Technical Report 271

Generating Semantic
Descriptions From

Drawings of Scenes
With Shadows

David L. Waltz

MIT Artificial Intelligence Laboratory

GENERATING SEMANTIC DESCRIPTIONS
FROM DRAWINGS OF SCENES WITH SHADOWS
David L. Waltz
November 1972

ARTIFICIAL lNTEiLlGENCE LABORATORY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Cambridge Massachusetts 02139

GENERATING SEMANTIC DESCRIPTIONS
FROM DRAWINGS OF SCENES WITH SHADOWS=+

Abstract

The research reported here concerns the principles

used to automatically generate three-dimensional
representations from line drawings of scenes.

The computer programs {nvolved look at scenes which
consist of polyhedra and which may contain shadows and
various kinds of coincidentally aligned scene features.
Each generated description includes informationabout
edge shape (convex, concave, occluding, shadow, etc.),
about the decomposition of the scene into bodies, about
the type of illumination for each region (illuminated,
projected shadow, or oriented away from the light
source), and about the spacial orientation of regions.
The methods used are based on the labeling schemes of
Huffman and Clowes; this research provides a :
considerable extension to their work and also gives
theoretical explanations to the heuristic scene
analysis work of Guzman, Winston, and others.

it

*This report reproduces a thesis of the same title
submitted to the Department of Electrical Engineering,
Massachusetts Institute of Technology, in partial
fulfiliment of the requirements for the degree of
Doctor of Philosophy, September 1972,

TABLE OF CONTENTS

ACKNOWLEDGEMENTS

ABSTRACT

TABLE OF CONTENTS

1.0

2.0

3.0

4.0

5.0

I NTRODUCTION

DESCRIPTIONS

JUNCTION LABELS

JUNCTION LABEL ASSIGNMENT
COMBINATION RULES

EXPERIMENTAL RESULTS

COMPARISON WITH OTHER VISION PROGRAMS
HISTORICAL PERSPECTIVE

IMPLICATIONS FOR HUMAN PERCEPTION

® o o o o e o
0O ~NO VI & W=

ICK SYNOPSIS

1 THE PROBLEM

2 SOLVING THE LABEL ASSIGNMENT PROBLEM
3 BETTER EDGE DESCRIPTION

4 PROGRAMMING CONSEQUENCES

5 HANDLING BAD DATA

6 ACCIDENTAL ALIGNMENT

7 MISSING LINES _

8 REGION ORIENTATIONS

NNNDNDNNNDDDD =t b ok e ek b Pk

s o o ¢ o o o o &

HEDRAL JUNCTION LABELS
EDGE GEOMETRY
A USEFUL HEURISTIC
SHADOWS AT TRIHEDRAL VERTICES
OTHER NON-DEGENERATE JUNCTIONS
A CLASS OF DEGENERACIES

e« o o o o

OMPLETING THE REGULAR DATA BASE

|
1
2
3
b
5
M
1 REGION ILLUMINATION ASSIGNMENTS
2
L
1
2
3
4
5

SUMMARY OF THE DATA BASE

ECTION RULES
REGION BRIGHTNESS
SCENE/BACKGROUND BOUNDARY REVISITED
EXTENDING THE SUPPORT SURFACE
DISCUSSION
AN EXAMPLE

RV R R RV, N/,] &EE0 W W W W W=

e o o o o M

PAGE 4

149

6.0

7.0

8.0

9.0

EGIO

REG
8.1
8.2
8.3
8.4
8.5

HISTO
9.1

9.2
9.3

MAIN LABELING PROGRAM

A SMALL EXAMPLE
DISCUSSION

CONTROL STRUCTURE
PROGRAM PERFORMANCE
PERFORMANCE PROBLEMS

NON-TRIHEDRAL VERTICES

ACCIDENTAL ALIGNMENTS; FIRST TYPE

ACCIDENTAL ALIGNMENT WITHOUT OBSCURING EDGES
ACCIDENTAL ALIGNMENTS; FINAL TYPE

MORE CONTROL STRUCTURE

MISSING EDGES

HEURISTICS

N ORIENTATIONS

LINE LABEL ADDITIONS

AN EXAMPLE

GENERAL REGION ORIENTATIONS
GENERAL LINE DIRECTIONS
SUPPORT

RICAL PERSPECTIVE

GUZMAN'S SEE PROGRAM

WORK AFTER GUZMAN; HUFFMAN & CLOWES
AN ACCOUNT OF MY EFFORTS

BIBLIOGRAPHY

APPENDIX 1

APPENDIX

APPENDIX

2
APPENDIX 3
4
5

APPENDIX

PAGE 5

151
151
156
164
173
182

201
202
212
217
220
228
238
243

247
247
254
257
260
276
288
289
296
297
302
307
321
334
338

348

SECTION 1.0 6

1.0 [INTRODUCTION

How do we ascertain the shapes of unfamiliar objects?
Why do we so seldom confuse shadows with real things? How do
we "factor out" shadows when looking at scenes? How are we
able to see the world as essentially the same whether it is a
bright sunny day, an overcast day, or a night with only
streetlights for illumination? |In the terms of this paper,
how can we recognize the identity of figures 1.1 and 1.2? Do
we use learning and knowledge to interpret what we see, or do
we somehow automatically see the world as stable and
independent of lighting? What portions of scenes can we
understand from local features alone, and what configurations

require the use of global hypotheses?

Various theories have been proposed to explain how
people extract three-dimensional information from scenes
(Gibson 1950 is an excellent reference). It is well known
that we get depth and distance information from motion
parallax and, for objects fairly close to us, from eye focus
feedback and paralliax. But this does not explain how we are
able to understand the three-dimensional nature of
photographed scenes. Perhaps we acquire knowledge of the

shapes of objects by handling them and moving around them,

///\///////// X
n
G 55/ =

/ // ,\\ N7

7 ,;\\

7

_

7
/,/

e =

g aNd

TIGURE 12

SECTION 1.0 9

and use rote memory to assign shape to those objects when we
recognize them in scenes. But this does not explain how we
can perceive the shapes of objects we have never seen before.
Simitarly, the fact that we can tell the shapes of many
objects from as simple a representation as a line drawing
shows that we do not need texture or other fine details to
ascertain shape, though we may of course use texture

gradients and other details to define certain edges.

| undertook this research with the belief that it is
possible to discover rules with which a program can obtaina
three-dimensional model of a scene, given only a reasonably
good line drawing of a scene. Such a program might have
applications both In practical situations and in developing
better theories of human vision. Introspectively, | do not
feel that there is a great difference between seeing

"reality" and seeing line drawings.

Moreover, there are considerable difficulties both In
processing stereo images (such as the problem of deciding
which points on each retina correspond to the same scene
point; see Guzman 1968, Lerman 1970) and in building a system
incorporating hand-eye coordination which could be used to

help explore and disambiguate a scene (Gaschnig 1971). It

SECTION 1.0 10

seems to me that while the use of range finders, multiple
light sources to help eliminate shadows (Shirai 1971), and
the restriction of scenes to known objects may all prove
useful for practical robots, these approaches avoid oming to
grips with the nature of human perception vis-a-vis the
implicit three-dimensional information in line drawings of
real scenes. While | would be very cautious about claiming
parallels between the rules in my program and human visual
processes, at the very least | have demonstrated a number of
capable vision programs which require only fixed, monocular

line drawings for their operation.

In this thesis | describe a working collection of
computer programs which reconstruct three-dimensional
descriptions from line drawings which are obtained from
scenes composed of plane-faced objects under various lighting
conditions. In this description the system identifies shadow
lines and regions, groups regions which belong to the same
object, and notices such relations as contact or lack of
contact between the objects, support and in-front-of/behind
relations between the objects as well as information about
the spacial orientation of various reglions, all using the

description it has generated.

SECTION 1.0 11

1.1 DESCRIPTIONS

The overall goal of the system isto provide a precise
description of a plausible scene which could give rise to a
particular line drawing. It is therefore Iimportant to have a
good language in which to describe features of scenes. Since
| wish to have the program operate on unfamiliar objects, the
language must be capable of describing such objects. The
language | have used is an expansion of the labeling system
developed by Huffman (Huffman 1971) in the United States and

Clowes (Clowes 1971) in Great Britain.

The language employs labels which are assigned to line
segments and regions in the scene. These labels describe the
edge geometry, the connection or lack of connection between
adjacent regions, the orientation of each region In three
dimensions, and the nature of the t1lumination for each
region (illuminated, projected shadow region, or region
facing away from the light source). The goal of the program
Is to assign a single label value to each line and region in
the line drawing, except in cases where humans also find a

feature to be ambiguous.

SECTION 1.1 12

This language allows precise definitlions of such
concepts as supported by, In front of, behind, rests against,
shadows, is shadowed by, Is capable of supporting, leans on,
and others. Thus, if it is possible to label each feature of
a scene uniquely, then it iIs possible to directly extract
these relations from the description of the scene based on

this labeling.

1.2 JUNCTION LABELS

Much of the program's power is based on access to lists
of possible line label assignments for each type ofjunction
in a line drawing. While a natural language analogy to these
labels could be misleading, | think that it helps in
explaining the basic operation of this portion of the

program,

If we think of each possible label for a line as a
letter in the alphabet, then each junction must be
labeled with an ordered list of "letters" to form a
legal "word" in the language. Thus each "word"
represents a physically possible interpretation for a
given junction. Furthermore, each "word" must match the
"words" for surrounding junctions in order to form a
legal "phrase'", and all "phrases" in the scene must
agree to form a legal '"sentence'" for the entire scene.
The knowledge of the system is contained in (1) a
dictionary made up of every legal "word" for ech type
of junction, and (2) rules by which "words'" can legally
combine with other "words'. The range of the dictlionary

SECTION 1.2 13

entries defines the universe of the program; this

universe can be expanded by adding new entries

systematically to the dictlonary.

In fact, the "dictionary" need not be a stored list.
The dictionary can consist of a relatively small list of
possible edge geometries for each junction type, and a set of
rules which can be used to generate the complete dictionary
from the original lists. Depending on the amount of computer
memory avalilable, 1t may elther be desirable to store the
complete 1ists as compiled knowledge or to generate the lists
when they are needed. In my current program the lists are

for the most part precompiled.

The composition of the dictlionary Isinteresting in its
own right, While some basic edge geometries give rise to
many dictionary entries, some glve rise to very few. The
total number of entries sharing the same edge geometry can be
as low as three for some ARROW junctions, including shadow
edges, while the number generated by some FORK junction elge
geometries Is over 270,000 (including region orientation and

illumination values).

SECTION 1.3 14

1.3 JUNCTION LABEL ASSIGNMENT

There Is a considerable amount of local information
which can be used to select a subset of the total number of
dictionary entries which are consistent with a particular
junction., The first piece of information isalready Included
Iimplicitly In the idea of junction type. Junctions are typed
according to the number of lines which make up the junction
and the two dimensional arrangement of these lines. Figure
1.3 shows all the junction types which can occur in the
universe of the program. The dictionary is arranged by
Junction type, and a standard ordering Is assigned to all the
line segments which make up junctions (except FORKS and

MULTIS).

The program can also use local region brightness and
line segment direction to preclude the assignment of certain
labels to lines. For example, if it knows that one region is
brighter than an adjacent region, then the 1ine which
separates the reglions can be labeled as a shadowregion in
only one way. There are other rules which relate region
orientation, light placement and region illumination as well
as rules which 1imit the number of labels which can be

assigned to line segments which border the support surface

PAGE 15

VAN
N
/
\
><

X §“<

FIGURE 13

SECTION 1.3 16

for the scene. The program is able to combine all these
types of information in finding a list of appropriate labels

for a single junction,

1.4 COMBINATION RULES

Combination rules are used to select from the initlal
assignments the label, or labels, which correctly describe
the scene features that could have produced each junction in
the given line drawing. The simplest type of combination
rule merely states that a label is a possible description for
a junction if and only if there is at least one label which
"matches" it assigned to each adjacent junction. Two
junction labels "match" if and only if the line segment which
joins the junctions gets the same interpretation from both of

the junctions at its ends.

Of course, each interpretation (line label) iIs really a
shorthand code for a number of properties of the 1ine and its
adjoining regions. |f the program can show that any one of
these constituent values cannot occur in the given scene
context, then the whole complex of values for that line
expressed implicitly in the interpretation cannot be possible

either and, furthermore, any junction label which assigns

SECTION 1.4 17

this interpretation to the line segment can be eliminated as
well, Thus, when It chooses a label to describe a
particular junction, it constrains all the junctions which
surround the regions touching this junction, even though the

combination rules only compare adjacent junctions.

More complicated rules are needed If it Is necessary to
relate junctions which do not share a visible reglion or line
segment. For example, | thought at the outset of my work
that it might be necessary to construct models of hidden
vertices or features which faced away from the eye in order
to find unique labels for the visible features. The
difflculty in this Is that unless a program can find which
lines represent obscuring edges, it cannot know where to
construct hidden features, but If it needs the hidden
features to label the lines, itmay not he able to declde
which lines represent obscuring edges. As It turns out, no
such complicated rules and constructions are necessary in
general; most of the labeling problem can be solved by a

scheme which only compares adjacent junctions.

SECTION 1.5 18

1.5 EXPERIMENTAL RESULTS

When | began to write a program to implement the system
| had devised, | expected to use a tree search system to find
which labels or "words" could be assigned to each junction,
However, the number of dictionary entries for each type of
junction is very high, (there are almost 3000 different ways
to label a FORK junction before even considering the possible
region orientations!) so | decided to use a sort of

"filtering program" before doing a full tree search.

The program computes the full list of dictionary entries
for each junction in the scene, eliminates from the list
those labels which can be precluded on the basis of local
features, assigns each reduced 1list to its junction, and then
the filtering program computes the possible labels for each
line, using the fact that a line label is possible If and
only if there is at least one junction label at each end of
the line which contains the line label, Thus, the list of
possible labels for a line segment is the intersection of the
two lists of possibilities computed from the junction labels
at the ends of the line segment. |If any junction label would
assign a interpretation to the line segment which is not in

this intersection list, then that label can be eliminated

SECTION 1.5 19

from consideration, The filtering program uses a network
iteration scheme to systematically remove all the
interpretations which are precluded by the elimination of

labels at a particular junction,

When | ran this filtering program | was amazed to find
that in the first few scenes | tried, this program found a
unique label for each line. Even when | tried considerably
more complicated scenes, there were only a few lines in
general which were not uniquely specified, and some of these
were essentially ambiguous, 1.e. | could not decide exactly
what sort of edge gave rise to the line segment myself. The
other ambiguities, i.e. the ones which | could resoive
myself, in general require that the program recognize lines
which are parallel or collinear or regions which meet along
more than one line segment, and hence require more global

agreement,

| have been able to use this system to investigate a
large number of line drawings, including ones with missing
lines and ones with numerous accidentally aligned junctlons.
From these investigations | can say with some certainty which
types of scene features can be handled by the filtering

program and which require more complicated processing.

SECTION 1.5 20

Whether or not more processing is required, the filtering
system provides a computationally cheap method for acquiring
a great deal of information. For example, In most scenes a
large percentage of the line segments are unambiguously
labeled, and more complicated processing can be directed to
the areas which remain ambiguous. As another example, if |
only wish to know which lines are shadows or which lines are
the outside edges of objects or how many objects there are in
the scene, the program may be able to get this information
even though some ambiguities remain, since the ambiguity may

only involve region illumination type or region orientation.

Figure 1.4 shows some of the scenes which the program is
able to handle. The segments which remain ambiguous after
its operation are marked with stars, and the approximate
amount of time the program requires to label each scene is
marked below it. The computer is a PDP-10, and the program
is written partially in MICRO-PLANNER (Sussman et al 1971)

and partially in compiled LISP,

(5 SECONDS)

(22 SECONDS)

FIGURE 14

PAGE 21

(15 SEcoNDS)

(39 SECONDS) |

(48 SECONDS)

TIGURE 14

LT

TAGE 22

=

Hr

SECTION 1.6 23

1.6 COMPARISON WITH OTHER VISION PROGRAMS

My system differs from previously proposed ones In

several important ways:

First, it is able to handle a much broader range of
scene types than have previous programs. The program
“understands" shadows, some junctions which have missing
lines, and apparent alignment of edges caused by the
particular placement of the eye with respect to the scene, so
that no speclal effort needs to be made to avoid problematic

features,

Second, the design of the program facilitates its
integration with line-finding programs and higher-level
programs such as programs which deal with natural language or
overall system goals. The system can be used to write a
program which automatically requests and uses many different
types of information to find the possible Interpretations for

a single feature or portion of a scene.

Third, the program is able to deal with ambigulity In a
natural manner. Some features In a scene can be ambiguous to

a person looking at the same scene and the program preserves

SECTION 1.6 2L

these various possiblities. This tolerance for ambiguity is
central to the philosophy of the program; rather than trving
to pick the "most probable'" interpretation of any features,
the program operates by trying to eliminate impossible
interpretations., If it has been given insufficient
information to decide on a unique possibility, then it
preserves all the active possibilities it knows, Of course
if a single interpretation is required for some reason, one

can be chosen from this list by heuristic rules.

Fourth, the program is algorithmic and does not require
facilities for back~-up if the filter program finds an
adequate description, Heuristics have been used in all
previous vision programs to approximate reality by the most
likely interpretation. This may simplify some problems, but
sophisticated programs are needed to patch up the cases where
the approximation is wrong; In my program | have used as
complete a description as | could devise with the result that
the programs are particularly simple, transparent and

powerful,

Fifth, because of this simplicity, | have been able to
write a program which operates very rapidly. As a practical

matter this is very useful for debugging the system, and

SECTION 1.6 25

allows modiflcations to be made with relative. ease.

Moreover, because of its speed, | have been able to test the
program on many separate line drawings and have thus been
able to galn a clearer understanding of the.capabtlltles and
ultimate Vimitations of the program. In turh, this
understanding has led and should continue to lead to useful
modi{fications and a greater understanding of the nature and
complexity of procedures necessary to handle various types of

scene features.

Sixth, as explained in the next section, the descriptive
language provides a theoretical foundation of consliderable

value in explaining previous work,
1.7 HISTORICAL PERSPECTIVE

One of the great values of the extensive descriptive
apparatus | have developed is its ability to explain the
nature and shortcomings of past work. | will discuss in
Chapter 9 how my system helps in understanding the work of
Guzman (Guzman 1968), Rattner (Rattner 1970), Huffman
(Huffman 1971), Clowes (Clowes 1971), and Orban (Orban 1970);
and to explain portions of the work of Winston (Winston 1970)

and Finin (Finin 1971a, 1971b). For example, | show how

SECTION 1.7 26

various concepts such as support can be formalized In my
descriptive language. From this historical comparison
emerges a striking demonstration of the ability of good
descriptions to both broaden the range of applicability of a

program, and simplify the program structure,

1.8 IMPLICATIONS FOR HUMAN PERCEPTION

My bellef that the rules which govern the interpretation
of a line drawing should be simple is based on the subjective
impression that little abstraction or processing of any type
seems to be required for me to be able to recognize the
shadows, object edges, etc. in such a drawing, in cases where
the drawing is reasonabhly simple and complete. | do not
believe that human perceptual processes necessarily resemble
the processes in my program, but there are various spects of
my solution which appeal to my Intuition about the nature of
that portion of the problem which is independent of the type
of perceiver. | think it is significant that my program is
as simple as It is, and that the information stored in it Is
so independent of particular objects., Back-up is not
necessary in general; the system works for picture fragments
as well as for entire scenes; the processing time required

is proportional to the number of line segments and not an

SECTION 1.8 27

exponential function of the number; all these facts lead me

to belleve that my research has been in the right directions.

Clearly there are considerable obstacles to be overcome
in extending this work to general scenes., For simple curved
objects such as cylinders, spheres, cones, and conic
sections, there should be no particular problem In using the
type of program | have written, (For a quite different
approach to the handling of curved objects, see Horn 1970,)
| also believe that it will be possible to handie somewhat
more general scenes (for instance scenes containing
furniture, tools and household articles) by approximating the
objects In them by simplified "envelopes" which preserve the
gross form of the objects yet which can be described In terms
like those | have used. In my estimation such processing
cannot be done successfully until the problem of
reconstructing the invisible portions of the scene Is solved,
This probiem is intimately connected with the problem of
using the stored description of an object to guide the search
for Instances of this object, or similar objects in a scene.
The ability to label a line drawing In the manner | describe
greatly simplifies the specification and hopefully will
simplify the solution of these problems. Chapter 8 deals

with natural extensions of my progfam which | beljieve will

SECTION 1.8 28

lead toward the eventual solution of these problems.

SECTION 2,0 29

2.0 QUICK SYNOPSIS

This chapter provides a quick look at some of the
technical aspects of my work, All topics covered here are
treated either In greater detail or from a different
perspective in later chapters. For a hurried reader this
chapter provides a map to the rest of the paper, and enough
background to understand a later chapter without reading all

the intervening ones,

2.1 THE PROBLEM

In what follows | frequently make a distinction between
the scene Itself (objects, table, and shadows) and the
retinal representation of the scene as a two-dimensional line
drawing. | will use the terms vertex, edge and surface to
refer to the scene features which map into junction, Vine and

region respectively In the line drawing.

Qur first subproblem is to develop a language that
allows us to relate these two worlds. | have done this by
assigning names called labels to lines in the line drawing,
after the manner of Huffman (Huffman 1971) and Clowes (Clowes

1971). Thus, for example, in figure 2.1 line segment J1-J2

J1

< <

(1

Ji
J4
J7
J9

PAGE 320

Jio T8

Y K

(ARROW) (T (FORKD (K)

13
J2 Jé J14 J
J3 J1l J15

J§ J12

J8

J10

FIGURE 2.1

SECTION 2,1 31

is labeled as a shadow edge, line J2-d3 Is labeled as a
concave edge, line J3-Jl4 Is labeled as a convex edge, line
Ji=J5 is labeled as an obscuring edge and line J12-J13 is
labeled as a crack edge. Thus, these terms are attached to
parts of the drawing, but they designate the kinds of things

found in the three~dimensional scene,

When we 1ook at a 1ine drawlng of this sort, we usually
can easily understand what the line drawing represents. 1In
terms of a labeling scheme elither (1) we are able to assign
labels uniquely to each line, or (2) we can say that no such
scene could exist, or (3) we can say that although it Is
Impossible to decide unambiguously what the label of an edge
should be, it must be labeled with one member of some
specified subset of the total number of labels. What
knowledge is needed to enable the program to reproduce such

labeling assignments?

Huffman and Clowes provided a partial answer in their
papers. They pointed out that each type of junction can only
be labeled in a few ways, and that iIf we can say with
certainty what the label of one particular 1ine s, we can
greatly constrain all other lines which Intersect that line

segment at Its ends. As a specific example, if one branch of

SECTION 2.1 32

an L junction is labeled as a shadow edge, then the other

branch must be labeled as a shadow edge as well,

Moreover, shadows are directional, i.e. in order to
specify a shadow edge, it must not only be labeled "shadow"
but must also be marked to indicate which side of the edge Is
shadowed and which side is il1luminated, Therefore, not only
the type of edge but the nature of the regions on each side

can be constrained.

These facts can be illustrated in a jigsaw puzzle
analogy, shown in figure 2.2. Given the five different edge
types | have discussed so far, there are seven different ways
to label any line segment. This implies that if all line
labels could be assigned independently there would be 7% = 49
different ways to label an L, 73 = 343 ways to label a
three-line junction, etc. In fact there are only 9 ways In
which real scene features can map into Ls on a retinal
projection, Table 2.1 summarizes the ways in which junctions
can be assigned labelings from this set. In figure 2.3, |
show all the possible labelings for each junction type,
limiting myself to vertices which are formed by no more than
three planes (trihedral vertices) and to junctions of five or

fewer lines. In Chapter 3 | explain how to obtain the

PAGE 33

PTIGURE 22
CONVEX. @ C‘ONCAVB c A’R
e WL P PrRcEE WLy URus swns}o

- 23— ==

ORSCURING
BACW ANY TWO CRACK.
(ST IATOH (:?u:.cz.'s WILL FIT)

ALL 1. LABELINGS:

PAGE 3%

5 (3)

®)

(THE NUMBBRS REFER, BACK To THE
4 JUNCTION LABELINGS &OX THE
TRECEEDING PAGE)

FIGURE 2.2

PAGE 35

JuNCTION %ﬁgﬁiﬁﬁfm fetual, TERCENTAGE
T s O imes o)
INDEPENDENTLY
. 9 7 184
ARROW 243 9 26
PORK 343 17 -
T 343 26 16
PEAK 7401 4 o2
X Z401 37 15
XX 2401 5 02
K 2401 12 0.5
MULTI 2401 24 Lo
KA 16807 g 005
KX 16807 12, 007

Tarte 2.1

AL LKL
F3LELLTT
<=~ T- <A

inue&)d

C++C(£(c3n’c_ C ¢ e &
ot F

s

TEAK

&€

d
P R L.

y

o
oA
|
/

' +
- - — < -
+

A

/e

Y,
7

)
PR

A

XX

C\ /¢ ¢ + +
c c c e o e
. TIGURE 23

PAGE 38

RN R R
R

MWLTI
+ c + c-KA'c -+ A

A7

e b 9 9
XN R KN X

\X\A%

—-—

c
FIGURE 23

SECTION 2.1 39

junctions in figure 2.3; | do not expect that it should be
obvious to you how one could obtain these junctions. |In
general, for clarity, | have tried to use the word labeling
to refer to the simultaneous assignment of a number of line
labels. Labels thus refer to line interpretations, and

labelings refer to junction or scene interpretations.

2,2 SOLVING THE LABEL ASSIGNMENT PROBLEM

Labels can be assigned to each line segment by a tree
search procedure, 1in terms of the jigsaw puzzle analogy,

imagine that we have the following Items:

1. A board with channels cut to represent the line
drawing; the board space can accept only L pieces at each
place where the line drawing has an L, only ARROW pieces
where the line drawing has an ARROW, etc. Next to each
junctlon are three bins, marked "junction number", "untriled
labels", and "tried labels",

2. A full set of pleces for every space on the board, |If
the line drawing represented by the board has five Ls then
there are flve full sets of L pieces with nine pieces in each
set,

3. A set of junction number tags marked J1, J2, J3,
ees, dn, where n Is the number of junctions on the board,

g 4k, A counter which can be set to any number between 1
and n.

The tree search procedure can then be visualized as
follows:

SECTION 2.2 40

Step 1: Name each junction by placing a junction number tag
in each bin marked "junction number",

Step 2: Place a full set of the appropriate type of pieces In
the "untried labels"™ bin of each junction.

Step 3: Set the counter to 1. From here on in N¢c will be

used to refer to the current value of the counter. Thus if
the counter is set to 6, then J(Nc) = 6,

Step 4: Try to place the top piece from the "untried labels"

bin of junction J(Nc) In board space J(Ne). There are
several possible outcomes:

LA. If the plece can be placed (i.e. the piece matches
all adjacent pieces already placed, if any), then

Al. 1If Nec < n, increase the counter by one and
repeat Step &4,

A2. |f Nc = n, then the pieces now on the board
represent one possible labeling for the line drawing. |If
this Is true then

i. Write down or otherwise remember the
labeling, and

il. Transfer the piece in space n back Into the
n-th "untried labels" bin, and

iti. Go to Step 5.

uB. If the piece cannot be placed, put it in the "trled
labels" bin and repeat Step L.

4C. If there are no more pieces in the "untried labels"
bin, then

C2. If Nc = 1, we have found all (if any) possible
labelings, and the procedure is DONE.

C2. Otherwise, go to Step 5.

Step 5: Do all the following steps:

SECTION 2.2 41
t. Transfer all the pieces from the Nc-th
"tried labels" bin into the Nc-th "untried labels" bin, and

i1. Transfer the piece in space Nc-1 into its
“tried labels"™ bin, and

iti. Set the counter to Nc-1, and go to Step 4,

To see how this procedure works In practice, see flgure
2,4, For this example assume that the pieces are piled so
that the order in which they are tried Is the same as the
order in which the pieces are listed In figure 2.3. The
example is carried out only as far as the first labeling
obtained by the procedure, There is, of course, at least one
other labeling, namely the one we could assign by Inspection.
The "false" labeling found flrst could be eliminated In this
case by a program If it knew that R3 is brighter than R1 or
that R2 is brighter than R1, It could then use heuristics
which only allow it to fit a shadow edge in one orientation,
given the relative {1lumination on both sides of a line.
However, if the object happened to have a darker surface than

the table, this heuristic would not help.

Clearly this procedure leaves many unsolved problems,
In general there will be a number of possible labelings from
which a program must still choose one. What rules can it use

to make the choice? Even after choosing a 1abeling, in order

PAGE 42

STEP3 IMPOSSIBLE TO
LABEL J3; .. REMOVE sTeP R

Rl
LABEL FROM J2 & TRY = @ JB

STEP9 RL3L
—_— ¥

=

92 STEP 10
STEPS oA J9 HAS A LEGAL LABEL

P So THE RBSULT IS A
J8 FOSSIBLE LARELING.
n NOTICE THAT IT IS

NOT TN FACT AVALID

INTERPRETATION

THE INFORMATION USED
ok AND/OR THE DESCRIPTION

IS INADEQUATE.

FIGURE 249

SECTION 2.2 43

to answer questions (about the number of objects in the
scene, about which edges are shadows, about whether or not
any objects support other objects, etc.) a program must use
rules of some sort to deduce the answers from the information

it has.

| will argue that what |s needed to find a single
reasonable interpretation of a line drawing Is not a more
clever set of rules or theorems to relate various features of
the line drawing, but merely a hetter description of the
scene features., In fact, it turns out that we can use a
parsing procedure which involves less computation than the

tree search procedure.

2.3 BETTER EDGE DESCRIPTION

So far | have classified edges only on the basis of
geometry (concave, convex, obscuring or planar) and have
subdivided the planar class Into crack and shadow
sub-classes, Suppose that | further break down each class
according to whether or not each edge can be the bounding
edge of an object. Objects can be bounded by obscuring
edges, concave edges, and crack edges, Fligure 2.5 shows the

results of appending a label analogous to the "obscuring

M ‘& F\ ‘ﬂww’ ‘ﬂwﬂ; _
f ! 1 1
L AR L% S &

N ey AT RN

INTERPRETATION !

EAGE 45

AN INSEPARABLE CONCAVE EDGE; THE

R - OBIECT 6T WHICH R1 IS APART [OB(RL))

R2 IS THE SAME AS PRRD]. |

RL - A SEPARARLE TWo-OBIECT CoNCAYE EDGE;

-—"—"’Rl TP [0B(R1L)]) IS ABOYE [DR(R2)] THEN
[0B(R2)) SUPPORTS [OB(R1Y].

RL = SAMB AS ABGVE,IF RL IS ABOVE R2, THEN

R2 7 [0B(R2)) OBSCURES [oB(R1)])oR [oB(RL))
STPPORTS [cBRD].

RL % A SEPARABLE THREE-OBIECT CoNCAVE

Rz EPGE; NEITHER [0B(R1)) NoR [OB(R2))
CAN SUPPORT THE OTHER.,

RL .c A CORACK EDGE; (OB(R2)] IS IN FRONT OF

R [oB(RY] TF RL EACE R2.

RL &, A ¢RACK BEDGEB; [0BMRD] supPorTs [0B(R1)]

R% IP R1 IS ABGYE R2,

SEPARATIONS:

- — -X —> ++ +

- —> CA — 4 +

‘\{ —+ C\/ --% \(4

TIGURE 25

SECTION 2.3 L6

edge" mark to crack and concave edges. Thls approach is

similar to one first proposed by Freuder (Freuder 1971a).

Each region can also be labeled as belonging to one of

the three following classes:

I = I1luminated directly by the light source.

SP - A projected shadow region; such a reglion would be
illuminated if no object were between [t and the light

source,

SS - A self-shadowed region; such a region Is oriented

away from the light source.

Given these classes, | can define new edge labels which
also inciude information about the lighting on both sides of
the edge. Notice that in this way | can Iinclude at the edge
level, a very local level, iInformation which constrains all
edges bounding the same two regions., Put another way,
whenever a line can be assigned a single label which includes
this lighting information, then a program has powerful
constraints for the junctions which can appear around either

of the regions which bound this line.

SECTION 2.3 47

Figure 2.6 |s made up of tables which relate the region
illumination types which can occur on both sides of each edge
type, For example, If either side of a concave or crack edge

{s illuminated, both sides of the edge must be !1luminated.

These tables can be used to expand the set of allowable
junction labels; the new set of labels can have a number of
entries which have the same edge geometries but which have
different region illumination values., It Is very easy to
write a program to expand the set of labelings; the
principles of its operation are (1) each reglon in a given
junction labeling can have only one illumination value of the
three, and (2) the values on either side of each line of the
junction must satisfy the restrictions in the tables of

figure 2.6.

An interesting result of this further subdivision of the
line labels Is that, with four exceptions, each
shadow-causing junction has only one possible {l1lumination
parsing, as shown In figure 2.7. Thus whenever a scene has
shadows and whenever a program can find a shadow causing
junction in such a scene, It can greatly constrain all the

lines and regions which make up this junction. |In flgure 2.7

PAGE 48

2 =g % HF =
1N & SF 88 2L FE L =3P
C(oum)fﬂ P Sp P Sp
ANY *=<F °
T |YES| No | No) e - s
1—12 - Ihaa hes Mhas
SP Y; _ _) _
Nbo ZE'_S, YEs . 592 ; ss‘p; gf; gp
88 | Mo |Yes[Yes | «28 5% 8 5
2
A I ¢Sp 8s . T i y
CONVEX 3 — ":_S? ._:t_l._.
I |Yes |No |¥ES o . dp s
1+12 ~ ~Ti 5
'SP | No | YES | YES)
— ':'s'é
¢s | YBs | Yes |Yes
2
P RANEE
C'Cl*
2 T |No |Yss| No .
1 — 3
¢P {No | No | No
dd [No |No |No
Srppowl 1 NEREE
oL X
T |No |No | No op
4 | 4:1'
<P |Ye<| No | No
48 | No | No | No X gg = ggoué\rrzkgwckmgs :

FPIGURE 26

YAGE 49

2 ,
cradi | 1 I 8P ¢gs ; ;
(CEITHER) ¢ &
T [Yee!| No | No R
c.l c SP "c*‘é%
8P | No {Ye= | No
— —h R
SS | No | No |Yes
= .-y-% .-<-_§:.
(E&c_m%g T
112 | 1 'Yl Yes!lYes
X8c| YBS |YBS stxg
SP |Yee|Yas [Yes w
°R]
1 1,7' 8§ |¥Yes [Yes [YES

TIGURE 2.6

SP
I k i I 4+ e I
S - L >5sp
Al 17\SP I L -
g
%/tj sg SS |¢ T T
- - I S?i—i / R _
sp <R 53 XR R T I
¥ ¢ S SP ss
L + T R
> T SP & o [T
I >t <. I |Eacr or THESE (¥ ITS
T - VARIATIONS WITH CRACKY)
¢p <p | EEAS A UNIQUE REGION
® I T 4 TLLUMINATION LABBLING
T T TorgP
Sor 4 SS | 88 ¥ Wer| O S
<4 ~ s | o
1 3RS | g T LS e~

Eacit of THESE JTUWNMNCTIONS HAS THRER
EEERENT REGION TLLUUMINATION {ARELINGS

FIGURE X7

SECTION 2.3 51

| have also marked each shadow edge which is part of a
shadow=-causing junction with an "L" if the arrow on the
shadow edge points counter~clockwise and an "R" [f the arrow
points clockwise. No "L" shadow edge can match an "R" shadow
edge, corresponding to the physical fact that it is
impossible for a shadow edge to be caused from both of lIts

ends.,

There are two extreme posslbilitlés that this
partitioning may have on the number of junction labelings now

needed to describe all real vertices:

(1) Each old junction label which has n concave edges, m
crack edges, p clockwise shadow edges, q counterclockwise
shadow edges, s obscuring edges and t convex edges will have

to be replaced by (20f1(5;“(3)P(3fq(9)s(8)t new junctions, or

(2) Each old junction will give rise to only one new

junction (as In the shadow-causing junction cases).

If (1) were true then the partition would be worthless,
since no new information could be gained, If (2) were true,
the situation would be greatly improved, since In a sense all

the much more precise Information was implicitly included in

SECTION 2.3 52

the original junctions but was not explicitly stated.
Because the information is now more explicitly stated, many
matches between junctions can be precluded; for example, if
in the old scheme some line segment L1 of junction label Q1
could have been labeled concave, as could line segment L2 of
junction label Q2, a line joining these two junctions could
have been labeled concave. But In the new scheme, if each
junction label gives rise to a single new label, both L1 and
L2 would take on one of the twenty possible values for a
concave edge, Unless both L1 and L2 gave rise to the same
new label, the line segment could not be labeled concave
using Q1 and Q2. The truth lies somewhere between the two
extremes, but the fact that it Is not at the extreme of (1)
means thaﬁ there is a net improvement. In Table 2.2 |
compare the situation now to cases (1) and (2) above and also

to the situation depicted in Table 2.1,

I have also used the better descriptions to express the
restriction that each scene Is assumed to be on a horizontal
table which has no holes in It and which is large enough to
fill the retina. This means that any line segment which
separates the background (table) from the rest of the scene
can only be labeled as shown in figure 2.8. Because of this

fact the number of junction labels which could be used to

TUNCTION. iﬁfzggmm %ﬁmms %;%é?ms %EE‘AL PEReENTASE PERCENTAGE
TYPE |ippsien g&zﬁ“' :f;g’,;j JUNCTLONS
BT i 75,439
CASELD ¥ [CASED* (°79 _C7
1, 2249 702 9 94 18,4 2.8
ARRSW |185,193 | C88S g 86 2.6 0.05
TORK |185193 | 22923 17 826 S0 045
T 185,193 | 18903 26 623 7.6 0.%9
PEAK [11,55S901| 22680 4 10 0.2 |~161
X 11,556,701 2 37 43S 1.5 }38x1073
XX 11,555,904 2 s 128 0.2, 1070
MULTE [11588701| 2 24 160 1.0 |+dx1073
K {i1sssv01| 2 12, 213 05 |~1gx15®
KA 6.58x108| 7 8 2.0 0.08 |~3.0x16°
KX | esBxio8| 2 12, T6 0.07 |~Ax15°

TABLE 22

¥SEE TEXT, PAGE 51

£539vd

PAGE 54

1] 2

BACKGRoOUND SeENE

CAN omNLY BE 1LABELED IN
ONE OF THE TOLLOWING WAYS:

TIE I/FP Ijles IIT IFPJ:FP ‘IF?
K R

PIGURE 28

SECTION 2.3 55

label junctions on the scene/background boundary can be

greatly restricted.

The value of a better description should be immediately
apparent. In the old classification scheme three out of the
seven line labels could appear on the scene/background
boundary, whereas In the new classification, only seven out
of fifty labels can occur. Moreover, since each junctlon
must have two of its line segments bounding any region, the
fraction of junctions which can be on the scene/background
boundary has Improved roughly from (3/7)(3/7) = 9/49 = 18,4%
to (7/57)(7/57) = 49/3149 = 1.6%. The results of these

improvements will become obvious in the next section.

2.4 PROGRAMMING CONSEQUENCES

There are so many possible labels for each type of
junction that | decided to begin programming a labeling
system by writing a sort of filtering program to eliminate as
many junction labels as possible before beginning a tree

search procedure,

SECTION 2.4 56

The filter procedure depends on the following

observation, given in terms of the jigsaw puzzle analogy:

Suppose that we have two junctions, Jl1 and J2 which are
Joined by a line segment L=Jl-Jd2. Jl and J2 are
represented by adjacent spaces on the board and the
possible labels for each junction by two stacks of
pieces. Now for any piece M In Jl's stack either (1)
there is a matching piece N In J2's stack or (2) there
is no such piece. If there is no matching piece for M
then M can be thrown away and need never be considered
again as a possible junction label.

The filter procedure below Is a method for
systematically eliminating all junction labels for which
there can never be a match., All the equipment is the same as
that used in the tree search example, except that this time |

have added a card marked "junction modifled" on one side and

"no junction modified" on the other.

Step 1: Put a junction number tag between 1 and n in
each “junction number" bin, Place a full set of pieces
in the "untried labels" bin of each junction.

Step 2: Set the counter to Nc = 1, and place the card so
that it reads "no junctlion modified".

Step 3: Check the value of Nec:

A. I1f Nc= n+ 1, and the card reads'ho junction
modifled" then go to SUCCEED.

B, If Ne = n+ 1, and the card reads "“junction
modi fied" then go to Step 2. (At least one piece was
thrown away on the last pass, and therefore It is
possible that other pieces which were kept only because

SECTION 2.4 57

this piece was present will now have to be thrown away
also.)

C. Otherwise, go to Step &,

Step 4: Check the "untried labels" bin of junction
J(Nc):

A. I|f there are no pieces left in the Nc-th
"untried labels" bin, then

Al., |If there are no pieces In the Nc-th
“"tried labels" bin, go to FAILURE.

A2. Otherwise, transfer the pieces from the
Nc~th "tried labels” bin back into the Nc~th “untried
labels" bin, add 1 to the counter (Nc) and go to Step 3.

B, |If there are pieces left in the Nc-th "untried
labels" bin, take the top piece from the bin and place
it Iin the board, and go to Step 5.

Step 5: Check the spaces adjacent to space Nc:

A. |If the piece In the Nc-th space has matching
pieces In each neighboring junction space, transfer the
piece from space Nc into the Nc-th "tried labeis" bin,
and transfer the pieces from the nelighboring spaces and
the nelighboring "trlied labeis'" bins back into theilr
“"untried labels" bins.

B. |f there are empty neighboring spaces, then

Bl. |If there are no more junctions In the
neighboring "untried labels"™ bins which could fit with
the piece in space N¢, then that plece Is not a possible
label. Throw it away, and arrange the card to read
"junction modifled" If It doesn't already.

B2. Try pieces from the nelighboring “untried
labels'" piles until either a piece fits or the pile Is
exhausted, and then go to Step 5 again.

SUCCEED: The pieces in the "untried labels'" bins of each
junction have passed the fllitering routine and
constitute the output of this procedure.

SECTION 2.4 58

FAILURE: There is no way to label the scene given the

current set of pieces.

In the program | wrote, | used a somewhat more complex
variation of this procedure which only requires ome pass
through the junctions. This procedure is similar to the one

used to generate figure 2.9, and is described below.

When | ran the filter program on some simple line
drawings, | found to my amazement that the filter procedure
yielded unique labels for each junction in most cases! |In
fact in every case | have tried, the results of this
filtering program are the same results which would be
obtained by running a tree search procedure, saving all the
labelings produced, and combining all the resulting
possibilities for each junction. In other WOrds, the filter
program in general eliminates all labels except those which

are part of some tree search labeling for the entire scene.

It is not obvious that this should be the case. For
example, If this fllter procedure is applied to the simple
line drawing shown in figure 2.4 using the old set of labels
given in figure 2.3, 1t produces the results shown in figure
2.9. In this fligure, each junction has labels attached which

would not be part of any total labeling produced by a tree

FIGURE 29

SECTION 2.4 60

search., This figure is obtained by going through the

junctions in numerical order and:

(1) Attaching to a junction all labels which do not
conflict with junctions previously assigned; l.e, If it is
known that a branch must be labeled from the set S, do not
attach any junction labels which would require that the

branch be labeled with an element not in S.

(2) Looking at the neighbors of this junction which have
already been labeled; if any lahel does not have a
corresponding assignment for the same branch, then eliminate

it.

(3) Whenever any label is deleted from a junction, look
at all its neighbors In turn, and see If any of their labels
can be eliminated. I|f they can, continue this process
iteratively until no more changes can be made, Then go on to
the next junction (numerically)., The junction which was
being labeled (as In step (1)) at the time a label was
el Iminated (struck out in the figure) is noted next to each

el iminated label in fligure 2.9.

SECTION 2.4 61

The fact that these results can be produced by the
filtering program says a great deal about line drawings
generated by real scenes and also about the value of precise
descriptions, There is sufficient local information in a
line drawing so that a program can use a procedure which
requires far less computation than does a tree search
procedure., To see why this Is so, notice that if the
description the program uses is good enough, then many
junctions must always be given the same unique label in each
tree search solution; the filtering program needs to find
such a label only once, while a tree search procedure must go
through the process of finding the same solution on each pass

through the tree,

Quite remarkably, all these results are obtained using
only the topology of line drawings plus knowledge about which
region is the table and about the relative brightness of each
region. No use is made (yet) of the direction of line
segments (except that some directional information is used to
classify the junctions as ARROWs, FORKs, etc.), nor Is any
use made of the length of line segments, microstructure of

edges, lighting direction or other potentially useful cues.

SECTION 2,5 62

2.5 HANDLING BAD DATA

So far | have treated this subject as though the program
would always be given perfect data. In fact there are many
types of errors and degeneracies which occur frequently.

Some of these can be corrected through use of better line
finding programs and some can be eliminated by using stereo
information, but ! would like to show that the program can
handle various problems by simple extensions of the list of
junction labels. In no case do | expect the program to be

able to sort out scenes that people cannot easily understand.

Two of the most common types of bad data are (1) edges
missed entirely due to equal region brightness on both sides
of the edge, and (2) accidental alignment of vertices and
lines, Figure 2.10 shows a scene containing instances of

each type of problem,

The program handles these problem junctions by
generating labels for them, just as It does for normal
Junctions., It is important to be able to do this, since it
Is in general very difficult to identify the particular
junction which causes the program to fail to find a parsing

of the scene. Even worse, the program may find a way of

\/

1,2 LINE MISSING 7,8

3 SHADOW EDGE IN ACCIDENTAL q
ALIGNMENT: APPEARS To BE
PART OF REGULAR
PEAK JUNCTION.,

45 ACCIDENTAL ALIGNMENT

¢ NON-TRIHEDRAL VERTEX

FIGURE 210

i

ACCIDENTAL ALIGNMENTS
CLOSE ALIGNMENT oF LINE

SEGMENTS LEADS INTERPRETATION
AS T JUNCTION ITNSTEAD

oF ARROW.

29 39vd

SECTION 2.5 64

interpreting the scene as though the data were perfect and It
would then not even get an indication that it should look for

other interpretations,

2.6 ACCIDENTAL ALIGNMENT

Chapter 7 treats a number of different types of
accidental alignment. Figure 2.11 shows three of the most
common types which are included In the program's repertolre;

consider three kinds of accidental alignment:

(1) cases where a vertex apparently has an extra line
because an edge obscured by the vertex appears to be part of

the vertex (see figure 2.11a),

(2) cases where an edge which |s between the eye and a
vertex appears to intersect the vertex (see figure 211b),

and

(3) cases where a shadow Is projected so that It

actually does intersect a vertex (see figure 2.11lc).

PAGE 65

FIGURE 211

., Y
T
T~ S
N Ny
) ¥ "
e —_—
v
) st
)
) —
— x
A v
) e
j v
§
) -
) v
=
\ =
) -
)
"
X —
\ =
) omas

FTIGURE 211

PAGE 66

SECTION 2.7 67

2.7 MISSING LINES

| have not attempted to systematically include all

missing line possibilities, but have only included labels for
.the most common types of missing lines. | require that any
missing line be in the interior of the scene; no line on the
scene/background boundary can be missing. | also assume that
all objects have approximately the same reflectivity on all
surfaces, Therefore, iIf a convex line is missing, | assume
that either both sides of the edge were [1luminated or that
both were shadowed, 1| have not really treated missing lines
in a complete enough way to say much about them. Therewll
have to be facilities in the program for filling In hidden
surfaces and back faces of objects before missing 1ines can

be treated satisfactorily.

Iin general the program will report that it isunable to
label a scene if more than a few lines are missing and the
missing line labels are not included in the set of possible
junction labels. This is really a sign of the power of the
program, since if the appropriate labels for the missing line
junctions were included, the program would find them
uniquely. As an example, the simple scene in figure 2,12

cannot be labeled at all unless the missing line junctions

SECTION 2.7 69

are included,

2.8 REGION ORIENTATIONS

Regions can be assigned labels which give quantized
values for region orientations in three dimensions. These
labels can be added to the junction labels in very much the
same way that the region illumination values were added. It
is impossible to do justice to the topic here, but region

orientations are treated In considerable detail In Chapter 8.

SECTION 3.0 70

3.0 TRIHEDRAL JUNCTION LABELS

The knowledge of this system is expressed in several

distinct forms:

(1) A list of possible junction labels for each type of
junction geometry includes the a priori knowledge about the

possible three dimensional interpretations of a junction.

(2) Selection rules which use junction geometry,
knowledge about which region is the table, and region
brightness. These can easily be extended to use line segment
directions to find the subset of the total list of possible
junction labelings which could apply at a particular junction

in a line drawing.

(3) A program to find the possible labelings; [t knows
how to systematically eliminate impossible combinations of
labels in a line drawing and, as such, contains implicit

knowl edge about topology.

(4) Optional heuristics which can be Invoked to select
a single labeling from among those which remaln after all the

other knowledge In the program has been used, These

SECTION 3.0 71

heuristics find a “plausible" Interpretation {f requlired.
For example, one heuristic eliminates interpretations that
Involve concave objects In favor of ones that involve convex
objects, and another prefers interpretations which have the
smal lest number of objects; this heuristic prefers a shadow
interpretation for an ambliguous region to the Interpretation

of the region as a piece of an object.

in this chapter | show how to express the first type of
knowledge, and give hints about some of the others. A large
proportion of my energy and thought has gone into the cholce
of the set of possible line labels and the sets of possible
junction labels. In this | have been guided by experiment
with my program, since there are simply too many labels to
hand simulate the program's reaction to a scene. The
program, the set of edge labels, and the sets of junction
labelings have each gone through an evolution involving
several steps, At each step | noted the ambiguities of
interpretation which remained, and then modified the system

appropriately,

The changes have generally involved (1) the subdivision
of one or more edge labels Into several new labels embodying

finer distinctions, and (2) the recomputation of the junction

SECTION 3.0 72

label lists to include these new distinctions. |In each case
| have been able to test the new scheme to make sure that it
solves the old problems without creating any unexpected new
ones. For example, the initial data base contained only
junctions which (1) represented trihedral vertices (i.e.
vertices caused by the intersection of exactly three planes
at a point in space) and (2) which could be constructed using
only convex objects. The present data base has been expanded
to include all trihedral junctions and a number of other
junctions caused by vertices where more than three planes

meet,

Throughout this evolutionary process | have tried to
systematically include in the lists every possibility under
the stated assumptions. In this part of the system | have
made only one type of judgement: [f a junction can represent
a vertex which is physically possible, include that junction

in the data base,

3.1 EDGE GEOMETRY

The first problem is to find all possible trihedral

vertices. Huffman observed that three intersecting planes,

whether mutually orthogonal or not, divide space into eight

SECTION 3.1 73

parts so that the types of trihedral vertex can be
characterized by the octants of space around the vertex which

are filled by solid material (Huffman 1971).

Dowson (Dowson 1971a) went a little further in
discussing how one could write an algorithm to find all
possible trlihedral junctions and their labels (using the
simple three-l1abel model of Huffman and Clowes). In fact he
never used his system to generate every class of junction
geometry but was satisfied to show that it could generate the
twelve labels which Huffman and Clowes originally used,

These twelve labels represent four different ways of filling
in the octants (where | have not counted ways of filling the

octants which differ only by rotation as different).

Dowson's scheme is useful for visualizing how to
generate the ten different ways of filling the octants which
| use. Consider the general intersection of three planes as
shown In flgure 3,1. These planes divide space {nto octants,
which can be uniquely identified by three~dimensional binary
vectors (Q Q %) where the x, y, and z directions are
specified as shown. The vectors make It easy to describe the
various geometries precisely. | can then generate all

possible geometries and non-degenerate views by Imagining

TAGE 74

OCTANT
(ott)
OCTANT
(o01)
! OCGTANT
| (v
! _-—‘ - r"\\\ ~
. ~4o
b~ ~._ /’pa‘
| ~d_--- i
)]
{ i
] i
oW |
(o00) ¢ ,
OCTANT
(110)
OCTANT
(100)

OCTANT
(ot0)

FIGURE 3.1

SECTION 3.1 75

various octants to be filled in with solid material. There
are junctions which correspond to having 1, 2, 3, &4, 5, 6, or
7 octants filled. Figure 3,2 shows the twenty possible
geometries that result from filling various octants, and in
Appendix 1 | have shown all the junction labelings (not
including shadow variations) which can result from the
geometries in figure 3.2A, The result of this process Is 196
different junction labels., Fligure 3.2B consists of the
geometries which | have chosen not to use to generate
junction labels, | have not included these geometries because
each involves objects which touch only along one edge, and
whose faces are nonetheless aligned, an extremely unlikely
arrangement when compared to the other geometries. (in
addition, some of the geometries are physically Impossible
unless one or more objects are cemented together along an

edge or supported by invisible means.)

The four geometries recognized by Huffman, Clowes, and
Dowson correspond to my numbers 1, 3, 5, and 7 in flgure

3.2A.

In figure 3.3 | show how the 20 different labels with
type 3 geometry can be generated. Baslcally thls process

Involves taking a geometry from flgure 3.2A, finding all the

PAGE 76

TOoTAL NUMEBER ¢OF
JTUNCTION TABELS

OCTANTS PILLED

[
/

a.i:-iw/

2,0

FIGURE 32A

PAGE 77

TOTAL NUMBEKR oF

JUNCTION LARELS:

OCTANTS FILUED:

Ve
-—

15

FAGE 78

TOTAL NUMEBER ofF

JUNCTION LABELS:

OCTANTS FILLED:

56

46

ZA

N ——

PIGURE 3

FAGE 79

- ‘ ToTAL NUMBER oF
OCTANTS FILLED. JUNCTION LARELS:

21

TIGURE 32A

FPAGE 80

OCTANTS PILLED:

‘l"“l“"

A

2B

PIGURE 3

—

PAGE 81

OCTANTS FILLED:

4orb

32B

F16

PAGE 82

OCTANTS FILLED:

OCTANTS PILLED:

PAGE 83

Sork

TIGURE 2.2R

PAGE 894

NAME OF | ATPEARANCE | 4 OF | ORTECTS
JUNCTIoN| & LABRLING |oBrEcTs| AT STRARANCE
(PROM | EF AT EX CORREFSPONDING
FTEENDIX | JUNCTION: | VERTEX| ARE : OBIECT(S):
1 A= (o08) u(100) $
1-9A

L(i o)

A= (000) y (160)

SE
*
T-3A 5\{ LA SRS
* A= (009) >
T’SB >C/‘/ 2 B=(00)u(110) Q.¢
* : A=z (ooo) $
- f\ C 3 B=(100) @
XX-3A 2?;; B= (10

F'IGURE 5.5

1
4
!
]
’

\

-

4

L—-—o--..‘-m-----—

FAGE 85

NAMR oF| ATPEARANCE| % oF

ORJECTS ATPEARANCE
JUNCTION| & LABELING |oBIECTS| AT OF
(FRoM OF AT VEaERTEX
ngthX JTUNCTION: |VERTEX| AREL: ORIECT(S):
>l’ f
. < 1 [A=(oecdu(oio
ARROW-3A - A v (o) ’ i"g
+ A= (or0)u(on) .‘
K"Sf\ - A 2 < > g
B= (000)
§>L N
- + A | A= {oil) .‘a
k3B z ¢ 2 B=(ooo)u (oi0) .’ﬂ
- |+ A= (o11) <>
KXX-3A c 2 | B=(o10) (!ﬂ
E B C=(o00) .ﬂg

FIGURE 3.3

PAGE 8o

NAME oF | APPEARANCE |4+ OF | 0BIBRCTS APPRARANCR
TJUNCTION | & LABELING [OBIECTS| AT oF
(FPRoM oF AT VERTEX CoRRESTONDING
ﬁmx TUNCTION! [VERTEX | ARE! OBIECT(S):
+/ A= oo) u(R
- =(o01) y(000) L~
L-2B A ' 1 ucotODoo .b
A A=(oe1) <z
T-3C X 2 B= (0o u(o10) =%a
A= (oo (000) ~
T3 | A 5| 2 HH'
o B B=(o10) B
A= (ool <
xx38 | & L5 3 |B:te10) .ﬂa
<Y B .z (000) .9

FIGURE 3.5

Rm——m -

PAGE B7

NAME OF | APPEARBNCEL |4 OF |OBIECTS APTEARANCE
JUNCTION| & LABRLING [6BIECTS|AT oF
(FrRoM oF AT VERTEX CORRBSPONDING
eg;rgmbm JUNCTION [VERTEX]| ARE . OBIBLT(S):
Q -
-~ Az(ud u(tio <
LSC + A v(oio) » dg
A A= (ud)
T-2E +\L Z B=(@116) u(oio) @
B c
Az(nuu(ile) 5
A |
T-3F «\1 2 |B=(aie)
B 4c
A A=)
XX3C | + 3 B= (o10) E g
B e é c= (HO)

TIGURE 3.3

n

- e am mm -

TAGE 88

NAME oF |ATEEARANMCE|# OF [O
o | A LARBLING |RECTS | evp e e
e x| AT |VERTER o
SNDIX | JUNCT oM (VERTEX | ARE: %%@Nﬁw
FORK3ZA| * d 1 (A=) uine s
= - V(100) ."
roresg| * 1D | 2 (A »[J2)
% Bo(uoduliog) &< 2
5 g%
an| X A Az(u)u (o) ~
FORKSC /i!.\ 2 [Bz(100) ,.!g
B B
L lx pA A= () <
FORK-ZD 1 B [B=0e0 g
B c=(uo) .g

FIGURE 35

SECTION 3.1 89

ways that the solid segments can be connected or separated,
and finding all the possible views for each partitioning of
the quadrants. To generate all the possible views one can
either draw or imagine the particular geometry as it appears
when viewed from each octant. From some viewing octants the
central vertex is blocked from view by solid material, and
therefore not every viewing position adds new labelings.
Appendix 1 is obtained by applying this process to each of

the geometries In figure 3, 2A.

Whenever one of the regions at a junction could
correspond to the background (l.e. the region Is not part of
one of the three planes whi;h intersect at the vertex) | have
marked the region with a star (%) both in figure 3.3 and
Appendix 1. Later | will show how to use this information to
aid the selection rules. Only 37 out of the 196 labels in

Appendix 1 can occur on the scene/background boundary.

3.2 A USEFUL HEURISTIC

This section previews the general discussion later
concerning how to choose a single labeling If ambiguities are
still left at the end of the regular program's operation.

The regular program keeps every conceivable interpretation,

SECTION 3.2 90

Clearly in some cases the scene is essentially ambiguous,
i.e. human beings can interpret the scene in more than one

way.

Given the line drawing shown in figure 3.4, how can a
program decide which of the interpretations, A, B, C or D, is
"correct"? In a picture there may be cues about how the
objects should be separated in the details of the edges
L-J1=-J2 and L=-J2-J3 of figure 3.4, But given only the line
drawing of figure 3.4, the program will find the four
interpretations listed., Because we generally prefer the
scene interpretation which has the smallest number of convex
objects, | have appropriately marked all junction labelings
which include either concave edges (whether visible or not)
or three~object edges. . The output of the regular program is
then a single label or list of labels for each junction.
Obviously if there is only a single label, then there is
nothing left to do. But If more than one label is left, it
can purge labels corresponding to concave or three-edge

junctions,

This heuristic correctly labels all the scenes shown in
figure 3.5A, but finds the wrong labeling for figure 3.58B

because it always prefers to interpret scenes as made up of

PAGE ©1

A
SEPARNIES
70
\% ! I

(NoT
CEPARABLE.)

Ficure %4

TAGE 92

THE TROGRAM. WITH THE CONCAVE EDGE REMOVAL
HEURTSTIC LABELS EACH oF THBSE AS SHOWN:

> &
2> &2

o~

AP

THESE ARE AlLL “"CORRECTLY" { . ARBLED

/[T

THIS LABELING I8 IMPOSSIBLE BECAUSE OF GRAVITY:

|

FIGURE 35

SECTION 3.2 93

convex objects, and does not know enough to preclude the
convex labeling in this case because object A in figure 3.5B
has no support. Of course, for ambiguous scenes like figure

3.4 the heuristic selects interpretation A.

3.3 SHADOWS AT TRIHEDRAL VERTICES

To find all the variations of these vertices vhich
Iinclude shadow edges, first note that vertices with 1, 2, 6
or 7 octants filled cannot cause shadows such that the shadow
edges appear as part of the vertex. This can be stated more
generally: in order to be a shadow-causing vertex (l.e, a
vertex where the caused shadow edge radiates from the vertex)
there must exist some viewing position for the vertex from
which either two concave edges and one convex edge or one
concave edge and two convex edges are visible. Consider the
geometries listed in figure 3.2A, First, a shadow-causing
edge must be convex. Second, unless there s at least one
concave edge adjacent to this convex edge, there can be no
surface which can have a shadow projected onto It by the
light streaming by the convex edge. Finally, a junction
which has one convex and one concave edge must have at least
one other convex or concave edge, since the convex edge and

concave edge define at least three planes which cannot meet

SECTION 3.3 94

at any vertex with only two edges.

This immediately eliminates 73 out of 196 o the labels

In Appendix 1 from consideration. Appendix 2 shows the
shadow edges (if any) which can occur at each of the
remaining vertices., Appendix 2 is constructed in the manner
i{1lustrated in figure 3.6; for each potential shadow-causing
vertex, imagine the light source to be in each of the octants
surrounding the vertex, and record all the resulting
Junctions, | have marked each shadow edge which Is part of a
shadow-causing junction with an "“L" or "R" according to
whether the arrow on the shadow edge points counterclockwise

or clockwise respectively,

Any junctlon which contains either a clockwise shadow
edge, marked "R," or a counterclockwise shadow edge, marked
"L," is defined as a shadow-causing junction. The reason for
distingulshing between the L and R shadow edges Is that this
prevents labeling an edge as if it were a shadow caused from
both its vertices. Without this device there would be no way
to prevent figure 3.7 from being labeled as shown, with line
segment L-A-B Interpreted as a shadow edge. (Il use "L-" as a
prefix to mean "1ine segment(s) joining the following

points"; thus L-A-B is the line segment joining points A and

PAGE S5
TO FIND ALL THE SHADOW PoSSTIBRILITIES FoR
A TUNCTION , FIRST IMAGINE TT AS PART ofF
AN OBIECT, AND DRTINE A COORDINATE SYSTEM
CENTERED AT THE TUNCTION .

OCTANT ‘
(o1
OCTANT
.- Cut)
OCTANT ~ =3
Coot) - > <
-7 OCTANT b
“ Ciotd)

THEN IMAGIME THE LIGHT SOURCE To BE IN
EACH oF THE FOUR OCTANTS:

LIGHT IN (ocot):

(NO SEHADOW EDEES
VISTBLE AT YERTEX)

LIGHT IN (1o1):

1.IGHT ON BOUNDARY
OF (101) AND (111):
(PEGENERACY
LIGHT IN PLANE
OF A.)
FIGURE 3.6

FIGURE 3.6

TAGE 97

RN

A
A
\

/

Q
A
A

A B

THIS INTERFRETATION. IS PREVENTED

BY APDING “." AND “"R" MARKS To THE
SHADOW JUNCTIONS AT A AND B

RESPRCTIVELY So THEY No LONGER
CAN MATCEL.

TIGURE 3.7

SECTION 3.3 98

B.) When the "L" and "R" marks are attached to each shadow
causing junction, then the two shadow causing junctions at A
and B in figure 3.7 no longer are compatible, and therefore
the labeling shown will not be considered possible by the

program.

3.4 OTHER NON-DEGENERATE JUNCTIONS

| now must describe vertices which do not fall into the
categories | have described so far. These include (1) all
the rest of the combinations that shadow edges can form and

(2) obscured edges.

in figure 3.8A | show all the other non-degenerate
vertices which involve shadow edges, and in figure 3.8B |

show all the obscured edges.

Later | return to the topic of junction labels and show
how it is possible to also include junctions representing
common degeneracies and accidental alignments as well as
junctions with missing lines. In the degenerate cases | do
not include every labeling possibility; instead | include
the most common occurrences using certain observations about

junctions. This is important since | do not want to limit the

PAGE 100

R R
+ + + +
+ + * *
L L

2w R

TIGURE 38A

N

———i]
c A

THESE CAN oMLY OCCUR IN THE SCENE
INTERIOR:

FIGurRE 38R

PAGE 101

THESE CAN OCCUR. ON THE SCENE/RACKGROUND
BOUNDAKY:

N

SECTION 3.4 102

program to any particular set of objects. Fortunately
certain types of junctions are rare no matter what types of
objects are In a scene; for example, many junctlions can only
occur when the eye, light and object are aligned to within a
few degrees, and when these junctions also contain unusual or
aligned edges the combined likellhood of the junctions is low
enough so that they can be safely omitted. As shown in
Chapter 7, the program can still give information about
junctions even [f they do not have proper labelings listed in
the data base, provided that not too many of these occur
together in a single scene. Moreover, this approach Is
reasonable, since any additional ability to use stereo images
or to move the eye or range-finding ability will allow a

program to disambiguate most of these types of features.
3.5 A CLASS OF DEGENERACIES

As a final topic, | include one type of degeneracy which
cannot be resolved by eye motion or stereo. This type of
degeneracy results when the light source is placed In the
plane defined by one of an object's faces. In this case,
shadows are aligned with edges to produce junctions which are
unlabelable given only the normal set of labels described so

far. Two examples of such alignment are shown in fligure 3.9A

SECTION 3.5 104

and figure 3.9B and a complete listing of this type of
junction is found in Appendix 3. | have excliuded cases where
a shadow edge is projected directly onto an edge of some
other type (as in figure 3,9C). These cases are excluded
since they would require me to define new edge labels which
are of very limited value, although there is no technical
difficulty in defining such edges and junctions. | also have
excluded, for the time being, cases like the one shown in
figure 3,90, since the two junctions marked only appear to be
T junctions when the eye is In the plane defined by the light
source and the shadow-causing edge (L-A-B or L-C-D in figure
3.9D). If the eye is moved to the right, the shadow-causing
junctions change to ARROWs or FORKs as illustrated in figure
3.9E. In contrast, notice that for the scenes shown in
figures 3.9A and 3.9B, no change in eye position can make any
difference in the apparent geometry of the shadow-causing

junctions,

Later (in Chapter 6) | consider some of the common
non-trihedral junctions which the program is likely to

encounter, Some of these require me to define extra labels.

SECTION 3.5 105

The grand total number of legal trihedral junctions
listed in this chapter is 505. The interesting thing In my
estimation is that the number of junction labels, while
fairly large, is very small compared to the number of
possibilities if the branches of these junctions were labeled
independently; moreover, even though | have not yet shown
how to include various degeneracies and alignments, | believe
that the set | have described already is sufficient for most
scenes which a person would construct out of plane-faced
objects, provided that he did not set out to deliberately

confuse the program,

Since it may not be obvious what types of common
vertices are non-trihedral, figure 3.10 contains a number of
such vertices, Later sections show how to handle all of

them,

PAGE 106
SoME COMMON NON-TRIHEDRAL VERTICES

A

W\

Frcure 3.10

SECTION 4.0 107

4,0 COMPLETING THE REGULAR DATA BASE

It would be hard to devise a program which could start
with a few pieces of information and eventually yield the
list of junctions described in Chapter 2. Moreover, even {f
such a program were written (which would indeed be
theoretically interesting), it would be rather pointless to
generate labels with it every time the labels are needed In
an analysis. Instead the generating program could run once
and save Its results in a table. In this form the junction
labelings table Is a sort of compiled knowledge, computed
once using a few general facts and methods. The knowledge h
the current program is almost totally In this compiled form;
this Is the reason for its rapid operation, but | have paid a
price for this speed in that | require a large amount of
memory (about 14,000 words) to store the junction labellings,
(A1l the rest of the labeling program occupies only about
4000 words of memory even though it is written In
MICRO-PLANNER and LISP, neither of which are particularly

noted for space efficiency.)

SECTION 4.1 108

4.1 REGION ILLUMINATION ASSIGNMENTS

Given tables of allowable region il1lumination values
(figure 1,6), it is easy to show how to write a program which
expands the data base to include this information. Suppose
that | wish to expand the labheling of the junction shown in
figure 4.1 to include region illumination values. As coded

for the data base, this labeling is:
(OCRM PLUS OCLM SHCCL)

where OCRM stands for OCclude Right Minus (see L-Jd=A In
figure 4.1), PLUS represents the convex edge (see L-J=-B in
figure 4.1), OCLM stands for OCclude Left Minus (see L-J=C In
figure 4.1), and SHCCL stands for SHadow CounterClockwise

type L (see L-J=D in figure 4.,1),

Each of these edges can separate regions which have the
following values (the first element is the value of the
region located counterclockwise with respect to the edge, the
second element is the value of the reglon located clockwise

with respect to the edge):

PAGE 109

B
Rl t R2
A ¢
\-\ £ Ry
T 1\1‘ D
Ro

FIicure 4.1

SECTION 4.1 110

{The list of region il1lumination pairs for OCRM or OCWM)
= L1
= ((1 1) (SP SP) (SP SS) (SS SP) (SS SS)).

<The 1ist of region illumination pairs for PLUS>
= L2
= ((1 1) (1 SS) (sS I)
(SP SP) (SP SS) (SS SP) (Ss S§8)).

<The list of region illumination péirs for SHCCL>
= L3
= ((SP 1)).

ILLUMINE is a function which takes two input lists as
arguments, and returns a single output list. Each member of
the output list is formed as follows: take a member of the
second input list whose first element Is the same as the last
element of some member of the first input list. Concatenate
these two and eliminate the duplication of the matching
element. The ouput list is made up of every possible element
which can be formed in this manner. While a verbal
description may be somewhat difficult to understand, the
function is not really very complicated, and | think the

following example should make its operation clear. Using the

SECTION 4.1 111

lists L1 and L2 that | defined earlier:

ILLUMINE (L1, L2)

= ((1 1 1) (1 1 SS)
(SP SP SP) (SP SP SS)
(SP SS I) (SP SS SP) (SP SS SS)
(SS SP SP) (SS SP SS)
(SS SS 1) (SS SS SP) (SS S§S SS))

= L4,

Lt is a list of triples which gives all the possible
values for region illuminations in the regions R0, Rl, and R2

in figure 4.1, To include R3, compute L5:

ILLUMINE (Lb4, L1)

= ((1 11 1)

(1 1t Ss sP) (1 | SS S8)
(SP SP SP SP) (SP SP SP SS)
(SP SP SS SP) (SP SP SS §§)
(SPSS I 1)

(SP SS SP SP) (SP SS SP SS)
(SP SS SS SP) (SP SS SS SS)
(SS SP SP SP) (SS SP SP SS§)
(SS SP SS SP) (SS SP SS SS)
(SS ssS 1 1)

(SS SS SP SP) (SS SS SP SS)
(SS SS SS SP) (SS SS SS S§§))

= L5,

Now | only need to include the pairs for the line L-J-D,
the shadow edge. Notice that very few of the possibilities

for illumination can agree with R3 when R3 is forced to be a

SECTION 4.1 112

type SP region:

ILLUMINE (L5, L3)

= ((! | SS SP 1)
(SP SP SP SP
(SP SP sS sP
(SP SS SP SP
(SP SS SS SP
(SS SP SP SP
(SS SP SS SP
(SS SS SP SP
(SS SS SS SP

- e cue W e e emp ew=e
e Wt e N N st Nt

= L6,

Now, to find the labelings for this junction, the last
condition requires that since the first and last elements of
each labeling in L6 both refer to RO, their values must be
the same. Therefore | apply function FINALIZE, which only
keeps members of a list whose first and last elements are the

FINALIZE (L6) = ((1 1 SS SP 1)).

This represents the only possible region {l1lumination
labeling for this junction as shown in figure k.2A, As |
mentioned earlier, it is true in general that shadow-causing
junctions (and a number of other junctions involving shadows)

have only one possible region illumination labeling. The

B TAGE 113

. SE
] D
L 1
A
N
B
i
c
A
T <8

SECTION &.1 114

exceptions to thls rule are shadow-causing junctions where
one region segment of the junctlion is obscured by the vertex
which gives rise to the junction. To understand this
distinction, try finding the region Il1lumination values for
the junction in figure 4.2B as an exercise, especially if you
are not entirely clear about the operation of |LLUMINE and
FINALIZE., You will need the list of possible region
illumination pairs for L-V-A and L-V-D In figure 4,2B; these
edges can each be assigned any of the possible region

illumination palirs:

{The list of region illumination pairs for OCR edges (such as
L-V-A) and OCL edges (such as L-V-D)>

= ((F 1) (1 SP) (1 SS)
(SP 1) (SP SP) (SP SS)
(SS 1) (SS SP) (SS SS))

= L7,
Your answer should be:

(CL SSSP I 1)
(SP SS SP | sP)
(SS SS SP | SS))

The answer is {llustrated in figure 4.2C.

SECTION 4.1 115

In order to include illumination information in the data.
base, | merely append the region illumination value names to
the name of each label. Thus | subdivide each label type
(except shadow edge labels) into a number of possibilities,
as shown in Table 4.1. As | mentioned in Chapter 2,
expanding the number of line labhels does not increase the
total number of junction labels as much as one might imagine

(see Table 2.2).

Fully 268 of the 505 labelings listed in Chapter 3, over
haif, have only one possible region illumination
interpretation! The largest possible number of illumination
interpretations for any junction is 3", where n is the number
of junction branches. A number of T junctions actually have
27 interpretations (for example, this is true of any T made

up of three occluding edges).

PAGE 116

NAMES OF
OLD 1 ARELSIPPEARANCE NEW LABELS
SHCC _
Cwppon- | —4— | SHEC-SEL
CoOUNTER-
CLOCKWISE)
SHCCL —t— | SHCCL-SPI
SHCCR —iE SHCCR-SPI
cg’gﬁ%hq- — SHCL-ISP
CLOGKWISE)
SHCLL. —t— | SHCLL-ISP
SHCLR —z— | SHCLR-ISP
- OCRM-II, OCRM-SPSE,
cooc%%rx — OCRM- §PeS, OCRM -SSP,
RIGHT- MINW) O0GRM-gsas
OCLM. - OCLM-TT, OCLM-STSP,
(OCCLUDE e OCLM-SPSS, OCLM-3SS?P,
LEFT-MINUS) OCLM-SSSS
M _ M-II , M-SPSP,M-SPSS,
(CONCAVE - M-SSSP, M-Ssss
JOINBD)
MY - MX-1I, MXSPSP,
(CON.CAVE ~ - IAR-SPsS, MX-SSST,
BOBIECTS) LMAK-SS88
OCRCR OCRCR-TII, OCRCR-SPSP
e crmned e >
(%3§¥pc§'mx) c OCRCR-SSSS
OCLCR. OCLCR-II, OCLCR-SESP
(OSCLUPE: 3 —<c OCLCR-S88S ’
PLUS N PLUS-II, PLUS-TSS,
— PLUS-6SI, PLUS-SPSP,
(ComVEK) PLUS-SPSS PLUS-GSSP,
PLUS- 6888

TABLE 4.1

YAGE 117

NAMES OF
oLD L ABELS [AFPRARANCE NEW LABELS
OCR. OCR-1T , OCR-ISP,
(%cx@];:t%‘; OCR-SPI,OCR-SPSP,
OCR-8Psg
OCR-S8T,0CR-4SS?P
OCR-S€s8
el OCA-IT, OCL-ISP
c%ccx,m:z - oCL-7SS,
LEPT) OCL.-ST1, Ot~SPSP
OCR-SPSS
OC4L.-SSTI, 0cL-S8SP
oCL-$8SS
OLD TOTAL NEW ToTAL
NUMBER,: NUMBER:
15 5T

TARLE 4.1

SECTION 4.2 118

4.2 SUMMARY OF THE DATA BASE

Although there are 505 labels listed in Chapter 3, the
actual number of elements in the label lists for each
junction will be larger than we might expect, since different
permutations of labels count as different elements in some of
the lists. The total number of list elements needed to
represent the 505 labelings is 717, and this number expands
to 3256 when the region il1lumination information is added to
the labelings. Table 4.2 shows the number of elements in
each list with and without region illuminated information.
This table differs from Table 2.2 in that it includes only
the differences in the list lengths which are caused by

adding region illumination information,

A little cleverness is required to avoid duplicate
labelings when including the different permutations of X
junctions., This is because some X junctions give rise to two
elements in the X labelings list, while the rest add only one
element. Figure 4,3B shows an X junction which requires two
elements to be added to the 1list, while figure 4.3C shows two
labelings which each add only one element to the data base.
Most shadow X junctions give rise to two elements in the data

base, and most junctions without shadows give rise to one,

PAGE 113

TaBLE 4.2
TOTAL NUMBER OF LABELS TN DATA BASE
TOR BEACH JUNCTION TYPE
BT [T

JUNCTION %‘E G%o% G %z% GI%PN:NC{
TYPE TLLUMINATTON | TLLUMINATION
L 24 92
ARROW 24 86

T 91 623
TFORK 116 826
PEAR 10 10

K 42 21%

X 129 435

XK 40 128
MULTI 96 160

KA 20 20

KX 60 7
KXX 25 121
SPECIAL, 40 4¢6
TOTALS L7 3256

PAGE 120
TIGURE 43A FIGURE 43B

L]

D B + + + +)
C/J AND Z +

ARE BOTH POSSIBLE LARELINGS

TIGURE 43C
¥ B 4
+ + - - ARE RBOTH
A AND A POSSTBLE
2 LAFELINGS,
BUT
3

+c: l +c
+ - AND — — ARE NOT,
C

¢
TO SEE WHY, SEFARATEL THE CRACK 1ABRLS:

oo s S f . YN,
Y ¥ A L?oSS%BLBRE
+c + + %‘%I%E}FJ‘%%?(SS
BuT
1c, . « Y. 'L) NJ&IE OF
/é : + / THESE
| , LABELINGS
B.:.I '{/‘:_ - f '+ %%s&BLB
X - A J ome,

SECTION 4,2 121

It is now possible to describe how the program handles

each junction it encounters:

(1) |If the junction is an L, ARROW, T, K, PEAK, X, KX,
or KXX, It uniquely orders the junction's line segments (by
choosing a particular line segment and considering the rest

as ordered in a clockwise direction from this line segment).

(2) 1f the junction is a FORK, MULTI or XX, it chooses

one line segment arbitrarily,

(3) 1t then fetches a list of labels which contains
every possible set of assignments for the lines (excluding
the possibilities of accidental alignments and degeneracies,
and junctions with missing lines) and associates this list

with the junction,

It makes absolutely no difference whether the program
obtains this list from a table (the compiled knowledge case)
or whether it must perform extensive computations to generate
the list (the generated knowledge case). Similarly, it does
not matter at all that various members of the list bear a

particular relation to each other, e.g. as In the case of a

SECTION 4,2 122

FORK junction, where most elements of the list have two other
elements which are permutations of the element. When |
return to the issues of degeneracles, accidental alignments
and missing lines, all | need to show Is how the labelings
corresponding to these cases can be added to the appropriate
junction lists. The machinery to choose a particular element
operates Independentiy of just what the labelings actually

are,

The only apparent exceptions are those labels marked to
indicate that the vertices which cause them are either
non-trihedral or concave or the result of alignment of
surface and the light source. This information can be used
optionally as the final step in the operation of the program
if it is necessary to select a single labeling for an
ambiguous junction. In such a case these marks enable the
program to make a simple judgement about which
interpretations are most likely. Of course if onlysingle
interpretations remain before the final step, or if | do not
care that some junctions are not uniquely speciflied, then the
program does not need to use these heuristics at all. (Such
a case occurs when | only wish to find edge geometries and do
not care about region illumination, Often ambiguous labels

differ in the type of il1lumination for various regions but

SECTION 4,2 123

provide a unique labeling of edge geometry.)

SECTION 5.0 124

5.0 SELECTION RULES

Now that | have shown how to generate a large number of
possible labels for a junction, | will show how to go about
eliminating all but one of them., The strategy for doing this

involves:

(1) using selection rules to eliminate as many labels
as possible on the basis of relatively local information such

as region brightness or line segment directions, and

(2) using the main portion of the program to remove

labels which cannot be part of any total scene labeling.

5.1 REGION BRIGHTNESS

If | know only that line segment L-A-B Is a line In a
scene, then it can theoretically be assigned any of the 57
possible labels., Once | know that L-A-B has an ARROW & one
of its ends as shown In figure 5.1B, the number of
possibilities drops to 19. Suppose that | know, In addition,
the relative brightness of Rl and R2 in the neighborhood of
L-A-B In figure 5.1C. There are three possibilities: (1) Rl
is darker than R2, (2) R2 Is darker than R1l, or (3) the

TIGURE S5.1A

A n —B
S7 LABELE ARE
PoSSIBLE FoR L:A-B

C

Yz
A —~B

Xaz

D

IF THE BRIGHTNESS
IS KNowN FOR R1
AND R2, THEN No
MORE THAN 18
AND AS FEW AS
1S LABELS WiILl,
REMAIN PSSIRLE.

TIGURE 5.1¢

FAGE 125

TIGURE 618

ONLY 19 LABELS
ARE Pos<SIRLE FOR
1-AD IF L7 18
KNowW T0o BE THE
MIDDLE BRANCH
OF AN ARROW.

G
e
A ;.B
RSVZ
D

IV THE BRIGHTNESS
OF R® I8 AlLSo
KNOWN | THEN

AS TEW AS §
ANP NO MORE
THAN 19 LARELS
WTILL REMATN
PoSSTRBLE.

TIGURE 5.1D

SECTION 5.1 126

brightness of Rl is equal to the brightness of R2.

If (1) is true, | know for certain that if L-A-B is a
shadow edge, then Rl must be the shadowed side and R2 the
illuminated side, Obviously if (2) is true, then the
opposite holds, i.e. R2 must be the shadowed side and Rl must
be the illuminated side. If (3) is true, then it Is
impossible for L-A-B to be a shadow edge at all, (If | happen
to also know that each object in a scene has all its faces
painted identically with a non-reflective finish, then | can
also eliminate more labels, In this case, If (1) is true,
then L-A-B cannot be labeled as a convex edge with region R1
illuminated and R2 shadowed type SS, if (2) is true, then
L-A-B cannot be labeled as convex with R2 [1luminated and Rl
shadowed type SS, and if (3) is true, then neither of these

labels is possible,)

5.2 SCENE/BACKGROUND BOUNDARY REVISITED

It is easy to find all the junctions which can occur
around the scene/background boundary. All that is necessary
is to make a list of all the line segments which can occur
along the boundary and then look for segments of junctions

which are bounded by two members of this set.

SECTION 5.2 127

Each junction from Chapter 3 which has a star in one of
its segments is listed separately from junctions which have
the same geometry but which cannot occur on the
scene/background boundary. Thus the list of RROW labels s
divided Into ARROW=-B, a list made up of those labels which
can occur on the scene/background boundary, and ARROW-I, made
up of those which must occur on the interior of a scene. The
total list of junctions which can also appear In the interior
of a scene is found by appending ARROW-B to ARROW-I, since
the scene/background labelings can appear on the interior of
the scene as shown in figure 5.2. Table 5.1 lists the number
of trihedral junction labels which can occur on the interior
and on the scene/background boundary for each type of
junction. Appendix 4 lists all of the junctions which can
occur on the scene/background boundary including region
{llumination information. To obtain Appendix 4 | have
assumed that the light source is positioned in one of the
four octants of space above the support surface. This
restriction means that the background is guaranteed to always

be illuminated.

TAGE 128

FTIGURE 5.2

THE SAME JTUNMCTIONS AND EDGES CAN
BORDER, RO AS CAN AFPPREAR ON THE
SCENE/BACKGROUND BOUNPARY,

~ TAGE 129
Tasis 51 [[OTA% NOMBSR oF TRamErEA:
CAN ATPEAR OM:
rg;f*?ﬂ ?Iggzmo& OF E?SNE /
JUNCTION | £ SCENE: %ggté%%%@fb
1 92 16
ARROW 86 12,
T 623 96
TORK 826 26
PEAK 10 2
K 213 2
X 135 72
XX 128 2
MULTT 160 S
KA 2.0 _
KX 76 8
KXX 121 —_—
SPECTAL 466 —
TOTALS 3256 245

SECTION 5.2 130

Obviously, if | can determine which lines in the line
drawing are part of the scene/background boundary, this
knowledge can be used to great advantage, It is, In fact,
not difficult to determine this boundary; any of several

strategies will work, Two examples are:

(1) Look for regions which touch the edge of the field

of view and append them all together, or

(2) Find the contour which has the property that every

junction lies on or inside it (see Mahabala 1969).

Both of these methods require that the scene be
completely surrounded by the background reglion or regions.
As shown in figure 5.3, method (1) works even If the

background is made up of more than one region.

Once the program has found which region is the
background region, it can also find how each junction is
oriented on the scene/background boundary. Some junctions
always appear in the same orientation; for example, ARROW
and PEAK junctions can only be oriented so that the
background region is the region whose angle Is greater than

180 degrees, and K junctions can only have the region whose

TAGE 13!

FIGURE 5.3

By ATPENDING ALL THE REGIONS WHICH TOUCH.
THE EDGE OF THE TIELD OF VIEW, WE OBTAIN
ALl OF THE BACKGROUND EXCEPT THE SMALL

REGIONS R4 AND RS, DBY FINDING AND CON-
TINUING COLLINEAR ORSCURED LINE SEGMENTS

(Guzman's MATCHED T°S) THESE REGIONS CAN
BE Founp AND ATDED To THE BACKGROUND ALSO.

SECTION 5.2 132

angle is 180 degrees as the background region (see Appendix

b).

0f course there is no way to easily define the
orientations of FORK, XX, or MULT! junctions., However, as
shown in figure 5.4, the L, T, X and KX junctions which
appear on the scene/background boundary can be sorted
according to which of their segments is the background

region.

Consider figure 5.5. Each of the L, T, and X junctions
is marked to indicate which orientation it has, Table 5.2
shows that this distinction makes a significant reduction In
the size of the starting list of label assignments for these

junctions,

5.3 EXTENDING THE SUPPORT SURFACE

Consider a problem posed by the scene shown in figure
5.6. I1f my labeling program is given this scene with the set
of labels defined so far, the program will not find a unique
labeling for L-C-D, even though it finds L-A-B to be a shadow

edge, and therefore labels Rl as a projected shadow region,

23
JUNCTION DISTINGUISHABLE ~ Doob !

TYPE ORIEMTATTONS
(* INDICATES THE BACKGROUND REGION)

*
T * —
*
TO T1 T2
L. * *
Lo L1
X ' ' * ' l*
*
VARV A
* | | *
KX
NN
XX1 KX2

Ficure 5.9

) '110
10
: Tj& T
“Te £0
«TL - o
147 .
e
\ = =10
' 1.0
18 ! = s
= %

$GT 3N

PAGE 125

NUMELR oF UMEB
TARLE | LABELINGS gABE' ﬁ%g gzﬁlmé%:%%?
50 gg EISETHE IT ON THE BACKGRO
Ma SCENE BOUNDARY &
INTERTOR: BACKGROUND ORIENTATINS
BOUNDART#: DISTINGUISHEN
T: 23 96 -
TO: X - 14
T X - 38
Ta: X —_ 38
L: 92 16 —
1.0 % - 9
L1 3 7
X: 435 T2 -
p Lk X — 8
X2 X — 28
X2 X — 23
K4: X — 8
KX 76 8 -
KXi: X - 4
KX2: X - 4

¥ THERE IS NO WAY To DISTINGUISH A
PREFERRED ORIENTATION IN THE INTERIOR
OF THE YCENE.

2R ASSUMING, THAT I MAKE NO ORIENTATION

DISTINCTIONSS THIS COLUMMN COFIED FROM

TABLE 5.1.

PAGE 156

I S, S S -
Y ¢ & Y & ¢ +§Pip

NOT A PosdIBLE POSSIBLE POCSTRLE
o W
BV THE PROGREM.. INCORRECT. CorRRECT

TIGuRrRE 5.6

SECTION 5.3 137

At one time | thought that | would need to write a
"demon" program which would check for shadow edges on
the table, assert that such a shadow region Is coplanar
with the table, and then eliminate any edges other than
‘planar ones whenever such a region shares an edge with
the il1luminated portion of the table. This type of
approach seemed rather ad hoc to me, and started me
thinking about how | could Include region Information as
part of each junction label. There could be many added
benefits to such an approach: It seemed clear that just
as | was able to vastly reduce the number of labels from
which to select possible ones by knowing that a junction
was on the scene/background boundary, | should be able
to reduce the number of labels for a junction which was
interior to the scene but which had the table as one of
Its region segments.

Therefore | defined new labels as shown in Table 5.3 to
denote any edge which has the table as one of its adjoining
regions. Since | have restricted the light source to be in
-the quadrants of space above the support surface, | can be
certain that any region which is part of the table can never
be self-shadowed, type SS, | have used this fact in
constructing Table 5.3. Any edge which touches or obscures
the table is marked by appending a "T" to its name or
printing a "T" next to the line segment. The old labels
without "T" are understood to represent edges which do not
have the table as either of their adjoining regions. The

addition of these 24 edge types brings the total number of

line labels to 81.

TABLE 5.3

PAGE 138

Ebers wwicsr HAVE THE TABLE AS onE
ADTOINING REGION: STARRED REGIONS ARE
PART oF THE TABLE WHIcH 18 TLLUMINATED
AND CAN THOREPGRE AFPPEAR ON THE
SCENTE /BACKGROUND ROUNDARY,

AFFEARANCE, NAME |APPEARANCE NAME
P& SHOLTSRT| (M,T I OCR-LIT
J-&f.—-é% SHCLLISET| % T L OCR-ISHT
XI5 SHOLRISET “EST L CRTSET
..;4111? SHCCSPIT | o L SP OCR-SPIT
..;.:]‘.11"_5].:13 SHCCL-STIT "_;"%I; OCR-SPEPT
...;4%'_?’ SHCCR-EPIT| ST gg OCR-SPSST
—<f oMIT| a2 I OoCLTIT
.__..22_%; OCLM-SPSPT| . his s; OCL-SPIT
.__'Q_'% OCLM-SSSRT| - $$ OCL-SeIT
._1*’..:;!_!31- OCRM-TIT et g; OCAL-TSPT
.__;J’_Ss% CCRMAESPT | o (TSP OCL-SPSPT

3T gg OCRM-SPSST Y ng ocL.-SSSPT

SECTION 5.3 139

The tables which show the allowable region i1lumination
palrs for these edges (analogous to flgure 2.6) appear In

Table 5.4.

To update the lists of junction labels, | must add to

the present set:

(1) Al the junctions listed in Appendix 4, but with

"T" printed next to both line segments which bound the region
containing the star. (These regions can be part of the
background of the scene, I.e. the portion of the table which
surrounds the scene and is illuminated.) Some of these
junctions can also have other projected shadow regions which
are part of the table, so that "T" must be added to line
segments other than the two bounding the starred region.

These junctions are listed in Appendix 5.

(2) All the junctions which can bound a projected

shadow (type SP) region which is also part of the table.

Table 5.5 shows the situation now for the relative
numbers of junctions which can occur on the scene/background
boundary. While the numbers of labelings possible if the

branches were labeled Independently has increased sharply

FAGE 140

TABLES OF ALLOWABLE I1LUMINATION PAIRS TOR
NEW 1ABELS (CONTINUATION of TaBlE 2.6)

CONCAVE

OBSCURE

112

T sp S8

YES|No

NO

No

YES

NO

NoO

NO

I Sp SS

YES

1ES

YES

YES|YES

YES

No

No

NO

"aT;-' " -‘T'-;-

—S Tgp ZT s'p
sSP [4

. -BT se z‘f $s
S8 SP

o (_'I:SP . ;3: T -
I sP
o GTS . ; I
I ss
. E’?I ; SP
Lig I
o G‘DGE s:gg
sp Sp
._ér_g_g SP
S?P S

SET of' ALLOWABLE LARELS:

AllL THE SHADOW JdoMBINATTONS ARE SAME AS
THOSE 9HOWN FOR SHADowS IN Treure 2.6.

TarLE 54

FAGE 141

11:%1;%1@ NUMBER oF |NUMBER OF
TABLESS |1ASELINGS, Us) USTNG COT|TF acer
BY TP MARR o o, BRANCEL
TYPE THE THE SCENE/] TNCEPENDENILY
OF CCENE |BACKGROUND| (BASIS oF
JUNCTION |INTERICR|BOUNDARY | 81 LABELS)
L 18 | 1e{H:7| ¢s6l
ARROW. 109 12, 521441
T 809 %{%’%‘é 521,441
T2:38
TORK 10172, 26 521441
PEAK 10 4.2x107
K 213 4.2x1067
X1+ 8
X 863 72{{,}% &) 4.2x107
X4='%
WX 152, 3 4.2.x107
MULTT 224 8 4,2.x107
KA 20 % 3x107
KX1=4 9
KX 2 | BYsdl 33xl0
KXX 121 3,3x101
SPECTAL 466 — >2.6x10M
TOTALS 2909 | 245 >3 x10t

SECTION 5.3 142

with the increase of the number of line labels from 57 to 81,
the actual numbers of junction labelings has not changed for
the scene/background boundary and has increased only

moderately for the scene interior.

The value of these additions to the data base is
especially pronounced for scenes like figure 1.2 where the
table surface accounts for seven of the interior regions as
well as the background region. |In addition to the
improvement for scenes of this sort, there are other

benefits. Consider figure 5.7. How many objects are in this

scene?

Now look at figure 5.8, Given figure 5.7, my program
will return both interpretations: the one we would usually
expect (region R as the table, with object C resting on the
table) or the interpretation shown in figure 5.8. Thus the
new labels enable the program to make finer distinctions than
it could before., Notice that we could also use the table
information to make another heuristic rule: if there are two
interpretations of an interior region, one as the table and
one as an extra object, choose the table Interpretation.
(This corresponds to choosing the simplest Interpretation,

i.e. the one with the fewest objects,)

PAGE 1493

—1

Ro

C

|

RE 5.7

Ficu

PAGE 144

FTIGURE 3.8

SECTION 5.3 145

S.4 DISCUSSION

This section s speculative; nothing In It is critical

to an understanding of my program,

Underlying the previous section are some important kinds
of distinctions between levels of understanding which |
believe are worth pursuing at greater length at thils point.
There are several levels of understanding which a program can
have about a particular property of scene features (e.g.

“"this region Is part of the table"):

(1) the first level of understanding is that the
program be able to express the fact that a given portion of
the scene does or does not have the property. As an example,
until the program had the labels which labeled reglions that
were part of the table, it could not exbress the difference

between the two possible interpretations of figure 5.7.

(2) The next series of levels are ones where the
program recognizes more and more instances of features which
cannot have the property (and consequently recognizes more

precisely where the property can apply). My program's hard

SECTION 5.4 146

knowledge ends at this level; for some cases its
understanding is sufficient to uniquely recognize a property,
in other cases it is unable to select between two or more

possibilities.

(3) | believe that the next levels of understanding are
characterized by the ability to define a critical test (or
series of critical tests) which will allow a program to
eliminate remaining possibilities until only one is left.
Such a test might be "if | remove the object in front, | will
be able to see whether or not that region is connected to the
table surface" or "if | move to the right, and if that region
is part of the table, then | should be able to see an edge at
point (x,y)". | claim that this must be the next level of
knowledge since many line drawings simply do not contain cues
which allow a program (or a person) to decide between various

possibilities.

However, let me make a distinction between knowledge and
expectation. Even if | am not allowed to make further tests,
| still expect the scene to have a particular form.

Moreover, | believe that this expectation, simulated by
heuristic rules in my program, is instrumental In deciding

just which critical tests | should make. For example, if n

SECTION 5.4 147

interpretations are possible, my suspicion iIs that | pick the
one | expect to be true, and on the basis of this expectation
| then choose a test (or tests) to eliminate all the (n-1)
other possibilities. After performing this test, | then have
knowledge which either supports my expectation or forces me

to form or choose a new expectation.

The curious fact about my perception is that | only see
one interpretation at a time even when | know that a scene Is
ambiguous, (Take for example the reversing [l1lusion which
alternates between a vase and two faces in profile, depending
upon which regions are viewed as figures and which are viewed

as background (Koffka 1935)).

Even when | have insufficlient solid knowledge on which
to base my interpretation of a scene, my expectation seems to
carry the same force of conviction that solid knowledge
would., Nonetheless, | can change my interpretations of
scenes elther when | am faced with new evidence (by a change
in my relation to a scene or change in the scene) or if | am

challenged about my interpretation (Are you sure?).

SECTION 5.4 1u8

Moreover, | am aware of ambiguity in another way; even
though my own interpretation may carry a sense of conviction
with it, and even though | don't usually change this
Iinterpretation without reason, | can easily understand how
another person could interpret a scene in one way while at
the same time | am seeing it in a different way, where | am

using seeing to mean interpreting with conviction of truth.

| do not believe it is worthwhile to delve too much
deeper into speculation about similarities between my system
and human perception. For example, it doesn't seem to me to
make much sense to try and decide whether people generate
alternative interpretations when they are needed or whether
(as in my program) they keep all the active alternative
interpretations but are only aware of the expected one at any

given time.

Nonetheless, | think that in connection with ambiguity,
the notion of knowledge at "other levels" as the ability to
eliminate interpretations, and the notion of expectation as
the default choice of an interpretation when | run out of

solid knowledge, are ideas of central importance.

SECTION 5.5 149

5.5 AN EXAMPLE

| have now shown how to use selection rules to narrow
down the choices for junction labels on the basis of various
kinds of cues from the line drawing. To give an idea of how
much these rules help, look at figure 5.9. Next to each
junction | have listed the numbers of labels which are
possible for it before and after applying the selection
rules, | have assumed that the program knows that RO is the
support surface and that the clrcled numbers In each region
indicate the relative brightness (the higher a number, the
brighter the region), Notice that one junction, the peak on
the scene/background boundary, can be uniquely labeled using
only selection rules. Most of the interior junctions remain

highly ambiguous,

SECTION 6.0 151

6.0 THE MAIN LABELING PROGRAM

You will recall that | described at some length In
Section 2.4 a "fllter program'" which systematically removes
junction labels whenever there are no possible matches for
the labels at adjacent junctions, Now that | have shown a
good deal more about the junction labels and the use of the
selection rules, | would like to treat this program again

from a somewhat different perspective.

6.1 A SMALL EXAMPLE

Suppose that the program is working on a scene, a
portion of which is shown in figure 6.1. Assume that the
selection rules eliminate all labels for each type of
junction except those shown at the bottom of the figure.
Remember that the selection rules operate only locally, I.e.
they give the same list of possibilities no matter how the
labeling has proceeded or in what order the junctions are
taken, All the step numbers refer to figure 6.2, which

summarizes the succesive lists attached to each junctlion:

PAGE 152

J2 T3

JS J6
I3 37

J9

RESULT'S oF RESULTS ©oF RESULTS OF
SELEBCTION SBLECTION SELECTTION
RULES POR J1. RULES PPRTZ. TRULES FOR 73.
(FIRST ELEMINT (FIRST ELEMENT (FIRST ELEMENT

OF EACH REPERS To REFERS TO
LABELING REFRRS {:32-33,5BCOND 1-73-J7, SECOND
TO 1-J31-32,, TO 1:72-35, To 13336,

SBCEOND T6 £:T1-79) THIRD To 1-12J) TEIRD TO L-73-32)

11=((A B) 1.2((A B B) 13=((A B A%
B C A

(A © (A BC

(A D - (B ¢ A (G HT

(B B - (PA'D; (fF B ¢

(B (> BT) BT

(¢ F A’B'E.%
(P A) (> C)
(G H%

(B A

(B B)

TIGURE (.1

PAGE 153

LABELS ASSIGNED TO

L1 1.2 1.5
START": — -_— —
STEPL: | —— (ABBRYARE) —o
(BCA)(FAD
(PBE)
STEP 2: |((ABAC)AD)
(BBXBE)(¢E) (WNCHANGED) —_—
FAYGE)ES)
ERD
STEP%: |(AB)AC)AD) (UNCHANGED) &~ ———
(BRXBEYCT)
&S
STEP4: | (umeraneep) (ABBX(ABL) ——
RBCA(PBE)
STEP 5% | (UNCHANGED) (UNCHANGED) ((ABAY(RCA
(GHIXFBRC
(DBE)(ABE)
(DCED)
STEP ¢ | (WNCHANGED) (UNCHANGED) (AR AYBCAY)
STEP 7: | (uncHANGED) (ABB)(ABC)) (UNCHANGED)
STEP 8: |((BBYBE)CE) (WCHANGED) (UMCHANAET)
No MoORE LABELINGS
CAN BE BLIMINATED
TINAL |
RESULT: | (BBEE)CE)CABBYXABC N ABAXBCA))

v
TIME

FIGURE G2

SECTION 6.1 154

Step 1: Suppose that the program starts with J2, and
that all of the other junctions are unlabeled. Then the
program assigns list L2 to J2, and since all the other
junctions are unlabeled, It has no basis on which to
eliminate any of the labels in L2, As far as the program

knows, all of these labelings are still possible.

Step 2: Now suppose that it next labels Jl by attaching
to it the list L1. When it checks the junctions adjacent to

Jl It now can see that J2 has already been labeled.

Step 3: Therefore the program looks at J2 to find what
restrictions, If any, have already been placed on line
segment L-J1-J2. In this case, the restrictions are that
L=-J1-J2 must be labeled with either "B" or "C" or "A" or D"
or "F", i.e. with any letter which appears third in an
element of L2. Each element of L1 which does not have "B",
neH, AT, "D", or "F" as its first letter can then be
eliminated. Therefore the program drops "(G H)", "(E A)" and
"(E B)" as possibilities and L1 becomes

(CAB) (AC) (AD) (B B) (B E) (CF) (F A)).

SECTION 6.1 155

Step 4: Now the program uses thls same reasoning in the
opposite direction. |In what ways, if any, does the fact that
J1l must be labeled from the 1ist restrict the labels of
adjacent junctions? Only J2 of the adjacent junctions has
been labeled so far, so only J2 can be affected. The only
labels which are possible for J2 are those elements of L2
which have as a third letter "A" or "B" or "C" or "F",
Therefore, the program eliminates "(F A D)" as a possible
label and L2 becomes

((ABB) (ABC) (B CA) (DB F)),

Can the program eliminate any other labels because "(F A
D)" has been eliminated? No, since no other neighbors of J2
except J1 have been labeled, and the reason "(F A D)" was

eliminated was because it had no counterpart at Jl.

Step 5: The program now can move on to J3 and label it

with L3.

Step 6: Each label for J3 must have a third letter
equal to one of the first letters from a label in L2. These
letter are "A", "B"™ and "D"., Therefore the program
el iminates "“(G H 1)", "(F B C)", "(D B F)", "(A B E)" and "(D
C G)" from L3 and sets L3 to ((A B A) (B C A)).

SECTION 6.1 156

Step 7: What labels now are possible for J2? Since the
only remaining labels for J3 both set L-J2-J3 to "A", the
program eliminates "(B C A)" and "(D B F)" from L2 so that L2
becomes ((A B B) (A B C)).

Step 8: This time, a neighbor of J2, namely Jl, has
been labeled already, so the program must check to see
whether eliminating the element of L2 has placed further
restrictions on L1. Only elements of L1 which have a first
letter "B" or "C" are possible labels now, so the program
el iminates "(A B)", "(A C)", "(A D)", and "(F A)". Ll'thus
becomes ((B B) (B E) (C F)).

Since no other neighbors of Jl are labeled, the effects

of this change cannnot propagate any further.

6.2 DISCUSSION

I think it Is easiest to view the process of the program

at each junction as having three actions:

SECTION 6.2 157

(1) attaching labels,

(2) removing any of these labels which are impossible
given the current context of this junction, and

(3) iteratively removing labelings from the context by
allowing the new restrictions embodied in the list of labels
for the junction to propagate outward from the junction until

no more changes in the context can be made.
There are two points of Importance:

(1) The solution the program finds Is the same no

matter where it begins in the scene, and

(2) the program is guaranteed to be finished after one
pass through the junctions, where it performs the three

actions listed above at each junction.

Given a line drawing with N junctions, a data base which
has no more than M possible labelings for any junction, and a
situation where any number of junctions from 0 to N have
already been labeled, let condition C be one where for each
possible line label which can be assigned to a line segment
el ther

(1) there is at least one matching 1ine label assigned

SECTION 6.2 158

to the junction at the other end of this line segment, or
else
(2) the junction at the other end of the line segment

has not been labeled,

This condition C must be satisfied before the program
moves on to a new junction; the program keeps track of the

line segments on which the condition may not be satisfied.

When the program begins labeling a junction J, assume
that C holds throughout the line drawing. When the junction,
previously unlabeled, has labels added, the only line
segments along which C can be violated are the line segments
which join J to its neighbors, and it is possible for C to be
unsatisfied in both directions on these segments (i.e. both J
and J's nelghbors may have unmatched line labels).

Therefore, to make sure that the program needs to consider
each line segment a minimum number of times, the program
first uses the lists of possible labels specified by J's

neighbors to eliminate all impossible labels from J.

To see why this Is the correct way to proceed, suppose
that the program used J's initial set of labels to eliminate

some labels from one of J's neighbors, Jl. It Is then

SECTION 6.2 159

possible that the set of labels for J can be reduced further
because neighbor J2 has no match for one or more labels still
attached to J. The program would then have to go back to
line L-J-J1 again to see whether more labels could be
eliminated from Jl. By considering the effects of each of
J's neighbors on J's labels first, the program guarantees
that as many labels as possible have been eliminated from J's
label 1ist before using this list to recompute the lists for

J's neighbors,

Condition C can now only be untrue along line segments
joining J with its neighbors and, moreover, can only be
untrue in one direction, i.e. J's neighbors may have
unmatched labels, but not vice-versa. When the program
eliminates the unmatched labels from each of J's neighbors, C
Is now satisfied on each line segment joining J to Its
neighbors and C can only be unsatisfied along the line
segments joining J's nefghbors with the neighbors of J's
neighbors, and again only in an "outward" direction, l.e. the
junctions two line segments away from J can have unmatched
labels, but all those junctions one line segment away (J's

neighbors) cannot have unmatched labels,

SECTION 6.2 160

The line segments on which C does not hold continue to
spread outward to the neighbors of junctlions two segments
away from J, then junctions three segments away from J, etc.,
but only as long as labels are being removed from any
junctions. As soon as the program reaches a step where no
labels are removed from any junction, then the program knows
that condition C must be satisfied everywhere In the scene,

and it can move on to the next unlabeled junction.

Figure 6.3 traces a situation which could occur on
successive steps in a line drawing where all junctions except
J have been labeled already. | have filled In the line
segments along which condition C could be violated at each
stage of the program's iterations. The mark ">" indlicates
which junction can have unmatched labels; it Is used like

the same sign meaning "greater than'", so that you can read

Jt > Jx

—u

as "the number of labels at Ji is greater than the number of
labels at Jk", i.e. JI may have labels which are not matched

by ones at Jk.

PAGE 161

¢ INDICATES A JUNCTLON WHICH HAS LABELINGS
REMOVED AT THAT STEP

-
-~

]
i
'
Y
/\V ' ::’n
&/7)‘ :
' < -
| N J ':\‘~
' AlY)
L\\ 4"‘“‘
\\\J‘_a’—' ’1’/
——————— -y

GELIMMNE UNMATCHED
LABELINGS FROM LISTS
ATTACHED To J'8
NEIGHBORS:

.. . -

L
\
[}

v

®TLIMINATE UNMATCEED
LABELINGS FROM LISTS

ATTACHED To T's NE

NETGHBORS'! NRIGHBORS:

ELIMINATE UXMATCHEP
LABELINGS FROM J4 1LIST

V ~
\\\
A o <
-)
-
-~ -~ a’
. g o
~ - P
-
L e hadind -

(DELIMINATE UNMATCHED

LABELINGS T'ROM LISTY
ATTACHED TO J'S
NEIGHBoRS” NEIGHBORS:

SECTION 6.2 162

The violations of C can spread outward to eventually
touch any line segment of a line drawing, but only If the
number of labels can be reduced at each junction on some path
between the junction the program is currently labeling and
the line segment. |If any of the junctions in Figure 6.3 were
unlabeled or if a unique label had already been found for the
Junction, then no violations of C could propagate through

that junction.

Figure 6.4 represents just such a situation. The line
drawing is assumed to be completely labeled except for
junction J, but this time Jl already has been uniquely
labeled. Thus it can never be the case that J1 has unmatched
labels. Notice that Figure 6.4 also represents equally well

the case where Jl has not yet been labeled.

One final point: the process Is guaranteed to terminate,
since if there are N junctions and no more than M labels
possible for any one junction, the process can never go on
for more than M x N steps at the very worst. This Is
important since the restrictions can propagate back to the
junction which Initiated the process. To see that the
possibility of cycles does not create any difficulties,

consider the following trick. Suppose that as soon as the

PAGE 163
THIS PIGURE T8 EXACTLY THE SAME AS
EXCEPT THAT J1 IS EITHER UMLABELED oR JL
HAS ALREBADY BPEEN 1ABELED UNIQUELY, So J1
¢AN MEVER HAVE MORE LABELINGS THAN J2,33RJ4.

o< = Pt

.-"A “s“s
]
-~ < @ .
-
V | ~s. t
¢ ' v s : -
] -
\\\;J d"’ < } \\\‘ n"‘ A
» ey 1 3% -
.J- 1 e d , : \\\
Mo g, i L
<
i “d J5 :5 L N "’f*J3 ‘\'
—p H - ~ - -
J2°S0 - - J2 >~ 0! - -
~ - ‘/ ~ PR ,/
\‘.‘.f_,.——-'-——-’ \J‘ ———————— s
J1 T4 J1 J4

FTIcurRE 6.9

SECTION 6.2 164

starting junction has been checked against each of its
neighbors, that all the remaining labels are removed from it.
The restrictions can then spread outward only until no more
changes can be made; now look at the process as though the
Junction were being labeled for the first time with the set
of junctions just removed as its starting junction set. This
process can then be repeated as often as necessary, but the
number of times can never be greater than the initial number
of labelings assigned to the junction, since the process
terminates if no more labels can be removed from the list of

possibilities.

6.3 CONTROL STRUCTURE

While the program can start at any junction and still
arrive at the same solution, the amount of time required to
understand a scene does depend on the order In which the
junctions are labeled, The basic heuristic for speeding up
the program Is to eliminate as many possibilities as early as
possible, Two techniques which help accomplish this end are
to

(1) 1label all the junctions on the scene/background
boundary first, since these have many fewer interpretations

that interior junctions do, and

SECTION 6.3 165

(2) next label all junctions which bound regions that

share an edge or junction with the background.

To see why the program is faster when it eliminates as
many possibilities as early as it can, | must first give some
idea about the amounts of computation needed for various
phases of the program. The basic operation involves removing
unmatched labels from junction lists. The removal is done in

the following manner:

Assume that the junction whose list of labels must be
reduced is called 42, that its neighbor is J1, and that for
any label in the lists of either Jl or J2, the first line
label represents the line joining them. Thus if (A B C) is
one possible junction labeling in Jl's list, then "A" is the
line label that this junction labeling would assign to line
L-J1-J2, and similarly, if (D E F) Is a labeling from J2's

list, the "D" Is the line label which refers to L-J2-J1.

Since J2's list Is the one to be reduced, first look at
Jl's label list and make a list which consists of the labels
which J1 can apply to L-J2-J1. Notice that | have up to now
glossed over the fact that for most lines, the label appears

different depending on which end of the line we choose as a

SECTION 6.3 166

reference point. Thus {f line L-Jd1-J2 is labeled

1
J1 »~ —> - J2

SP
then from Jl's end it appears to be labeled as "OCR-ISP" and

from J2's end it appears to be labeled as "OCL-SPI" (for
OClude Right=11luminated/Shadow=-Projected and OCLude
Left-Shadow=Projected/l1luminated respectively). Therefore
what we really want is the list of the opposites of the first
elements of each label for Jl. Suppose that | am given the
scene portion shown in figure 6.5. If Jl's list of labelings

is:

((OCR=11 PLUS~-II OCL-11)
(OCR=1SP PLUS=-SPI OCL-11)
(OCRM=11 PLUS=|1 OCLM=~1I1)
(SHCLR=1SP OCR=SPI OCLM-11))

Then the list that | need to compare J2's labels to Is:

L1 = ((opposite (OCR=11))
(opposite (OCR=-I1SP))
(opposite (OCRM=i1))
(opposi te (SHCLR=-1SP)))

= (OCL-I1
OCL-SPI
OCWM=-1t |
SHCCR-SPI)

J1

PAGE 167

J2

FIicure 6.5

SECTION 6.3 168

J2's label list can then be compared to L1l; the
condition which must be satisfied by a labeling of J2 in
order for it to be a possible labeling is that the line label
it would assign to L=-J1-21 be a member of the 1ist L1l.

Continuing with this example, suppose that J2's labeling list

is:

L2 = ((OCL-I1 OCR-11 OCR-~I1)
(OCL=-1SP OCR=SPl OCR-11)
(OCL-1SS OCR=SS! OCR-11)
(OCL-SPI OCR-fl OCR-ISP)
(OCL-SPSP OCR-SPI OCR~-ISP)
(OCL-SPSS OCR-1] OCRM=-11)
(OCL~11 OCR=11 OCRM-I1)
(OCRM=-11 OCRCR=-11 OCML=-11))

Then the labeling list for J2 after comparing L2 to L1 is:

L2'= ((OCL~t! OCR-1l OCR-11)
(OCL-SPI OCR-1I OCR-ISP)
(OCL=-11 OCR=~I1 OCRM=11))

Now | return to the original claim, that It is desirable
to remove as many labels as possible as early as possible,
Suppose a junction J has m+l branches and n+q labels, and in
the process of labeling, q of these labels are eliminated by
a propagating reduction which comes in on one of J's
branches: this requires the program to compare n+q labels for

members in a list. The program now has to check each of J's

SECTION 6.3 169

branches to see if any labels for adjacent junctions can be
removed. Thus it must compute m lists analogous to L1 above
and each of these lists has n members. Now when each of
these lists is compared to the label lists for adjacent
junctions, the program must make an average of n/2 tests for
equality for each labeling that Is retained, and n tests for
equality for each labeling that is removed (for the case
where it looks through an entire list and finds no match).
Therefore for each portion of the process the amount of

computation involved is at least proportional to n.

Because the amount of computation Is at least
proportional to n, it Is undesirable to label interior
junctions first, since most of these have much larger initial
values for n than do scene/background boundary junctions.
Not only does it take more computation to propagate any
reductions through these junctions, but each reduction is
llkely to be smaller as well; 1If two adjacent junctions can
each be labeled in n ways out of a total of N theoretically
possible ways, then the expected number of labelings they
have in common fis nle. (This number is obtalned by summing
the probability of a match for each of the n labels at one

junction; thus

SECTION 6.3 170

=N
(n/N) = n x (a/N) = n?/N.)
(=1,2,....
Typically scene/background boundary junctions have about

1/10 the number of possible labels an interior junction can
have, so that the expected number of labelings to
scene/background junctions will have in common Is only 1% of
the expected number for two interior junctions. Simitarly,
it is worthwhile to label next interior junctions which are
connected to junctions on the scene/background boundary,
since the expected number of labelings in common for these
pairs is only 10% of the number for interior junctions.
Finally, as | mentioned earlier, it is worthwhile to label
all the junctions surrounding regions which touch the
scene/background boundary, since these regions contain all
the "best" kinds of junctions, and because a chain of
junctions which closes on itself tends to be far more
restricted In Its possibilities than a chain of the same
length which does not. (! will not attempt to prove that
this is so; | think It iIs fairly obvious that the effect is
true, although the proof of the effect is not. It Is much

more obvious for a tree search procedure than for this one.)

SECTION 6.3 171

! included this section so that an interested reader
could get a better feeling for the operation of the program
and also to suggest some ideas for extensions of this
program. For example, if my labeling program were connected
to a line-finding program such as Shiral's, my program could
be adapted to provide intelligent guidance for deciding where
to look next in a scene on the basis of which features had

already been found (Shirail 1972).

Another idea which might be interesting to follow up is
a possible parallel between the reasons why it Is better for
my program to start on the scene/background boundary and the
observed fact that people presented with a flgure on a
background for short periods of time see detail first on the
figure/ground boundary and require longer viewing durations
to see details in the flgure Interior suggesting that our

perception proceeds from the outside inward (Koffka 1935).

| mentioned at the beginning of this paper that the
amount of time (and therefore computation) is roughly
proportional to the number of line segments in a scene. This
may not seem to fit with the obvious fact that there is
really nothing to prevent the effects caused by labeling a

single junction to propagate to every portion of a line

SECTION 6.3 172

drawing.

There are good physical reasons why this seidom happens.
The basic reason is that some junctions simply do not
propagate effects to all their neighbors, and so the effects
tend to die out before getting too far., The prime type of
junction which stifles the spreading effects Is the T

junction,

In most T junctions, the labelings of the upright and
crossbar portions are independent. Even if we know the exact
labeling of the crossbar portion we are unlikely to be able
to draw any conclusions about the labeling of the upright and
vice-versa. Since objects are most commonly separated by T
junctions, the effects of labeling a junction are for the
most part limited to the object of which the junction is a

part, and to the object's shadow edges, If any.

Another reason why effects do not propagate far is that
when junctions are unlabeled or when they are uniquely
labeled, they do not propagate effects at all. (This reason
was illustrated in figure 6.4.) Thus when few junctions are
labeled and when most of the junctions are labeled the

effects of adding restrictions tends to be localized.

SECTION 6.3 173

6.4 PROGRAM PERFORMANCE

The program portions | have now described are adequate
for labeling scenes without accidental allignments,
non-trihedral vertices or missing lines. Within this range
there are still certain types of features which confuse the
program, but before showing its limits, | will show some of
its complete successes. In all the scenes that follow, |
assume that the program knows which region is the background
region, and that It also knows the relative brightness of
various regions. The program operates nearly as well without
these facts but not as rapidly. Figure 6.6 shows a number of
scenes for which the program produces unique labelings or is
only confused about the [1lumination type of one or two
regions (as in flgure 6.6D and 6.61). By varying someof the
region brightness values or omitting them, the program could
also be similarly confused In this way for the tops of
objects in figures 6.6A, 6.6B, 6.6E, 6.6G and 6.6H. In
general, the program is not particularly good at finding the
i1lumination types for regions unless the regions are bounded
by concave edges. This confusion has a physical basis as
well. In all the diagrams | have drawn these top surfaces as

though they were parallel to the table so that the should all

FIGURE 6.6 PAGE 174

FIGURE 6.6 PAGE 176

SECTION 6.4 178

be labeled as type | (llluminated), but since the program |
have described so far uses only the topology of a line
drawing, it has no way of distinguishing the scenes | have
drawn from others which should be labeled differently., For
example, In figure 6.7 | have redrawn figures 6.6A and 6.68
so that the top surfaces are type SS (Self-Shadowed), but the

figures are topologically itdentical,

To decide whether a surface is self-shadowed or
illuminated, one must be able to associate shadow corners
with the vertices which cause them. In figure 6.7B, if C Is
caused by B, then the top of the block Is Illuminated, and if
C Is caused by A then the top of the block Is self-shadowed.
To verify that A causes C, place a straight edge on the
figure. There is an interesting optical illusion in this
figure; it appears to me that the top surface of the block in
figure 6.8 should be type SS, but in fact If you use the
straight-edge test | described, you will find that it is
actually i1luminated. (! did not put In any shading, to

prevent biasing the cholce.)

In any case, | think that the Issue here is not serious,
since the program still finds the correct edge labels for all

edges. In general | doubt that anyone will be too interested

PAGE 179

FIGurE 6.7

FAGE 180

<=

Trcure 68

SECTION 6.4 181

in finding the illumination values exactly; in the program
they serve primarily as labeling aids, not as ends in
themselves. However, before going on to something else, |
would like to use this topic to illustrate a situation | have
encountered several times in the process of performing this
research. | noticed early in my study of scenes that If all
shadow corners and their causing vertices in a given scene
are connected by straight lines, these lines have roughly the
same slope throughout the scene, provided that the light
source is reasonably far away from the scene compared to the
scene size. | thought that this fact might aid me a great
deal in finding shadows, What | did not see was that until |
could locate shadows and their causing vertices, | couldn't
connect the two to find the characteristic slope; but If |
could find the shadows and vertices, then | knew how to solve
the problem already, and so | would not need to find this
slope at alil There is at least one type of case where this
slope is Important, as | describe In the next section, but
for the most part the topology of scenes provides adequate

clues for finding shadows.

SECTION 6.5 182

6.5 PERFORMANCE PROBLEMS

Shadows convey a considerable amount of information
about which edges of an object touch a surface, since a
shadow edge can only intersect the edge which causes it If
the surface the shadow is cast on touches the shadow-causing
edge, as illustrated in figure 6.9A, As long as shadows are
present, a program can find relations between the objects In
a scene and the background, as shown in figure 6.98,

However, if all shadows are missing, then it is impossible to
decide how the pieces of a scene are related, For example in
6.9C, the block on the left could be stuck to a wall or
sitting on a table or sitting on a smaller block vhich
suspended it off the table; there is simply no way to decide
which of these cases is trué, given only a shadow-free line
drawing. Moreover, the program does not use (at this point)
knowledge of line segment directions In a scene, so It cannot
even distinguish which way Is up, If you turn figure 6.9C
about 1/3 of a turn clockwise, there Is a reasonable
interpretation of the two blocks with A supported by B,
Without line segment direction information the program finds

all these interpretations if there are no shadows.

FAGE 18%

IN THESE SCENES THE
STA'RRE]? TUNZATIONS PROVIDE *
EVIDENCE THE TWo OBJECTS

OR THE OBIEQT AND TABLE TOUCH,

IN THESE SCENEBS THE
STARRED JTUNMCTIONS PROVIDE

EVIDEMNCE THAT THE TWo oBIECTS

OR T'HE OBJECT AND TABLE Do NOT ToUci.

FIGURE 69

PAGE 184

TN THESE SCENES

THERE IS NO EVIDENCE
T0 USE To RELATE THE
OBIECT'S To EACH OTHER
OR To THE TABLE:; ITIS
INOT POSSIBLE To DECIDE
WHETHER THEY TOUCH OR NOT,

Freure 69

SECTION 6.5 185

in figure 6.10A, each of the segments marked with a star
can be interpreted either as an obscuring edge or as a
concave edge, though in most cases choosing one or the other
for some 1ine segment forces other segments to be interpreted

uniquely, as shown in figures 6.10B and 6.10C.

As in the previous section, there are scenes which are
topologically identical which can help to show why the
program finds all these labelings as reasonable
interpretations. Figure 6.11 shows five scenes which are
topologically identical to the labeled scenes shown in Figure
6.10C; In each of these scenes, the labeling shown seems to

me to be the most reasonable one or at least a plausihle one.

Figure 6.12 shows the next problem case. Such a case
occurs when we can see only enough of an object so that It is
not possible to tell whether the region is a shadow or an
object. If it happens that the ambiguous region is brighter
than the background (or what would be the illuminated portion
of a partly shadowed surface of the feature occurs on the
interior of a scene), then the program can eliminate the
possibility that the region is a shadow. Unfortunately, if
the ambiguous region is darker than its neighbor, it cannot

tell whether the region is a shadow reglion or a dark object.

PAGE 186

-
CAN BE LABELED AS
e
OoR

—r .
ALl UNMARKED
LINES ARE
1 ABELED
UN IQUELY.

TWO LABDLINGS THAT
SEEM'REASONABLE" FCR
THIS SCENE ;

®

®

Tieure 6.10

PAGE 187

ALl THE REMAINING @ -
“"UNREASONABLE" .

_ \
@ -
SN
®
@,
/“ > -

Freure 610

PAGE 188
T'HE NUMBERS = >
CORRESPOND TO ®
THOSE IN N
FIGURE 6.10C. >

' 4

Treure 6.12

|

j

\ c B
Forlowg: B

(9
W umm mmw

TO G
BELED AS

SECTION 6.5 190

in figure 6.12, do you think that both A and B should really
be labeled as shadow regions? |In fact neither A nor B can be
shadows! You can prove this for yourself by finding the
characteristic light source slope for the scene, using the
front object and its shadow. Then note that there can be no
hidden objects which could project A or B, Figure 6.13 shows
this construction. It is this type of distinction for which

the tight source slope information could be useful.

I will not go through the process again of showing how
each of the labelings could arise. Clearly the
interpretation of A and B as shadows is reasonable for this
scene, since | can easily find a topologically equivalent
line drawing where some obscured objects could cause the
shadows, The program needs to know about gravity, support
and line segment directions in order to eliminate some of the
interpretations of region A, Every one of the

interpretations Iis possible for B.

A closely related ambiguity Is i{llustrated In figure
6.14A. Again difflculties arise because a shadow-causing
junction is hidden, The fact that the program does not know
at this point about gravity can be visualized as meaning that

the objects which form both sides of a crack can appear

PAGE 191

THE LIGHT SOURCE
TOR. THIS SCENE p
MUST LIE ON THIS

LINB /
—L /

/ . THERE IS NO WAY THAT

THESE REGIONS CAN BE

/ SHADOWS, SINCE THERE

CAN BE No 0BJECTS IN

/ / THE SCENE WIHICH

AoULD CAUSE THEM.,

Frcure 6.13

PAGE 133

SINCE THE PROGRAM DoOES NOT KNOW ARCUT

DIRBCTIONS, IT FINDS THAT lrA-C CAN POSSIBLY

BE A CRACK — WITHOWKT DIRECTICMS IT CANMMNOT
KNoOW ABOUT GRAVITY.

Treure 6.14B

SECTION 6.5 194

anywhere, just as if the two objects were glued together.

Figure 6.14B shows such a case.

The next type of problem involves support directly. An
example of this type of difficulty Is shown In figure 6.15,
As in figure 6.10, each of the edges which is ambiguous Is
marked with a star (%) in figure 6.15A, and the possible
labelings, both '‘reasonable'" and "unreasonable" are shown in
figures 6,15B and 6.15C respectively. | have redrawn figure
6.15C in figure 6.16 to show scenes with the same topology
which have what were previously unreasonable labelings as
their reasonable ones. Actually In some of the cases | have
had to change the topology slightly. This happened because |
wanted to construct an example which contained shadows and
which exhibited all the ambiguities | show In figure 6.15;
while | was not able to easily find a scene which satisfied
these criteria and also did not require changes in topology,
there probably are such scenes. | do not believe that any

general rules can be derived from the needed modifications.

One final type of ambiguity {s interesting and also
serves to emphasize one of the findings of the work reported
in this chapter. In figure 6.17 | show the two types of

interpretations my program returns for holes. One of these

PAGE 135

(L)

Ficure 6.15

PAGE 196

/\ £Wiﬁ
(2) (3)

QA

A

(6) , ("

1

D
FIGURE 6.15¢C

PAGE 197

(®

FIGURE ©.16

PAGE 198

~—— . < =

THE EXPECTED
INTERPRETATION

REASONABLE. BUT
UNEXPECTED
INTERPRETATION;
THE HOLE GETS
{ARGER THE DEEFER
ONE GOES INTO THE

PLOCK.
ol
L 4
R
DoTTED ;j:olgggl WITH A SHADOW OF
SHOW A BLE THIS TYPE INSIDEL
}S'I‘é ggNPOR THE THE HCLE IS No
NTER?RBTATION

LONGER AMBISUOUS.

Freure 6.17

SECTION 6.5 199

interpretations is the one | expected; | was surprised that
the hole was ambiguous, but even more surprised to find that
| had missed an obvious alternate interpretation of the same
geometry. The alternate interpretation shown In figure 6.17B
does not even need to be drawn with different line segment

directions in order to appear reasonable,

The labelings which the program finds must be made up of
local features, each one of which is physically possible, but
it is not obvious that the features which remain should each
be part of a total labeling of the scene which Is physically
possible, After all, the only conditions | Impose are that
each of these features must agree with at least one other
feature at each neighboring junction. On the basis of the
fact that the main labeling program does not leave extraneous
labels on junctions, it seems clear that topology provides a

major portion of the cues necessary to understand a scene.

In the next chapter | show some heuristlic rules which
can be used to eliminate some of the labelings which people
usually consider unlikely, 1In fact the true case is that
these labelings are not unlikely, but the scenes which have
these labelings as reasonable ones (to our eyes) do not often

arise in our experience. Unfortuntely, heuristics sometimes

SECTION 6.5 200

reject real interpretations, and indeed would reject each of
the interpretations shown in figures 6.11 and 6.16 in favor
of the ones in figures 6.10B and 6.15B. Nonetheless, in the
absence of solid rules, these heuristics can be useful, In
the chapter on region orientations | deal with the types df
techniques which would enable a program to find the labelings
which we would assign to these line drawings without resort

to heurlistics.

SECTION 7.0 201

7.0 NON-TRIHEDRAL VERTICES & RELATED PROBLEMS

So far | have assumed that all the junctions | am given
are normal trihedral junctions and essentially that the line
drawing which | am given is "perfect". When a program has to
be able to accept data from real line finders and from
arbitrarlly arranged scenes, these criteria are rather

unrealistic,

In this chapter, | show how to correct some of these
problems In a passive manner., By passive | mean that the
program Is unable to ask a line finding program to look more
carefully or to use alternative predicates at a suspicious
junction, and similarly that it cannot move Its eye or
camera, or direct a hand to rearrange part of a scene in

order to resolve ambiguities (Gaschnig 1971).

Iinstead | handle these types of problems by including
labels for a number of the most common of these junctions in
the regular data base, In cases where the program confuses
these junction labelings with the regular labellings and where
| want a single parsing, | can easily remove these new types
of junction labels first, since | have lncluded'special

markers for each labeling of this type. Moreover, depending

SECTION 7.0 202

on the reliability of the program which generates the line
drawing, | may wish to remove labels In different orders.
For example, If a line finding program rarely misses edges,
missing edge interpretations can be removed first: If a line
finding program tends to miss short line segments, then
accidental alignments are probably being generated by the
program, and these Interpretations can be retained until
last. Therefore the labels for each type of problem are

marked with different indicators in the data base.
7.1 NON-TRIHEDRAL VERTICES

Some non-trlhedral vertices must be included in the data
base; Indeed some are much more commoh than many of the
trihedral vertices. | will 1imit the number by including
only those non~trihedral vertices which can be formed by

convex trihedral objects.

The first type of vertex is formed by the alignment of a
vertex with a convex edge as shown In figure 7.1 and in
figure 7.2. In figure 7.3 a similar set of junctions Is
shown for objects which MARRY (1.e. have coplanar faces
separated by a crack edge; see Winston 1970) along one edge,

but which have difference face angles.

PAGE 203

Freure 71

PAGE 204

A
+\\+ ,\\‘
P A
+\l\+]&\'
g

/N 0n N
+ L
AV eV A
Y \7 v

Ticure 7.2

_—

= Wl
NS

AN

.'-
L
o+
*-
c
+
/N
x % z
+ +

Ficure 73

FAGE 205

PAGE 206

TFicure 73

SECTION 7.1 207

Figure 7.4 illustrates another common non-trihedral
vertex which results again from objects with dissimilar face
angles. This time | need a new type of edge, a separable

convex edge, labeled as shown in flgure 7.4.

Figure 7.5 Illustrates the types of non-trihedral
vertices which can occur when one block leans on another. In
order to keep these cases from being confused with other
trihedral junctions, | have introduced three new edge types.
These types only can occur In a very limited number of
contexts. Figure 7.6 shows some of the ways in which these

edges can appear,

In the data base each of the labelings shown in figures
7.1, 7.2, 7.3, 7.4, and 7.5, and any other junction labels
involving the leaning edges or the separable convex edges,
are marked as non-trihedral. Later, If | wish to find a
single parsing for a scene where there are still amblguous
labels, removing these non-trihedral junctions, if possible,

may be a good heuristic.

PAGE 208

WJox/
\ A\

+ \'"4 Y
- L £ < __>_+
X x
_i—k—, \"rii':’?’/\'i:* i
R * | * 'L 'R x x L

IGURE 74

PAGE 209

(' A Kt
\ A\ ¢
NEeEW LABELS: /14 /é %

+ + + Al + Ll
i L1 -
ha * * < 1
x % 1
12 . iz LI O
* < ¥ < R < R &
1 * x T

PAGE 210

(THE oBSCURING 14 & L2 TDGE CAN ALSo FoRM

OBSCURING T¢ WITH OoTHE
BOT TRESR e EI{ R 'EI)?G'BS AS WELL

Ficure 75

FAGE 211

Ticure 76

SECTION 7.2 212

7.2 ACCIDENTAL ALIGNMENTS; FIRST TYPE

In this section | have not attempted to exhaustively
list every possible junction labeling which results from
accidental alignment, but have concentrated on Including only
the most common cases. There is some justification for this,
in that ambiguities caused by accidental alignments can be

resolved by simply moving with respect to the scene.

Figure 7.7 lists all the junctions which can take part
in the first type of accidental alignment | will consider.
This type of alignment occurs when a vertex Is closer to the
eye than an edge which appears to he but Is not part of the
vertex. Thus the set of vertices in figure 7.7 are exactly
that subset of the scene/background boundary junctions
(Appendix 4) which contain only obscuring edges on the
scene/background boundary. Figure 7.7 shows only those
junctions which | include as sufficiently common. The rest
are excluded because they involve unusual concave geometries
like those found in SOMA cube pieces (SOMA cubes are
three-dimensional puzzles manufactured by Parker Bros. Inc.,
Salem, Mass,) or because they involve three-object edges or
because the resulting junction would have enough line

segments to require a designation of "SPECIAL" or because the

PAGE 213

JUNCTIONS WHICH ARE USED TO MAKE WP
ACCIDENTAL ALIGNMENT LIST

(EXTRA EDGES ARE TN STARRED REGIONS)

PIcurE 7.7

SECTION 7.2 214

junction would require the alignment of the eye with three

points in space.

There is no regular junction which could be confused
with any of the ARROW or K junctions generated by the the
alignment of the junctions shown in figure 7.7 with edges
behind them. To see why this is so, consider figures 7.8 and
7.9. Figure 7.8 gives names for the distinguishable region
segments for each type of junction. Figure 7.9 shows all the
K and ARROW junctions that can result from accidental
alignment with each each of the junctions shown in figure
7.7. Notice that the background region can only appear in
segments ARROW1l, ARROW2, K1, K2 and K3 in these accidentally
aligned cases, whereas for all trihedral ARROW and K
junctions which can appear on the scene/background boundary,
only segments ARROWO and KO (the segments of these junctions
which are greater than 180 and equal to 180 degrees,
respectively) can be part of the background., Of course for
the junctions where no segments are distinguishable (e.g.
FORKs) or where the junction appears on the Interior of the
scene, these acclidental alignment cases cannot be directly

distinguished from the regular cases.

PAGE 215
NAMES oF DISTINGUISHABLE JUNCTIGN SEGMENTS

TEAK L
10 L L1 PEAKO
TPEAK?2

MULTI MULT1
KXS KX
MuLT \ MULTI /KXﬁ\ >

PIicurE 78

PEAKD
ARROWC _~ 4 crowr 1 X1
ARROW 2, Ko K2
K3
T1
L |z
T2 X4 \XS
KAL
KA%
FORK KAd
KX1 l KX2

* |7
(xD)
c
7%
R
— 23

PAGE 216

SECTION 7.2 217

At this writing, | have not iIncluded all these
accidental alignment types in the program's data base, but |
have incliuded most of the scene/background boundary cases and
a number of the interior cases. In general, | have assumed
that no non-trihedral edges or three-object edges will be
among those obscured since both the alignment itself and the
edge types are relatively unlikely, so their coincidence at a

single junction is extremely unlikely,

7.3 ACCIDENTAL ALIGNMENT WITHOUT OBSCURING EDGES

Figure 7.10 shows some alignments which have shown up
frequently in scenes | have worked with, These junctions
have occurred because (1) our line finding program misses
short line segments (and therefore tends to include more
lines than it should in a single junction), (2) our line
finding program has a tolerance angle within which it will
call edges collinear, so some edges are called collinear even
when they are not, and (3) edges which lie in a plane
paralliel to the surface on which they cast shadows are
parallel to the shadows they cast, so that alignments become

particularly likely when we use bricks, cubes, and prisms,.

A SS $S VT

T < y
TRep 2 £I7
{

Ticure 710

PAGE 218

-
1 728
&
<

PAGE 219

(THERE ARE 35 DIFFERENT
COMRINATIONS OF REGION
+ ITLLUMINATIONS AND
TABLE OR INTERIOR LARELS
FOoR THIS JUNCTION]

Freurp 710

SECTION 7.3 220

Figure 7.11 shows some other types of accidental shadow
edge alignment which our group's line finding program
frequently yields; these junctions are relatively common
because of the tendency of the program to miss short line
segments, but each of these types of alignment can occur
naturally as well, (For information on our line finding

program see Horn 1971 and Shirai 1972.)

7.4 ACCIDENTAL ALIGNMENTS; FINAL TYPE

The worst type of accidental alignment, In terms of the
number of new junctions it can introduce, occurs when an edge
between the eye and a vertex appears to be part of the
vertex. Fortunately, all of the types of junctions which
these alignments introduce are either Ks, KAs or SPECIALs.

To see why this is so, look at figure 7.12., All these
labelings can be quite easily generated by a program which
operates on the regular data base. Notice that for each
obscured vertex labeling, there are three new labelings
generated, since the near region can have any of the three

illumination values,

PAGE 221

‘,///////////‘////w,

M «\Mi A_

w I@u Mw @... .S I
N -

wn - -

ol S 9 :

O

@ o | N : Mm I
+ W0 +%\ﬂ

g Qe

H @u @.u. :

T

.] ,o>.. | I

¥ N) : _

+ +mu.. : e

KrUg M //1 :

34

& b aS ot

[¥ o a X _

(2 s A

o1

L %

|

PAGE 227,

I T
+
tr I
SPxsp S$gp
NS &
T T

Frcure 711

PAGE 223

IF TR THEN THE POSSIBLE ACCIDENTAL
VERTEX IS: | ALIGNMENTS WITH AN EDGE ARE!
L. T< —> K
ARROW /< — K
Y K
\ %
FORK < : K
\ 4
_> *
T

PEAK

PAGE 224

MULTI

Frcure 712

PAGE 275

KkKKK
A%%kK

Treure 712

SECTION 7.4 226

Also notice that any of these junctions which appear on
the scene/background boundary can only be oriented with the
background in a junction segment type K1, K2, K3, KAl, KA2,
KA3, or KA4 (see figure 7.8), Therefore it is not difficult
to recognize the cases where accidental alignments of this
type occur on the scene/background boundary since none of the
regular trihedral junctions can ever appear on the
scene/background boundary in any of these orientations. (The
background can only appear normally in segments of type KO0 of

KAO.)

The number of K junctions of this type which can occur
is limited by the fact that two of the line segments (the
collinear ones) must always be obscuring edges and so can be
labeled in a total of 108 different ways (including region
illuminations); the other two line segments can each be
labeled in 81 ways, so there can be no more than 81x81x108 =
708,588 possible K labelings. |In fact, as usual, there are
not nearly this many labelings. To find the limit on the
number of these junctions, use figure 7.12 and Table 5.3
together, as shown in Table 7.1. The numbers in Table 7.1
are obtained by taking the total number of Interior labelings
for a type of junction (remember that this number includes

TABLE labels as well), multiplying this number by the number

PAGE. 227

TYPE OF RUMBER oF K NUMBER oF KA
SOURCE LABELINGS THESE LABELINGS THEST
JUNCTION JTURArIONS CAN JTUNATTONS CAN
GENBRATE GENERATE
1 g X1 x 3 = 359 NoNg

ARROW 109 x2Xx 3 = 459 lo9 x1 x3 = 327
T 809 x L x 3 = 4854 NoNE

FoRK loizax1 x 3 = 30%% NONE

TEAK 16x2ZXx3= (0 fox 2x3 = 60
K 21382 X3 1278 213 x2x 3= 127§
X B3 x 4 x 3= 67S7 563X 1x 3~ 1689
XX IS2 x L x 3= 450 IONE

MULIT 229 x L X3 = 672 224x1x3 = 472

ToTALS 18,221 4,026

TaBLE 71

SECTION 7.4 228

of ways In which it can form a K junction, and multiplying
this number by three (since the obscuring region can have
three types of illumination, independent of what the other
labels are). Thus, for example, there are 109 ARROW
labelings, and each can be used two ways to make a K label of
this type (see figure 7.12), so the total number of K
junctions due to obscured ARROWs is 109x2x3 = 654. Each
ARROW labeling can be used in only one way to form a KA

junction, so the total number of these is 109x1lx3 = 327.

While | could include these labelings directly in the
data base, their number is clearly unwieldy. In any event, |
managed to find a way to include the labelings exactly but iIn
a manner somewhat different than those | have been dealing
with so far. In order to show this method, | first have to

fill In some gaps | left earlier.

7.5 MORE CONTROL STRUCTURE

In this section | return again to the main labeling
program and describe what happens when the program is unable
to label a scene consistently, using the set of labels with

which it has been equipped.

SECTION 7.5 229

The program is written In MICRO-PLANNER, a programming
language with automatic back-up facilities (Sussman et al
1971)., Before the program begins labeling a junction J, it
saves the context of the junction (l.e. the labeling which
existed before the program assigned any labels to J). As the
program iteratively eliminates the labels which can now be
removed because of the new constraints which J adds, it
checks at each step to make sure that at least one label
remains possible for each line segment. If this number ever
goes to zero for any line segment, the program assumes that J
is the source of the problem, i.e. that J needed a lahel that
was not in the list assigned to it by the selection rules.
When this happens, the program restores the context to the
state that existed before It began labeling J, and it marks J
to indicate that J cannot be labeled from the normal label
lists. Once J has been marked in this manner, it appears to
neighboring junctions to be just like a junction which has
not been labeled yet, and therefore J imposes no conditions
at all on the possible line labels for its neighbors. The
program can then continue and as long as two adjacent
junctions are not left unlabeled at the end of the program's
operation, every line segment can be assigned a value or set

of values, just as if every junction had been 1abeled.

SECTION 7.5 230

The problem with this arrangement is this: suppose that
the program is given a line drawing which has one junction
that cannot be labeled from the regular set of junction
labelings. Clearly if the program labels this junction last,
it will be unable to label the junction and will give the
correct result., However, If this junction Is labeled before
any of its neighbors, then It is, of course, automatically
assigned labels from the normal set, for none of the
surrounding junctions impose any constraints on It. In this
case, one or more perfectly normal junctions In the scene
will eventually be marked as unlabelable, and the resulting
total labeling for the scene will be invalid. 1In general, if
the bad junction is labeled toward the end of the program's
operation, then the total scene labeling is orrect, and if
the junction is labeled early In the program's operation, the

total scene labeling is incorrect.

My first attempt at solving this problem was to label
all Ks and KAs last. In many cases the Ks and KAs were then
indeed correctly identified as unlabelable from the normal
set. However, | managed to come up with a much neater
solution which enables the program to generate labels for

these otherwise unlabelable junctions.

SECTION 7.5 231

As before, | have the program label all Ks and KAs last,
but this time | modified the labeling procedure, |f a
junction cannot be labeled from the normal set, Instead of
marking it unlabelable | generate possible labelings by
modifying the line drawing so that it contains equivalent
junctions which are not accidentally aligned, and then |
label these junctions in the normai manner. Thus, as shown
in figure 7.13, if the normal set of junctions Is Inadequate
to label a K, the most reasonable alternative is that the
junction is actually an obscured L vertex. Therefore |
change the line drawing (saving the original of course) and
try to label the new line drawing. This change is equivalent
to moving the eye slightly to see what type of junction is
obscured, except that since the program is unable to move its
eye and therefore does not know what the real vertex type s,
it keeps trying various alternatives until one works, or
until it hits a default case. In the example shown, the
program finds a reasonable interpretation on the first try.
If it had not, then the program would next have tried to
label the junction as an obscured ARROW, since ARROWs are the

next most common type of junction after Ls.

TAGE 232

To1s K TuNCTION CANROT BE_LABELED FRem THE
NORMAL LABELINGS 1.1ST FoRKs. THEREFORE THE
PROGRAM MODIFIES THE LINE DRAWING,
ASSUMING THAT THE K TS REALLY AN OBSCURED
1., AND Now THE LINE DRAWTKNS CAN BE {ABELED.

T'reure 715

SECTION 7.5 233

Notice that the condition for a modification to be
reasonable is not as simple as the old condition for a single
junction, as lllustrated in figure 7.14., The condition for
figure 7.14A 1Is that J, J1, and J& must all be labelable,
Before there was no condition joining J1 and J4; If they do
not match now, it does not matter whether J0 can be labeled
or not because a total labeling would be impossible. This
means that the program has to be able to save the context
until it has finished checking the labeling of several
junctlons, and that it should only finalize the modifications
when it has proved that every portion of the new line drawing
is reasonable. To illustrate further, in figure 7.14B | show
the modifications necessary to interpret J0 as an obscured
ARROW junction., These modifications create a new junction,
and the two junctions, J0 and JJ0 must both be checked;
unless both can be labeled consistently this interpretation

is impossible.

In fact, | can carry this idea even further. Suppose
that a K junction, J0, is actually an acclidental alignment,
but that since other K and KA junctions in the l1ine dcawing
have not yet been labeled J0 can be labeled from the normal
set of labelings. Later another K, which shouid be labelable

from the normal set cannot be labeled, since the wrong choice

Ji1 Rt 12
R 50 R2 — ®o
7 ! R3 J3
Jg1 Rl T
RO 70 RL — RO
R% 73
R

Treure 714

J11 Rl/E3 J2
R2
Jo
: J3
74
J1 R 1 2
97 R
Jo 3
Ry
3¢

SECTION 7.5 235

was made for J0. To eliminate this type of difficulty, |
require all K and KA junctions to agree, and If they do not
agree, the program can back up to any of the K and KA
Junctions until it has actually tried every combination of
interpretations for the junctions., Thus the program should
not finalize any of the labels for K or KA junctions until

all of them agree.

This solution is still not guaranteed to contain the
correct one; the program will be satisfied with the first
set of modiflcations for the X and KA junctions which gives a
complete labeling. To be certain of Including the correct
solution, the program would have to try every combination of
interpretations for every K and KA and save all the ones
which give complete labelings. Eventually | hope to include
this ability when | modify the program to run in the CONNIVER
language (McDermott & Sussman 1972); this language has
better facilities for developing and saving paraliel
contexts, whereas MICRO-PLANNER does not. MICRO-PLANNER Is
oriented toward a tree éearch model of problem solving where
the branches of a solution tree are explored until a correct
solution is found. In my case, the problem {s that theremy

be more than one correct solution.

SECTION 7.5 236

In any case, when | programmed this ability, | lumped a
number of junction types together into a default case for two
reasons: this lessened the possibility of stopping bhefore
getting the desired ("correct") solution, and itenabled the
program to run much faster and required a much smaller
program than would have been needed if | had included
separate machinery for each type of junction. The program

tries the possibilities for a K In the following order:

(1) try to label the K from the normal label 1lists,
(2) try to label the K as an obscured L vertex,

(3) try to label the K as an obscured ARROW vertex.
(4) if all these fail, label the K as two T junctions

(see figure 7.15).

The default condition represents the exact opposite of
the previous conditions. The two Ts result if instead of
moving the eye (by imagination) to see what vertex Is behind
the obscuring edge, the program moves its eye (by
imagination) to completely cover the vertex and eliminate the
accidental alignment. Notice that the default condition
gives much weaker constraints than could be obtained by
trying all the rest of the junction types explicitly. The

only relation that must hold for the two T uprights is that

PAGE 237

DEF‘AuLT CONDITION

Frcure 715

SECTION 7.5 238

the region between them (marked R In figure 7.15) have an
illumination value which matches both uprights. Nonetheless
this is a much stronger condition than is Imposed by leaving
the junction totally unlabeled and, In addition, the
collinear segments (L-A-B, L-B-C, L-C-D in figure 7.15) can
all be labeled unambiguously as occluding edges. The
information | throw away requires that the two uprights be
adjacent segments of the same vertex, where this vertex can

presumably be labeled from the normal label lists.

7.6 MISSING EDGES

Missing edges usually occur when the brightness of
adjacent regions is nearly the same, since most line finding
programs depend heavily on steps in brightness to define
edges, | have made no attempt to treat missing edges
systematically, but have only included a few of the most
common cases in the data base. Clearly missing edge junction
labels could be systematically generated by a program merely
by listing all possibilities for eliminating one edge from
each junction label. This procedure would generate
(n=1)x(old number of regular labels) for each junction type
(where n is the number of line segments which make up the

junction), and clearly this would be a rather unmanageable

SECTION 7.6 239

number of new labels. The number of new labels could be
lessened somewhat by noting that certain types of edges such
as cracks are likely to be missed whereas certain other edges

such as shadows are relatively unlikely to be missed.

Even if a program such as mine can recognize that a
junction must be labeled as having a missing edge, problems
still remain about exactly how the line drawing should be
completed. This difficulty Is i1lustrated in figure 7.16,
Depending on the line segment directions and lengths, the
missing edge junction D can be connected to vertex A, vertex
B or vertex C, even though the topology of all the line

drawings is identical.

The missing edge junctions which are included in the
program's data base are all L junctions which result from
deleting one of the branches of a FORK junction with three
convex edges. Incidentally, In the examples shown in figure
7.16, my program finds each of the given interpretations, but
finds no other interpretations, i.e. It finds no

interpretations which do not Involve missing edges.

SECTION 7.6 241

A rule which can be helpful in removing Impossible
missing edge interpretations is that if a region Is bounded
by only one junction which can be interpreted as having a
missing edge in that region, then that missing edge
interpretation is impossible, (There must be another
junction to connect with the missing edge.) A similar rule
depends on including the label that the missing edge would
have had in each missing edge labeling. In this case, the
rule is that not only must there be a pair of missing edge
junctions around a region in order for either of them to be
possible, but this pair must also match in the label that
each gives to the missing edge. One final rule is that the
previous rules only hold if the pair of missing edge
junctions are not adjacent to one another (l.e. each pair of

junctions can be connected by only one straight line).

If more than one edge is missing, then a program
requires greater constructive understanding than my program
has, although | believe that there are reasonably simple
rules which allow a program to solve scenes even If they are
as bad as the one shown in figure 7.17. For exampie, Shiratl
has demonstrated that the silhouette of a scene contains a
great deal of information about where interior lines and

junctions can appear (Shirai 1972)., Although he does not

e

FIicure 717

THREE BLOCKS & SHADOWS
(THIRTEEN EDGES MISSING)

SECTION 7.6 243

consider scenes with shadows, | believe that the same
principles which he uses are applicable for shadowed scenes.
Freuder has also written a sophisticated heuristic rogram
which fairly reliably fills In edges missed by our group's

line finding programs (Freuder 1971a, 1971b).
7.7 HEURISTICS

As | have mentioned earlier in several places, the
program is able to remove junction labels selectively
according to a crude probability measure of the relative
likelihood of various individual feature interpretations.
These heuristics are a poor substitute for foolproof rules;
in essence | view the heuristics as an expedient method for
handling problems | have not yet been able to solve properly.
As | explained in Section 5.4, these heuristics may
nonetheless be of considerable value in guiding programs

which find sound solutions.

There Is not much to say about the heuristics
themselves. The ones | am using currently lump all the
"unlikely" junction labels into one class, the "likely" ones
into another, and simply eliminate all the "unlikely" 1labels

as long as there are "likely" alternatives.

SECTION 7.7 244

However there are some interesting cases where | have
found that | can usually eliminate the unwanted the problem
scenes In Section 6.5, Obviously, to solve these cases

exactly would require a great deal more programming effort.

Heuristic 1: Try to minimize the number of objects in a

scene interpretation,

Implementations:
(1) Make shadow L junction labels (see figure 7.18A)

more likely than any other type of L junction.

(2) Make labels representing interior TABLE regions more
likely than the equivalent labels that do not involve TABLE

regions.

(3) If regions can be interpreted either as shadows or

as objects, make shadow interpretations more likely.

Heuristic 2: Eliminate interpretations that have points
of contact between objects or between objects and the TABLE

unless there is solid evidence of contact.

Ficure 718 PAGE 245

A: SHapow 1. JUNCTIONS:

<<

B: ConTacT ARROW TUNCTION:

+

P

SECTION 7.7 246

Implementation: Make ARROW junction labels which have
two concave edges and one convex edge (see figure 7.18B) less

likely than ARROW labels of other types.

These heuristics select interpretations (1), (2), and
(7) from figure 6.10, interpretations A(l) and B(2) from
figure 6.12, Interpretation (1) from figure 6.14, and
interpretations (1), (2), (3), (%), (5), and (9) from figure

6.15.

SECTION 8.0 247

8.0 REGION ORIENTATIONS

What has obviously been missing from all that | have
shown so far is a connection between line segment directions
on the retina and possible labelings for these lines. Such a
connection Is extremely useful if the program Is to
understand gravity and support., In this chapter | describe
approaches to this problem which | have not yet included In
my program. There Is probably as much work required to
properly add the ability to handle direction information as |
have already invested in my program. Nonetheless, | believe
that this chapter provides a good idea of the work that needs
to be done as well as the physical knowledge that these

additions will allow one to include in the program.

8.1 LINE LABEL ADDITIONS

To begin with, | investigate the partitioning of each
edge type into three subtypes, a technique analogous to the
ones | used earlier to divide concave edges Into four classes
and all edges into types according to their region
illumination values. As In the case of occliuding egiges, the
line values are only defined with respect to a reference

point and direction, where the usual reference points are

SECTION 8.1 248

junctions. The three values are:

(1) U (Up) - an edge directed up, away from the TABLE.
The reference end is closer to the TABLE than any other

points along the edge in the reference direction.

(2) D (Down) - directed downward toward the TABLE. This
is the opposite of U, the same edge but with the other end of
the line and the opposite direction on the line as

references.

(3) P (Parallel) - parallel to the TABLE or in the plane
of the TABLE.

Notice that there are some immediate limitations that

can now be set on the set of junction labellings:

(1) Any shadow edge or concave edge marked with a "T",
i.e. which is in the plane of the table, automatically can

have only one direction, P, in this partitioning.

(2) Any junction which has one or more shadow and
concave edges labeled "T" must have its edges of other types

in the U direction, since the edges at such junctions must

SECTION 8.1 249

ei ther be in the plane of the TABLE or above this plane.

(3) Two edges which bound the same region and which are
parallel or collinear must both have the same direction
value, U, D, or P, This fact can be chained through several

regions.

Figure 8.1 Illustrates these facts; U Is Indicated by
placing an arrow along the side of a line segment pointing In

the Up direction.

Notice that these rules also allow a program to find
horizontal surfaces, an important part of the notion of
support. A horizontal surface can be defined in this system
of notation as any region bounded by two or more edges which
are both marked P (]I) and which are not parallel to each
other or collinear., Moreover, any edges which are In the
plane of a horizontal surface can then also be marked as
paraliel to the TABLE, regardless of the directions of these
lines on the retina, Finally, any junctions which bear a
relationship to a horizontal surface, analogous to the one
that | mentioned earlier for junctions which had segments In
the plane of the TABLE, can similarly have their other

segments labeled U, Figure 8.2 {l1lustrates these points.

WITHOUWT EDGE DIRECTION INFORMATIon [ACE 250
THE FPOLILOWING LINE DRAWING IS LABELED
AS SHOWN.:

T T

h %

TT ALSS HAS A UNIAQUE LABEBLING IF LINE
DIRBCTION INFORMATION IS INCLUDED:

Tl =gf l{ '-'-'Eowr\ lll = zarallel

Ticure 8.1

UsING THE RULES DESCRIRED S0 FAR EXCEPT THE

HORIZONTAL. SURFACE RULE,THIS SCEMNE CAN BE
LABEALED!

Ficure B.2

152 TN

Reeion [A] ¢cAN BE Now PouND TO BE HORIZONTAL,
¢o0 THAT ALL EDGES WHICH ARE PART oF [A] CAN BE
LABELED TARAMAEL; ONLY ADPDED LABELS ARE SHOWN:

252 39vA

Freure 8.2

CAN Now BE MARKED AS HORIZONTAL, AND AS

dEoWN BELOW, [Cl ¢AN BE FOUND TO BE HORIZONAL
ALSO:

Treure 8.2

«SZ I9va

SECTION 8.1 254

These rules are not particularly helpful when there are
no parallel edges; it is possible to chain some values in
the absence of parallel edges and horizontal surfaces, but
generally such chaining cannot be carried very far.
Depending on the way that edges deviate from parallel, It is
sometimes possible to assign an Up direction. (In some of
the figures which follow | have not marked the lines with
their normal labels, but have only included the direction
labels for clarity.) See figure 8.3, and note that since
edge L-A-B is not parallel to L-C-D, | can mark L-C-D with an
Up direction as shown. This means that since L-E-F Is
parallel to L=-C-D, it can also be marked with an Up

direction.

8.2 AN EXAMPLE

Using the methods | have already discussed plus one
other piece of new information, | can show how to eliminate
some labelings for a line drawing if | know the line segment
directions. To see how these can help, consider again the
example | showed in figures 5.10 and 5.11, as i(llustrated now
in figure 8.4A, Because L-A-B is parallel to L-C-D and L-B-E

is parallel to L-D-F, Rl must be horizontal, assuming that

PAGE 255

TAGE 256

Treure 84

SECTION 8.2 257

the labeling shown is true., By the same kind of reasoning R2
must be horizontal. Now the additional rule is: two
horizontal regions can only be separated by crack, shadow or
obscuring edges. Therefore, the labeling shown Is
impossible, since L-C-G s a concave edge, and consequently
cannot separate two horizontal regions. Similarly | can

eliminate the labeling shown in figure 8,48,
8.3 GENERAL REGION ORIENTATIONS

In this section | define a quantization scheme which
assigns to each visible region one of sixteen values. The
regions are named in as sensible and simple a manner as !
could devise, and are defined with respect to a coordinate
system which is itself defined by the TABLE surface and the
position of the eye viewing the scene. The region
orientation values are each shown in figure 8.5; | assume
that this figure will serve as an adequate specification for
the meaning of the different orientation values. |If the
scene is moved with respect to the eye or vlﬁe-versa, then
the region values (except Table and Horizontal) may changé,
and regions previously invisible may become visible. Thus
the region orientation values are not inherent properties of

the surfaces, but are only defined with respect to a

(Assume THAT
T EDGBS WHICH A A
FAPER ARE VERTICAL IN Ta}éﬁ 5%%%&%{51, on [AGE 258

@ Tapre
) Hor1ZONTAL

®FRV

(FRONT RIGHT
VERTICAL)

@FLY

(FRONT LEF'T
VERTICALD

1 TA
4 TLY
®FRU
(FRONT RIGHT UE)

© BLU
(BACK LEFT U

1 TA
3 T'RY
QELU
(FRONT LEFT UE)

®@BRU
(BACK RIGHT UP)

Frcure 85

L TA PAGE 253

@ 1u (LerTUP)

@O RU (RIGHT UP)
TU (FRONT UP)
BUW (BACK UP)

i1 TA

2 H

3 TRV 2

4 FLV . _ / =

Y 1=
® (FRONT VERTICAL) ®
i

1TA

2 H .

3 TRV N7 .
4 PLY N / \\\\\\\ 7
(‘PROHT LEFT e\ Z/ﬁ——»—_

DOWN)
@D FRD
(FRONT RIGHT DoWN)

1 TA 2

2 H 4

3 FRY :

4 TLV

@O TD (FRONT DOWN) =

A i =
e

Freure 8.5

SECTION 8.3 260

particular eye-table arrangement.

If a region Rl is type FRV (Front Right Vertical) and an
edge separating this region from region R2 is a shadow edge,
then region R2 must also be type FRV (see figure 8.6A). The
problem is not quite so simple when the other edge types are
involved. To give the flavor of what | would like to be able
to do in general, note that if an edge separating Rl and R2
is vertical on the retina, and Rl appears to the right of R2
on the retina, then R2 can only be type FLV or type FV or

type FRV (see figure 8.6B).

8.4 GENERAL LINE DIRECTIONS

Before | can carry out this type of association in
general, | must

(1) define line directions on the retina and

(2) define line directions in the scene domain with
greater precision, and

(3) show how to find the scene direction values, given

a labeled line drawing and the retinal line directions.

PAGE 261

~17

R1 apRZ axE porn FRY

B
Rl
R2. R2. (FRY]
(FRY) \ | TV 7

THREE POSSIBILITIES 'Po'R Norrr/ oum ConvEX
EDGE BOUMDING AN F Rnsrou RL) oM ITS

LEFT: F'RV, TLV, R FY

Treure 8.6

SECTION 8.4 262

Throughout this chapter | assume that the eye |s far
enough away from the scene so that vertical edges in the
scene project into North/South lines on the retina. Since
the definition of North/South edges includes a tolerance
angle &, the eye does not need to be at infinity for this
condition to hold., By the same reasoning | assume that
parallel edges can be recognized without resort to

perspective or vanishing point considerations.

First | define the retinal line directions in terms of

compass points as shown in figure 8.7.

Next , in figure 8.8, | define the names for the
directions of lines in the scene by showing examples for each
type possible direction. These names resemble the names for
region orientations, but | will always use lower case letters
in referring to the line names and will use upper case

letters when | refer to the region names.

Now to make the connections between the retinal and
scene line directions, note that | can catalog all the
possible edge directions in the scene domain which can map
into each of the direction values on the retina. As an

example of how to do this, in figure 8.9 | show all the edge

TAGE 263

Treure 8.7

PAGE 264

flp/brp bid
(front left parallel ¥ —
back riglﬂ- Parul\e\

‘Fr‘?/ blp
+ right flel
front right parallel/

fru/bd

(front right
front right up

frd /blu
(front right down/
back left up)

tlu

+1d/b
Céro::ft lef+ down/ u

back riﬂh'k up) :d//'

flu /brd
(front left up/
back ﬁgh’l’ down

lp/rp
llel
el

fo/
(front paraliel/ e feuftee R
parallel E’:‘féﬂ Tb" . I’\XLP
Vu./vc\ {'Plfr." e
(verﬁ::l.\ up/ == rp
vertical down) { N'-l: P’P C vdl Tvu
-(-‘,.P'\.gl Vv CBRT. K_}

i

?—’
Trcure 88 ol

FAGE 265

fu/bd
('Fr-on'(' uP/

back down)

d (bu
(front down
back LLP)

($TDE vIEW
b)

viufrd s

(vertical left P l
vs:fﬁf Hﬁkf iow»x) l Tb(’ ‘ 'FPl pr \

alfte 7w

=
vid VH{J:‘ ! loft d <t
(x::hzl 53 do“,ig/ &%7 Hb? P ;,,pr
1 __'«-i
\[T A//" P VJl Tvu
P

Freure 88

PAGE 266

N

QD
U

NEL: bru NEZ: brp NE3Z: brd
B brd SE: brd 8: vd
Swifid swa:flp SW3: Flu

.

N: vu

W £lu NW: flw
Freure &9

SECTION 8.4 267

directions possible for an edge which bounds a type FRV
region, The diagrams In this figure show that an NE
(Northeast) line on the retina which bounds a type FRV region
can be an edge of types bru, brp, or brd, that an E (east)
line on the retina which bounds a type FRV region can only be
caused by a type brd edge, etc. Table 8.1 Is a summary of
the types of scene edges which can cause lines of each type
on the retina, arranged according to the types of regions

that each edge can bound.

Now to tie everything together, notice that an edge can
only separate two regions If the edge could have the same
direction in both regions bounding the edge. Therefore, to
find all the region pairs that an N (North) edge (as seen on
the retina) could separate, look down the N column In Table
8.1 and find all the palrs of regions which can share an edge
which points in a particular direction. A north pointing
edge can thus separate any of the following pairs of region

types (this is not a complete list):

((TA TA) (H H) (TA LU) (H LU) (H RU)
(RU TA) (RU H)

(FRV FRV) (FRV FLV) (FRV FV)

(FLV FRV) (FLV FV) (FLV FLV)

TABLE 8.1

DIRECTION OF LINE ON RETINA PAGE 268
RecioN
Sy N |[NE|E |SE| S [SW|W |NwW
HorTA|bp | brp | vp |fre | Fp |Flp | Ip | blp
PU bu | bru | rp frd | #d |Hd | lp |blu
FVY vau [vru | rp Jvrd | vd fvid | p |viu
FD fu | fru | rp |brd | bd | bld | 1p | flu
b | ors | b | v L | g |
r v
FRU w | brp | brd | yrd | A | EP Tl b
bt | brd | brd | vd | Hp | £lu | £
FRV Vu b r-C\ v flﬁ u lu
fru, bid, vid
FRD | fu o] brd | brd | b fléiw{ép fla | flu
r W
brd £
RU | bp | brd | brd | yrd | £p | Flu | Flu | vl
brd,vrd Flu, vl
BRU | bd | brd | brd [Frhbel fu | Flu | Flu [Hbis
ru bid
BU bd | bed | rp | fru fu | flu lp bid
brd b g
BLU bd bm,vz fru | fru | fu 4[1,;3‘:! bld | bld
bru \d
1.U be z:‘: fru [Fru | fp \ledd bid | bld
bru fru Fld bld
FLU bu yru feu i‘;& £d Vb‘l‘il bid 'L;IL
£ bid
LY vu | Fru | fra {f% vd | bld | bid tllﬁ
fru,fep bld, blp
LD fu |Fru | Fru frcllb,rv;d bd | bid | bld bh;i:\lu

SECTION 8.4 269

(FV FV) (FV FLV) (FV FRV)
(LU H) (W RU) (LU LU)
(RU H) (RU LU) (RU RU)
(BLU BRU) (BRU BLU))

Not all these pairs can be separated bythe same types
of edges; shadows and cracks can only separate regions with
the same orientation values, and convex edge pairs become
concave edge palrs If the order of the pairs is reversed,
For example, a North line separating regions with orientation
values (FLV FRV) represents a convex edge (where the ordering
of the regions is in a clockwise direction), but if the
orientation values are (FRV FLV) for a North line, this must
represent a concave edge, This fact Is Illustrated In figure

8.10,

I|f the Up/Down/Parallel designations are also included
in the regular labeling program, then it is possible to make
even finer distinctions. Table 8.2 shows some of the lists
of region orientation pairs which can be assigned to lines

having the indicated labels and directions.

PAGE 270

iy |¥ R
+
N

FRY | FLV

Ticure 8.10

YAGE 271

LINE
DIRECTION

LABEL

POSSIBLE REGION PAIRS

PLUS-U

(Fu FRW)
CFRU FRU(FLU TLW)
(FLU TW(ELU TR
(FY FRY)
(ERV TRV)(FLV FLV)
(FWV PU)(FLY FRY)
(EFD ERD)
(FRD TRDXFLD FLD)
(FLD TD)(ELD TRD))

PLUS-P

((H RW)
(Ri. RU) (LT L)
(LU H)(LU RW)

PLUS-D

((CBRU BRW(BLU BLW)
(BU Bmg
(BLU BUY(BLU BRU))

Cconcave)
M-D or
M3-D or

OCRM=-D or

OCLM-D

((BRW BWYBRX BLW)
(BU BLW)
(BLK BLW(BRW BRY))

TARLE

8.2

SECTION 8.4 272

A program can use this information in the following

ways:

(1) |If there are ambiguities remaining after the
regular labeling program has finished, pick a single
labeling, assign region values using the lists shown in part
in Table 8.2, and see whether this labeling can represent a
possible interpretation; 1If the interpretation is not
possible, then the program will be unable to assign
orientation values to every region, very much like the case
earlier in this chapter where a concave edge could not

separate two horizontal surfaces.

(2) Region illumination values can be tied in with the
region orientation values. For example, if a scene is lit
from the left, and the light-eye angle is less than 90
degrees (see figure 8.11; the light-eye angle is the angle
between the projections of the eye and the light onto the
plane of the TABLE, as measured from the center of the
scene), then a region cannot be labeled simultaneously as
orientation type FLV and illumination type SS (Self-
Shadowed).

echon o'{;
'E onto
TABL:E plane

Freure 8.11

@LZ IOV

SECTION 8.4 274

(3) All these facts provide a neat way to integrate
stereo information into a scene description. For example, as
shown in figure 8.12, if an edge is truly vertical (type vu)
then it must appear as N (North) in any retinal projection of
a stereo system. However an edge which is of type hp (back
parallel) can appear to be N on the retina because of the
particular placement of the eye with respect to the scene.

If the eye is shifted slightly to the right, this edge will
now appear to point NE (Northeast) and if the eye is shifted
to the left, the edge will appear to point NW (Northwest).
Clearly this knowledge would enable a program to much more
severely restrict the region orientation pairs, and
consequently the labelings, that can be assigned to a line
drawing of a scene. Without the region and edge orientation
formal isms (or other similar formalisms) it is not possible
for a program to understand this stereo information, although
one could undoubtedly find ad hoc ways of using the

information.

(4) All the possibilities for region orientations can
be generated by the function | called ILLUMINE in Section
b,1. For each labeling which the program finds, |LLUMINE can
select region pairs according to the iine directions and line

labels, and build up a set of region orientation values in

PAGE 275

- A
SHIFT SHIFT
EYE TO SHIFT
LEPT/ IGHT

Ficure 812

SECTION 8.4 276

exactly the same manner that |LLUMINE builds up sets of
region illumination values. The difference Is that there are
far too many region orientation values in general to possibly
include them in precompiled form; the values must be
generated from the greatly reduced set of possibilities that
remain after the regular labeling program has completed its
work. The reason why there are so many possibilities is that
there are so many possible region orientations. Each edge
can potentially have 16x16 = 256 region orientation pairs as

opposed to the nine possible region illumination palrs.

8.5 SUPPORT

Using the region orientation values, | can now define
the set of edges along which support must hold, the set of
edges along which support can hoild, and the set of edges
along which support cannot hold., By support | mean what is

commonly termed either resting on or leaning on.

To start with, | can eliminate from consideration any
edges which are shadows, convex edges, obscuring edges, or
concave edges made up of one object or of three objects, and
| can say for certain that support Is exhibited along any

concave edge which has the TABLE as a bounding region. In

SECTION 8.5 277

addition edges labeled as '"leaning'" (see Section 7.1) point
to places where support relations must hold, although support
does not hold along the leaning edges themselves, since these

are either obscuring or convex edges.

The important fact is that these edges exhibit support
regardless of their directions on the retina, so that there
is no problem with edges such as L-A~B In flgure 8.13. The
best previous rules to find where support holds In a scene
(see Winston 1970) are not able to handle cases like this;
Winston's rules were blased toward finding ARROWs, Ks and Xs
which have vertical (or at least upward pointing) lines as do
all of the cases In figure 8.14 (this figure Is a copy of
figure 2-41 from Winston 1970). 1in addition, Winston's rules
failed to find one support relation for the leaning block;
his rules assumed that objects would be supported by face

contact only,

Although my program can find support in cases like
figure 8.13, it is important to note that, In general, it is
not possible to use my regular labelings and line directions
alone to find which edges exhibit support and which do not.
Suppose that on the basis of the frequency of crack edges

like the ones shown in figure 8.15A | decided to label as

FAGE 278

%
P
==

N

A Sv—————

lTl

(SUPBORT RELATIONS ARE CTRCLED)

FreurE 8.13

TAGE 279

Freure 814

ORI ECT SUPPORTED-BY IN-FRONT-OF

% BC. T.G
K —_—

c D,E -
D — E
E - -
F* E -
G = —
H 1T —
1 —- —

J — —
K H B

*PROGRAM. MISSES G AS SUFPORT FOR T

PAGE 280

T'IGURE &.15C

FAGE 281

B TcuRrE 815D

~

Ersure B.ISE

FisurRE 815 F

SECTION 8.5 282

Supporting/crack edges ones in which the arrow of the crack
label points SW, W, or NW, and to class all the others
together as being crack edges without support relations.

Then in figure 8.15B edges L-B~C and L-C-D would be correctly
marked but L-A-B would not. | could patch up the rule by
saying that if support holds for one non-collinear line in an
X junction it must hold for the other non-collinear line of
the X as well, Unfortunately this rule causes the program to
assert that support holds between the two objects In figure
8.15C, since support would be transferred by the rule from

L-B-C to L-A-B,

Similarly, for concave edges | cannot use line
directions and the direction of the arrow on the label to
define support., As an example, observe that while L-A-B in
figure 8.15D does not exhibit support, L-C-D in figure 8.15E

does.

Region orientation values can help to avoid these
problems, at least for some cases. (There are some, cases
such as the one in figure 8.15F , where | do not know whether
to say that support holds along L-A-B and L-B-C or not.)
Interestingly enough, with region orientations specified, |

do not necessarily need line directions, although | certainly

SECTION 8.5 283

need line directions to find the region orientation values to

begin with,

An example of an edge where support must hold (s any
concave edge which has a horizontal surface on its left when
one looks along the edge in the direction of its "arrow", as

does L=C-D in figure 8.15E.

Some examples of edges where support cannot hold are
concave edges which have vertical surfaces (FRV, FV, or FLV)
or downward pointing surfaces (FRD, FD, or FLD) on the left
of the edges when looking along the direction of the "arrow";

line L=A-B in figure 8.15D Is an edge of this type.

While | do not show how to do so here, | believe that
the best way to add the understanding of support to the

framework of my program is to:

(1) add support labels to lines in junction labelings
where support can hold, and add these labelings to the

regular set of labels,

SECTION 8.5 284

(2) as usual, do nothing when a line represents

unambiguously a support edge or an edge wi thout support, and

(3) when there Is ambiguity, use the region orientation
values to help decide the issue. To do this, note that since
there is a connection between the edges which can have
support, line directions, and region orientations, | can use
the function ILLUMINE again to eliminate impossible
combinations and hopefuly decide where support can and cannot

hold.

! have no great confidence that such a system will show
where support must hold for certain, but the knowledge about
where support can hold combined with the knowledge that every
object must be supported somehow, should allow the program to
do quite well, | suspect that the program will be quite good
at finding places where support cannot possibly hold. To
solve these problems fully a program needs considerable
knowledge about stabillty, gravity, and friction. These
problems are outside the scope of this paper; for a
discussion of some of the Issues involved see Blum et al

1970.

SECTION 8.5 285

To give a feeling for the number of new junctions which
would be required in the data base, | have shown some
junctions in figure 8.16 which can involve support. Flgure
8.16A illustrates the fact that any concave edge which
touches the TABLE must be a support edge. In figure 8.16B,
if the crossbar of the T (the collinear lines) exhibits
support on one of its halves, then it must exhibit support on
the other half as well and the support direction must be the
same for both of these edges. Similarly, In figure 8.16C
both non=collinear edges must have the same support or lack
of support values. I|f each of the branches which can
potentially exhibit support relations were labeled
independently, then the cases Iin figures 8,16A and 8.168B
would each have 27 possible support assignments instead of
three and nine respectively, and the case in figure 8.16C
would have 9 assignments instead of the actual three, Thus
the same kinds of techniques which | have shown earlier for
other descriptions would almost certainly work well for
support cases too. Finélly, obscuring edges, which have up
to now accounted for the biggest Increases in the numbers of
new labels when the old labels were split Into subtypes do
not even take part in this partitioning, so that the Increase

in the total number of labelings should be well within

bounds.

. + + + §S
N S A M

+ + +

v L —MPANS THAT OBIDCT oF WHIH B 1S A BART
SUFPORT'S OBIECT oF WEICH AL1S APART

B 43~ NoMARK MEANS THAT INEITHER OBIECT
SUPPORTS THE OTHER ALONG THIS EDGE.

SECTION 8.5 287

Of course my present program can already list lines
where support may hold (i.e, all crack and two-object concave
edges), and as before, simple heuristics would allow the
program to say with some confidence where support could or
could not hold., Clearly, it would also be quite natural to
call some of the support assignments in figure 8.16 "1likely"

and certain others "extremely unlikely",

SECTION 9.0 288

9.0 HISTORICAL PERSPECTIVE

It is lnstructlvé to reexamine earlier vision work which
dealt with similar problems in the light of the formalisms |
have presented in this paper. In this chapter | review the
work of Guzman (Guzman 1968), Rattner (Rattner 1970), Orban
(Orban 1970), Freuder (Freuder 1971a, 1971b), Dowson (Dowson
and Waltz 1971, Dowson 1971a, Dowson 1971b), Huffman (Huffman
1971), and Clowes (Clowes 1971, Clowes et al 1971).

In what follows | hope to give you some appreciation for
the real advances in thinking about vision which were brought
about by these authors. Ten years ago the whole area of
computer vision was uncharted territory, and It was certainly
far from obvious where one should begin. Today, while there
are innumerable questions still unanswered, we have some
definite ldeas about how vision systems could be organized
and about the reasons why many appealing systems such as
perceptrons and template matching schemes are inadequate

models for vision systems (Minsky & Papert 1970).

SECTION 9.1 289

9.1 GUZMAN'S SEE PROGRAM

Guzman's work is probably the most famous of the earlier
vision work, and indeed his approach was a dramatic departure
from what had been done before him. His formalisms were
designed to group regions together into bodies. Basically
his program did this by ldentifying each line in a line
drawing as linking or not linking, where linking means that
the regions on both sides of the line belong to the same body
and not linking means that there is no evidence about the
line; it may be either tinking or the regions on either side
of the line may belong to different bodies. Guzman used a
set of junction types exactly as my program does (L, ARROW,
T, etc.) but he included only one labeling for each type of

junction. Guzman's junction set is shown In figure 9.1.

There can be two conditions for any line in a line
drawing after the labelings have been assigned to each

junction:

(1) the labels at either end of a line agree, in which

case the labels are assumed to be correct, or

FAGE 220

TORK: XK.

Ficure S.1

SECTION 9.1 291

(2) the labels on a line do not agree; 1In this case
heuristics are invoked to settie the issue in favor of one or

the other of the labels.

As examples of these heuristics, Guzman originally
linked regions if either end of a 1ine were marked with a
linking label. Later he added a system using "weak" and
"strong" links to allow more subtle weighting of
possibilities and, still later, he added a link Inhibition
feature which provided evidence against linking certain
regions. Rattner (Rattner 1970) worked out various

extensions to Guzman's work along these lines.

As it turned out, the link inhibition feature proved to
be a much more powerful method than the previous methods he
had tried. Basically this Is because the link inhibition
technique was less local than the previous links had been.
The assignment of a link inhibition between two regions has
consequences for every line which separates the two regions,
unlike the linking mark which only serves as one piece of
evidence in favor of linking two regions. In terms of my
program, the program using links only is very much like what
my program would be if | divided my labels up into those

which had PLUS (convex) marks and all the rest (assume that

SECTION 9.1 292

there are no shadows). The link inhibition labels would be
those which have an arrow on the line segment, such as
occluding edges, cracks, etc. The only strong evidence for
linking regions comes from ARROW and FORK junctions, and of
these the ARROW junctions are the more important, since
(ignoring shadows and separable PIUS edges) every ARROW
labeling links the two regions which bound the shaft of the
ARROW. 1In contrast, there are a number of FORK junctions

which have non-linking lines (see figure 9.2).

But if link inhibitions are used there is considerable
evidence in ARROW, T, X, and K junctions; In fact Freuder
has shown that if only link inhibitions are used, the program

works just about as well as Guzman's full program.

There are numerous problems with Guzman's approach.
First, his system simply does not work very well; for
carefully chosen scenes it will find the correct results, but
the program Is very easy to fool. As Winston showed (Winston
1968) Guzman's program fails badly on scenes with holes, and
obviously the program is worthless for scenes with shadows.
If | map my labelings into Guzman's binary scheme there are
examples of virtually every possible labeling for each

junction type within my data base. Thus it becomes obvious

PAGE 293

A A A

A A A
PPN

TIGuURE 3.2

Seme common FORKS WITH NON-LINKED EDGES
(LINKS SUPERIMPOSED WHERE A’EPMCA’BLB)

SECTION 9.1 294

that Guzman's labels are simply the most probable
combinations of links for scenes without shadows. As such,
his program really has very little understanding of the world

(see Winston 1972a, 1972b).

Second, Guzman's approach is difficult to extend. This
is due to the use of only one labeling for each junction and
consequent heavy dependence on special purpose heuristics,
and due also to the fact that virtually all the linking
information for a line comes only from the two junctions at
the ends of the line. There is no systematic way to use any
information except locally. (The only exceptions are
Guzman's use of matched Ts, the link inhibition information,
and reglions which meet along more than one edge.) As an
example, Orban's extension of Guzman's program to Include
shadows (Orban 1970) depends exclusively on the observation
that shadows frequently have chained L and X junctions. But
despite the fact that Orban's program does have a slightly
greater understanding of the meaning that scene features can
have, it is not a systematic extension. Like almost all the
extensions suggested for Guzman's work, it Is a patchwork
method: to handle a new distinction, pick a few common
features that display the distinction and then adjust the

rest of the program to avoid making disastrous errors.

SECTION 9.1 295

Third, this approach leaves a great deal unexplained.
Certainly there is a great deal more to understanding a scene

than simply being able to connect the regions Into bodlies.

So far | have been dealing with the ways In which
Guzman's approach was deficient, but It has strong features
as well, Guzman was the first person, to my knowledge, to
get away from the idea of storing descriptions of particular
objects and trying to match these descriptions to a given
scene. Roberts (Roberts 1963) had used this method and In
fact others continued to do even less sophisticated template
matching of sorts well after Guzman published his work. In
contrast, Guzman's method works for arbitrary scenes
containing trihedral vertices and gives some answer for any
scene presented to it, Perhaps the most appealing feature of
SEE was its simplicity and clarity; there are no
tranformations, coordinates, or hidden lines, and in fact
only topology Is used. Guzman's great insight was that by
describing the physical characteristics of a relatively small
number of local features, one can use simple decision
procedures to derive much less local facts about arbitrary,

unfamiliar scenes.

SECTION 9.1 296

Guzman's work was also instrumental in Initiating two
fruitful lines of research which are still active. This
paper is along the line defined by Huffman and Clowes
(Huffman 1971, Clowes 1971)., The other line Is the work on
heterarchy (For excellent discussions of both Guzman and
heterarchy see Winston 1972a or 1972b, and Minsky & Papert
1972),

9.2 WORK AFTER GUZMAN; HUFFMAN & CLOWES

Huf fman was motivated partiy by his observation of the
lack of semantic content in Guzman's program to suggest a
richer set of labels than link and do-not-link., (Whether
Clowes came upon the same ldeas independent of Guzman or not
| do not know.) Clearly both were influenced by Guzman's
“"grammatical' approach to scene processing. Thelr great
insight was that by describing edges more precisely one could
use definite rules rather than probabilistically based
heuristics to choose scene interpretations. Moreover they
showed that one could even say with some assurance that
certain line drawing could not even correspond to real
physical scenes; compare this with the fact that Guzman's
program rather blindly returns some decomposition into bodies

for any line drawing, and you will get some idea of the

SECTION 9.2 297

increase in understanding implicit In Huffman's and Clowes'

work.

Both Huffman and Clowes also worked with a construction
for representing region orientations called the dual graph
which influenced my thinking on region orientations Huffman
1971, Clowes et al 1971). Unfortunately, there Is no neat
way that | could see to integrate the dual graph into a
labeling scheme. In any case, | owe Huffman and Clowes a

considerable debt.

9.3 AN ACCOUNT OF MY EFFORTS

When Dowson and | began working in this area, we
envisioned a tree searching program which would attempt to
assign labelings from a reasonably small set (like those of
Huffman and Clowes) to a line drawing. Dowson came up with a
set of junctions Involving cracks, and | generated a list of
shadow junctions (Dowson & Waltz 1971). Dowson then
developed VIRGIN, a tree search type labeling program (Dowson
1971b) to apply this knowledge to real scenes. He
immediately ran into serious problems, since even the
simplest scenes required huge amounts of computer space, and

the program ended up with many possible labelings for each

SECTION 9.3 298

scene. Most of these labelings only differed by one or two
line labels, but each of which took a considerable amount of
time to produce. It did not become obvious to me until

somewhat later that tree search was the wrong model for this

problem,

In my proposal for this work (Waltz 1971) | suggested a
rather heterarchical model for labeling line drawings. At
this time | had already noted that by beginning with the
scene/background boundary | could cut down the search space
considerably, and | listed a number of rules (related to the
selection rules and region illumination types) which |
thought could further speed up and increase the power of a
program, | also showed that region orientations could be
handled easily if | restricted the universe of objects to

include only those with right-angle edges.

My major breakthrough came when | saw that the region
orientations could be included as part of the edge labels,
and then saw that | could also subdivide each edge type into
several types according to the way that each edge could be
decomposed, This idea was first suggested to me by Freuder

(see Freuder 1971a) nearly a year before | used it.

SECTION 9.3 299

The last pieces fell into place when | made the decision
to try using a filtering program before doing a tree search,
based on my observations of Dowson's difficulties. Since the
set of labelings | now had was far larger than the set which
had clogged his program, | felt that | needed such a program
to clear away the clutter of unneeded labelings and make tree
searching feasible. | was genuinely surprised when the
filtering program returned unique labelings for most of the
junctions in the flirst scenes | gave to it. From here on my
work followed directly from the success of the combination of
this filtering program and the much enlarged junction
labeling sets. | think It is noteworthy that this workls
the direct result of my interaction with the program, as
opposed to being the result of a system | worked out first by

hand and only then implemented in a program.

There is one lesson which | think is Important, perhaps
more important than any other in terms of the ways it might
aid future research. For a long time after | had found the
ways of describing region illuminations and edge
decompositions, | tried to find a clever way to collapse the
large set of line labels these distinctions Implied into a
smaller and more manageable set which would retain all the

"essential" distinctions, whatever they were. Frustrated in

SECTION 9.3 300

this attempt for quite a while, | finally decided to go ahead
and include every possible labeling in the program, even
though this promised to involve a good deal of typing. |
hoped that when | ran the program certain regularities would
appear, l.e. that when the program found a particular
labeling for a junction it would always find another as well,
so that the two labelings could be collapsed into one new one
with no loss of information, Of course, as It turned out, it
was the fact that | had made such precise distinctions that
allowed the program to find unique labelings. The moral of
this is that one should not be afraid of semi-infinities; a
large number of simple facts may be needed to represent what

can be deduced by computation using a few general ldeas.

It also seems logical that, If anything, people ae able
to make much finer distinctions than | was considering, and
that these distinctions had value for perception. For
example, people can distinguish between obtuse or "blunt"
edges (such as those of a regular dodecahedron), right angle
edges (such as those of a cube), and acute or '"sharp" edges

(such as those of a regular tetrahedron),

SECTION 9.3 301

Finally, | do not see any reason to suppose that we
should be able to get along with distinctions on the order of
one or two hundred, any more than a language program with a
vocabulary of this size could comprehend or express anything
very interesting. But by the same token, it may be that a
vision system does not have to be too large for available
computers in order to reach a point of diminishing returns,
just as an increase in vocabulary beyond 10,000 words would
probably not add much to a language program's (or a person's)

abi]ityo

BIBLIOGRAPHY 302

BIBLIOGRAPHY

Blum M, Griffith A & Neuman B
A Stability Test for Configurations of Blocks
Al Memo 188
MIT Artificial Intelligence Laboratory
February 1970

Clowes M B On Seeing Things
Al Journal
Spring 1971

Clowes M B, Mackworth A K & Stanton R B
Picture Interpretation as a
Problem Solving Process
Laboratory of Experimental Psychology
University of Sussex (England)
June 1971

Dowson M What Corners Look Like
Vision Flash 13
Vision Group
MIT Artificial Intelligence Laboratory
June 1971

Dowson M & Waltz D L
Shadows and Cracks
Vision Flash 14
Vision Group
MIT Artificlial Intelligence Laboratory
June 1971

Dowson M Progress in Extending the VIRGIN Program
Vision Flash 20
Vision Group -
MIT Artificial Intelligence Laboratory
October 1971

Finin T Two Problems in Analyzing Scenes
Vision Flash 12
Vision Group
MIT Artificial Intelligence Laboratory
June 1971

BIBLIOGRAPHY 303

Finin T Finding the Skeleton of a Brick
Vision Flash 19
Vision Group
MIT Artificial Intelligence Laboratory
August 1971

Finin T A Vision Potpourri
Vision Flash 26
Vision Group
MIT Artificial Intelligence Laboratory
June 1972

Freuder E The Object Partition Problem
Vision Flash &4
Vision Group
MIT Artificial Intelligence Laboratory
February 1971

Freuder E Views on Vision
Vision Flash 5
Vision Group
MIT Artificial Intelligence Laboratory
February 1971

Gaschnig J Resolving Visual Ambiguity With a Probe
Vision Flash 17
Vision Group
MIT Artificial Intelligence Laboratory
July 1971

Gibson J J The Perception of the Visual World
Houghton Mifflin
Boston
1950

Guzman A Computer recognition of Three~-dimensional
Objects in a Visual Scene
Technical Report Al-TR-228
MIT Artificial Intelligence Laboratory
December 1968

Horn B K P Shape from Shading: A Method for Obtaining
the Shape of a Smooth Opaque Object from One View
Technical Report Al=-TR=-232
MIT Artificial Intelligence Laboratory
November 1970

BIBLIOGRAPHY 304

Horn B K P The Binford-Horn Line Finder
Vision Flash 16
Vision Group
MIT Artificial Intelligence Laboratory
June 1971

Huffman D A Impossible Objects as Nonsense Sentences
Machine Intelligence 6
Edinburgh University Press
1970

Koffka K Principles of Gestalt Psychology
Harcourt-Brace
New York
1935

Lerman J B Computer Processing of Stereo Images
for the Automatic Extraction of Range
MIT Department of Electrical Engineering Thesis
June 1970

Mahabala H N V Preprocessor for Programs Which Recognize Scenes
Al Memo 177
MIT Artificial Intelligence Laboratory
August 1969

McDermott D L & Sussman G J
The CONNIVER Reference Manual
Al Memo 259
MIT Artificial Intelligence Laboratory
May 1972

Minsky M L & Papert S
Progress Report
Al Memo 252
MIT Artificial Intelligence Laboratory
January 1972

Orban R Removing Shadows in a Scene
Al Memo 192
MIT Artificial Intelligence Laboratory
August 1970

Rattner M H Extending Guzman's SEE Program
Al Memo 204
MIT Artificial Intelligence Laboratory
July 19790

Roberts L

Shirai Y

Shirai Y

BIBLIOGRAPHY 305

Machine Perception of Three-Dimensional Solids
Technical Report 315

MIT Lincoln Laboratory

May 1963

Extraction of the Line Drawing of
3-Dimensional Objects by Sequential Lighting
from Multidirections

Electrotechnical Laboratory Technical Report
Tokyo

1971

A Heterarchical Program for Recognition
of Polyhedra

Al Memo 263

MIT Artificial Intelligence Laboratory
June 1972

Sussman G J, Winograd T & Charniak E

Waltz D L

Waltz D L

Winston P H

Winston P H

MICRO-PLANNER Reference Manual

Al Memo 203A

MIT Artificial Intelligence Laboratory
December 1971

Understanding Scenes with Shadows
Vision Flash 21

Vision Group

MIT Artificial Intelligence Laboratory
November 1971

Shedding Light on Shadows

Vision Flash 29

Vision Group

MIT Artificial Intelligence Laboratory
July 1972

. Holes

Al Memo 163
MIT Artificial Intelligence Laboratory
August 1968 :

Learning Structural Descriptions from Examples
Technical Report MAC~-TR-76
MIT Artificlial Intelligence Laboratory

September 1970

BIBLIOGRAPHY 306

Winston P H The MIT Robot
Machine Intelligence 7
Edinburgh University Press
1972

Winston P H Summary of Selected Vision Topics
Vision Flash 30
Vision Group
MIT Artificial Intelligence Laboratory
July 1972

APPENDIX |

(To FIND MEANTNG OF oCTANT NUMBERS,SER FI63.4)
(oCTANTS WHICH HAVE THE SAME LETTER = OBIECT

307

1t 1lolioilioeloii lotelooi]cosl LABELING NAME
Al }V ARROW-1
A)x 1.-1

A

+\ﬁ

TORK-1

AlBl #* T-2A

A|B < T-2B

AlB e X-2
Alal |a] S |axeowa

AlA| |B] XL K-3A

A|B| |B| = K3B

AlB| || HF |xxx3A

Al |A al X | u3a

Al |B B| > | T3

Al |A Bl = | T8

Al |B c| 32 [xX3a
AlAl A 5/*\- TORK-3A.

308
APPENDIX 1

[Vl [1io]1o\ {toofoli {olo] 00! oool LABELING | NAME
AlB B ‘;}15\ FORK-3B
A B *Rs | Tor-3C
AlB| ¢ * 4. |Forx2D

Alalal Y« 1.-38

AlBIAl oY~ | T2

alBlB|l b= | T2D

AlBlc| wb+ |[RX3B

AlA A 4 1.-3C
AlB B e | T

AlA B e T-3F
AlB c 4 |xx3c
Al 1Bl [e] Ip] <o |xx-4a

Al Bl lc| le] . | Tt

Al 1Bl |a] [e| 2= | T4B
Al |al IB| [¢| Z=7 | T-1c

%09

APPENDIX 1

<
4| M UREeR Y
2lals| 82285 F P D LITIc]T
N?LLLkPTXXKKmTTX
Z |\ o 1w lv/d\
ULQCCCCC+++++H%+ A%vn.c
M.Q-u..m‘“c,\wM\%c/\m.__c_c__e|+W4++
o |
slmidlm|glm|d|g|u]m|d]d]|n
3
Slu|d]|d|m|m|m|d|m|m]Jd]<|o{m]|d]U
3 _|wl<|o]mw|lojmnlo|div]
Smlm|<d<lm|<d|<|<a<[<]|<]|<|<]m

310

APPENDIX 1

It jio]lotjtooloiijotio]oollooel LABRELING

NAME

X-49D

K-4D

T-41
T-47

T-49K

T-1L

X-4E
X4
X-AG
X-4H

T-4M
T-4N
T-40

i

B

BIAIA

B
A

B

A

A
A

Al JA|B|C

A

AlA

AlA
AlB

AlB

AlA

AlA

AlB

AlB

211

APPENDIX 1

<] @] Jd

S ol I S0 A O B
AR B EEE
NTXXXXWWWWLLLL
]
mlym o) Y INY N o |\
A &\ EK\AE\M KN \NA LV A LAY IR
m_%K%K_:.;JJJJWy
slulmlm|alm|<|dlvial<]<]afuv]ulmn
slmlulMm|Uu|U mj<|mjajAlm
S I RN B KA RS ENALE Y
= |l m
sS{d|m|Aim|m |44l <d] <<
2ld (<]l <l <]l <4< [g]|<d

312

APPENDIX 1

AR AR R o lu |
A MMFFIE R R
AR A I AR R RS T R Y
M%(cCC¢CC¢ccc _*._X_
m_yAk$%XK%K&kk c
1
sl<|<|m|m]alulm|mlaldlal<|ow|ulu
slul<djulm]u]lu]ulo]lulv |
slmlmld| <] <] <|nsalmsvfesafosal m| <] 0] U |ute
Sl |m|mwlo[plojn|olalalg[o]u]v
2ldl<jg<]e]dl <] <] <|m]<c]<]O]m
= G| <]<d]<]|<

313

APPENDIX 1

olw|8|&|B|6 o

B .) 14
(U]
m 1 ~._._

2 V4 B vl owl]
o)A L o
< QCn.\ CCCCQCQC
- ,c
Slelmlululalol<|olmlalu]lulalalu
3
Sl 4|]| uU|osalesombal MU M| Al Ulobajabo|mbulasa
3
Sldlmluvjulm|luld|m|dlvlm|mj<g]u]lm
cldld|lmlpldlo|<d|{mMc|]g]|O] G| O] S
|14l ||| C|g]<C|d]|<]| <] <

314

APPENDIX 1

THEHAALRDERREEHE
AR MMM AR AL
mmmmmKKKKKK

rNa ' B\ ___._____
MW&;«_Jf ¢+_c Y] CW\,IF +¢+c+.LHV%L+¢
w) l .__ ,
m_w__ h t | /v {
ST<l<|<|<|m|o|a[m[mjmfujmjujmiA
sl <|mlul<d]<]uln]lala]g|@jmid]d
mBABBCACBCCBBBAB
s|dl<|<[<d[m|mw|m|ajmjm| L] S|«
sST<(<l<|<l<]<|<]|<l<[<|<|<[<]<]<«

515

APPENDIX 1

T
mﬂ%@%@m@%g%@%@@w
“lE|EIEIE|E[EIBIE]-2 7] 5
m. ol i .c_c_c_c__ ___
M+c+u+$%+u.%++ .VKJM/MM/
M._-.sc.c~¢.c.e_.__._
a
sglul<lalAalm|AalAalulJ]ld|ulum <] <] <
3 Jjo|lalm|u|a
sldl<d]l<|u]lnlal<]ol<]<dn|o|<]|m]
simjujdju]ufulyulul<clnmim|{<d|{o|m
Sld|lmjm|aoa|m|m|m]olold]<]<| <<
SRR R R RI R A K4 ESA Ed EIES R I EIRI K.

316

APPENDIX L

PR EHEEHEBEREEEE
A R Y N Y Kol Eal Ral ol ol ol ol A
g Y/
m_.__,__,_ccccc
N SN
mnu"c_c.c. c_c_c.c_ _ .*,‘. A _ | i
]
Slufm]u|dld]d]a]lalylyfMlesw@ld] A
Sluljmlol«|al]l ululA]UVIVIdIUIY
ST dl<fusal <[m]of<]mf<]ujd]n]ld]U]U
sloldla|lmim|ol|j<]Y]O]V]|M]O}V
AR R EIRI R RS R R R L L RS R O e
ol ||l <l d|ajq|C|d[C]<

317

APPENDIX 1

miolA
THEEENRENEREEEEE
>3 N NN E Bl Rl N NN R0 S RO IV P I e
MCcc/mc/mccchc._c.c
m. AV RAVARE VAR B | AV N "\/ |. ,
A________.ecc_c_c_f
4 A
Slo|mftdmi<]u]u]m][a][a[m[a]alAalA
glujmjujclsjlujolajalajulalaln
sl<] <]l <] <|oosa O] <] Ul <d]osa] <O
MCBCAAA..CCBCCACCC
S|ojmimjojm|ojp|p|a|njona|o]n]o
5]
sldl]| <«d]g]| <]l]d] <] <]

ulAall
S EREEEEHEHE R
xxxxxxxxxxmmmmm
m_c.cv_m.c FIRA I IX vl | i/l !
2 _ | ..*.lAA_IWM__
Mm,._c c_c_c_c.c.c. V|7 \ VIRV ER
=
m.m.cDBBBBAEcwaA%EwDABABWDA
lsjv|ia[ajmajo]lalajuju]<|d|<d] <«
mmpraAcAsprcAD??ze{.
sld]v|ujuv]<d]I[u]|uldfu]<d]d]d][<] <
Slmlamjmim|a|mim[m|{o|nld|e]dlo]®
2G4 d| <] ||| d] || C|n|m
= ql<d]4fd]d

AR IR IR ARAF N
Ml MIMd| 8]|®& A N A YRR AR AR AR
2lglelelelel &lele|ele|R|a|a]|8]|a
2 : _
§ LA
LMIIWA.._.,__‘YMK_*_._._-.AWA
XL
mmBACCCBCDBDDBcwa%
alglaldlgl gl glulaojulalajfdf VA
W..._m ~]l oo oo o] vl love o oY
dz{<d] << <<l olaluv[<d]<]a]u[<d][r]A
Sl olul@|a|afuln]a]jo]u]lmlafu]u
Sldlw|an|c||a|m|d|mlol|g|m|n]m
gl gl l<|d|g|g]| |||]G] <

320

APPENDIX L
L [nofiot|ioo|ol [olojooi|ooo] LARBLING | NAME
AlB| |cla|?|D|e]| M |Fork-Tm

APPENDIX 2

 SEIADOW VARIATICNS OF JUMCTIONS FRoM APPERIDIX 4,

321

NAME

APFCARANCE

:
ER"
A

SHADOW VARIATIONS
5(

ARROW3A §+
By

R

+ PEAKS § PEAK-3B

= | 2 ¥>l =
+ 1< R <KA2A t KA-3R
- |+
K-3B ¢ $; ' Ve %{/
+ T+ KA + TKA-3D
-
KX-3A C ﬂ%[c
+ [c CS'PECIAL-3, A © dPECIAL-38
13A | w2 NoNE
*
T"3A ‘]*ION:E
¢
*
T-3R >/ NOoNE
C
*
RK-3A >< NoNE
e &
FERR-3A ;)\ /& K
_ LN MulTe MuLTT-3
TORK-3B %

}&\D R
1 MULTI-3¢

TLTI-3D

222

APPENDIX Z
APPEARANCE SHA’DOW VARIATIONS
NAME LABB&LI‘NIG‘ NAME‘.S
MULTI-3E mw.rr 3P
TFERK 3D %—\ /& %
MULTT-36 MULTT-3R
1-38 V T
ARROW-3B
(W
T-2C G
c C K-3¢C
1.
T-3D + +
= < K-3D
1
RX-3B 4/1/4— 7
¢ I e Y RXX-3B
R
1.3¢ &f
+ + N appow-2C
T-38 ‘*\t& N‘\
< c K-3E
T-3F \i\ ii
T Ae C K-3F
R
XX-3C +\t\&c *
¢ Ch e > KX-3¢

APPENDIXZ

323

NAMEB

2

SHADOW VARTATIONS
&

T-4E

Laadinee NAMBS
XXHA >:< NoNE
T-4A. ;,/< NONE
T-4B ;}\)\Q NONE
T-4C ;éﬂz NONE
T-4D ?\g_f NONE
1-4A SN NONE
L4B | P NONE
L4c | T NONE
14D <§ NONE

=L

APPENDIX 2

324

APPEARANCE SHA’DOWg VARIATIONS
TNAME 4
LABELING NAMES
+ + +
o '\l‘\ ,Plx \}qif
R X-49R K-9F
X-4A ;7[“;\ = " [
] ¢ R72 " kx-4A } KX-4B |
X-4B i " i &
4 > -
< __ R A¢C kX-4¢C } Kx-<4D
. -~ M +
K-4A « © SR AER
R KR-4= KA-9A
t - |t _ |+ e
<
K-4B | ;
Kx<*4F KA-4B
- |+ ~ |t - s
KXX4A- < < R
c RATE “orcm-dn < shecipL-4B
+ + = L t_
T-4G - :
X-4S K-4G
+ 4+ = . + =
T-4H < _
- X-4T K-4H
+ + = + -
- 4
x4c | 7 /lé -
¢ € SKx4E &> kx4F
+- o “i" - 'I' -
X_A‘D 214\ L b
< c Kx46 < Rx-4H

APPENDIX 2

325

APPEARANCE | SHADOW VA? IATIONS
NAME LABEg:lLN@ NF\MES
c + ol
K-9c | \% é/’/
Kx-491
kep| ST sl ??‘/
Kx-4J IKA<4D
KRG8 % >‘{i
c ClAL-4C: <sPEC/ALID
*
L X-4u
T-43 \’f\k 1
p X-4v
* *
T-4K - >1 -
X-4W
* A
T4L si-& -
v X-4
* >
X"“E %-—\ -
< c >y Kx-4K
* *
X4F .
c - ¢ KX-4L
”* *
X-4G %*& C
c 74 Kx-4M\

326

APPENDIR 2
APPEARANCE | SHADOW VARIATIONS
NAME |1 a21mn6 NeSes
*
| 2 e
T-4M /T/*f /j//
*
T-4N YT// Y
42
*
T-40 _/_/\i'/’/ //k/
R _x-9AA
o X
L"}E)—y
‘ x—‘JAB
.
< KX-40
x
X-47 /K /\g
< Kx-4P
*
Xk ;,K jzg
< R kxH4Q
*
X-4L. /Tg\
< e R~ kx-4R.
seEepL-AAl Sk

>§§’$r£¢muqe

(S=SPECIAL) APPENDIX 2

327

APPEARANCE [SETADOW. VARIATION-S
NAME LABgl_,II\I& NMES
s DKL SR ORESE
— S-4F R 544
- < 5
s-4ac¢ | KL ﬁ? %? >1§5
- s-4T S5-4K|
- - - k-
s-4p | 5K }g»
alind - S-4L
+ 4
xam| L |)@)@%
KX J<X"{T $~‘VZ\ x40
oV Lkx-4W _ZS-4N -
+ e + "+ +
Kx-4Y KX-‘1Z $-40 kx-?
4 r 4/ R
kx4Ac ~ S-4P
L—-'gA /_) - /Km*\ :%*
* ow*SE FORK- SIR R AREY
Amoul -6 FORK-ST R,n wW-5SH
L-§C‘ }} }VL‘ 2—;% - 2

ARROW-ST _ FORK-SK ARRODW-ST

3218

APPENDIX 2

APPEARANCE |SFTADSW VARIATIONS
NAME ||)28 1re ‘N..zéf’YES
ARROW-SK FoRK—SL ARRDW Sk
I<-SM\
TsB| Y | U ﬂj/
- c [
4 XR x-s3
T-sC ;% /(% X
K-S0
Tsp| V7)% /*{
- -SP
L
TORKSA /L& ¢
MULT! -SA MuLT - S’B
FORK-CB %& —)7;& %‘
MULTI-SC Mu,em SLP
L
FORK-sC)\k& - c 3 C
MULTI-SE M\AJ—T!"SF
L
TORK-SD ;/Y\& %& 72
MULTI-S & muLTi-sSt
L
weal L5 | A Az
KX-SA KX %

223

APPENDIX 2
APPEARANCE | SHIADOW. VARTATIOMS

[\T_%;I’E'E‘S

KX-S

Af%‘koz-gw
L)é\\" %
FORK-SN ARROW -

ARROW-S®

ALy

ARROW-SS

*

K IA\’\
y, Gl LA
FORK-SM

R
ARROW-SM

&Q&

ARROW-SD

ARROW-S

FORK~-SO
L)_é\ﬂS
FORKk-S

\x%"‘ K-SM\

R

K-S8&

&<
LARBELING

c

—

s
te

NAME

X-SB

X-sc

X-SD

15E| «

1.-ST

1-5G

L-SH

Tsr | ol |¥

R
<l
J"S‘F c - & e —
K-S s X-SN

230

APPENDIX 2
APPEARANCE| SHADOW VARTATTAIS

NAME || paditne N ASE

- C
1-5H EJ\ s oSS
K-ST X-SP

FCORKSH,

TORK-SF

TORK:S&

-
Mw.Tl'-S'M %LT(—&N
% 5%\)1

(2%

TORK-SH
MuLT1-SD MULTI-SP

e[S
Ao
P
A
xse| e | B b
o
e |
~ [

Co

K <
7 gx-SK L s
C R _ <
cC C X
KX-SM\ L7 Ex-SN
C gxSb L e SP

X-56

X-SH

ARROW-SA| ~

" 334
APPENDTAR Z
APPEARANCTE| SETADSW VARTATION'S
&<
NAME LARELTNG Né?vygg
+ - |t -
ARROW-SB| ~ = N L
R PEAK-SC PEAK-SD
B B +
AROWS_C S ~ R - = —
PEAK-SE PEAK-SE-
~ = |+ o
ARROW=SD Sk " v~ | & 2 L
PEAK-SG TEAK-SH
I _ W -
K-sA T RS =
< KXEQ KA-SA
+ 1 T
Ii"SB - : 3 < =
Kx-sR KA-SR
t+ - - = - [t
K-s¢ | 2 e
c Kx-S8§ KA-Sc.
- _ - - e,
KFS—.D ha - ° EK c =
< Kx-5T KA-SD
+ — |t g z |t oL
k-se| 2l | gl
< KX-ST KA-sE
+ - |+ o — N
K—SP - R 3 C a
< K x-SV KA-SF
- 4= |+ |+ -
K-5G - e
c K e wase S N-SW

APPENDTX 2

332

) A?PEQRALLG}: SHADGA ’VARIA,TIONS’
NAME L ABELING HAMBS‘
4+ + -
K-sg| =7 4%»/ Pt
< KA’SH \<x 5‘;(
+
K-sT | 27
e < KA4L < KX-SY
+ —
K-SJ| - == - >\42
< < KA-4T < Kx-SZ
_ ~ |4+ vl i = |+ =
K-5K - € %
C < KA-9K KXx-CAA
-
K-g1, ol ﬁ_é(/ >\A—-
c - KA"\L kx-SAB
+ + ~
ROGCsh | S |& -
< < CS-CN C C sSR©
+ _ir- -
.KXX"gB - B c °
c < R e S-S¢C S-SD <
+ _\+ |+ =
_ -~ o L
KR-sc | 2 % ‘:\/? 4
< c S$S-SE S-S¥
Reespy Flx | aTBlr RliE
< > D~ z?_g\H\c
- +— - — + o ~\“K "'/i/ Al
KX-SE e '
< [< < - <
s-&r S-STJ

333

APPENTDIX 2
APPEARANCE | SETADCW &VARIAI’IONQ
NANE LAB%EJ:NG NAMTYS
C a < S S L.
K- 6 >%< ﬂ?< ?LN%*
KXX-SH S~

Q Q

334

APPENDIX 3

SOURCE ~ |ALIGNED LIGHTING
JUNCTIoN| LABELING | TUNCTIONS & NAMES
NANE

ARROW-SE '24‘9? T-ALL
ARROWSG)bf T-AL2
ARROW-ST)-j/“\ﬁ T-ALD
IARROWSK - T-AL4

MULTT-SA

MULTI-SB

MULTI-S¢§

MNULTI-SG

ARBOW-SM\

ARROW-SO

NN

APPENDIA 3

c
SNCTIEN | LABELING. [TONGTIon < & NAMES
NAME
ARROI-S8) %\ QPL;; T-AL7
ARROW-SS M—L \F-in T-ALB
MULTL-sT ﬁ_% % X-A1E
MULTT-SK '\ﬁ* -%‘%\ X-AL6
MOLT1-SW) Rﬁ—% ~§ﬁ: X-AL7
MILTI-S0 R&;\ R - X-AL8
PEAK-SA | 2R b‘ <) KALl
K- d ¢ :

R * R. *

_ |+ N
TEAK’SB _L. - KALZ

* *x 75k

+ r

PEAKSC| X~ ~ - TKAL3

R R

_

PEAK-SD \%k L7, KaL4

326

AFPPENDIXK 3
C T LIGHTT
e P L .
PEAKSE 5| o~ -2 xaLs
R R
_ +
PEAK-SF| W24 > KALG
| _ |+ -+ -
PEAK-SG g_ﬂﬁ K- \}X(\QX K-ALT
~ I+ ~ -
PEAKSH] - ~ K-ALS
- |+
Kesg | Dl = KRL-ALL
c i S
- |+ _
RX-5R| =< (e KKXALZ
- |t _ [+
KXSS| 44 kL KRKALR
_ [+ |+
KEST A< > - KRX-ALL
_ _
Kxsu £2l8 . KXX-ALS
R
- |+ 3= -
KX-SV ,?—N< UF KRK-ALL

937

APPENDIX 3

SOTGRCE

ALTGNED LIGHTTNG

?&bécmgw LABELING | TUNCTIONS & Names
Reesw| S | S koeanT
t+ = + =
KesX| =5 | 7, KXOCGALR
+¢-
RESY) =7 =S50, KX-AL9
+ - + -
KASZ| ™ 2 = L KXX-AL10
< <
_ > [3 ~ %
KX-SAA %L BX-AL11
[t L C.
o N -
1 jzt{@ RXX-ALA2

338

APPENDIX 4

H X
N\ a e %cm«\.. &
Dm n\»n x| > *S J ‘ Ve
mm x RX 7 %m% i A S AN
— u 0 m» c
.vamm wab BNV “ i yf B4 " v . X
N = x nyn & q ARG
o ¥ A\ AN H akan A N
o H* A
mm T.+.M» %‘vg v) gcg v I@u.. IPQ
ww H * H% * Hx ImCNmI H la = H
U9 G \\Mvn..» I/mmz H* | :
w0 H &4 J S Ao B AR A N
: | H II¢
Y x
w x x c& |
o \ c c
2 \ cm,_ e | O *IX| "\
&3 S8 F] & B
S 1 ' ' " o o i
B | B A M _
AN AN (o

329

APPENDIX 4
i LENE /BACKGROUND
NAmE | WLABELING | BOUNDARY VARIATIONS
;f"\\ ALL FORM THT SAWE COMBINATIONS:
| P | SAT BAY A
TORK- * L. N\ 7 N\
FORK-3B T - .
FORK-2C }*/t\\
T SP T S
FORK-3D /*/t‘i A :&S
g SP
ALL FORM THE SAMC COMEBINATIONS'
¥ T T T
T-41 \}\L_\ \;ﬁ * ap * gg
T-47 *}\,& T = sp 0 gd J
Tk ~
* T+ T
T-4L — SP 38
\;\t\ N 9\
* ALL FORM THE S'AME COMBINATIONS!
XAE >1\\: % T* Tk
* T T PN P sv SS
X'qp e ‘7 Py 9 by 5
c. < T sP- S'¢ N
X-46 *A T, T
X-H | x sscjﬁi s 5
. = RN RN

340

APPENDIX 4
| SCENE /BACKGROCUND
AN | LABELING | BOUBIDARY VARTATIONS
* ALL. FORM THE SAME ComBINATIONS:
T-am ;j/:/ 1:/U’; spY*D ge YL
T— qN k —? T ?_ 4p ?’ Sg
T'ﬁo /}Y sp *x I ss}l/
E 2 T 2 e
* ALL FORM THE SAME COMBINATIONS.
- - T T T
R-4T < | 1 et pse
X-43 /EQ\/ ~1T S s
*
- xI
| A= | gl sl
1 ?
X-ﬂi—\) x "'Ss S - SP
C .
i I
L-sA /ﬁj * /_JI*
I
ARROW-SA\ ' \I\U/
~5 = “ -T
c T < 1
“GA - «
T - * p’ * I

241

APPENDIX 4
SCENE/BACKGROUND
SOURCE |} ABELING Bouu%ﬁa\r VARIATTONS
NAME
T-6P | ~=J°
o S
TORK-TB Q/ek“\
FORK-7C| A _
FORK-7N| "4
FoRK-TP X
- * -
MULTT-3A %
L
MmuLTI3¢| * -
[
MULTT-3E ;%
: L
MULTI-3G| & -
L
MULTT 3D %
MULTT -3D /*'//}qg
MULTI-3F *
MULTI-3H /*’i%

342

APPENDIX 4
SOURCE SCENE /BACKRROUNTD
AAme |FABELING | BOUNDARY VARIATTONS
4 *&‘\ ALL FORM THE SAMMC ComBINATIONS!
N ;
| X-4V -
o
N -
X-4X R CALTERNATE
- INTERPRETATION|
L SEE SECTION 4.2
* ALL FORM THE SAMWE COMBINATIONS:
KX-4K ¢§\\>-\
K&X-4L, *
c A =
KX4NA | o
Sy ¥
KA41N x
. -
"
o3
X-4Y 3 —
X-42 %
> ;
X-9AA - R P =
* (ALTERNATE
x4an | 5% PR

243
APPENDIA 4
SCENE /BACKGRCUND
Sﬁ:r?;\cg LABELING Bouww/x%‘{ ~NARIATIONS
* ALL FORM THE SAME COMRINATION S
KX-40 - :
*
KX-4P - S
»
KX-4da| 5 3
x
KX-49R -
L
ARROW-SE| _
x
sV, T
ToRK-5T * 3
RS sp &
a3
ARROW-SET| —~ / » - AT
SP
I
ARROW-534 L}\{;__& Qﬁ;{_\
* *T
* T 33
FORK-5M R)j\.\ e >
ap
| 39
ARROW-5N| . Kz Iy ks
R ’X'S
88|, T
PEAK-SAl N |t - PN\ -
R * x L

349

APPENDIX 4
u SCENE A CKGROUND
SI\(I)A% LABELING Boum{x};{‘f VARTIATION &
EAK-S + L s
P Bi *- g £ - ap
aP
T
TALL /_J/f X
* x T
&P T
eas| Rl :
R* _IK N
IR« By §S +HI-
KAl ;ng{ By T
\&.‘,l{ I 4 SS
K-ALZ | S Kj{
x 4, j 4 P
ALL THESE, HAVE THE SAME
REGION ILLUMINATION ASSIGNMENT
L-0A | * <
L-OB | * é{)
" T * 3P
-O0C | * ?
"
L-op | * N

345

APPENDIX 4

SOURCE

SCENE /RACKGROUND

NAME (MABELING |5 i NDARY VARIATIONS
TRESE ALL +AVE THE SAME TREG ION
ILLUMINATION ASSIGNMENT .
oe | %
2
R T % 3P
L.-0G *2§4
7
-0)
L-OH *:5:
THESE ALL HAVE THE SAME REGION
X-0OA ;';’;":OPJ% ILLOUMINATION ASSIGNMENTS!
*
¥ o
SR R
= R
X-0D '} or _)':

THESE ALL. HAVE THE SAME REGION
ILLUMINATION ASSIGNMENTS :

X"OE or '* L

wor o 2o N
R »
4.)

KX-0G *;;;or_* SP
<~ b Lls .

KX-OH N[. or_ : x T |

BOTA BAVE THRE SAME ASSIGNMENTS -
T—DC *ﬁ— R I * 73?
T-0D + A28 A T

746

ATPENDIX 4

SCURCE SCENE, /BACKGROUND
NAME [RABELING | AN DARY VARIATIONS
BOTH HAVE THE SAME ASSIGNMENTS:
T-0G ;&:
P
T-0EL *
L
—4 *.1 p *4
A Ix T *
1 St
T-0L —<— e I ___é_igP <e
* A\
S T }
—+—:§ ,e—;‘ 3P e
Ix T » T* 4
T i T A\%E T aa
N > 1T —d =
T-o7 * I T */ I*
BOTH HAVE THE SAME ASSIGNMENTS:
T-0K *i i
gp
T-oL La i
*
SEE NEXT PRGE FOR REST
T S
J T i—:—f s%—f’;? St IS
T-oM < *
ConTINUED QP ¥ S X !T
ON NEXT Y %
PAGE D T k(—{ SP T SS . T

347
APPENDIX 4

SCENE /BRACKGEROUND

SOURCE .
LABELING | RogupARY VARIATIONS

NAME

T'-OM\
(cONTINUED) \F—(——- T f—(—é-s SPI—i ssi—i-?
* * T * T * T

- _I -I T
T-ON T sp ag
) 4 * T *» T * I

T-00

8P Sk QP

? 2 7

T-or t AR IF 92?4- ssi——vr—
N *1 xT * T

BOTH HAVE THE SAME ASSIGNMENTS .
I*

.| FORK-5M.

APPENDIX B
JUNCTION LABELINGS WHICH CANNOT BE

MODIFIED To TNCLUDE TABLE INFOSRMATION
BY 9IMPLY ADDING “T''" To THE TwWo LINE
SEGMENTS THAT CAN APPEAR oN THRE

SCENE /BACKGROUND BOUNPARY TN LABBLINGS
TRoM APPENDIR 9.

348

JUNCTION JUNCTIOCN NEW
NAME LABELING NAME LARELING
8 | T
ARROW-5F PRAK-5A | x| 41
RT T
T, ss
FORK-5L PEAK-SB |3 | Wer
1'7T
] SP
- I
ARROW-5F T-ALL o, LT
=T
P
T T SE AT T
KRRON'SM. T—ALS' R =T
I

K-ALL

| ARROW-5N

APPENDIX S 149
JUNCT EW
umnﬂm EABBLINGS ?&Im " Eahgzumes
P ' 3 Sp
P oed I N I
X-O.A- S =r 1T K =TI X"OG I =T - sp
T Kyg T SP I 7
T T 4% Se
S{; TSP 1 N i
X0B pilar p AT X0 (TRl ;-
T4 1 &PT"‘ TR GP T°T
R T. T . T
Sy A % TY{ IV
X‘OC —n T T T"OK I TS? T T
TI SP T 5P TSP Yrse
ol 1925} 7, 't {1t
X-0D L s -2 I T-0L |T {S T T
™V T L L
Se T3P Tpsp TSP
SP Teo (T
:.[.,. T Py sp
X-0E |T =1 -IA<SP| T-00 14T
| T T
| P
X-oF T-0P [«

