (L6) M ((II SS SP I)).

This represents the only possible region illumination

labeling for this junction as shown in figure 4.2A. As I

mentioned earlier, it is true In general that shadow-causing

junctions (and a number of other junctions Involving shadows)

have only one possible region illumination labeling. The
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exceptions to this rule are shadow-causing junctions where

one region segment of the junction is obscured by the vertex

which gives rise to the junction. To understand this

distinction, try finding the region illumination values for

the junction in figure 4.2B as an exercise, especially if you

are not entirely clear about the operation of ILLUMINE and

FINALIZE. You will need the list of possible region

illumination pairs for L-V-A and L-V-D in figure 4.28; these

edges can each be assigned any of the possible region

illumination pairs:

<The list of region illumination pairs for OCR edges (such as
L-V-A) and OCL edges (such as L-V-D)>

M ((I I) (I SP) (I SS)
(SP I) (SP SP) (SP SS)
(SS I) (SS SP) (SS SS))

• L7.

Your answer should be:

((I SS SP I I)
(SP SS SP I SP)
(SS SS SP I SS))

The answer Is illustrated in figure 4.2C.
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In order to include illumination Information in the data.

base, I merely append the region illumination value names to

the name of each label. Thus I subdivide each label type

(except shadow edge labels) into a number of possibilities,

as shown in Table 4.1. As I mentioned in Chapter 2,

expanding the number of line labels does not increase the

total number of junction labels as much as one might imagine

(see Table 2.2).

Fully 268 of the 505 labelings listed in Chapter 3, over

half, have only one possible region illumination

interpretationi The largest possible number of illumination

interpretations for any junction is 3M, where n is the number

of junction branches. A number of T junctions actually have

27 interpretations (for example, this is true of any T made

up of three occluding edges).
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4.2 SUMMARY OF THE DATA BASE

Although there are 505 labels listed in Chapter 3, the

actual number of elements in the label lists for each

junction will be larger than we might expect, since different

permutations of labels count as different elements in some of

the lists. The total number of list elements needed to

represent the 505 labelings is 717, and this number expands

to 3256 when the region illumination information is added to

the labelings. Table 4.2 shows the number of elements in

each list with and without region illuminated information.

This table differs from Table 2.2 in that It includes only

the differences in the list lengths which are caused by

adding region illumination information.

A little cleverness is required to avoid duplicate

labelings when including the different permutations of X

junctions. This is because some X junctions give rise to two

elements in the X labelings list, while the rest add only one

element. Figure 4.3B shows an X junction which requires two

elements to be added to the list, while figure 4.3C shows two

labelings which each add only one element to the data base.

Most shadow X junctions give rise to two elements in the data

base, and most junctions without shadows give rise to one.
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it is now possible to describe how the program handles

each junction it encounters:

(1) If the junction is an L, ARROW, T, K, PEAK, X, KX,

or KXX, it uniquely orders the junction's line segments (by

choosing a particular line segment and considering the rest

as ordered in a clockwise direction from this line segment).

(2) If the junction is a FORK, MULTI or XX, it chooses

one line segment arbitrarily.

(3) It then fetches a list of labels which contains

every possible set of assignments for the lines (excluding

the possibilities of accidental alignments and degeneracies,

and junctions with missing lines) and associates this list

with the junction.

It makes absolutely no difference whether the program

obtains this list from a table (the compiled knowledge case)

or whether it must perform extensive computations to generate

the list (the generated knowledge case). Similarly, it does

not matter at all that various members of the list bear a

particular relation to each other, e.g. as in the case of a
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FORK junction, where most elements of the list have two other

elements which are permutations of the element. When I

return to the issues of degeneracies, accidental alignments

and missing lines, all I need to show is how the labelings

corresponding to these cases can be added to the appropriate

junction lists. The machinery to choose a particular element

operates Independently of just what the labelings actually

are.

The only apparent exceptions are those labels marked to

indicate that the vertices which cause them are either

non-trihedral or concave or the result of alignment of

surface and the light source. This Information can be used

optionally as the final step in the operation of the program

if it is necessary to select a single labeling for an

ambiguous junction. In such a case these marks enable the

program to make a simple judgement about which

interpretations are most likely. Of course if onlysingle

interpretations remain before the final step, or If I do not

care that some junctions are not uniquely specified, then the

program does not need to use these heuristics at all. (Such

a case occurs when I only wish to find edge geometries and do

not care about region illumination. Often ambiguous labels

differ in the type of illumination for various regions but
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provide a unique labeling of edge geometry.)
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5.0 SELECTION RULES

Now that I have shown how to generate a large number of

possible labels for a junction, I will show how to go about

eliminating all but one of them. The strategy for doing this

Involves:

(1) using selection rules to eliminate as many labels

as possible on the basis of relatively local information such

as region brightness or line segment directions, and

(2) using the main portion of the program to remove

labels which cannot be part of any total scene labeling.

5.1 REGION BRIGHTNESS

If I know only that line segment L-A-B Is a line in a

scene, then it can theoretically be assigned any of the 57

possible labels. Once I know that L-A-B has an ARROW a one

of its ends as shown in figure 5.1B, the number of

possibilities drops to 19. Suppose that I know, In addition,

the relative brightness of R1 and R2 in the neighborhood of

L-A-B in figure 5.1C. There are three possibilities: (1) R1

is darker than R2, (2) R2 is darker than R1, or (3) the
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brightness of R1 is equal to the brightness of R2.

If (1) is true, I know for certain that If L-A-B is a

shadow edge, then R1 must be the shadowed side and R2 the

illuminated side. Obviously If (2) is true, then the

opposite holds, i.e. R2 must be the shadowed side and R1 must

be the illuminated side. If (3) is true, then It is

Impossible for L-A-B to be a shadow edge at all. (If I happen

to also know that each object in a scene has all its faces

painted Identically with a non-reflective finish, then I can

also eliminate more labels. In this case, if (1) is true,

then L-A-B cannot be labeled as a convex edge with region R1

illuminated and R2 shadowed type SS, if (2) is true, then

L-A-B cannot be labeled as convex with R2 Illuminated and R1

shadowed type SS, and If (3) is true, then neither of these

labels is possible.)

5.2 SCENE/BACKGROUND BOUNDARY REVISITED

It is easy to find all the junctions which can occur

around the scene/background boundary. All that Is necessary

is to make a list of all the line segments which can occur

along the boundary and then look for segments of junctions

which are bounded by two members of this set.
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Each junction from Chapter 3 which has a star in one of

its segments is listed separately from junctions which have

the same geometry but which cannot occur on the

scene/background boundary. Thus the list of AMROW labels is

divided into ARROW-B, a list made up of those labels which

can occur on the scene/background boundary, and ARROW-I, made

up of those which must occur on the Interior of a scene. The

total list of junctions which can also appear in the interior

of a scene is found by appending ARROW-B to ARROW-I, since

the scene/background labelings can appear on the Interior of

the scene as shown in figure 5.2. Table 5.1 lists the number

of trihedral junction labels which can occur on the interior

and on the scene/background boundary for each type of

junction. Appendix 4 lists all of the junctions which can

occur on the scene/background boundary including region

illumination Information. To obtain Appendix 4 I have

assumed that the light source Is positioned in one of the

four octants of space above the support surface. This

restriction means that the background is guaranteed to always

be illuminated.
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Obviously, if I can determine which lines in the line

drawing are part of the scene/background boundary, this

knowledge can be used to great advantage. It Is, in fact,

not difficult to determine this boundary; any of several

strategies will work. Two examples are:

(1) Look for regions which touch the edge of the field

of view and append them all together, or

(2) Find the contour which has the property that every

junction lies on or inside it (see Mahabala 1969).

Both of these methods require that the scenebe

completely surrounded by the background region or regions.

As shown in figure 5.3, method (1) works even if the

background is made up of more than one region.

Once the program has found which region is the

background region, it can also find how each junction is

oriented on the scene/background boundary. Some junctions

always appear in the same orientation; for example, ARROW

and PEAK junctions can only be oriented so that the

background region is the region whose angle Is greater than

180 degrees, and K junctions can only have the region whose
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angle is 180 degrees as the background region (see Appendix

4).

Of course there is no way to easily define the

orientations of FORK, XX, or MULTI junctions. However, as

shown in figure 5.4, the L, T, X and KX junctions which

appear on the scene/background boundary can be sorted

according to which of their segments is the background

region.

Consider figure 5.5. Each of the L, T, and X junctions

is marked to indicate which orientation it has. Table 5.2

shows that this distinction makes a significant reduction In

the size of the starting list of label assignments for these

junctions.

5.3 EXTENDING THE SUPPORT SURFACE

Consider a problem posed by the scene shown in figure

5.6. If my labeling program is given this scene with the set

of labels defined so far, the program will not find a unique

labeling for L-C-D, even though It finds L-A-B to be a shadow

edge, and therefore labels R1 as a projected shadow region.
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At one time I thought that I would need to write a
"demon" program which would check for shadow edges on
the table, assert that such a shadow region Is coplanar
with the table, and then eliminate any edges other than
planar ones whenever such a region shares an edge with
the illuminated portion of the table. This type of
approach seemed rather ad hoc to me, and started me
thinking about how I could include region Information as
part of each junction label. There could be many added
benefits to such an approach: it seemed clear that just
as I was able to vastly reduce the number of labels from
which to select possible ones by knowing that a junction
was on the scene/background boundary, I should be able
to reduce the number of labels for a junction which was
interior to the scene but which had the table as one of
its region segments.

Therefore I defined new labels as shown in Table 5.3 to

denote any edge which has the table as one of its adjoining

regions. Since I have restricted the light source to be In

-( the quadrants of space above the support surface, I can be

certain that any region which is part of the table can never

be self-shadowed, type SS. I have used this fact in

constructing Table 5.3. Any edge which touches or obscures

the table is marked by appending a "T" to its name or

printing a "T" next to the line segment. The old labels

without "T" are understood to represent edges which do not

have the table as either of their adjoining regions. The

addition of these 24 edge types brings the total number of

line labels to 81.
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The tables which show the allowable region illumination

pairs for these edges (analogous to figure 2.6) appear in

Table 5.4.

To update the lists of junction labels, I must add to

the present set:

(1) All the junctions listed in Appendix 4, but with

"T" printed next to both line segments which bound the region

containing the star. (These regions can be part of the

background of the scene, i.e. the portion of the table which

surrounds the scene and Is illuminated.) Some of these

junctions can also have other projected shadow regions which

are part of the table, so that "T" must be added to line

segments other than the two bounding the starred region.

These junctions are listed in Appendix 5.

(2) All the junctions which can bound a projected

shadow (type SP) region which is also part of the table.

Table 5.5 shows the situation now for the relative

numbers of junctions which can occur on the scene/background

boundary. While the numbers of labelings possible If the

branches were labeled Independently has Increased sharply
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with the increase of the number of line labels from 57 to 81,

the actual numbers of junction labelings has not changed for

the scene/background boundary and has increased only

moderately for the scene interior.

The value of these additions to the data base Is

especially pronounced for scenes like figure 1.2 where the

table surface accounts for seven of the interior regions as

well as the background region. In addition to the

improvement for scenes of this sort, there are other

benefits. Consider figure 5.7. How many objects are in this

scene?

Now look at figure 5.8. Given figure 5.7, my program

will return both interpretations: the one we would usually

expect (region R as the table, with object C resting on the

table) or the interpretation shown In figure 5.8. Thus the

new labels enable the program to make finer distinctions than

it could before. Notice that we could also use the table

information to make another heuristic rule: if there are two

interpretations of an Interior region, one as the table and

one as an extra object, choose the table interpretation.

(This corresponds to choosing the simplest interpretation,

i.e. the one with the fewest objects.)
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5.4 DISCUSSION

This section Is speculative; nothing in it Is critical

to an understanding of my program.

Underlying the previous section are some Important kinds

of distinctions between levels of understanding which I

believe are worth pursuing at greater length at this point.

There are several levels of understanding which a program can

have about a particular property of scene features (e.g.

"this region Is part of the table"):

(1) the first level of understanding is that the

program be able to express the fact that a given portion of

the scene does or does not have the property. As an example,

until the program had the labels which labeled regions that

were part of the table, it could not express the difference

between the two possible interpretations of figure 5.7.

(2) The next series of levels are ones where the

program recognizes more and more instances of features which

cannot have the property (and consequently recognizes more

precisely where the property can apply). My program's hard
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knowledge ends at this level; for some cases its

understanding is sufficient to uniquely recognize a property,

in other cases it is unable to select between two or more

possibilities.

(3) I believe that the next levels of understanding are

characterized by the ability to define a critical test (or

series of critical tests) which will allow a program to

eliminate remaining possibilities until only one is left.

Such a test might be "if I remove the object in front, I will

be able to see whether or not that region is connected to the

table surface" or "if I move to the right, and if that region

is part of the table, then I should be able to see an edge at

point (x,y)". I claim that this must be the next level of

knowledge since many line drawings simply do not contain cues

which allow a program (or a person) to decide between various

possibilities.

However, let me make a distinction between knowledge and

expectation. Even if I am not allowed to make further tests,

I still expect the scene to have a particular form.

Moreover, I believe that this expectation, simulated by

heuristic rules in my program, is Instrumental in deciding

just which critical tests I should make. For example, if n
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interpretations are possible, my suspicion is that I pick the

one I expect to be true, and on the basis of this expectation

I then choose a test (or tests) to eliminate all the (n-l)

other possibilities. After performing this test, I then have

knowledge which either supports my expectation or forces me

to form or choose a new expectation.

The curious fact about my perception is that I only see

one Interpretation at a time even when I know that a scene Is

ambiguous. (Take for example the reversing Illusion which

alternates between a vase and two faces in profile, depending

( upon which regions are viewed as figures and which are viewed

as background (Koffka 1935)).

Even when I have Insufficient solid knowledge on which

to base my Interpretation of a scene, my expectation seems to

carry the same force of conviction that solid knowledge

would. Nonetheless, I can change my interpretations of

scenes either when I am faced with new evidence (by a change

in my relation to a scene or change in the scene) or if I am

challenged about my Interpretation (Are you sure?).
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Moreover, I am aware of ambiguity In another way; even

though my own interpretation may carry a sense of conviction

with it, and even though I don't usually change this

interpretation without reason, I can easily understand how

another person could interpret a scene in one way while at

the same time I am seeing it in a different way, where I am

using seeing to mean interpreting with conviction of truth.

I do not believe it Is worthwhile to delve too much

deeper into speculation about similarities between my system

and human perception. For example, it doesn't seem to me to

make much sense to try and decide whether people generate

alternative interpretations when they are needed or whether

(as In my program) they keep all the active alternative

interpretations but are only aware of the expected one at any

given time.

Nonetheless, I think that in connection with ambiguity,

the notion of knowledge at "other levels" as the ability to

eliminate interpretations, and the notion of expectation as

the default choice of an interpretation when I run out of

solid knowledge, are ideas of central importance.
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5.5 AN EXAMPLE

I have now shown how to use selection rules to narrow

down the choices for junction labels on the basis of various

kinds of cues from the line drawing. To give an idea of how

much these rules help, look at figure 5.9. Next to each

junction I have listed the numbers of labels which are

possible for it before and after applying the selection

rules. I have assumed that the program knows that RO Is the

support surface and that the circled numbers In each region

indicate the relative brightness (the higher a number, the

brighter the region). Notice that one junction, the peak on

the scene/background boundary, can be uniquely labeled using

only selection rules. Most of the interior junctions remain

highly ambiguous.
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6.0 THE MAIN LABELING PROGRAM

You will recall that I described at some length In

Section 2.4 a "filter program" which systematically removes

junction labels whenever there are no possible matches for

the labels at adjacent junctions. Now that I have shown a

good deal more about the junction labels and the use of the

selection rules, I would like to treat this program again

from a somewhat different perspective.

6.1 A SMALL EXAMPLE

Suppose that the program is working on a scene, a

portion of which is shown in figure 6.1. Assume that the

selection rules eliminate all labels for each type of

junction except those shown at the bottom of the figure.

Remember that the selection rules operate only locally, i.e.

they give the same list of possibilities no matter how the

labeling has proceeded or in what order the junctions are

taken. All the step numbers refer to figure 6.2, which

summarizes the succesive lists attached to each junction:
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Step 1: Suppose that the program starts with J2, and

that all of the other junctions are unlabeled. Then the

program assigns list L2 to J2, and since all the other

junctions are unlabeled, it has no basis on which to

eliminate any of the labels in L2. As far as the program

knows, all of these labelings are still possible.

Step 2: Now suppose that it next labels J1 by attaching

to it the list L1. When it checks the junctions adjacent to

J1 it now can see that J2 has already been labeled.

Step 3: Therefore the program looks at J2 to find what

restrictions, if any, have already been placed on line

segment L-J1-J2. In this case, the restrictions are that

L-J1-J2 must be labeled with either "B" or "C" or "A" or D"

or "F", i.e. with any letter which appears third in an

element of L2. Each element of L1 which does not have "B",

"C", "A", "D", or "F" as its first letter can then be

eliminated. Therefore the program drops "(G H)", "(E A)" and

"(E B)" as possibilities and L1 becomes

((A B) (A C) (A D) (B B) (B E) (C F) (F A)).
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Step 4: Now the program uses this same reasoning in the

opposite direction. In what ways, If any, does the fact that

J1 must be labeled from the list restrict the labels of

adjacent junctions? Only J2 of the adjacent junctions has

been labeled so far, so only J2 can be affected. The only

labels which are possible for J2 are those elements of L2

which have as a third letter "A" or "B" or "C" or "F".

Therefore, the program eliminates "(F A D)" as a possible

label and L2 becomes

((A B B) (A B C) (B C A) (D B F)).

Can the program eliminate any other labels because "(F A

D)" has been eliminated? No, since no other neighbors of J2

except 1d have been labeled, and the reason "(F A D)" was

eliminated was because it had no counterpart at d1.

Step 5: The program now can move on to J3 and label it

with L3.

Step 6: Each label for J3 must have a third letter

equal to one of the first letters from a label in L2. These

letter are "A", "B" and "D". Therefore the program

eliminates "(G H I)", "(F B C)", "(D B F)", "(A B E)" and "(D

C G)" from L3 and sets L3 to ((A B A) (B C A)).
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Step 7: What labels now are possible for J2? Since the

only remaining labels for J3 both set L-J2-J3 to "A", the

program eliminates "(B C A)" and "(D B F)" from L2 so that L2

becomes ((A B B) (A B C)).

Step 8: This time, a neighbor of J2, namely J1, has

been labeled already, so the program must check to see

whether eliminating the element of L2 has placed further

restrictions on L1. Only elements of L1 which have a first

letter "B" or "C" are possible labels now, so the program

eliminates "(A B)", "(A C)", "(A D)", and "(F A)". L1 thus

becomes ((B B) (B E) (C F)).

Since no other neighbors of J1 are labeled, the effects

of this change cannnot propagate any further.

6.2 DISCUSSION

I think it is easiest to view the process of the program

at each junction as having three actions:
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(1) attaching labels,

(2) removing any of these labels which are impossible

given the current context of this junction, and

(3) Iteratively removing labelings from the context by

allowing the new restrictions embodied in the list of labels

for the junction to propagate outward from the junction until

no more changes in the context can be made.

There are two points of importance:

(1) The solution the program finds is the same no

matter where it begins in the scene, and

(2) the program-is guaranteed to be finished after one

pass through the junctions, where it performs the three

actions listed above at each junction.

Given a line drawing with N junctions, a data base which

has no more than M possible labelings for any junction, and a

situation where any number of junctions from 0 to N have

already been labeled, let condition C be one where for each

possible line label which can be assigned to a line segment

either

(1) there is at least one matching line label assigned
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to the junction at the other end of this line segment, or

else

(2) the junction at the other end of the line segment

has not been labeled.

This condition C must be satisfied before the program

moves on to a new junction; the program keeps track of the

line segments on which the condition may not be satisfied.

When the program begins labeling a junction J, assume

that C holds throughout the line drawing. When the junction,

previously unlabeled, has labels added, the only line

segments along which C can be violated are the line segments

which join J to its neighbors, and it is possible for C to be

unsatisfied in both directions on these segments (i.e. both J

and J's neighbors may have unmatched line labels).

Therefore, to make sure that the program needs to consider

each line segment a minimum number of times, the program

first uses the lists of possible labels specified by J's

neighbors to eliminate all impossible labels from J.

To see why this Is the correct way to proceed, suppose

that the program used J's initial set of labels to eliminate

some labels from one of J's neighbors, J1. It is then
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possible that the set of labels for J can be reduced further

because neighbor J2 has no match for one or more labels still

attached to J. The program would then have to go back to

line L-J-J1 again to see whether more labels could be

eliminated from J1. By considering the effects of each of

J's neighbors on d's labels first, the program guarantees

that as many labels as possible have been eliminated from d's

label list before using this list to recompute the lists for

J's neighbors.

Condition C can now only be untrue along line segments

( joining J with its neighbors and, moreover, can only be

untrue in one direction, i.e. d's neighbors may have

unmatched labels, but not vice-versa. When the program

eliminates the unmatched labels from each of d's neighbors, C

is now satisfied on each line segment joining J to its

neighbors and C can only be unsatisfied along the line

segments joining J's neighbors with the neighbors of J's

neighbors, and again only in an "outward" direction, I.e. the

junctions two line segments away from J can have unmatched

labels, but all those junctions one line segment away (J's

neighbors) cannot have unmatched labels.
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The line segments on which C does not hold continue to

spread outward to the neighbors of junctions two segments

away from J, then junctions three segments away from J, etc.,

but only as long as labels are being removed from any

junctions. As soon as the program reaches a step where no

labels are removed from any junction, then the program knows

that condition C must be satisfied everywhere in the scene,

and It can move on to the next unlabeled junction.

Figure 6.3 traces a situation which could occur on

successive steps in a line drawing where all junctions except

J have been labeled already. I have filled in the line

segments along which condition C could be violated at each

stage of the program's iterations. The mark ")" Indicates

which junction can have unmatched labels; it is used like

the same sign meaning "greater than", so that you can read

>I -
JK

as "the number of labels at JI is greater than the number of

labels at Jk", i.e. Ji may have labels which are not matched

by ones at Jk.
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The violations of C can spread outward to eventually

touch any line segment of a line drawing, but only if the

number of labels can be reduced at each junction on some path

between the junction the program is currently labeling and

the line segment. If any of the junctions In Figure 6.3 were

unlabeled or if a unique label had already been found for the

junction, then no violations of C could propagate through

that junction.

Figure 6.4 represents just such a situation. The line

drawing is assumed to be completely labeled except for

junction J, but this time J1 already has been uniquely

labeled. Thus it can never be the case that J1 has unmatched

labels. Notice that Figure 6.4 also represents equally well

the case where J1 has not yet been labeled.

One final point: the process is guaranteed to terminate,

since if there are N junctions and no more than M labels

possible for any one junction, the process can never go on

for more than M x N steps at the very worst. This is

Important since the restrictions can propagate back to the

junction which Initiated the process. To see that the

possibility of cycles does not create any difficulties,

consider the following trick. Suppose that as soon as the
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starting junction has been checked against each of its

neighbors, that all the remaining labels are removed from It.

The restrictions can then spread outward only until no more

changes can be made; now look at the process as though the

junction were being labeled for the first time with the set

of junctions just removed as its starting junction set. This

process can then be repeated as often as necessary, but the

number of times can never be greater than the Initial number

of labelings assigned to the junction, since the process

terminates if no more labels can be removed from the list of

possi bi lities.

6.3 CONTROL STRUCTURE

While the program can start at any junction and still

arrive at the same solution, the amount of time required to

understand a scene does depend on the order In which the

junctions are labeled. The basic heuristic for speeding up

the program is to eliminate as many possibilities as early as

possible. Two techniques which help accomplish this end are

to

(1) label all the junctions on the scene/background

boundary first, since these have many fewer interpretations

that interior junctions do, and
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(2) next label all junctions which bound regions that

share an edge or junction with the background.

To see why the program is faster when it eliminates as

many possibilities as early as it can, I must first give some

idea about the amounts of computation needed for various

phases of the program. The basic operation involves removing

unmatched labels from junction lists. The removal is done in

the following manner:

Assume that the junction whose list of labels must be

( reduced is called J2, that its neighbor is J1, and that for

any label In the lists of either J1 or J2, the first line

label represents the line joining them. Thus if (A B C) is

one possible junction labeling in J1's list, then "A" is the

line label that this junction labeling would assign to line

L-J1-J2, and similarly, if (D E F) is a labeling from J2's

list, the "D" is the line label which refers to L-J2-J1.

Since J2's list is the one to be reduced, first look at

J1's label list and make a list which consists of the labels

which J1 can apply to L-J2-J1. Notice that I have up to now

glossed over the fact that for most lines, the label appears

different depending on which end of the line we choose as a
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reference point. Thus If line L-J1-J2 is labeled

SP
then from Jl's end it appears to be labeled as "OCR-ISP" and

from J2's end it appears to be labeled as "OCL-SPI" (for

OClude Right-Illuminated/Shadow-Projected and OCLude

Left-Shadow-Projected/Illuminated respectively). Therefore

what we really want is the list of the opposites of the first

elements of each label for J1. Suppose that I am given the

scene portion shown in figure 6.5. If Ji's list of labelings

is:

((OCR-II PLUS-II OCL-II)
(OCR-ISP PLUS-SPI OCL-II)
(OCRM-I PLUS-II OCLM-II)
(SHCLR-ISP OCR-SPI OCLM-II))

Then the list that I need to compare J2's labels to is:

L1 - ((opposite (OCR-II))
(opposite (OCR-ISP))
(opposite (OCRM-II))
(opposite (SHCLR-ISP)))

- (OCL-II
OCL-SPI
OCLM- II
SHCCR-SPI)
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J2's label list can then be compared to L1; the

condition which must be satisfied by a labeling of J2 in

order for it to be a possible labeling is that the line label

it would assign to L-J1-21 be a member of the list L1.

Continuing with this example, suppose that J2's labeling list

is:

L2 = ((OCL-II OCR-II OCR-II)
(OCL-ISP OCR-SPI OCR-II)
(OCL-ISS OCR-SSI OCR-II)
(OCL-SPI OCR-II OCR-ISP)
(OCL-SPSP OCR-SPI OCR-ISP)
(OCL-SPSS OCR-II OCRM-II)
(OCL-II OCR-II OCRM-II)
(OCRM-II OCRCR-II OCML-II))

Then the labeling list for J2 after comparing L2 to L1 is:

L2'= ((OCL-II OCR-II OCR-II)
(OCL-SPI OCR-II OCR-ISP)
(OCL-II OCR-II OCRM-II))

Now I return to the original claim, that it is desirable

to remove as many labels as possible as early as possible.

Suppose a junction J has m+l branches and n+q labels, and in

the process of labeling, q of these labels are eliminated by

a propagating reduction which comes in on one of J's

branches: this requires the program to compare n+q labels for

members in a list. The program now has to check each of J's
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branches to see if any labels for adjacent junctions can be

removed. Thus it must compute m lists analogous to L1 above

and each of these lists has n members. Now when each of

these lists is compared to the label lists for adjacent

junctions, the program must make an average of n/2 tests for

equality for each labeling that is retained, and n tests for

equality for each labeling that is removed (for the case

where it looks through an entire list and finds no match).

Therefore for each portion of the process the amount of

computation Involved is at least proportional to n.

( Because the amount of computation is at least

proportional to n, it is undesirable to label interior

junctions first, since most of these have much larger initial

values for n than do scene/background boundary junctions.

Not only does it take more computation to propagate any

reductions through these junctions, but each reduction is

likely to be smaller as well; If two adjacent junctions can

each be labeled in n ways out of a total of N theoretically

possible ways, then the expected number of labelings they

have in common Is na/N. (This number Is obtained by summing

the probability of a match for each of the n labels at one

junction; thus
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L=n

*(n/N) nx (n/N) - nn/N.)

Typically scene/background boundary junctions have about

1/10 the number of possible labels an interior junction can

have, so that the expected number of labelings to

scene/background junctions will have in common is only 1% of

the expected number for two interior junctions. Similarly,

it is worthwhile to label next interior junctions which are

connected to junctions on the scene/background boundary,

since the expected number of labelings in common for these

pairs Is only 10% of the number for Interior junctions.

Finally, as I mentioned earlier, it is worthwhile to label

all the junctions surrounding regions which touch the

scene/background boundary, since these regions contain all

the "best" kinds of junctions, and because a chain of

junctions which closes on itself tends to be far more

restricted In its possibilities than a chain of the same

length which does not. (I will not attempt to prove that

this is so; I think It is fairly obvious that the effect Is

true, although the proof of the effect is not. It Is much

more obvious for a tree search procedure than for this one.)
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I included this section so that an interested reader

could get a better feeling for the operation of the program

and also to suggest some ideas for extensions of this

program. For example, if my labeling program were connected

to a line-finding program such as Shiral's, my program could

be adapted to provide intelligent guidance for deciding where

to look next in a scene on the basis of which features had

already been found (Shiral 1972).

Another idea which might be Interesting to follow up Is

a possible parallel between the reasons why it is better for

( my program to start on the scene/background boundary and the

observed fact that people presented with a figure on a

background for short periods of time see detail first on the

figure/ground boundary and require longer viewing durations

to see details in the figure Interior suggesting that our

perception proceeds from the outside inward (Koffka 1935).

I mentioned at the beginning of this paper that the

amount of time (and therefore computation) is roughly

proportional to the number of line segments in a scene. This

may not seem to fit with the obvious fact that there is

really nothing to prevent the effects caused by labeling a

single junction to propagate to every portion of a line
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drawl ng.

There are good physical reasons why this seldom happens.

The basic reason is that some junctions simply do not

propagate effects to all their neighbors, and so the effects

tend to die out before getting too far. The prime type of

junction which stifles the spreading effects Is the T

junction.

In most T junctions, the labelings of the upright and

crossbar portions are Independent. Even if we know the exact

labeling of the crossbar portion we are unlikely to be able

to draw any conclusions about the labeling of the upright and

vice-versa. Since objects are most commonly separated by T

junctions, the effects of labeling a junction are for the

most part limited to the object of which the junction is a

part, and to the object's shadow edges, if any.

Another reason why effects do not propagate far Is that

when junctions are unlabeled or when they are uniquely

labeled, they do not propagate effects at all. (This reason

was illustrated in figure 6.4.) Thus when few junctions are

labeled and when most of the junctions are labeled the

effects of adding restrictions tends to be localized.
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6.4 PROGRAM PERFORMANCE

The program portions I have now described are adequate

for labeling scenes without accidental alignments,

non-trihedral vertices or missing lines. Within this range

there are still certain types of features which confuse the

program, but before showing its limits, I will show some of

its complete successes. In all the scenes that follow, I

assume that the program knows which region is the background

region, and that it also knows the relative brightness of

various regions. The program operates nearly as well without

these facts but not as rapidly. Figure 6.6 shows a number of

scenes for which the program produces unique labelings or is

only confused about the illumination type of one or two

regions (as in figure 6.6D and 6.61). By varying someof the

region brightness values or omitting them, the program could

also be similarly confused in this way for the tops of

objects in figures 6.6A, 6.68, 6.6E, 6.6G and 6.6H. In

general, the program is not particularly good at finding the

illumination types for regions unless the regions are bounded

by concave edges. This confusion has a physical basis as

well. In all the diagrams I have drawn these top surfaces as

though they were parallel to the table so that the should all
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be labeled as type I (Illuminated), but since the program I

have described so far uses only the topology of a line

drawing, it has no way of distinguishing the scenes I have

drawn from others which should be labeled differently. For

example, in figure 6.7 I have redrawn figures 6.6A and 6.6B

so that the top surfaces are type SS (Self-Shadowed), but the

figures are topologically identical.

To decide whether a surface is self-shadowed or

illuminated, one must be able to associate shadow corners

with the vertices which cause them. In figure 6.7B, If C is

caused by B, then the top of the block is illuminated, and if

C is caused by A then the top of the block Is self-shadowed.

To verify that A causes C, place a straight edge on the

figure. There is an interesting optical Illusion in this

figure; it appears to me that the top surface of the block in

figure 6.8 should be type SS, but in fact if you use the

straight-edge test I described, you will find that it is

actually Illuminated. (I did not put in any shading, to

prevent biasing the choice.)

In any case, I think that the Issue here is not serious,

since the program still finds the correct edge labels for all

edges. In general I doubt that anyone will be too interested
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in finding the illumination values exactly; in the program

they serve primarily as labeling aids, not as ends in

themselves. However, before going on to something else, I

would like to use this topic to illustrate a situation I have

encountered several times in the process of performing this

research. I noticed early in my study of scenes that if all

shadow corners and their causing vertices in a given scene

are connected by straight lines, these lines have roughly the

same slope throughout the scene, provided that the light

source is reasonably far away from the scene compared to the

scene size. I thought that this fact might aid me a great

deal in finding shadows. What I did not see was that until I

could locate shadows and their causing vertices, I couldn't

connect the two to find the characteristic slope; but if I

could find the shadows and vertices, then I knew how to solve

the problem already, and so I would not need to find this

slope at alli There is at least one type of case where this

slope is important, as I describe In the next section, but

for the most part the topology of scenes provides adequate

clues for finding shadows.
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6.5 PERFORMANCE PROBLEMS

Shadows convey a considerable amount of information

about which edges of an object touch a surface, since a

shadow edge can only Intersect the edge which causes it if

the surface the shadow is cast on touches the shadow-causing

edge, as illustrated in figure 6.9A. As long as shadows are

present, a program can find relations between the objects in

a scene and the background, as shown in figure 6.98.

However, if all shadows are missing, then it Is impossible to

decide how the pieces of a scene are related. For example in

6.9C, the block on the left could be stuck to a wall or

sitting on a table or sitting on a smaller block hich

suspended it off the table; there Is simply no way to decide

which of these cases is true, given only a shadow-free line

drawing. Moreover, the program does not use (at this point)

knowledge of line segment directions in a scene, so It cannot

even distinguish which way is up. If you turn figure 6.9C

about 1/3 of a turn clockwise, there Is a reasonable

Interpretation of the two blocks with A supported by B.

Without line segment direction information the program finds

all these Interpretations If there are no shadows.
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In figure 6.10A, each of the segments marked with a star

can be interpreted either as an obscuring edge or as a

concave edge, though in most cases choosing one or the other

for some line segment forces other segments to be interpreted

uniquely, as shown in figures 6.10B and 6.10C.

As In the previous section, there are scenes which are

topologically identical which can help to show why the

program finds all these labelings as reasonable

interpretations. Figure 6.11 shows five scenes which are

topologically identical to the labeled scenes shown In Figure

6.10C; in each of these scenes, the labeling shown seems to

me to be the most reasonable one or at least a plausible one.

Figure 6.12 shows the next problem case. Such a case

occurs when we can see only enough of an object so that It is

not possible to tell whether the region is a shadow or an

object. If it happens that the ambiguous region is brighter

than the background (or what would be the illuminated portion

of a partly shadowed surface of the feature occurs on the

interior of a scene), then the program can eliminate the

possibility that the region is a shadow. Unfortunately, If

the ambiguous region is darker than its neighbor, it cannot

tell whether the region is a shadow region or a dark object.
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In figure 6.12, do you think that both A and B should really

be labeled as shadow regions? In fact neither A nor B can be

shadowsl You can prove this for yourself by finding the

characteristic light source slope for the scene, using the

front object and its shadow. Then note that there can be no

hidden objects which could project A or B. Figure 6.13 shows

this construction. It is this type of distinction for which

the light source slope information could be useful.

I will not go through the process again of showing how

each of the labelings could arise. Clearly the

interpretation of A and B as shadows is reasonable for this

scene, since I can easily find a topologically equivalent

line drawing where some obscured objects could cause the

shadows. The program needs to know about gravity, support

and line segment directions in order to eliminate some of the

interpretations of region A. Every one of the

interpretations is possible for B.

A closely related ambiguity Is illustrated in figure

6.14A. Again difficulties arise because a shadow-causing

junction is hidden. The fact that the program does not know

at this point about gravity can be visualized as meaning that

the objects which form both sides of a crack can appear



?AGE 191

TKE LIJ-f~f SOURCE
Tol TXIS ScEIE

TALC T L-E ON Tft%t~j; rNE o•TB• /

/ '. T EER IS NIO wAY THlAT
THESE REGLo -S d CA9'T E
SHAtoWS, STNCE THERC
CAN BE ivo oBJ.ECT z I<

/ TItE S SdEwrE W.Ki

ExGURE &.13

IUVs TIrEXL.



PAGE 192

F6us G .14 A

*EACHL OT TI-ESE IS AMBlICIuoUS



PAGE 193

ISINCE THE PROcPSS4t oDS NoT XNow ACBoU'
>TIRECTIOl$, IT FINDS THAT L-A-C CdA. POSSSIBL-
BE A d•ACK: - WrTIToUrT PDRPCTICob :T CAb3lno

XNOVSZr .AJT GRABVIU.

FrGXRE G.1IB



SECTION 6.5 194

anywhere, just as if the two objects were glued together.

Figure 6.14B shows such a case.

The next type of problem involves support directly. An

example of this type of difficulty is shown in figure 6.15.

As in figure 6.10, each of the edges which is ambiguous is

marked with a star (C*) in figure 6.15A, and the possible

label ngs, both "reasonable" and "unreasonable" are shown in

figures 6.15B and 6.15C respectively. I have redrawn figure

6.15C in figure 6.16 to show scenes with the same topology

which have what were previously unreasonable labelings as

their reasonable ones. Actually in some of the cases I have

had to change the topology slightly. This happened because I

wanted to construct an example which contained shadows and

which exhibited all the ambiguities I show in figure 6.15;

while I was not able to easily find a scene which satisfied

these criteria and also did not require changes in topology,

there probably are such scenes. I do not believe that any

general rules can be derived from the needed modifications.

One final type of ambiguity is interesting and also

serves to emphasize one of the findings of the work reported

in this chapter. In figure 6.17 I show the two types of

interpretations my program returns for holes. One of these
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Interpretations Is the one I expected; I was surprised that

the hole was ambiguous, but even more surprised to find that

I had missed an obvious alternate interpretation of the same

geometry. The alternate interpretation shown in figure 6.17B

does not even need to be drawn with different line segment

directions in order to appear reasonable.

The labelings which the program finds must be made up of

local features, each one of which is physically possible, but

it is not obvious that the features which remain should each

be part of a total labeling of the scene which Is physically

possible. After all, the only conditions I impose are that

each of these features must agree with at least one other

feature at each neighboring junction. On the basis of the

fact that the main labeling program does not leave extraneous

labels on junctions, It seems clear that topology provides a

major portion of the cues necessary to understand a scene.

In the next chapter I show some heuristic rules which

can be used to eliminate some of the labelings which people

usually consider unlikely. In fact the true case is that

these labelings are not unlikely, but the scenes which have

these labelings as reasonable ones (to our eyes) do not often

arise in our experience. Unfortuntely, heuristics sometimes
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reject real interpretations, and indeed would reject each of

the interpretations shown in figures 6.11 and 6.16 in favor

of the ones in figures 6.10B and 6.15B. Nonetheless, in the

absence of solid rules, these heuristics can be useful. In

the chapter on region orientations I deal with the typesof

techniques which would enable a program to find the labelings

which we would assign to these line drawings without resort

to heuristics.
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7.0 NON-TRIHEDRAL VERTICES & RELATED PROBLEMS

So far I have assumed that all the junctions I am given

are normal trihedral junctions and essentially that the line

drawing which I am given is "perfect". When a program has to

be able to accept data from real line finders and from

arbitrarily arranged scenes, these criteria are rather

unrealistic.

In this chapter, I show how to correct some of these

problems in a passive manner. By passive I mean that the

program Is unable to ask a line finding program to look more

carefully or to use alternative predicates at a suspicious

junction, and similarly that it cannot move its eye or

camera, or direct a hand to rearrange part of a scene in

order to resolve ambiguities (Gaschnig 1971).

Instead I handle these types of problems by including

labels for a number of the most common of these junctions in

the regular data base. In cases where the program confuses

these junction labelings with the regular labelings and where

I want a single parsing, I can easily remove these new types

of junction labels first, since I have included special

markers for each labeling of this type. Moreover, depending



SECTION 7.0 202

on the reliability of the program which generates the line

drawing, I may wish to remove labels in different orders.

For example, If a line finding program rarely misses edges,

missing edge interpretations can be removed first; if a line

finding program tends to miss short line segments, then

accidental alignments are probably being generated by the

program, and these Interpretations can be retained until

last. Therefore the labels for each type of problem are

marked with different Indicators in the data base.

7.1 NON-TRIHEDRAL VERTICES

Some non-trihedral vertices must be included In the data

base; Indeed some are much more common than many of the

trihedral vertices. I will limit the number by including

only those non-trihedral vertices which can be formed by

convex trihedral objects.

The first type of vertex is formed by the alignment of a

vertex with a convex edge as shown in figure 7.1 and in

figure 7.2. In figure 7.3 a similar set of junctions is

shown for objects which MARRY (i.e. have coplanar faces

separated by a crack edge; see Winston 1970) along one edge,

but which have difference face angles.
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Figure 7.4 illustrates another common non-trihedral

vertex which results again from objects with dissimilar face

angles. This time I need a new type of edge, a separable

convex edge, labeled as shown in figure 7.4.

Figure 7.5 illustrates the types of non-trihedral

vertices which can occur when one block leans on another. In

order to keep these cases from being confused with other

trihedral junctions, I have introduced three new edge types.

These types only can occur in a very limited numberd

contexts. Figure 7.6 shows some of the ways In which these

edges can appear.

In the data base each of the labelings shown in figures

7.1, 7.2, 7.3, 7.4, and 7.5, and any other junction labels

involving the leaning edges or the separable convex edges,

are marked as non-trihedral. Later, if I wish to find a

single parsing for a scene where there are still ambiguous

labels, removing these non-trihedral junctions, if possible,

may be a good heuristic.
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7.2 ACCIDENTAL ALIGNMENTS; FIRST TYPE

In this section I have not attempted to exhaustively

list every possible junction labeling which results from

accidental alignment, but have concentrated on Including only

the most common cases. There Is some justification for this,

in that ambiguities caused by accidental alignments can be

resolved by simply moving with respect to the scene.

Figure 7.7 lists all the junctions which can take part

in the first type of accidental alignment I will consider.

This type of alignment occurs when a vertex is closer to the

eye than an edge which appears to be but is not part of the

vertex. Thus the set of vertices In figure 7.7 are exactly

that subset of the scene/background boundary junctions

(Appendix 4) which contain only obscuring edges on the

scene/background boundary. Figure 7.7 shows only those

junctions which I Include as sufficiently common. The rest

are excluded because they involve unusual concave geometries

like those found in SOMA cube pieces (SOMA cubes are

three-dimensional puzzles manufactured by Parker Bros. Inc.,

Salem, Mass.) or because they involve three-object edges or

because the resulting junction would have enough line

segments to require a designation of "SPECIAL" or because the
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junction would require the alignment of the eye with three

points in space.

There is no regular junction which could be confused

with any of the ARROW or K junctions generated by the the

alignment of the junctions shown in figure 7.7 with edges

behind them. To see why this is so, consider figures 7.8 and

7.9. Figure 7.8 gives names for the distinguishable region

segments for each type of junction. Figure 7.9 shows all the

K and ARROW junctions that can result from accidental

alignment with each each of the junctions shown in figure

7.7. Notice that the background region can only appear in

segments ARROW1, ARROW2, K1, K2 and K3 in these accidentally

aligned cases, whereas for all trihedral ARROW and K

junctions which can appear on the scene/background boundary,

only segments ARROWO and KO (the segments of these junctions

which are greater than 180 and equal to 180 degrees,

respectively) can be part of the background. Of course for

the junctions where no segments are distinguishable (e.g.

FORKs) or where the junction appears on the Interior of the

scene, these accidental alignment cases cannot be directly

distinguished from the regular cases.
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At this writing, I have not included all these

accidental alignment types in the program's data base, but I

have included most of the scene/background boundary cases and

a number of the interior cases. In general, I have assumed

that no non-trihedral edges or three-object edges will be

among those obscured since both the alignment itself and the

edge types are relatively unlikely, so their coincidence at a

single junction is extremely unlikely.

7.3 ACCIDENTAL ALIGNMENT WITHOUT OBSCURING EDGES

Figure 7.10 shows some alignments which have shown up

frequently in scenes I have worked with. These junctions

have occurred because (1) our line finding program misses

short line segments (and therefore tends to Include more

lines than it should in a single junction), (2) our line

finding program has a tolerance angle within which it will

call edges collinear, so some edges are called collinear even

when they are not, and (3) edges which lie in a plane

parallel to the surface on which they cast shadows are

parallel to the shadows they cast, so that alignments become

particularly likely when we use bricks, cubes, and prisms.
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Figure 7.11 shows some other types of accidental shadow

edge alignment which our group's line finding program

frequently yields; these junctions are relatively common

because of the tendency of the program to miss short line

segments, but each of these types of alignment can occur

naturally as well. (For Information on our line finding

program see Horn 1971 and Shiral 1972.)

7.4 ACCIDENTAL ALIGNMENTS; FINAL TYPE

The worst type of accidental alignment, in terms of the

number of new junctions it can introduce, occurs when an edge

between the eye and a vertex appears to be part of the

vertex. Fortunately, all of the types of junctions which

these alignments introduce are either Ks, KAs or SPECIALs.

To see why this is so, look at figure 7.12. All these

labelings can be quite easily generated by a program which

operates on the regular data base. Notice that for each

obscured vertex labeling, there are three new labelings

generated, since the near region can have any of he three

illumination values.



FAGE 221

TI'

s

III2sL~

SPTI

Tr~

+ s
T 2

SI~c

SP T 5
T

SP 

/-F/-

/TI T4

FIGuRE 7.11

A:. I,
*t



?AGE ZZ2,

rP

4.

I T +

,P5p

Tr+

FrFuaz 7.11



IF THE
VERTEX IS:

FORK1

THEN THE ?oSS0.BLE; AC!'TDPIN-TAL
ALIGNMT4T W•I-T AN ,EDGE ARE:

tc<5

t ->

I 00
fK~

-·K

FAGE 223

x

TYGURE 7 12



PE·AK

MUILTI

XX

PFGE 221

ECIAL)\

x -44c0

FrGumE 71Z

/f

\t

k

/i1 

-10 

i

\% 00



4:
/

' 
/

~I 
1'*~-

\
1,2

-.

/

)C
 

X
~

~)---- 
-t--

`>L/



SECTION 7.4 226

Also notice that any of these junctions which appear on

the scene/background boundary can only be oriented with the

background in a junction segment type K1, K2, K3, KA1, KA2,

KA3, or KA4 (see figure 7.8). Therefore it is not difficult

to recognize the cases where accidental alignments of this

type occur on the scene/background boundary since none of the

regular trihedral junctions can ever appear on the

scene/background boundary in any of these orientations. (The

background can only appear normally in segments of type KO of

KAO.)

The number of K junctions of this type which can occur

is limited by the fact that two of the line segments (the

collinear ones) must always be obscuring edges and so can be

labeled in a total of 108 different ways (including region

illuminations); the other two line segments can each be

labeled in 81 ways, so there can be no more than 81x81x108 -

708,588 possible K labelings. In fact, as usual, there are

not nearly this many labelings. To find the limit on the

number of these junctions, use figure 7.12 and Table 5.3

together, as shown in Table 7.1. The numbers in Table 7.1

are obtained by taking the total number of Interior labelings

for a type of junction (remember that this number includes

TABLE labels as well), multiplying this number by the number
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of ways in which it can form a K junction, and multiplying

this number by three (since the obscuring region can have

three types of illumination, independent of what the other

labels are). Thus, for example, there are 109 ARROW

labelings, and each can be used two ways to make a K label of

this type (see figure 7.12), so the total number of K

junctions due to obscured ARROWs is 109x2x3 = 654. Each

ARROW labeling can be used in only one way to form a KA

junction, so the total number of these is 109x1x3 = 327.

While I could include these labelings directly in the

data base, their number is clearly unwieldy. In any event, I

managed to find a way to include the labelings exactly but in

a manner somewhat different than those I have been dealing

with so far. In order to show this method, I first have to

fill in some gaps I left earlier.

7.5 MORE CONTROL STRUCTURE

In this section I return again to the main labeling

program and describe what happens when the program is unable

to label a scene consistently, using the set of labels with

which it has been equipped.
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The program is written in MICRO-PLANNER, a programming

language with automatic back-up facilities (Sussman et al

1971). Before the program begins labeling a junction J, it

saves the context of the junction (i.e. the labeling which

existed before the program assigned any labels to J). As the

program iteratively eliminates the labels which can now be

removed because of the new constraints which J adds, it

checks at each step to make sure that at least one label

remains possible for each line segment. If this number ever

goes to zero for any line segment, the program assumes that J

is the source of the problem, i.e. that J needed a label that

was not in the list assigned to it by the selection rules.

When this happens, the program restores the context to the

state that existed before It began labeling J, and it marks J

to Indicate that J cannot be labeled from the normal label

lists. Once J has been marked in this manner, it appears to

neighboring junctions to be just like a junction which has

not been labeled yet, and therefore J Imposes no conditions

at all on the possible line labels for its neighbors. The

program can then continue and as long as two adjacent

junctions are not left unlabeled at the end of the program's

operation, every line segment can be assigned a value or set

of values, just as if every junction had been labeled.
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The problem with this arrangement is this: suppose that

the program is given a line drawing which has one junction

that cannot be labeled from the regular set of junction

labelings. Clearly If the program labels this junction last,

it will be unable to label the junction and will give the

correct result. However, If this junction is labeled before

any of its neighbors, then it Is, of course, automatically

assigned labels from the normal set, for none of the

surrounding junctions impose any constraints on it. In this

case, one or more perfectly normal junctions in the scene

will eventually be marked as unlabelable, and the resulting

total labeling for the scene will be invalid. In general, if

the bad junction is labeled toward the end of the program's

operation, then the total scene labeling Is orrect, and if

the junction is labeled early in the program's operation, the

total scene labeling is incorrect.

My first attempt at solving this problem was to label

all Ks and KAs last. In many cases the Ks and KAs were then

Indeed correctly identified as unlabelable from the normal

set. However, I managed to come up with a much neater

solution which enables the program to generate labels for

these otherwise unlabelable junctions.
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As before, I have the program label all Ks and KAs last,

but this time I modified the labeling procedure. If a

junction cannot be labeled from the normal set, instead of

marking it unlabelable I generate possible labelings by

modifying the line drawing so that it contains equivalent

junctions which are not accidentally aligned, and then I

label these junctions in the normal manner. Thus, as shown

in figure 7.13, if the normal set of junctions is inadequate

to label a K, the most reasonable alternative is that the

junction is actually an obscured L vertex. Therefore I

change the line drawing (saving the original of course) and

try to label the new line drawing. This change is equivalent

to moving the eye slightly to see what type of junction Is

obscured, except that since the program is unable to move its

eye and therefore does not know what the real vertex type is,

it keeps trying various alternatives until one works, or

until it hits a default case. In the example shown, the

program finds a reasonable interpretation on the first try.

If it had not, then the program would next have tried to

label the junction as an obscured ARROW, since ARROWs are the

next most common type of junction after Ls.
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Notice that the condition for a modification to be

reasonable is not as simple as the old condition for a single

junction, as Illustrated In figure 7.14. The condition for

figure 7.14A Is that J, J1, and J4 must all be labelable.

Before there was no condition joining J1 and J4; if they do

not match now, It does not matter whether JO can be labeled

or not because a total labeling would be impossible. This

means that the program has to be able to save the context

until it has finished checking the labeling of several

junctions, and that it should only finalize the modifications

when it has proved that every portion of the new line drawing

( is reasonable. To illustrate further, in figure 7.14B I show

the modifications necessary to interpret JO as an obscured

ARROW junction. These modifications create a new junction,

and the two junctions, JO and JO0 must both be checked;

unless both can be labeled consistently this interpretation

is impossible.

In fact, I can carry this idea even further. Suppose

that a K junction, JO, is actually an accidental alignment,

but that since other K and KA junctions in the line dawing

have not yet been labeled JO can be labeled from the normal

set of labelings. Later another K, which should be labelable

from the normal set cannot be labeled, since the wrong choice
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was made for JO. To eliminate this type of difficulty, I

require all K and KA junctions to agree, and if they do not

agree, the program can back up to any of the K and KA

junctions until it has actually tried every combination of

interpretations for the junctions. Thus the program should

not finalize any of the labels for K or KA junctions until

all of them agree.

This solution is still not guaranteed to contain the

correct one; the program will be satisfied with the first

set of modifications for the K and KA junctions which gives a

complete labeling. To be certain of Including the correct

solution, the program would have to try every combination of

interpretations for every K and KA and save all the ones

which give complete labelings. Eventually I hope to include

this ability when I modify the program to run in the CONNIVER

language (McDermott & Sussman 1972); this language has

better facilities for developing and saving parallel

contexts, whereas MICRO-PLANNER does not. MICRO-PLANNER is

oriented toward a tree search model of problem solving where

the branches of a solution tree are explored until a correct

solution is found. In my case, the problem is that therenay

be more than one correct solution.
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In any case, when I programmed this ability, I lumped a

number of junction types together into a default case for two

reasons: this lessened the possibility of stopping before

getting the desired ("correct") solution, and itenabled the

program to run much faster and required a much smaller

program than would have been needed if I had included

separate machinery for each type of junction. The program

tries the possibilities for a K in the following order:

(1) try to label the K from the normal label lists.

(2) try to label the K as an obscured L vertex.

(3) try to label the K as an obscured ARROW vertex.

(4) if all these fail, label the K as two T junctions

(see figure 7.15).

The default condition represents the exact opposite of

the previous conditions. The two Ts result if instead of

moving the eye (by imagination) to see what vertex is behind

the obscuring edge, the program moves its eye (by

imagination) to completely cover the vertex and eliminate the

accidental alignment. Notice that the default condition

gives much weaker constraints than could be obtained by

trying all the rest of the junction types explicitly. The

only relation that must hold for the two T uprights is that
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the region between them (marked R in figure 7.15) have an

illumination value which matches both uprights. Nonetheless

this is a much stronger condition than is Imposed bl leaving

the junction totally unlabeled and, in addition, the

collinear segments (L-A-B, L-B-C, L-C-D in figure 7.15) can

all be labeled unambiguously as occluding edges. The

information I throw away requires that the two uprights be

adjacent segments of the same vertex, where this vertex can

presumably be labeled from the normal label lists.

7.6 MISSING EDGES

Missing edges usually occur when the brightness of

adjacent regions is nearly the same, since most line finding

programs depend heavily on steps in brightness to define

edges. I have made no attempt to treat missing edges

systematically, but have only Included a few of the most

common cases in the data base. Clearly missing edge junction

labels could be systematically generated by a program merely

by listing all possibilities for eliminating one edge from

each junction label. This procedure would generate

(n-1)x(old number of regular labels) for each junction type

(where n is the number of line segments which make up the

junction), and clearly this would be a rather unmanageable
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number of new labels. The number of new labels could be

lessened somewhat by noting that certain types of edges such

as cracks are likely to be missed whereas certain other edges

such as shadows are relatively unlikely to be missed.

Even if a program such as mine can recognize that a

junction must be labeled as having a missing edge, problems

still remain about exactly how the line drawing should be

completed. This difficulty is illustrated in figure 7.16.

Depending on the line segment directions and lengths, the

missing edge junction D can be connected to vertex A, vertex

B or vertex C, even though the topology of all the line

drawings is identical.

The missing edge junctions which are included in the

program's data base are all L junctions which result from

deleting one of the branches of a FORK junction with three

convex edges. Incidentally, in the examples shown in figure

7.16, my program finds each of the given interpretations, but

finds no other Interpretations, i.e. It finds no

interpretations which do not involve missing edges.
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A rule which can be helpful in removing impossible

missing edge interpretations is that if a region is bounded

by only one junction which can be Interpreted as having a

missing edge in that region, then that missing edge

interpretation is impossible. (There must be another

junction to connect with the missing edge.) A similar rule

depends on including the label that the missing edge would

have had in each missing edge labeling. In this case, the

rule is that not only must there be a pair of missing edge

junctions around a region In order for either of them to be

possible, but this pair must also match in the label that

each gives to the missing edge. One final rule is that the

previous rules only hold if the pair of missing edge

junctions are not adjacent to one another (i.e. each pair of

junctions can be connected by only one straight line).

If more than one edge is missing, then a program

requires greater constructive understanding than my program

has, although I believe that there are reasonably simple

rules which allow a program to solve scenes even if they are

as bad as the one shown in figure 7.17. For example, Shirai

has demonstrated that the silhouette of a scene contains a

great deal of information about where interior lines and

junctions can appear (Shiral 1972). Although he does not



?AGE 212

FrGURE 717
T-E BLCI<CKS & vSICA1o

(TrMTEN EDGES IMSSIM)



SECTION 7.6 243

consider scenes with shadows, I believe that the same

principles which he uses are applicable for shadowed scenes.

Freuder has also written a sophisticated heuristic program

which fairly reliably fills in edges missed by our group's

line finding programs (Freuder 1971a, 1971b).

7.7 HEURISTICS

As I have mentioned earlier in several places, the

program is able to remove junction labels selectively

according to a crude probability measure of the relative

likelihood of various individual feature interpretations.

These heuristics are a poor substitute for foolproof rules;

in essence I view the heuristics as an expedient method for

handling problems I have not yet been able to solve properly.

As I explained in Section 5.4, these heuristics may

nonetheless be of considerable value in guiding programs

which find sound solutions.

There is not much to say about the heuristics

themselves. The ones I am using currently lump all the

"unlikely" junction labels into one class, the "likely" ones

into another, and simply eliminate all the "unlikely" labels

as long as there are "likely" alternatives.
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However there are some interesting cases where I have

found that I can usually eliminate the unwanted the problem

scenes in Section 6.5. Obviously, to solve these cases

exactly would require a great deal more programming effort.

Heuristic 1: Try to minimize the number of objects in a

scene interpretation.

Implementations:

(1) Make shadow L junction labels (see figure 7.18A)

more likely than any other type of L junction.

(2) Make labels representing interior TABLE regions more

likely than the equivalent labels that do not Involve TABLE

regions.

(3) If regions can be interpreted either as shadows or

as objects, make shadow interpretations more likely.

Heuristic 2: Eliminate Interpretations that have points

of contact between objects or between objects and the TABLE

unless there is solid evidence of contact.
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Implementation: Make ARROW junction labels which have

two concave edges and one convex edge (see figure 7.188) less

likely than ARROW labels of other types.

These heuristics select interpretations (1), (2), and

(7) from figure 6.10, Interpretations A(1) and B(2) from

figure 6.12, Interpretation (1) from figure 6.14, and

Interpretations (1), (2), (3), (4), (5), and (9) from figure

6.15.
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8.0 REGION ORIENTATIONS

What has obviously been missing from all that I have

shown so far Is a connection between line segment directions

on the retina and possible labelings for these lines. Such a

connection is extremely useful if the program is to

understand gravity and support. In this chapter I describe

approaches to this problem which I have not yet included in

my program. There is probably as much work required to

properly add the ability to handle direction Information as I

have already invested in my program. Nonetheless, I believe

that this chapter provides a good idea of the work that needs

to be done as well as the physical knowledge that these

additions will allow one to Include in the program.

8.1 LINE LABEL ADDITIONS

To begin with, I investigate the partitioning of each

edge type into three subtypes, a technique analogous to the

ones I used earlier to divide concave edges Into four classes

and all edges into types according to their region

illumination values. As In the case of occludingedges, the

line values are only defined with respect to a reference

point and direction, where the usual reference points are
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junctions. The three values are:

(1) U (Up) - an edge directed up, away from the TABLE.

The reference end is closer to the TABLE than any other

points along the edge in the reference direction.

(2) D (Down) - directed downward toward the TABLE. This

is the opposite of U, the same edge but with the other end of

the line and the opposite direction on the line as

references.

(3) P (Parallel) - parallel to the TABLE or in the plane

of the TABLE.

Notice that there are some immediate limitations that

can now be set on the set of junction labelings:

(1) Any shadow edge or concave edge marked with a "T",

i.e. which is in the plane of the table, automatically can

have only one direction, P, in this partitioning.

(2) Any junction which has one or more shadow and

concave edges labeled "T" must have Its edges of other types

in the U direction, since the edges at such junctions must
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either be in the plane of the TABLE or above this plane.

(3) Two edges which bound the same region and which are

parallel or collinear must both have the same direction

value, U, D, or P. This fact can be chained through several

regions.

Figure 8.1 Illustrates these facts; U is indicated by

placing an arrow along the side of a line segment pointing In

the Up direction.

Notice that these rules also allow a program to find

horizontal surfaces, an important part of the notion of

support. A horizontal surface can be defined in this system

of notation as any region bounded by two or more edges which

are both marked P ( 1) and which are not parallel to each

other or collinear. Moreover, any edges which are In the

plane of a horizontal surface can then also be marked as

parallel to the TABLE, regardless of the directions of these

lines on the retina. Finally, any junctions which bear a

relationship to a horizontal surface, analogous to the one

that I mentioned earlier for junctions which had segments in

the plane of the TABLE, can similarly have their other

segments labeled U. Figure 8.2 illustrates these points.



WrrTTHoT EDGE PDIRECT'oN XN4TOWATIONIL AGE 5
T14E WFOLL4tW G LIWE DRAWrC r-S LABwE1;ED
As SELowIL:

IT ALT I0A'r •A•A TIQtIE 3UTAI G LG IE' LI•
VDIRSC TIOX TKFORIVL4IT\O IS IN9M.DED:

S= I = farallel

FIGTURE S.I



UsIxG THE4 Rui•S DESCRTUBrD So TFA EXCEPT TH~E
£.oLRVIOIZ.TAtL SURF=ACE RULE,TEIS SCEME CA; BE

FI-u•Er 8.2Z



-EGIOON 0CAN -BE NOWJ 'QOUVI TO TE I-oFRTZOl.TAL,
to THAT ALL EGES tWHICH ARE ?ART OF CN N BE

LAB1E'UEP FA&tALLEt; OaLY AP9)E- LA5ELS AR S'E HOWK:

FTGUR-E 8.Z_



CAN NoW 13E MARKED AS HORIZoNTAL, AND AS
OWN BELO0, CA BE 'FOUIP TO -tc HORIZOWAL

ALSO:

IGtXURE 8.2



SECTION 8.1 254

These rules are not particularly helpful when there are

no parallel edges; it is possible to chain some values in

the absence of parallel edges and horizontal surfaces, but

generally such chaining cannot be carried very far.

Depending on the way that edges deviate from parallel, it is

sometimes possible to assign an Up direction. (In some of

the figures which follow I have not marked the lines with

their normal labels, but have only included the direction

labels for clarity.) See figure 8.3, and note that since

edge L-A-B is not parallel to L-C-D, I can mark L-C-D with an

Up direction as shown. This means that since L-E-F is

parallel to L-C-D, it can also be marked with an Up

direction.

8.2 AN EXAMPLE

Using the methods I have already discussed plus one

other piece of new information, I can show how to eliminate

some labelings for a line drawing if I know the line segment

directions. To see how these can help, consider again the

example I showed in figures 5.10 and 5.11, as illustrated now

in figure 8.4A. Because L-A-B is parallel to L-C-D and L-B-E

is parallel to L-D-F, R1 must be horizontal, assuming that
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the labeling shown is true. By the same kind of reasoning R2

must be horizontal. Now the additional rule Is: two

horizontal regions can only be separated by crack, shadow or

obscuring edges. Therefore, the labeling shown is

impossible, since L-C-G is a concave edge, and consequentl9

cannot separate two horizontal regions. Similarly I can

eliminate the labeling shown in figure 8.48.

8.3 GENERAL REGION ORIENTATIONS

In this section I define a quantization scheme which

assigns to each visible region one of sixteen values. The

regions are named in as sensible and simple a manner as I

could devise, and are defined with respect to a coordinate

system which is itself defined by the TABLE surface and the

position of the eye viewing the scene. The region

orientation values are each shown in figure 8.5; I assume

that this figure will serve as an adequate specification for

the meaning of the different orientation values. If the

scene is moved with respect to the eye or vice-versa, then

the region values (except Table and Horizontal) may change,

and regions previously invisible may become visible. Thus

the region orientation values are not inherent properties of

the surfaces, but are only defined with respect to a
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particular eye-table arrangement.

If a region R1 is type FRV (Front Right Vertical) and an

edge separating this region from region R2 is a shadow edge,

then region R2 must also be type FRV (see figure 8.6A). The

problem is not quite so simple when the other edge types are

involved. To give the flavor of what I would like to be able

to do in general, note that if an edge separating R1 and R2

is vertical on the retina, and R1 appears to the right of R2

on the retina, then R2 can only be type FLV or type FV or

type FRV (see figure 8.6B).

8.4 GENERAL LINE DIRECTIONS

Before I can carry out this type of association in

general, I must

(1) define line directions on the retina and

(2) define line directions in the scene domain with

greater precision, and

(3) show how to find the scene direction values, given

a labeled line drawing and the retinal line directions.
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Throughout this chapter I assume that the eye is far

enough away from the scene so that vertical edges in the

scene project into North/South lines on the retina. Since

the definition of North/South edges includes a tolerance

angle e , the eye does not need to be at infinity for this

condition to hold. By the same reasoning I assume that

parallel edges can be recognized without resort to

perspective or vanishing point considerations.

First I define the retinal line directions in terms of

compass points as shown in figure 8.7.

Next , in figure 8.8, I define the names for the

directions of lines in the scene by showing examples for each

type possible direction. These names resemble the names for

region orientations, but I will always use lower case letters

in referring to the line names and will use upper case

letters when I refer to the region names.

Now to make the connections between the retinal and

scene line directions, note that I can catalog all the

possible edge directions in the scene domain which can map

into each of the direction values on the retina. As an

example of how to do this, in figure 8.9 I show all the edge
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directions possible for an edge which bounds a type FRV

region. The diagrams In this figure show that an NE

(Northeast) line on the retina which bounds a type FRV region

can be an edge of types bru, brp, or brd, that an E (east)

line on the retina which bounds a type FRV region can only be

caused by a type brd edge, etc. Table 8.1 Is a summary of

the types of scene edges which can cause lines of each type

on the retina, arranged according to the types of regions

that each edge can bound.

Now to tie everything together, notice that an edge can

( only separate two regions if the edge could have the same

direction in both regions bounding the edge. Therefore, to

find all the region pairs that an N (North) edge (as seen on

the retina) could separate, look down the N column in Table

8.1 and find all the pairs of regions which can share an edge

which points in a particular direction. A north pointing

edge can thus separate any of the following pairs of region

types (this is not a complete list):

((TA TA) (H H) (TA LU) (H LU) (H RU)

(RU TA) (RU H)

(FRV FRV) (FRV FLV) (FRV FV)

(FLV FRV) (FLV FV) (FLV FLV)
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(FV FV) (FV FLV) (FV FRV)

(LU H) (LU RU) (LU LU)

(RU H) (RU LU) (RU RU)

(BLU BRU) (BRU BLU))

Not all these pairs can be separated bythe same types

of edges; shadows and cracks can only separate regions with

the same orientation values, and convex edge pairs become

concave edge pairs if the order of the pairs is reversed.

For example, a North line separating regions with orientation

values (FLV FRV) represents a convex edge (where the ordering

of the regions is in a clockwise direction), but if the

orientation values are (FRV FLV) for a North line, this must

represent a concave edge. This fact is Illustrated in figure

8.10.

If the Up/Down/Parallel designations are also included

in the regular labeling program, then it is possible to make

even finer distinctions. Table 8.2 shows some of the lists

of region orientation pairs which can be assigned to lines

having the indicated labels and directions.
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A program can use this information in the following

ways:

(1) If there are ambiguities remaining after the

regular labeling program has finished, pick a single

labeling, assign region values using the lists shown in part

in Table 8.2, and see whether this labeling can represent a

possible interpretation; if the interpretation is not

possible, then the program will be unable to assign

orientation values to every region, very much like the case

earlier in this chapter where a concave edge could not

separate two horizontal surfaces.

(2) Region illumination values can be tied in with the

region orientation values. For example, if a scene is lit

from the left, and the light-eye angle is less than 90

degrees (see figure 8.11; the light-eye angle is the angle

between the projections of the eye and the light onto the

plane of the TABLE, as measured from the center of the

scene), then a region cannot be labeled simultaneously as

orientation type FLV and illumination type SS (Self-

Shadowed).
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(3) All these facts provide a neat way to integrate

stereo information into a scene description. For example, as

shown in figure 8.12, if an edge is truly vertical (type vu)

then it must appear as N (North) in any retinal projection of

a stereo system. However an edge which is of type bp (back

parallel) can appear to be N on the retina because of the

particular placement of the eye with respect to the scene.

If the eye is shifted slightly to the right, this edge will

now appear to point NE (Northeast) and if the eye Is shifted

to the left, the edge will appear to point NW (Northwest).

Clearly this knowledge would enable a program to much more

severely restrict the region orientation pairs, and

consequently the labelings, that can be assigned to a line

drawing of a scene. Without the region and edge orientation

formalisms (or other similar formalisms) It is not possible

for a program to understand this stereo information, although

one could undoubtedly find ad hoc ways of using the

information.

(4) All the possibilities for region orientations can

be generated by the function I called ILLUMINE in Section

4.1. For each labeling which the program finds, ILLUMINE can

select region pairs according to the line directions and line

labels, and build up a set of region orientation values In
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exactly the same manner that ILLUMINE builds up sets of

region illumination values. The difference Is that there are

far too many region orientation values In general to possibly

include them in precompiled form; the values must be

generated from the greatly reduced set of possibilities that

remain after the regular labeling program has completed Its

work. The reason why there are so many possibilities is that

there are so many possible region orientations. Each edge

can potentially have 16x16 = 256 region orientation pairs as

opposed to the nine possible region illumination pairs.

8.5 SUPPORT

Using the region orientation values, I can now define

the set of edges along which support must hold, the set of

edges along which support can hold, and the set of edges

along which support cannot hold. By support I mean what Is

commonly termed either resting on or leaning on.

To start with, I can eliminate from consideration any

edges which are shadows, convex edges, obscuring edges, or

concave edges made up of one object or of three objects, and

I can say for certain that support is exhibited along any

concave edge which has the TABLE as a bounding region. In
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addition edges labeled as "leaning" (see Section 7.1) point

to places where support relations must hold, although support

does not hold along the leaning edges themselves, since these

are either obscuring or convex edges.

The important fact is that these edges exhibit support

regardless of their directions on the retina, so that there

is no problem with edges such as L-A-B in figure 8.13. The

best previous rules to find where support holds in a scene

(see Winston 1970) are not able to handle cases like this;

Winston's rules were biased toward finding ARROWs, Ks and Xs

which have vertical (or at least upward pointing) lines as do

all of the cases in figure 8.14 (this figure is a copy of

figure 2-41 from Winston 1970). In addition, Winston's rules

failed to find one support relation for the leaning block;

his rules assumed that objects would be supported by face

contact only.

Although my program can find support in cases like

figure 8.13, it is important to note that, in general, it is

not possible to use my regular labelings and line directions

alone to find which edges exhibit support and which do not.

Suppose that on the basis of the frequency of crack edges

like the ones shown in figure 8.15A I decided to label as
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Supporting/crack edges ones in which the arrow of the crack

label points SW, W, or NW, and to class all the others

together as being crack edges without support relations.

Then in figure 8.15B edges L-B-C and L-C-D would be correctly

marked but L-A-B would not. I could patch up the rule by

saying that if support holds for one non-collinear line in an

X junction it must hold for the other non-collinear line of

the X as well. Unfortunately this rule causes the program to

assert that support holds between the two objects in figure

8.15C, since support would be transferred by the rule from

L-B-C to L-A-B.

Similarly, for concave edges I cannot use line

directions and the direction of the arrow on the label to

define support. As an example, observe that while L-A-B in

figure 8.15D does not exhibit support, L-C-D in figure 8.15E

does.

Region orientation values can help to avoid these

problems, at least for some cases. (There are some, cases

such as the one in figure 8.15F , where I do not know whether

to say that support holds along L-A-B and L-B-C or not.)

Interestingly enough, with region orientations specified, I

do not necessarily need line directions, although I certainly
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need line directions to find the region orientation values to

begin with.

An example of an edge where support must hold is any

concave edge which has a horizontal surface on its left when

one looks along the edge in the direction of its "arrow", as

does L-C-D in figure 8.15E.

Some examples of edges where support cannot hold are

concave edges which have vertical surfaces (FRV, FV, or FLV)

or downward pointing surfaces (FRD, FD, or FLD) on the left

of the edges when looking along the direction of the "arrow";

line L-A-B in figure 8.15D is an edge of this type.

While I do not show how to do so here, I believe that

the best way to add the understanding of support to the

framework of my program is to:

(1) add support labels to lines in junction labelings

where support can hold, and add these labelings to the

regular set of labels,
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(2) as usual, do nothing when a line represents

unambiguously a support edge or an edge without support, and

(3) when there Is ambiguity, use the region orientation

values to help decide the issue. To do this, note that since

there is a connection between the edges which can have

support, line directions, and region orientations, I can use

the function ILLUMINE again to eliminate impossible

combinations and hopefuly decide where support can and cannot

hold.

I have no great confidence that such a system will show

where support must hold for certain, but the knowledge about

where support can hold combined with the knowledge that every

object must be supported somehow, should allow the program to

do quite well. I suspect that the program will be quite good

at finding places where support cannot possibly hold. To

solve these problems fully a program needs considerable

knowledge about stability, gravity, and friction. These

problems are outside the scope of this paper; for a

discussion of some of the Issues Involved see Blum et al

1970.
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To give a feeling for the number of new junctions which

would be required in the data base, I have shown some

junctions in figure 8.16 which can involve support. Figure

8.16A illustrates the fact that any concave edge which

touches the TABLE must be a support edge. In figure 8.16B,

if the crossbar of the T (the collinear lines) exhibits

support on one of its halves, then it must exhibit support on

the other half as well and the support direction must be the

same for both of these edges. Similarly, in figure 8.16C

both non-collinear edges must have the same support or lack

of support values. If each of the branches which can

( potentially exhibit support relations were labeled

independently, then the cases in figures 8.16A and 8.16B

would each have 27 possible support assignments Instead of

three and nine respectively, and the case in figure 8.16C

would have 9 assignments instead of the actual three. Thus

the same kinds of techniques which I have shown earlier for

other descriptions would almost certainly work well for

support cases too. Finally, obscuring edges, which have up

to now accounted for the biggest increases In the numbers of

new labels when the old labels were split into subtypes do

not even take part in this partitioning, so that the increase

in the total number of labelings should be well within

bounds.
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Of course my present program can already list lines

where support may hold (i.e. all crack and two-object concave

edges), and as before, simple heuristics would allow the

program to say with some confidence where support could or

could not hold. Clearly, it would also be quite natural to

call some of the support assignments in figure 8.16 "likely"

and certain others "extremely unlikely".
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9.0 HISTORICAL PERSPECTIVE

It is instructive to reexamine earlier vision work which

dealt with similar problems in the light of the formalisms I

have presented In this paper. In this chapter I review the

work of Guzman (Guzman 1968), Rattner (Rattner 1970), Orban

(Orban 1970), Freuder (Freuder 1971a, 1971b), Dowson (Dowson

and Waltz 1971, Dowson 1971a, Dowson 1971b), Huffman (Huffman

1971), and Clowes (Clowes 1971, Clowes et al 1971).

In what follows I hope to give you some appreciation for

the real advances in thinking about vision which were brought

about by these authors.. Ten years ago the whole area of

computer vision was uncharted territory, and it was certainly

far from obvious where one should begin. Today, while there

are innumerable questions still unanswered, we have some

definite ideas about how vision systems could be organized

and about the reasons why many appealing systems such as

perceptrons and template matching schemes are Inadequate

models for vision systems (Minsky & Papert 1970).
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9.1 GUZMAN'S SEE PROGRAM

Guzman's work is probably the most famous of the earlier

vision work, and indeed his approach was a dramatic departure

from what had been done before him. His formalisms were

designed to group regions together into bodies. Basically

his program did this by identifying each line in a line

drawing as linking or not linking, where linking means that

the regions on both sides of the line belong to the same body

and not linking means that there is no evidence about the

line; it may be either linking or the regions on either side

of the line may belong to different bodies. Guzman used a

set of junction types exactly as my program does (L, ARROW,

T, etc.) but he included only one labeling for each type of

junction. Guzman's junction set is shown In figure 9.1.

There can be two conditions for any line in a line

drawing after the labelings have been assigned to each

junction:

(1) the labels at either end of a line agree, in which

case the labels are assumed to be correct, or



EAGE 290

4-= LINK

K .

ATRow:

TOR1K<

T:

FIG•RE 9.1

K/
X:

MXKI



SECTION 9.1 291

(2) the labels on a line do not agree; in this case

heuristics are invoked to settle the issue in favor of one or

the other of the labels.

As examples of these heuristics, Guzman originally

linked regions if either end of a line were marked with a

linking label. Later he added a system using "weak" and

"strong" links to allow more subtle weighting of

possibilities and, still later, he added a link inhibition

feature which provided evidence against linking certain

regions. Rattner (Rattner 1970) worked out various

extensions to Guzman's work along these lines.

As it turned out, the link inhibition feature proved to

be a much more powerful method than the previous methods he

had tried. Basically this is because the link inhibition

technique was less local than the previous links had been.

The assignment of a link inhibition between two regions has

consequences for every line which separates the two regions,

unlike the linking mark which only serves as one piece of

evidence in favor of linking two regions. In terms of my

program, the program using links only is very much like what

my program would be if I divided my labels up into those

which had PLUS (convex) marks and all the rest (assume that
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there are no shadows). The link inhibition labels would be

those which have an arrow on the line segment, such as

occluding edges, cracks, etc. The only strong evidence for

linking regions comes from ARROW and FORK junctions, and of

these the ARROW junctions are the more important, since

(ignoring shadows and separable PlUS edges) every ARROW

labeling links the two regions which bound the shaft of the

ARROW. In contrast, there are a number of FORK junctions

which have non-linking lines (see figure 9.2).

But if link inhibitions are used there is considerable

evidence in ARROW, T, X, and K junctions; in fact Freuder

has shown that if only link inhibitions are used, the program

works just about as well as Guzman's full program.

There are numerous problems with Guzman's approach.

First, his system simply does not work very well; for

carefully chosen scenes it will find the correct results, but

the program Is very easy to fool. As Winston showed (Winston

1968) Guzman's program fails badly on scenes with holes, and

obviously the program is worthless for scenes with shadows.

If I map my labelings into Guzman's binary scheme there are

examples of virtually every possible labeling for each

junction type within my data base. Thus it becomes obvious
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that Guzman's labels are simply the most probable

combinations of links for scenes without shadows. As such,

his program really has very little understanding of the world

(see Winston 1972a, 1972b).

Second, Guzman's approach is difficult to extend. This

is due to the use of only one labeling for each junction and

consequent heavy dependence on special purpose heuristics,

and due also to the fact that virtually all the linking

information for a line comes only from the two junctions at

the ends of the line. There is no systematic way to use any

information except locally. (The only exceptions are

Guzman's use of matched Ts, the link Inhibition Information,

and regions which meet along more than one edge.) As an

example, Orban's extension of Guzman's program to include

shadows (Orban 1970) depends exclusively on the observation

that shadows frequently have chained L and X junctions. But

despite the fact that Orban's program does have a slightly

greater understanding of the meaning that scene features can

have, it is not a systematic extension. Like almost all the

extensions suggested for Guzman's work, it is a patchwork

method: to handle a new distinction, pick a few common

features that display the distinction and then adjust the

rest of the program to avoid making disastrous errors.
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Third, this approach leaves a great deal unexplained.

Certainly there is a great deal more to understanding a scene

than simply being able to connect the regions into bodies.

So far I have been dealing with the ways in which

Guzman's approach was deficient, but It has strong features

as well. Guzman was the first person, to my knowledge, to

get away from the idea of storing descriptions of particular

objects and trying to match these descriptions to a given

scene. Roberts (Roberts 1963) had used this method and in

fact others continued to do even less sophisticated template

matching of sorts well after Guzman published his work. In

contrast, Guzman's method works for arbitrary scenes

containing trihedral vertices and gives some answer for any

scene presented to it. Perhaps the most appealing feature of

SEE was its simplicity and clarity; there are no

tranformations, coordinates, or hidden lines, and In fact

only topology is used. Guzman's great insight was that by

describing the physical characteristics of a relatively small

number of local features, one can use simple decision

procedures to derive much less local facts about arbitrary,

unfamiliar scenes.
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Guzman's work was also instrumental in initiating two

fruitful lines of research which are still active. This

paper is along the line defined by Huffman and Clowes

(Huffman 1971, Clowes 1971). The other line is the work on

heterarchy (For excellent discussions of both Guzman and

heterarchy see Winston 1972a or 1972b, and Minsky & Papert

1972).

9.2 WORK AFTER GUZMAN; HUFFMAN & CLOWES

Huffman was motivated partly by his observation of the

lack of semantic content in Guzman's program to suggest a

richer set of labels than link and do-not-link. (Whether

Clowes came upon the same ideas independent of Guzman or not

I do not know.) Clearly both were influenced by Guzman's

"grammatical" approach to scene processing. Their great

insight was that by describing edges more precisely one could

use definite rules rather than probabilistically based

heuristics to choose scene interpretations. Moreover they

showed that one could even say with some assurance that

certain line drawing could not even correspond to real

physical scenes; compare this with the fact that Guzman's

program rather blindly returns some decomposition into bodies

for any line drawing, and you will get some Idea of the
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Increase in understanding Implicit in Huffman's and Clowes'

work.

Both Huffman and Clowes also worked with a construction

for representing region orientations called the dual graph

which influenced my thinking on region orientations liuffman

1971, Clowes et al 1971). Unfortunately, there is no neat

way that I could see to Integrate the dual graph into a

labeling scheme. In any case, I owe Huffman and Clowes a

considerable debt.

9.3 AN ACCOUNT OF MY EFFORTS

When Dowson and I began working in this area, we

envisioned a tree searching program which would attempt to

assign labelings from a reasonably small set (like those of

Huffman and Clowes) to a line drawing. Dowson came up with a

set of junctions involving cracks, and I generated a list of

shadow junctions (Dowson & Waltz 1971). Dowson then

developed VIRGIN, a tree search type labeling program (Dowson

1971b) to apply this knowledge to real scenes. He

Immediately ran into serious problems, since even the

simplest scenes required huge amounts of computer space, and

the program ended up with many possible labelings for each
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scene. Most of these labelings only differed by one or two

line labels, but each of which took a considerable amount of

time to produce. It did not become obvious to me until

somewhat later that tree search was the wrong model for this

problem.

In my proposal for this work (Waltz 1971) I suggested a

rather heterarchical model for labeling line drawings. At

this time I had already noted that by beginning with the

scene/background boundary I could cut down the search space

considerably, and I listed a number of rules (related to the

selection rules and region illumination types) which I

thought could further speed up and Increase the power of a

program. I also showed that region orientations could be

handled easily if I restricted the universe of objects to

include only those with right-angle edges.

My major breakthrough came when I saw that the region

orientations could be included as part of the edge labels,

and then saw that I could also subdivide each edge type into

several types according to the way that each edge could be

decomposed. This idea was first suggested to me by Freuder

(see Freuder 1971a) nearly a year before I used it.
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The last pieces fell into place when I made the decision

to try using a filtering program before doing a tree search,

based on my observations of Dowson's difficulties. Since the

set of labelings I now had was far larger than the set which

had clogged his program, I felt that I needed such a program

to clear away the clutter of unneeded labelings and make tree

searching feasible. I was genuinely surprised when the

filtering program returned unique labelings for most of the

junctions in the first scenes I gave to it. From here on my

work followed directly from the success of the combination of

this filtering program and the much enlarged junction

labeling sets. I think it is noteworthy that this workls

the direct result of my Interaction with the program, as

opposed to being the result of a system I worked out first by

hand and only then Implemented in a program.

There is one lesson which I think is Important, perhaps

more important than any other in terms of the ways it might

aid future research. For a long time after I had found the

ways of describing region Illuminations and edge

decompositions, I tried to find a clever way to collapse the

large set of line labels these distinctions implied into a

smaller and more manageable set which would retain all the

"essential" distinctions, whatever they were. Frustrated in
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this attempt for quite a while, I finally decided to go ahead

and include every possible labeling in the program, even

though this promised to involve a good deal of typing. I

hoped that when I ran the program certain regularities would

appear, i.e. that when the program found a particular

labeling for a junction it would always find another as well,

so that the two labelings could be collapsed into one new one

with no loss of Information. Of course, as it turned out, it

was the fact that I had made such precise distinctions that

allowed the program to find unique labelings. The moral of

this is that one should not be afraid of semi-infinities; a

large number of simple facts may be needed to represent what

can be deduced by computation using a few general Ideas.

It also seems logical that, if anything, people ae able

to make much finer distinctions than I was considering, and

that these distinctions had value for perception. For

example, people can distinguish between obtuse or "blunt"

edges (such as those of a regular dodecahedron), right angle

edges (such as those of a cube), and acute or "sharp" edges

(such as those of a regular tetrahedron).
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Finally, I do not see any reason to suppose that we

should be able to get along with distinctions on the order of

one or two hundred, any more than a language program with a

vocabulary of this size could comprehend or express anything

very interesting. But by the same token, it may be that a

vision system does not have to be too large for available

computers in order to reach a point of diminishing returns,

just as an Increase in vocabulary beyond 10,000 words would

probably not add much to a language program's (or a person's)

ability.
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