MLSSACHUSETTS INSTITUTE OF TECHHOLOGY
A.I. LABORATORY

Artificial Intelligence
June 1972
Mano No. 263

A HETEPARCHICAL PROGRAM FOR RECOGNITION OF POLYHEDRA
Yoshiaki Shirai

Abstract

Racognition of polyhedra by heterarchical progran is presented. The program is based on the strategy of recognizing objects step by step, at each time making use of the previous results. At each stage, the most obvious and sifiple assumption is made and the assumption is tested. To find a line segment, a range of search is proposed. Once a line seg- ever a new fact is found, the progran tries to reinterpret the scene taking the obtained information into consideration. Results of the experiment using an fmage dissector are gatisfactory for scenes containing few blocks and wedges. Some limitations of the present program and proposals for future developments are described.

Work reported herein was conducted at the Artificial Intelligence Laboratory, a Massachusetts Institute of Technology research program supported in part by the Advanced Research Projects Agency of the Department of Defense and monitored by the Office of Waval Research under Contract Mumber N00014-70-A-0362-0003.

Reproduction of this document, in whole or in part; is permitted for any purpose of the United States Government.

1. INTRCDUCIIOR

We do not know how to make a program to recocnize objects visually os well as a human being. One of the shortcomings of many computer prograns is, as linsky has pointed out ${ }^{\prime}$, their hierarchical structure. A human may recocnize objects in the context of the environment. The environment may he recognized based on his a priori knowledge. The recoenition rrocedure is, however, well programed so that the simple cbvicus parts are recognized first and the recognition proceecs to the more comrlicated details based on the previous results.

The work in this parer atudies an example of a heterarchical program to recorrize polyhedra with an imace dissector. Most previous works degin by trying to find feature points in a entire scene and make a complete line drawing. It is very difficult to get a complete line drawing without knowledge about a scene. If the line drawing has some errors, the recognition by a theory besed on the assumption of the compiete line drawing such as Guzman's ${ }^{2)}$ night make still more serious mistakes. Our work is an attempt to recognize objects ster by ster, at each time making use of the rrevious results.

We assume in this paper that the difference in brichtness between cbjects and the background is large enough to detect the boundary approximstely. At rresent, this program works for recognizing noderately compicated confipurations of blocks and wedges. The limitations and proposale for future devclopnent are described leter.

2. GENEPAL STRATEGY

2.1 Priority Of Processing

For corvenience, we define the edges of the objects in a scene as falling into 3 ciasses. A line formed at the boundary between the bodies end the cuter background is a contour line of the bodies. In Fig.1,
 $X Y, Y Z$ and $Z V$ are contour lines. A koundary line is a line cn the berder of an obiect. Contour linet are boundary lines. In Fic. 1, the boundary lines are the contowr lines and lines on the boundary between twc boiles, i.e. CP, FP: IR, QR, and PH. An internal line occurs at the interssction of two pianes of the same body. Lines $J E, L E, Q 5, F i, N T, A T, ~ Z I, ~ G L, ~ D T$ and $X V$ are internai lines.

The plotal strategy is shown in Fic.2. At first, the contour lines are extracted (bacause we assung a priori enough contrast between the objects and the lackground). If more than one contour is found, as in Fie.1, one contour for kodics E1, EZ, 13 and another for lody B4, then the boundary lines and internal lines are searched one by one for each. contour. The elobal stratery in block 2 in Fig. 2 is as follows.
A) Find boundary lines before finding internal lines because boundary lines of ten elve good cues to cuess internal lines. Note that to find boundary lines implies to find bodies.

1) In searchinf for lines, different situations require examination or larger or smaller aress. In our stratery, the smaller the area roquircd to scarch lines, the hicher pricrity we sive to that seerch.

In Fic-1, for instance, to determine the existence of a extension of line $1 C$, it is enough to search a swall ares whose center is on the extension of the line. To find line IQ, however, we should consider all possible directions of a line between IP and $I J$. Thus the fcrmer search has priority over the latter

The priority to extract the most obvious information first is the followine order.
(1) If two boundary lines make a concave point (such as point E in Fic. 3), try to find the extension of them. If only one extensicn is founc, track alone this line. Most of such cases are like in Fie, ${ }^{2}$ (b) where one bocy hides the other. We can determine to which side of body this line belones.
(2) If no extensions of two concave lines are found, try to find another line which starts from the concave point. If only one line is found, track along this line. bost of these cases are as in Fig. 3 (c) where it is not clear locally to which body this line belones. In Fie. X (c), line BD belones to the upper body, but this is not always true. That is the lines $A B, B C, B D$ are not sufficient to decide the relation.
(3) If toth extensions of two lines are found at a concave foint, try to find a third one. If only one line is found, track alone this line. This is the case as shown in Fig. 3 (d) where the third line is the bouncary line.

Whenever tracking terminates, an attempt is always made to connect the new line to the other lines that were already found. If more than one line secment is found in (1), (2) or (3), the tracking of those lines is put off hopefully to be clarified by the results of knowledge obtained in simpler cases. Fig. 4 illustrates two extensions found at concave roint P. The interpretation of the two Iines is put off to treat simpler cases first. That is, one would continue examining the contour and lines $A B$ and $C N$ might te found next; then, by a circular search at roints B (which is exrlained later), line BP vould be found. At this stage it is casier to interpret ines $A B$ and $B P$ as boundary lines which separate two bodies. Then line DP kight be found similarly ard interpreted correctly.
(4) If an end of a boundary line is left unconnected as $P Q$ in Fir. 5, try to find the line starting from the end point (Q in this example) by circular search. If multiple lines are found, try to decide which line is the boundary. If a boundary line is determined, track alone it. In Fig-5, the cotted lines are found by circular search and the arrows show the boundary lines to be tracked.
(5) If no line is found in the case (4) as stated above, extend the line (FQ in this example) by a certain length and test if the line is conected to other lines. If not, then apply circular search again as in (A). This is necessary kecause the termination point of the tracking is not always precise.

Note that this process can be repeated until successful (that is either tae line is connected to other lines or line serments are cound by
circular search).
(6) If the koundary lines of a body are known, select the vertices of the boundary that might have internal lines starting at them. The selection of vertices is based on heuristics such as seleting upper right vertex rather than lower right vertex. At each vertex, try to find an internal line which is nearly parallel to other boundary lines. If one line is found, track along it. In Pie. 1, for example, internal line JS is parallel to the boundary line KL or $I Q$, and GS is parallel to Pl or IJ . Line FL is parallel to FD and $X V$ is rarallel to $X Z$. Thus it is often useful to find internel lines rarallel to boundary lines of the same body. Note that search for rarallels has snall area.
(7) If no line is found in (6), try to find one by circular search between adjacent boundary lines. When one line is found, track alone it. In Fig. 6 , circular search between $B A$ and $B C$ is necessary to find the internal line $E F$.
(8) If two Internal lines meet at a vertex, try to find anather internal line startine at the vertex. This process it used in twe cases. One is where no internal line was found in (7) because of little difference in brightress between adjacent faces. Suppose ir Fic. 1, that the internal line \&J was not found at vertex J, but that $L E$ and QS were founc. Then try to find an internal line startine et S toward J. If there is enough contrast near s, a line segmert is founo. The other case is where a body it partly hidden ky other bodies. In Pir. 6 , the triancular rrisa is partly hidden. After FF
and $C F$ are found, $E F$ is searched for. In both cases, the direction of the line is sometimes predictable and sometimes not. If it is predictakle, then try that direction. If it is unpredictable or if the predicted direction failed, then afply circular search between the two internal lines. If one line is found, track along it.
(9) If en end of an internel line is not connected to eny line, try to find lines starting from the end by circular search. If lines are found, track alony thew one by one.
(10) If no line is found in (9), extend the line by a cortain leneth as in (5) and test if it is connected to other lines, if not connected, try circular search again as (9). This process can alsc be repeated until successful. Fig.7 illustrates this process. In Fic.7 (a), line $M N^{\prime}$ is not connected to others at N^{\prime}, thus ster (9) is tried at f" and fails. The line is extended to P_{1} and (9) is again applied. This process is repeated until the line is connected to line KL at K . Fig-7 (b) shows that line HI is extended by this process to P_{2} where a new line is found by circular search. Similarly line co is exterded to F_{4}. This process is useful so as to not wiss a new body sitting on ar obscure edfe.

At each staqe when an above step is finished, the obteined information is interpreted af shown in Fig. 2 (block 3). For instance, if trackine along a line terminates, a test is made whether the line is an extension of other lines and /or the line is connected to other lines at a vertex. If a boundary line is connected to another boundary line, the

Lody havinc the lines is split into two bodies and the propertfes of both lines and vertices are stored in an appropriate structure. In sig. 8 , for example, line "IF" is obtained tracking starting at point H_{*} This line is interpreted as an extension of $H N$, and $H N$ and N " P " are merged into one etraight line usine the equations of these two lines. Then, it is connected to $C 0$ and Fig. E (b) is obtained. Fefore the line was connectec to CO, there were two bodies E 1 and H 2 as in Fie. 3 (a). Now body L 2 is split into two bodies 12 and 13 . We can interpret line yo as the loundary of $B 3$ which hides a part of $E 2$. The other properties of lines end vertices are obtainec similarly at this stage.

2.2 Exasuple

We illustrate the entire line-finding procedure with the aid of the examile shown in Fig.9. At first, the contour lines $A B, E C, C L, D E, E F$, icj, wif, 1I, IJ, ix and KA are obtained as shown in Fig.9 (a). Step (1) described ir the previous section is tried for the concave points 0 and J. In this example, the position of 0 is not precise enough to find the extension of FO . Cn the other hand, a line segnent is found as an extension of the line $h r$. KJ is extended by tracking as far as L. Incause there is no cther roint to which ster (1) is applicable, ster (2) is tried for point G. One line segment is found and extended till tracling teryinates. Thus a line G\%' is obtained as in Fig-9 (E). This Iine is interpreted as an extension of $F 0$ and connected to dL. Then the fosition of foint F, G, L are adiusted to as shown in Fies. 9 (c). Now two bodics If and $\mathrm{E}=$ are created by the boundary lines GL and il. It is
important to notice this, for it means that ster (1) is again applicable (to point L) at this stage. Thus line $F \mathrm{~F}$ is extended as far as k in Hie. (d) (Note that line mo hes not yet been fcund). Il: is interpretec as an extension of fL but the end roint M is not connected to eny cther Lines. Thus vertices F, O, L and end roint M are adjusted considerine: the new line LM. Fere neither ster (1), (2) nor (3) is applicable, so that (4) is now applied to M. Three lines are found by circular search as Fic. 9 (d). MN is determined as a toundary line and extended by trackine* khen it terminates, the line is connected to boundary line EC
 known at this stise that B 1 is hidden by 83 and F 2 is hidden by rartly E 3 and partly by B1. liext, step (6) is aprlied to each body one by one at each tile selecting the easiest body for proposing the internal lines(in this exanple, the order is E3, E1, B2 because E3 hides B1 which hides E2). Internal lines $C O$ and 10 are found and connected at vertex 0 , but no line segment is found using step (6) and (7) applied to vertex E (this stage is shown in Fig.9 (e)). Step (8) is applied to vertex 0 and a line segnent toward E is found. This is extended by trackine as far as E^{\prime} as in rig.s (f). Line OF* fails to be connected to any other lines which ectivates step (10). After a few trials, of is extended to connect to vertex E. Similarly, internal line Ak is obtained for body E1 and line $1 F$ is ottained for L2. When every atep has finished, three bodies ere known together with the relationships between them.

3. ALGORITE:MS

This sfction describes the details of the algorithms that are used in findinc contours and in the steps stated in section 2. Some of them, such as trackine and circular search are used in more then one step. An alrorithr used in more than one ster may be slightly different in each step but its cosential fart is not chanced. In the tracking aleorithm, for examrlo, some chenges occur dependinf on whether tracking is usec for touncary lines or internel lines.
3.1 Contour Finding

Fig. 10 ehowe the othine of the procedure to find contour lines. Ihe picture date obtained with an image dissector usually consists of a large number of roints (say ebout 100,000) each of which represents iifht intensity level. To speed up the processing, one peint for every 6×6 Foints is sempled. This compressed picture data consists of $1 / 64$ the number of points in the original picture. To find the contour, this data is scanned till a contour point is found. The judgement of contcur roint is based upon the simple assuaption that there is enough contrast betwaen the backpround and objects. It is then checked whether or not the point is a ncise point. If it is a real contour point, trace alonf the contour. Thus a set of contour points are found. Then, the picture data is again scanned until a new contour point is founc. This process is reperted for all the picture data. When all the sets of contour points heve inen found, each set is separately analysed.

Suprose a certain set of contour points is to be analysed. we now return to the original high-resolution picture. We can ruess approximately the position of the boundary point in the oricinal picture cata which corresponds to the first point found in the sampled picture. The precise boundary point is searched for near this point. A set oi' contour roints is obtained by tracine from this point in the same way as in the sample ficture. A polycon is formed after we cornect contour roints one by one. To classify the points of this 'curve' into serments, the "curvature' of the rolyfon is used. This curvaturn in a dirital Ifeture is defind bre for convenience as shown in Fizeth. Each cell in the figure represents a contour point. The curvature of a point F is defined to be the difference in ancle between P and $F Q(\alpha)$, where q and f are a constant number of points away fron P (6 roints in this case). If we plot the curvature alcne the contour as shown in fic. 12 , we car tell what part is near a vertex and what part lies in a straight line.

Note that curvature is not very sensitive to noise or dicitization error. If we interrate the curvature in fart of a straight line, the result is nearly zero despite the effect of noise. If we sum ur the curvature of concecutive points whose absolute value is creater than some threshold, we can determine the existence of a vertex. That is if this sum of the curvature of such points exceeds a certain threshold, there is a vertox near those roints. Thus every contour point is classified to be cither in the strairht part of a line cr near a vertex. using points which belone to the straimt part of a line, the equation of the line is calculated. Then each vertex is decided as an intersection of two
edjacent Iincs.

3.2 Line secment Detection

A Jine Sephent is detected given its cirection and starting point. This procedure is used in nost of the steps stated in section 1. The procedure consists of two parts. Gne is to detect the possible feature points which are to be regarded as elements of the line. The other is to test whother or not obtained feature points rake a line serment.

In detecting Feature points; we should consider various types of flees. Eerskovits and Einford classified the licht intensity profles coross an edge into 3 types, namely step, roof and edge-effect, and proposed 3 types of boundary detectors. In this paper, a roof type detector is not considered because roof type edees can be detected by a step detector or an edze-effect detector. In addition, most roof type edges are accompanied ty step or edge-effect types. we set up local Cartesian coordinater $U-V$ such that U is the direction of the line segrent to ke detected. Let $I(u, v)$ denote the light intensity at point (u, v), and define the contrast function $F_{u}(v)$ at ($\left.u, v\right)$ as

$$
i_{k}(v)=\sum_{j=1}^{j_{m}} \sum_{i=-i_{m}}^{i_{m}}\{I(u+i, v+j)-I(u+i, v-j)\}
$$

Suprose we have an intensity profile as shown in Fic. 13 (a), Fu(v) at I in Fir. i) (D) is; the difference of summed intensity between area A_{2} and A. F_{a} (v) for a typical step type profile (Fie. 13 (a)) is shom in Fif: 13 (c) in which the edge is detected as the perk. The tyrical pronlles of $J_{u}(v)$ for otrer types are shown in Fig. 74 where the edre is
cetected as the middle point between positive and nerative peaks.
The basic procedure, therefore, is to detect the reak of $F_{k}(v)$ and its fosition. The necessary properties for a peak are as follows (sce Fig. 15).
(a) If $F_{k}(v)$ ranges from v_{i} to v_{r}, there must exist the maxigum of $F_{k}(v)$ at v_{m} other thian v_{k} or v_{r}.
(b) $\boldsymbol{F}_{\mathrm{x}}\left(\mathrm{v}_{\mathrm{m}}\right)>\mathrm{f}_{\mathrm{m}} \quad$ where f_{m} is threshold
(c) There rust exist a minimum of $\bar{F}_{M}(v)$ at v_{1} between v_{q} and v_{m} and a ainimum of $E_{u}(v)$ at v_{z} letween v_{m} and v_{r} such that
$F_{u}\left(v_{m}\right)-F_{d}\left(v_{1}\right)>F_{d}$
$F_{a}\left(v_{m}\right)=F_{d}\left(v_{2}\right)>f_{\alpha} \quad$ where f_{α} is a threshold
If such v_{m} is founc, the left of the peak $\left(v_{g}\right)$ and the richt of the Jeak $\left(v_{4}\right)$ are determined as the intersection of $F_{\mu}(v)$ with the line $F_{H}(v)$ $=f_{t}$ as shown in Fig.15. The value of f_{t} depends on $F_{u}\left(v_{m}\right)$ and is represented as

$$
\begin{aligned}
f_{t} & =c_{1} F_{u}\left(v_{m}\right)+c_{0} \\
& \text { where } c_{1} \text { and } c_{0} \text { are constant and } 0<c_{1}<1, c_{0}>0
\end{aligned}
$$

The positior of the peak v_{0} is obtained as the middle of v_{3} and v_{4}. If wore than one peak is found between v_{k} and v_{r}, the point v_{p} which is nearest to the midcile of $V_{\&}$ and V_{r} is adopted. A negative peek is similarly detected. A feature point for an edgeeffect or roof is cbtained as the widdle cf the positive and negative peaks, if both are found, (althcugh the threshcld f_{m} is not the same as in the simple positive or negative peak detection). This method for the detection of Feaks and positions is nct appreciably affected ty noise.

The other part of the line segment detection is a test of the colinearity for the detected feature points. Suppose concave boundary lines L_{0} and L_{q} meet at P_{0} and suppose the line segment extending L_{0} is tested as shown in Fig. 16. Feature points are detected in a rectancular search area with given length and width whose direction is equal to that of $L_{p}(=U)$, at an arpropriate place where the detection of feature points is not affected by the edge corresponding to L_{1}. Feature points are cetected alon, the direction v at the center points $P_{1}, P_{2}, \ldots, P_{m}$ sequentially. If rositive peaks are found at $K_{1}, M_{2}, \ldots, M_{n}$ as shown in the figure, the linearity of the points are tested as follows.
(a) The number of the feature points must exceed a threshold mumer n.
(b) The deviation 6^{2} of the points in line fitting with the least square eethed should be less than a threshold 6 t.
(c) let L^{\prime} denote the direction of line segment cbtained by line fittine,

$$
\left|u^{\prime}-U\right|<v_{d}
$$

where $\left|U^{*}-U\right|$ denotes the diffrence in directions U^{*} and U

Similar tests are made for the different types of feature points. If more than one type of line segment is found, the selection depends on the followine criteria.
(a) If an edge-effect type is found, then it is selected.
(b) For the line segment with δ^{2} and U^{*}, let the criterion function C be
$c=d^{2}+w_{i l} \| U^{\prime}-U \mid \quad$ where w is a constant

The line sezment selected is the one wint smaller C.

3.3 Circular Search

Circular search is used to search for lines attarting at a given point. The direction of the lines to be searched for is not known. The range of directions in circular search depends upon the particular case. Euppose two known lines L_{1} and L_{2} neet at P as in Fig. 17 (a) and surpose we wish to search for lines lyinc between them. The search range α is between two lines L_{i}^{\prime} and L_{2}^{\prime} whose directions are slightiy inside of L_{1} and L_{2} respectively. If lines startine at point P of line L_{0} are searched for as in Fig. 17 (b), Lí and L_{i}^{\prime} are similarly set inside of L_{0}. The center point F of the circular search is not alweys rrecisely determined, especialiy when trackine alone a line has terminated at roint I as shown in Fig. 17 (b). Therefore circular search should not be too sensitive to the position of the center point.
it might be natural to try to detect feature points, as defined in section 3.2; hased upon $\mathrm{Fu}(\mathrm{v}$) alone arcs around the center. The difficulty with this search is the classification of feature points into Iine segwents if there is more than one as shown in Fig. 13. To avoid this difficulty, a simple algorithn is used in this peper. Its basic method is to apply line eegment detection successively in various directions. This is illustrated in Fic.19, where successive line segment detections toward u_{1}, u_{2} and u_{3} are applied. The ster of cirnction change and search area (A_{1}, A_{2} and A_{3} in the figure) are ceterained so that line segments of any direction near the center point
can be founc. Thus successive circular search along a line as shown in Fig. 7 can find lines starting at roints between two adjacent center points (e.g. line L in Fig. 20 starting between P_{1} and P_{2}). The alporithm for line seement detection is the same as described in $3 . \hat{2}$ except with respect to thresholds and search area. Eecause the search areas for cifferent directions overlar each other, the same line secment mey be found in different searches. Fach time a line sepment is found by line segment detection, a check should be made whether or not it is the same as the ore ottained by the rerevious detection.

If the center point of circular search has not been determined frecisely, it is not always possible to find all the lines starting at the eiven point. In Fis.21, for example, line L_{2} might be missed in circular search at F_{0}. To avoid this inconvenience, when line segtents are found (such os L_{1} and L_{3} in the ficure), a new center point F_{1} is calculated tased on the known line (L_{0}) anc the oltained line secuients (L_{1} and L_{y}). Then circular search is arplied again at F_{1}.

3.4 Tracking

Trackint is used when a line segment is given, to track elong it until it terminetes. The requirements for a tracking procedure are 1) the Iine should not be lost due to the effect of other lines or noise, end 2) the procedure should terminate as precisely as possible at the end of the linc. These requirements are contradictory in that the termination concition should be strict to satisfy the second requirement which makes it difficult to satisfy the first. The followine alsorith
is a comrromise between these requirements.
The basic procedure is to predict the location of a feature roint and to search for it near the point using line segment detfotion. The result of the search is clsssificd into the followine 4 cases.
(a) there is no feature point.
(b) a feature roint is on the line.
(c) A feature foint is not on the line.
(d) It is not clear whether or not a feature point is on the line.

In case (a), the detection of a reature point is similar to line serment detection except that the tyre of edge is already known so that the threcholds stated in 3.2 can be adjusted based on the average peak of Fi(v). The decision between cases (b), (c) and (d) is mende isine the distance d between the point and the line. That is

If $a \leq d_{1} \quad$ then case (b)
If $d>d_{z}$ then case (c)
If $d_{1}<d \leq d_{2}$ then case (d)
The threshold i_{I} chances derending on the state of trackinc. The state of trackine is represented by two interers mil_{1} and m_{2} which are set initialiy to 0 . The value of m and m are chanced for each case (a), (b) , (c) and (d) as follows.
(a) $m_{1}=\mathbb{m}_{1}+1$
(b) If $m_{1}>m_{2}, \quad m_{1}=m_{1}-1$, (where m is a constant) Otherwise, $m_{1}=0_{2} m_{2}=0$, and classify those feature points into (b) which have teen clasified into case (d)

In the previous steps of trackine. Adjust the equation of the line with these points and the present feature foint
(c) If $d \leq d_{3}$ and $m_{1}>m_{a}, \quad m_{1}=m_{i}=1$
(where dis a constant)
Otherwise no change
(d) $m_{2}=m_{2}+1$, and $i m_{1} m_{1}>m_{a}, m_{1}=m_{1}-1$

The threshold d_{i} is represented as
$d_{1}=d_{0}+w_{m} m_{2} \quad$ (where d_{0} and w_{m} are constants)
This procedure is repeated and trackine froceeds step by ster Extencinc the line until the termination condition is satisfied. The termination condition of trackinf is either $m_{1}>m_{n}$ or $n_{1}+m_{2}>m_{t} \quad$ (where i_{n} and m_{t} are constants) The terminal point is definec as the last point classified into case (b). 1ig. 22 illustrates hew this algorith works. In Fig. 28 (a), two lines cross at P_{0}. Trackine might finish at some point beyond $P_{0}\left(P_{m}\right.$ in the ficure) which satisfies the termination condition. The terminal point of trackine is, however determired more precisely near $P_{0}\left(P_{1}\right.$ or $\left.P_{2}\right)$. In Fig. 22 (b), $P_{1}, F_{2}, P_{3}, P_{4}$ are classified into case (d) increasing the value of H_{2} which classifye P_{5} into case (c). Then the line is adjusted with these points which are now classified into case (b) and trackine rroceeds.

Fir. 22 (c) end (d) illustrate that even if a part of the intensity profile is disturbed by roise or other lines, tracicirs dees not terminate
there. In Fig. 22 (d), however, if the light intensity of the right side of L_{0} changes across L_{1}, the type of feature points might chanpe across L_{i} - Thus feature points P_{3}, P_{4}, \ldots might nct be obtained and trackinet might terwinate at P_{1}. When tracking terminates, the line segment detection is applied at the extension of the line to see if another type of line segment is founc. If found, we adjust the line equation and trackine Froceeds. If not found, tracking finally terminates at point P_{f} and the rosition of I_{1} is adsusted with the line equation. The above rrocedure often extends the line across other lines when it terminates temporarily e.t their crossinf as in Fig. 9 (b) where tracking along $G^{\circ} M^{*}$ crosses any wertical lines.

4. EXPERIMFNTAL RESULTE ANE COMMENTS

To test the program, experiments are made with cubes and wedzes havine relatively umir゙orm white surfaces placed on a biack backercund. The imare dissector camera, used as an input device, dissects the scene onto a 20000×20000 (octal) grid. In this experiment, one point for fvery $8 x$ b block of frid elements is sampled. Thus, the scene is represented by 1024 : 1004 erid points. Cbjects occupy oniy a part of the scene. In the typical scene, the rectaneular area which inciudes the objects of interest may consist of atout 400×400 points. This area is civided into blocks each of which is made of 64×64 points end stored in cisk memory. iben a licht intensity at some point is required, a llock containine tre acint and adsacent blocks are stored in core memory. The core menory is accessed for the inrut of the light intensity until a roint outside of those blocks is refererenced.

Video input is at first converted into a to bit digital number which is an inverse linear measure of the light intensity. It is again converted into 10 bit lorarithmic measure. Some intensity level resolution is lost in the logarithmic conversion. In this experinent the licht intensity is represented ky a little less then 100 levels. The input deta for a clear iright edge in the dark kackground is blurred due to some limitations (mostly defocusing). If the intensity change is a stef function, there is a transient area in the input data about 1 C foints wide. Thus the resclution of tre picture is recarded as 10 points. The parmeters uef in line sement detection and trackin are
lused urcn this resolution. Features of the picture involving resolution of less thean 10 foints are not usually found.

Some recults are shown in Fig. 23. The difficulty or processinc time of the recognition cepends not only on the complexity of the object but also on the information extracted at each stape. In Fic. 23 (c), for examyle, boundary lines $S \mathbb{S}$, $K S$ and $Q S$ are easily rroposed as the extension of contour lines. On the other hand, it is not easy to find boundary lines Ki, or Lif in Fig. 23 (c). That is, after DK and ILL are founc, circular search is necessary at K and I respectively. Circular search is less reliable in finding a line segment, anc more time consuminc: Once the boundary lines are determined, all the internal lines are proposed in both cases. Eut tracking along V! in Fig. 23 (c) and FN in Fif. 23 (c) terminates in the middle. Then step (10) stated in section 1.1 is epplied. This is the most time consumine process (sbout 10 times more than the simple tracking process).

Sone examples of the result of a hierarchical tropram are shown in Fig-24. Hierarchical programs may look at the whole scene honoreniously and pick up feature points. Lines are found with those feature pointe obtained in the previous stege. It is very difficult to determine a priori the various thresholds for detection of feature points, line fitting and connection of lines. In this heterarchical frogram, it is rossible to adjust various thresholds with the context of the information chtained previously. Furthermore the algorithll itself can be modified case by case. (For instance, tracking alsorithm is chanced dependins on whether the line is a boundary or internal.) The results of experimentis
with moderately complex scenes are mostly satisfactory. Because of the many checks for consistency of lines and vertices, the frogram has small yrobability of findin* false lines.

However, there are sonc limitations of this program at present. One of them js that kodies may be missed in some cases. A simple exampis is shown in Fic-25. The bouncary lines $A B$ and EC ir Fig- 25 (a) are not rroposed thourh the other contour lines and internel lines are found, bncause the resultinc recions are so "neat" that no conceive vertices activate ster (1). In such a case when bodies are neatly stacked, it is necessary to seerch for boundary lines which start from some roints on the toundary line. In rig. 65 (b) body E2 is not found. To find a body that is included in a face of another body, it is necessery to search for line sergents inside the recion. Though these two kind of search (search glone the boundary line and search in the region) are required to find all the bodies in the scenes as shown in Fig. 25, they are still more effective then the exhaustive search in the entire scene. Besides, it is simpler to interpret the scene when a line is found by those searches. This procedure, towever, is left to future work.

The other iimitation of the present program is, as stated in the introduction, that it is not always applicable to concave objects. Tie. 6 (a) shows a simple oxample. Line $B D$ is found as an extension of line CB. If all the bodies are convex, line $E D$ is interfreted as the boundary line as shown in Fig. 26 (b). This does not hold for concave kodies. In this rogram, line ED is regarded as a boundary line, and then line mf can be found by circular search at I. At this stare, however

L2 should be interpreted as an internal line of the same body insteac of the boundary line which seperates the body into two. If DE is interpreted correctly, then line BD can be determined as an internal line. This procedure should also be implementec in the present profram.

CONCLUSION

A hetererchical prorram to recognize polyhedra is presented. The fropran is kased upon the strategy of recoenizing objects step by step, at each time making use of the previous results. The order of the lines to be detected is 1) contour lines (boundary of bodies and the kackround), 2) koundary lines which are the boundary between two bodies, 3) internsl lines (intersection of two faces of the same hody. Amone Kouncary lines or amone internal lines, the "most plausible lines" are froposed at each stace and an attempt is made to find the ine. To find e line, the range where a line segment may exist is proposed and it is detected in a suitabio way for the proposed range. If a proper line segment is found, the end of the line is determined by tracking alone the line. then the line is determined, the progrem tries to understand the scene talsing this line into consideration. Because lines are mostly froposed instead of fourd by exhaustive search in the scene, the program is relatively effective. fesults of the experivent using an image dissector are setisfactory for scenes including a few blocks and wedges. Although the present progran has liaitations, some of then may be cvercome by developments proposed here for future work.

FLPERENCES

1) W. Minsky and S. Fapert, "Proposal to ARPA for research on artificial intellizence at if.I.T.s 1970-1971", AII Project HAC Artificial Intelligence Memo No. 185, 1970.
2) A. Guzman, Conputer Recornition Of Three-Dimensional Objects In A Visual scene ${ }^{\prime}$,MIT HAC-TR-59 (Thesis), 1968.
3) A. Herskovits and I. Einford, "On Boundary Detection", MIT Project NAC Artificial Intelligence hemo lio. 183, 1970.
4) E. Horn, "The Imare Dissector "eye" ", MII Project MAC Artificial Intelligence lemo No. $170,1969$.

Fig. 1. Example of Scene

F1g. 2. Schematic diagram of the strategy

(a)
(c)

(b)

(d)

Fig. 3. Examples of concave boundary lines

Pis* 4. 111ustrotes two extenston lines at concave point P.

(a)

(d)
(e)

Fig. 5. Examples of litae configuration found by circular search.

Fig. 6. Example of circular gearch for internal lines.

(a)

(b)

(dotted lines are not yet found in thig stage)

Fig. 7. Examples of line verifying by circular search.

Fig. 8. Illuatrates the process after tracking

Fig. 9. Illugtrates the procedure to find lines.

Fig. 10. Flow chart of contour finding.

Fig. 11. Lllustrates the definition of curvature

Fig. 12. Example of curvature.

(a) Inght intensity level profile

(b) Areas to compute F_{4} at 1

(c) F_{u} (v) for (a)

Fig. 13. Example of $\mathrm{F}_{\mathrm{u}}(\mathrm{V})$.

edgemeffect
roof

Fig. 14, Typical profile of Ey (v).

Fig. 15. Peak detection.

Fig. 16. Decection of feature points.

Fig. 17 . Range of circular search*

X represente feature paint

Fig. 18. Illustrates difficulty in classification of feature points.

Fig. 19. Successive line detection in efrcular search.

Fig. 20. Example of successive circular search.

Fig. 21. Repeated circular search.

Fig. 22. Examples of tracking.

(a)

$\left(c_{1}\right)$

$\left(a_{2}\right)$

$\left(c_{3}\right)$
(a_{1}): Objects, (c_{1}): Result

Fig. 23. Examples of Experiment.

(a_{i}): Objecte, (b_{i}): Regult of Hierarchical Program
$\left(c_{i}\right)$: Result of chis program
Fif. 24. Examples of Comparison Between Hierarchical and Hererar chical Program.

Fig. 26. Illustrates diffictily for concave body.

Fig. 25. Illustrates lack of cues.

