WORKING PAPER 75

WAIT-AND-SEE STRATEGIES FOR PARSING NATURAL LANGUAGE

Mitchell Marcus

Massachusetts Institute of Technology
Artificial intelligence Laboratory
August 1974

Abstract

The intent of this paper is to convey one idea central to the structure of a natural language
parser currently under development, the notion of wait-and-see strategies. This notion will
hopefully allow the recognition of the structure of natural ianguage input by 8 process (hat is
deterministic and "backupless”, that can have strong expectations but still be immediately
responsive to the actual structure of the input. The notion is also discussed as a paradigm
for recognition processas in general.

Work reported herein was conducted at the Artificial Intelligence Laboratory, a
Massachusetts institute of Technology research program supported in part by the Advanced
Research Projects Agency of the Depariment of Defence and monitored by the Office of
Naval Research under Contract number NOOO14-70-A-0362-0005.

Working Papers are informal papers intended for internal use.



WAIT-AND-SEE STRATEGIES FOR PARSING NATURAL LANGUAGE
Mitchell Marcus

During the past year, | have been developing a natural language parser that
differs from existing parsers in what | believe are significant and theoreticsily
interesting ways. The intent of this paper is to try to convey the one central idea
behind this research, the notion of wait-and-see strategies. This notion, | believe,
allows the recognition of the structure of natural language input by a process that is
deterministic and "backupless”, that can have strong expectations but stili be
immediately responsive to the actual structure of the input. Much of this paper is
also intended to argue that one does, in fact, want to build a parser with these
characteristics. )

It should be noted at the outset, though the theme will not be expliciily
developed until the end of this paper, that the notion of a wait-and-see strategy is
not specifically a notion about how to parse, but rather a more general notion of how
to recognize. It might be of interest to the reader while reading this paper to keep
in mind the question of to what extent this notion is useful for other sorts of
recognition. The initial inspiration for this work was the thought that the notion of
local features constraining the surrounding environment, developed in the vision work
of Dave Waltz <Waltz *72>, might be combined with the essentially top-down parsing
strategies developed in the work of Terry Winograd <Winograd *72> and Bill Wouds
<Woods 72>, It would be pleasing if this wait-and-see notion, developed here for
fanguage, had application in other areas of Al as well.

Since this paper does focus on one issue, it will not discuss many other aspects
of the parsing system that deserve at least passing mention. A language called
PARSIFAL for writing grammars within the wait-and-see framework is being
implemented, modelled on Winograd’s PROGRAMMAR. A case frame system is being
developed along with a notion of where the use of case frames fits into a natural
language understanding system. PARSIFAL is being used to write a grammar which
currently handies only very simple sentences, but which is soon to be much extended.
This paper is intended as a progress report; the notions that it describes will
hopefully come to fruition in the coming months. Finally, it must be admitted, the
discussion in this paper has been greatly oversimplified at several points to avoid




P 75 2 WAIT-AND-SEE STRATEGIES

wandering into any of the above areas,
GUESS-AND-THEN-BACKUP VERSUS WAIT-AND-SEE STRATEGIES

To get an initial grasp on the notion of wait-and-see strategies, it seems
appropriate to compare this notion with the current prevailing strategy, which can be
termed guess-and-then-backup, embodied in its purest form in Woods® Augmented
Transition Network parser <Woods 72>, but which is also central to the parser in
Winograd’s SHRDLU <Winograd '72>. At the heart of the parser for William Woods’
LUNAR system, which implements a version of his Augmented Transition Network
formalism, various options are enumerated in the code for the next possible
constituent at a given point in the parse and these options are tested one at a time
against the input string. The parser assumes tentatively that one of these options is
correct and then procedes with this option until either the parse is completed and
the parser is done or the option fails, at which point the parser simply backs up and
tries the next option enumerated in the code. A parser based on the ATN formalism
abstractly has the power to use its knowledge of why the failure occurred to reorder
the remaining options at that point, or else to choose an alternative option pending
elsewhere, but this ability is not extensively used, to the best of my knowledge.
This is exactly the strategy of guess-and-then-backup: enumerate all options, pick
one, and then (if it fails) backup and pick another. Much (though not all) of the parser
for Terry Winograd’s SHRDLU is also structured along guess-and-then-backup lines,
although some of this structure uses the potential of PROGRAMMAR to be quite
bright about correction of false parse paths. But even here, the structure is one of
guess-and-then-backup(-cleverly).

A Wait-and-See Parser (WASP) on the other hand, rather than immediately
picking a possible option and attempting to push it through, backing up and picking
another option if necessary, prefers to wait and see exactly what it should do at any
point in the parsing process by doing limited lookahead of a particular sort.
Attempting to eliminate blind search through the space of possible grammatical
structures, a Wait-and-See Parser is expected to know, for each point in the parse
at which several different options are possible, a small set of easily answered
questions which determine axactly which options will succeed. At each step of the
parse, the WASP first calls on low level "middle-down™ processes to parse the



WP. 75 3 WAIT-AND-SEE STRATEGIES

essentially finite-state substructures of English, verb clusters, noun groups up to the
head noun, etc., from a little ahead in the input. The parser is then expected to
determine exactly what it should do next by inquiring about some small number of
properties of the structure it has already parsed and the few substructures lying
before it. Once it decides on a course of action, it is expected to proceed without
error. (One allowed course of action, it should be noted, is to conglomerate two or
more pieces of unassimilated substructure and then look still farther ahead into the
input.) Thus, the parser can allow some limited number of unincorporated
substructures to pile up before use, but it can never change a decision once made.

WHY ANOTHER PARSER?

One question immediately springs to mind: Why bother to build yet another
parser? lIsn’t the existing theoretical framework for parsing sufficient for the time
being when there seem to be more pressing areas in natural language research?
There are a number of reasons for building such a parser and attempting backupless
wait-and-see parsing, the most important of which can be divided into two
categories, the practical and the theoretical. To take the two in order:

(a) | believe a parser of this type will make much simpler adequate handling of
several important phenomena of natural language that are either handled only.in
special cases or are handled by ad-hoc mechanisms (or both) in existing parsers.
These phenomena include ellipsis, the ability to parse sentences that are not strictly
grammatical, and the ability to make some sense out of utterances that cannot be
fully parsed or understood. More will be said about these phenomena below, after
the structure of the parser has been explained in more detail. (I believe it will also
make much more accessible the problem of parsing conjunction and other coordinate
structure, but will say nothing more about conjunction in this paper.)

(b) I believe that people don't in fact do unconscious backup in the process of
understanding language, and that natural language is ’designed’ to allow backupless
language understanding. (I exclude here the understanding of *garden path’ sentences,
which do require backup, but also are understood in a mode quite different from
normal language.) The central hypothesis is that hatural language provides clues in
quite local contexts to allow the deterministic decision of what to do next. Writing a
grammar for the WASP involves finding out exactly what these clues are and what



WP 75 4 WAIT-AND-SEE STRATEGIES

form they take, and should therefore shed a new sort of light on the structure of
language.
Consider the following sentences:

(1) 1| told the boy the dog bit Sue would help him.

(2) When Red Moon saw the pony he was to choose from his face flowed many
tears. '

(3) in the book the girl took the basket had magical powers.
(The last two sentences are admittedly underpunctuated; with proper punctuation
added they read:

(2a) When Red Moon saw the pony he was to choose, from his face flowed many
tears.

(3a) In the book the girl took, the basket had magical powers.
Sentence (1) becomes clearer with the following change:

(1a) | told the boy the dog bit that Sue would help him.
If you had no trouble getting these interpretations of the sentences the first time
through, be informed that you are in a very small minority.) Most people are led
down the garden path by these sentences, parse them wrong and then boggle. But if
backup were done at an unconscious level, none of these sentences should cause
problems. Note that in (2) the misparse is limited to either incorrectly assigning the
prep ’from’ to the verb *choose’ (the pony he was to choose from) or assigning the
entire prepositional phrase ’from his face’ to ’choose’ (the pony he was to choose
from his face). Either error is locally correctable. It would seem that if there were
an unconscious backup mechanism such errors should be handled by such a
mechanism. (In passing, also note that both misparses of (2) are semantically absurd
-the only thing one might be able to choose from a pony is a steak - yet people buy
the misparses anyway. Semantics, or at least very deep semantics, does not
dominate the parsing process at some fairly high level) An even stronger argument
can be made from (1). Here the garden path is at worst four words long, but if there
were an unconscious backup mechanism, it must certainly be able to go back more
than four words to find a branch point without overloading. For example, for a
guess-and-then-backup parser to parse the pair of sentences

{48) Is the block sitting in the box?

(5) Is the block sitting in the box red?
it must do a backup of at least four words on one or the other of them. If people



W.P. 75 5 WAIT-AND-SEE STRATEGIES

were guess-and-then-backup parsers, and if they can get (4) and (5) without any
trouble, then they most certainly should not find (1) to be the fairly confusing garden
path it is perceived to be.

A MINI-THEORY OF SYNTACTIC ENCODING

If people don’t do backup when they parse, how do they avoid it? How can
language be parsed deterministically? | believe, as mentioned above, that natural
language is specifically designed (as the result, as Minsky puts it, of a million year
fong research project) to allow deterministic parsing. | believe that language
provides distinct signposts as to the actual structure of an utterance, if viewed
properly. To make this notion both a little more definite and a little more plausible, it
is necessary to present a brief mini-theory of syntax, a good mini-theory in that it is
highly oversimplified, but still quite suggestive.

| believe that syntax should be viewed as nothing more that a coding scheme to
allow semantic messages to cross a linear, slow, potentially noisy acoustic channel.
Furthermore, this encoding should be such that the message is easily recoverable,
that the code should allow efficient decoding wherever compatible with the
constraints of the channel. It is therefore reasonable to hypothesize that coding is
done in as local an environment and as low a level as possible, and that decoding
clues are given on as local a level of structure as can be achieved. The obvious
example that comes to mind: The passive marker is encoded in the local environment
of the verb group and can be entirely decoded within the same limited context.

One important efficiency trick is the local isolatability of group structures -
NGs, VGs, and the like. (In this paper, the term NG, noun group, refers to the portion
of a noun group up to and including the head noun; the term VG, verb group, refers
to the main verb and its immediately preceding auxiliaries) Strong local clues, at the
beginning of groups especially, allow parsing without any reference to global
structure. NGs provide the obvious example here, especially in text: The structure
of NGs is such that it is usually clear where a NG begins; "the”, "a", and other
articles are dead tip-offs, as are ordinals, most adjectives, etc. One need not wait
 until much of a NG is spoken (or, more accurately in this context, typed in) before the
structure of the group can be begun to be built - aimost assuredly without error.
Another efficiency trick in the syntax coding scheme is that of an *unmarked



AP 75 6 WAIT-AND-SEE STRATEGIES

default order of constituents vs. ’marked’ orders. In the speaking of semantic
messages containing an actor and some affected object, for example, the unmarked
order is actor - verb - object. When the expected order is varied such deviance is
often marked at a quite local level by the addition of some sort of marker. The
passive is again a good example here; the order object - verb (- actor) is marked
by the passive (be - en) locally decodable in the VG. If one wishes, this can be
thought of as a "transformation” (in a very loose sense) from the expected order; a
transformation that contains two parts - one a shift from the normal order and
another a marker of the change. The process of generation involves deciding to use
the "shifted” word order, the process of interpretation involves decoding the marker
so that interpretation may be "shifted” as well. Often, of course, the marked order of
constituents is quite distinct from unmarked "normal” order so that the order itself
marks which shift has been chosen by the speaker; in this case no extra marker is

" necessary. The most obvious example here is the marking of yes/no questions by
the "inversion™ of the subject of the question and the first element of the verb group
of the sentence. Thus the yes/no question corresponding to the declarative

(i) Herbert has eaten all the cookies.
is marked by the inversion of the auxiliary "has” before the subject "Herbert™

(ii) Has Herbert eaten all the cookies?

If one considers clause structure built up from the input string in successive
levels, it is reasonable to expect that after each level is constructed, markers then
local to that level - i.e. determined by given strings of elements on that level - will
be picked up. | believe that as each level is examined, first the level of a string of
individual words, then the level of a string of individual groups, different markers are
locally decodable. | believe, for example, that the "descent” boundaries between
embedded clauses and higher clauses (as well as often being marked by binders like
"who’, "that’, etc.) are marked at the level of the group string. To give a very trivial
example, the string NG NG VG, e.g. "the boy the girl kissed", almost always marks the
structure NG ! NG VG (where ! indicates the beginning of an embedded clause)
unless a pause of'some_ length would exist between the two NGs in speech, a
situation USuaIly indicated in written text with a comma. It is my hypothesis that such
indicators are given in a local enough environment to allow a parser to do, at each
level, unerring parsing of the structures at the next level.



WP. 75 7 WAIT-AND-SEE STRATEGIES

THE GENERAL FRAMEWORK OF A WASP

It is now appropriate to attempt the dissection of a WASP, to lay the groundwork
for discovering exactly how its inner workings make possible the realization of wait-
and-see strategies. In this section, and those below the discussion will focus on the
structure of the WASP that is currently being implemented.

The WASP consists of two layers of procedures: the lower layer a battery of
group level parsers and the upper a battery of clause constructors. The group level
parsers build noun groups (more exactly NGs up to the head noun), verb groups (i.e.
the verb cluster up to the main verb), and the like, while the clause constructors
build these substructures into clauses. The group level (GL) parsers all look at the
input string, each free to build a group level constituent at any time another GL
parser isn’t chomping on the input. When a GLP considers itself finished, it dumps
the constituent it has built onto a hook from which the clause constructors can take
the constituent when it can be glued into some larger structure. The clause
constructors are semi-syntactic, semi-semantic beasts in that they attempt to build
both an annotated surface structure parse and a semantically oriented structure
around each verb by ’decoding’ the syntax of the clause around that verb. When the
clause constructors find a verb, they seize a Fillmore-like case frame assaciated with
the verb and attempt to fill in the slots. The clause constructors needn’t immediately
use each group when it is placed on a hook, but rather can let some fixed small
number of group level constituents "pile-up” on the hooks of the group level buffer
before deciding how to glue the first of the constituents into a larger constituent. In
this sense the clause constructors have a limited and sharply constrained look-ahead
ability. The hypothesis central to the wait-and-see strategy is that this amount of
look-ahead is sufficient to 'wait-and-see’ what the correct parse should be, so that
no backup is necessary. '

One more point should be made about the notion of *hooks’. Any constituent
whose function at a higher level isn’t clear is placed on a hook until it is seized by a
higher constituent. That larger constituent itself might. then find itself on a hook until
it too can be placed into a still larger constituent. The point is that a hook can hold
the top node of any unincorporated constituent; whether the structure underneath is
"the” or "the big green cookie monster’s toe that got stubbed" is immaterial. Lest
this leave an impression that the WASP is basically bottom-up, it should be added



WP. 75 3 WAIT-AND-SEE STRATEGIES

that the clause constructors will quite willingly start a higher level constituent as
soon as they are confronted with solid evidence that such a constituent is on the
way, and will then pursue additional constituents for the structure in a fairly top-
down manner.

This, in outline, is the general framewark of the WASP.

FILLING OUT THE FRAMEWORK

It is quite pleasant that one mechanism seems to be appropriate for the
realization of both the group level parsers and clause constructors discussed above;
the parsers at group level, it turns out, are very naturally realized as a degenerate
form of the clause constructors at the higher level. Béth are realized in the WASP
as a kind of pattern-invoked demon which will be called a module. Each module
consists of a pattern, a pretest procedure, and a procedure to be executed if the
pattern matches and the pretest succeeds. (A pattern consists of a list of sets of
features, e.g. "((NG DEFINITE) (VG INFINITIVE))". For a pattern to match, each feature
set of the pattern must be subsumed by the set of features on the corresponding
structure in the relevant string of syntactic units ~ words at one level, groups at the
other.) At the group level, the patterns tend to consist of single features on single
words with pretests that act as 'no-ops’; at the clause level, the patterns and
pretests are much more complex. The point to be made about these patterns is that -
they are very simple tests of very local syntactic properties. While the pretests can
be arbitrarily complex, it seems to be the case that in most instances the local
properties reflected in patterns suffice by themselves to get the right module to the
right place at the right time.

Since the organization and action of group level modules tends to be much
simpler than that of clause level processes, nothing more will be said about group
level processes below. Let us add only that the group level processes conceptually
serve to conglomerate very locally determined simple structures, so that processes
with a more global interest will not be overwhelmed by irrelevant detail.

At the clause level, modules are organized into packets, which can be activated
and deactivated to reflect the parser’s global expectations about syntactic constructs
which may be encountered at any particular point in the parser’s analysis. (This
notion of packet derives from the work of Scott Fahiman <Fahiman *73>.) Some



WP. 75 9 WAIT-AND-SEE STRATEGIES

typical packets within a grammar of English might be: MAJOR-CLAUSE-START, a
packet of modules which will parse the initial segments of major clauses up to and
including the verb; MAJOR-CLAUSE-AFTER-VERB (M-C-A-V), a packet which parses
objects, prepositional phrases, and the like; EMBEDDED-CLAUSE-AFTER-VERB, a
packet similar to M-C-A-V, except that its modules are responsible for deciding
exactly what role the relative head plays (if there is one), and when the embedded
clause is complete and further groups belong to higher clauses; etc. Packets of
modules thus roughly correspond to states in an Augmented Transition Network
parser, with some major differences: not only do packets correspond to much larger
grammatical "chunks” than typical ATN states, but more importantly, modules in a
given packet may interact with each other quite strongly. For example, several
modules in a packet might modify structures in the GL buffer so that a more general
module will then apply to the resulting common structure; in the packet MAJOR-
CLAUSE-START, for instance, the initial structure of yes/no questions, wh- questions,
declaratives, etc. might be parsed by an almost reverse-transformational mechanism.
In such a grammar, the module which picks up imperatives (with pattern "(VG
INFINITIVE) (NG)") might insert a dummy "You" NG into the GLB after marking the
clause IMPERATIVE, the module which parses yes/no questions might mark the clause
type and then rearrange the GLB to reflect the declarative "underlying” "subject -
verb” pattern, etc., all so that a common "subject - verb® parsing module with
pattern "(NG) (VG)" can work on all three of these sentence types. It should also be
noted that more than one packet may be active at any given point in the parse; for
example, if a sentence or a single PG might be expected as an answer to a question
(e.g. "Where did John go?"), packets for each can be initially active.

it is important that a recognition process have expectations that impose some
structure on the search space that it expects to examine; it is also important that
such a process not be blinded or enslaved by these expectations. By overlaying a
pool of pattern-invoked demons, i.e. high-level interrupts, with this packet structure
- a means for enabling and disabling blocks of these interrupts - we obtain a
mechanism which can have expectations but still remain interrupt driven and thus
responsive to its input. Higher resolution of levels of expectation can be achieved
by assigning priorities to these interrupts, as will be discussed in more detail in the
following section. For now, let us just note that this priority mechanism allows the
WASP to have some slight expectation of infrequent but possible sorts of



W.P. 75 ' 10 WAIT-AND-SEE STRATEGIES

grammatical events; modules to parse single NG or PG utterences can always be
lurking far- in the depths, ready to snap if a fragment drifts down to them without
being grabbed by -some higher module, i.e. if no higher-prioritied interrupt occurs.

Within a packet, each individual module is a specialist for the particular syntactic
situation its pattern and pretest define. Since modules are not only responsible for
building structures, but' for building the right structures, each must be an expert at
the differential diagnosis of all the possible global situations which are consistent with
the local environments in which it may be invoked. Thus when invoked, an efficient
module whose conditions of invocation are consistent with more than one large scale
structure must procede to ask just the right questions of the world to resolve the
question of what global environment it is in, and thus what actions it should take. If
necessary, and if the group level buffer isn’t full, it can ask for group level structures
further ‘on in the input to be generated, but within these limits it must resolve the
situation on the basis of knowledge at hand. (There are exceptions to this, but they
are beyond the scope of this discussion) This ability of a module to determine the
relevant properties of the global context in which it becomes active by testing a few
specific properties of a limited number of groups is the key to building wait-and-see
strategies, as an example or two in the next section will make clearer. It should not
be overlooked, however, that this diagnosis process depends as much on the
interrupt structuring scheme of packet, pattern, pretest, and priority that gets the
right module to the right place at the right time as it does on the knowledge that the
triggered module contains. Half the information needed by an activated module to
solve the problem of what to do next is provided by the simple fact that the
environment was such that it was triggered.

A module, though a narrow specialist, can use many different sorts of knowledge.
It may use syntactic or semantic information to decide on one hypothesis as opposed
to another, referring questions where necessary to the full-scale semantic inference
mechanism (to be simulated by me for now) for which it hypothetically serves as
front-end. Though little will be said in this paper about the sorts of semantic-
syntactic. interactions that will be necessary to build a functioning natural language
system with a wait-and=see parser as front end, one point should be made: Because
of the differential diagnosis nature of iis job, it has become clear that a module often
needs to know - and must be able to ask the semantic component - not simply
whether some constituent is semantically suited to serve in some capacity, but which



W.P. 75 11 WAIT-AND-SEE STRATEGIES

constituent of several is better suited to serve in a given capacity - and by how
much, based not only on simple case or semantic marker checks, but often on the
surrounding context as well. This particular problem seems to raise many questions
about the interaction of the individual components in a natural language system, for
here the task of semantics is not merely filtering, but supplying more complex forms
of information,

What if a module, within these limitations, makes a mistake in its decision? Then
the sentence is a garden path for the parser, and it should fail gracefully. As the size
of its grammar grows, ane would hope that the parser will be confused by only those
sentences which confuse people, and one might even hope that it will be confused by
exactly those sentences which people find to be garden paths.

AN EXAMPLE OF A WAIT-AND-SEE STRATEGY

To make the discussion above a little more concrete, consider the probiem
presented to a wait-and-see parser by the following pair of sentences:

(6) Is the block sitting in the box?

(7) Is the block sitting in the box red?
The problem is quite simple: the parser must somehow realize that while the
sentences differ in but one word, in (6) "sitting in the box" is part of the predicate of
the main clause of the sentence, while in (7) it is the predicate of a (very) reduced
relative clause modifying "block™, i.e. the declarative sentences corresponding to (6)
and (7) are

{6a) The block is sitting in the box.

(7a)The block (which is) sitting in the box is red.
A very informal answer to this is quite simple: simply see-if it is true that the only
groups after the "participial phrase” are adverbs or time phrases, if so the sentence
has the general form of (6), otherwise it has the general form of (7). What the
discussion below centers on is how this knowledge can be formalized and embedded
within a wait-and-see parsing framewark. At the point in the parse of either (6) or
(7) when the parser has seen

(8) Is the block sitting in the box...
a module must become active which knows about some general form of this problem
and embodies some sort of knowledge which resolves this dilemma. How can a



WP, 75 12 WAIT-AND-SEE STRATEGIES

module be formulated so that it does the right thing at the right time?

Before we can formulate a diagnostic module for this situation, we must know
what substructures will be present when the module is intended to become active
and what processes are necessary to create either of the structures implicit in (6)
and (7). First of all, since the diagnosis of either sentence’s real structure can be
done only by looking past the end of the "participial predicate” beginning with
"sitting”, this predicate must exist as a coherent substructure before the module is
triggered. We will consider this participial predicate to be a clause which is missing
its subject and some of its auxiliaries, and build it as such, calling the temporary
substructure - a clause without subject- a verb phrase. Since this verb phrase can
be built upon. one haok, it is a legitimate substructure by the wait-and-see rules. It
will have the features CLAUSE and VP, and it will also be labelled with the most
important features of its VG, namely ING and PARTICIPAL (indicating the ING form of a
PARTICIPAL), since it will turn out to be useful for the outside world to see these
features at a glance. (Exactly how this clause is constructed, and how the processes
which construct it decide that it is complete must unfortUnater be left to another
paper. To do the topic justice would expand this paper by a factor of two.) Since
parsing of groups is done locally, "is” will be parsed as a VG, but it will also have the
feature AUX, which indicates that it might be the separated initial auxiliary of a larger
VG, and the feature BE, which indicates that the initial word of the VG is a form of
"be". (Note that the decision of what the "main verb” of a VG is must be delayed
until clause-level processes are assured the entire VG has been found.) The NG “the
block” will also be a substructure and will have features that indicate that it is a NG,
that it is singular (NS), and that it has a definite determiner (DEF). Thus the
substructures in the group level buffer after (8) has been partially digested will be
(ignoring all but the top level structure):

(9) (VG AUX BE) is
(NG NS DEF) the block
(CLAUSE VG PART ING) sitting in the box.

Given this level of structure, processes must be sp;acified that can take these
substructures and somehow put them together to build larger substructures
consistent with either the structure implicit in (6) or the structure implicit in (7),



WP. 75 13 WAIT-AND-SEE STRATEGIES

ignoring for now the problem of deciding which structure to build.

If these substructures in the GL buffer are to be interpreted as the initial parts
of sentence (7), the VP must be completed as a reduced relative clause. To do this,
we propose a module called PARTICIPIAL-MODIFIER (PART-MOD) with pattern "NG
(VP PART)" which will (a) complete the VP as a CLAUSE by adding the NG as
grammatical subject, (b) modify the tense of the VG by adding "present progressive”
to the tense of the VG, and (c) hook the clause onto the NG as a rank shifted
qualifier (or if you prefer, a relative clause) of the NG, adding the feature QUALified -
to the NG. Thus, after this module has been loosed on (9), the group level buffer will
contain:

(VG AUX BE) is
(NG NS DEF QUAL) the block sitting in the box.

Since this sort of relative clause can occur anywhere, this module should live in the
packet CLAUSE-PQOOL, which is the clause level packet of always active modules.
Since a NG can’t take relative clause qualifiers if it is a proper noun and thus has the
feature NPR, the pretest for this module checks to make sure the NG does not have
the feature NPR. :

If the substructures of (9) in the GL buffer are to be interpreted as the initial
parts of sentence (6), rather than of sentence (7), the VP becomes the foundation of
the major clause of the input with the VG "is" as an auxiliary "shifted” to form a
yes/no question. We propose a module YES/NO-QUESTION (Y/N-Q) to put the group
level substructures of (9) together to form this structure. Y/N-Q has the pattern
"(VG AUX) NG VP" and a pretest which checks that the first word of the VG of the
VP is marked with the appropriate "suffix” feature for the initial AUX, i.e. the
features ING or ED for an AUX of BE, EN for HAVE, INFINITIVE for MODAL, etc. When
activated, this module (a) adds the initial VG to the VG of the VP, (b) puts the VP
CLAUSE onto a special hook, labelled S, which is reserved for the root of what is to
become the full parse tree (Thus the VP becomes the. "major clause” of the
sentence.), (c) adds the NG to the CLAUSE as its subject (which causes the right thing
to happen to the case frame representation of the sentence which is being built in
parallel with the annotated surface structure parse), and (d) notes that the CLAUSE is
a yes/no question by adding the features YES/NO and QUEST and removing the



WP. 75 14 WAIT-AND-SEE STRATEGIES

features VP, PART and ING from the CLAUSE. After Y/N-Q has been run, nothing is
left in the group level buffer, but S hooks the structure

(CLAUSE QUEST YES/NO) is the block sitting in the box...
(NG NS.DEF 'SUBJ) the block
(VG PRES V3PS) is sitting
(PG MOBJ) in the box.

(Where V3PS means the verb is 3rd person singular; MOBJ means that the PG is a
"marked object" of the verb, and SUBJ means the NG is the subject of the CLAUSE.)
Much of the lower level structure was constructed when the VP was constructed, for
now it is fair to consider it formed by magic. Since this module should be active only
at the beginning of clauses, it lives in packet CLAUSE-INITIAL, which is activated only
~ when the parser expects the beginning of a major clause or something which looks
like a major clause,

The dilemma presented to the WASP by (6) and (7) above can now be restated
quite-precisely in“terms of the two modules PART-MOD and Y/N-Q. At a time when
both these modules’ packets -are active, and thus when both these modules can
become-active, the group level buffer will contain the structures (repeating (9)
- above)s: B '

(VG:AUX BE) is

(NG:NS:DEF) the block

(CLAUSE VP PART ING) sitting in the box.

The problem now is simply that both modules are applicable in this situation, since
their patterns are:

PART-MOD ~ (NG (VP PART))

Y/N-Q - ((VG: AUX) NG VP)

What we need is'a module which can diagnose which sort of structure should be
built, ie. which of these two modules should become active, and we also need some
- way to force-this diagnostic-module to become active before either of the others.

If modules were: “pure™ demons, as would be true, for example, if these
modules were :a simple variation of PLANNER theorems <Hewilt '72>, any applicable
module in-any ‘active packet might jump first in any given situation, since there is no
way conceptually to order relevant modules without some super-module giving



WP. 75 15 WAIT-AND-SEE STRATEGIES

suggestions. Thus even if there were a diagnhostic module, there would be no way to
assure that it would become active. In the WASP, however, modules are ordered by
priority. Every module in the WASP has associated with it a positive integer which is
its priority, with smaller integers carrying higher priority than larger integers. (it
should be noted that since any number of modules can have the same priority, this
ordering need only be partial.) In any situation, only one module, the module of
highest priority of those applicable, ever becomes active unless the active module
explicitly calls another module by name and tells it to run. Thus the module of
highest priority of those applicable in any situation bears the onus of diagnosing the
correct path for the parser to follow and of assuring that only correct structures are
built. it must be noted that this control structure is very similar to the production
systems of Newell and Simon <Newell & Simon *72>, but we will not dwell on this
fact here.

Now that we have at hand all the tools necessary to formulate a module which
can diagnose between structures like that of sentences (6) and (7), designing the
module itself is almost trivial. First of all, the diagnostic module’s pattern should be
the intersection of the patterns of PART-MOD and Y/N-Q and should be in a packet
which is active only when both of the two conflicting modules are active. Thus, the
pattern of our module PARTICIPIAL-DIAGNOSTICIAN (PART-DIAGN) will be (VG AUX)
NG (VP PART)" and it will be in packet CLAUSE-INITIAL. It will have the same
pretest as Y/N-Q, namely that the first word of the VG of the VP has a "suffix"
feature appropriate for the initial alleged AUX. We make this the pretest, as
opposed to the pretest for PART-MQD, rather arbitrarily, since once either pretest
succeeds, this module knows it assuredly can diagnose the correct action for the
parser to take. Thus, the module’s first action is to test whether the pretest of
PART-MOD succeeds, if not, i.e. if the NG has the feature NPR, then it knows PART-
MQD does not apply, and tells Y/N-Q to run. (Modules have the ability to send other
modules any mail that they choose, though it is necessary that the receiver know how
to read his mail) If PART-MOD is applicable, the diagnosis must be made. This can
be done in very simple grammars (be prepared for a great anti-climax) simply by
seeing if the next group after the VP has the feature QPUNC, i.e. by seeing that the
next group is a question mark. In more complex grammars, we need only check to
see whether or not all the groups that fall before the question mark are marked with
either the feature ADVERB ("for sure”, "like you told me®, ..) or the feature TIME



WP 75 16 WAIT-AND-SEE STRATEGIES

("this year", "on Tuesday", if the tense of the initial BE is PAST: "when the pyramid
was picked up”, ..). (The very interesting question of whether to parse the end of

Was the block sitting in the box last Tuesday...
as "(sitting in the box last Tuesday)” or "(sitting in the box) (last Tuesday)” is
decided by the process that builds the participial phrase and is outside the scope of
this discussion.) If the only groups before the question mark are ADVERBS or TIME
phrases, the module tells Y/N-Q to run, otherwise it activates PART-MOD. This
entirely diagnoses the situation, at least for moderately simple grammars, and PART-
DIAGN is finished. To summarize, the module (a) checks whether the NG has the
feature NPR, if so it tells Y/N-Q to run. If not, it (b) checks whether or not it finds a
group marked QPUNC before it finds a group marked with neither the feature TIME
nor the feature ADVERB, if so it tells Y/N-Q to run, otherwise it tells PART-MOD to
run.

Two facets, in particular, of this module deserve mention, as they are very
illustrative of other diagnostic modules. The first is the simplicity of the diagnostic
procedure; the second is the general structure of the module. It seems to be the
case that many similar sorts of locally ambiguous syntactic situations can be resolved
by diagnostic modules with complexities of the same order of magnitude as PART-
DIAGN, with a substantial portion of the questions asked requiring nothing more than
simple feature checks. Some situations do need an elaborate structure of such
questions to diagnose all possible outcomes, but the actual number of questions which
need to be answered for any instance of such a situation is still usually less than five
or six. (This sort of complexity is needed to resolve the termination of embedded
clauses; this is one reason why this topic requires a paper of its own) There are
two reasons for this seeming disparity. The first is that, as mentioned above, the
"intelligence” of the parser depends as much upon the interrupt control structure that
gets the right module to the right place at the right time, as it does upon the
knowledge that given modules contain. The second reason - and the second facet of
the module deserving mention - is that the general structure of diagnostic modules,
like the module developed above, is conceptually that of a decision tree. Even in
comblex situations, it seems to be the case that decision trees are a rich enough
structure for doing the: diagnosis and that these trees tend to be shallow, even if
quite bushy. Given this structure, of course, only a single path through the tree need
be followed in any given situation, so that the number of questions that need be



W.P. 75 | 17 WAIT-AND-SEE STRATEGIES

answered is proportional to only the height, and not the breadth, of the tree.
A RETURN TQ ELLIPSIS AND UNGRAMMATICALLITY

It was suggested above that the WASP is better equipped than guess-and-then-
backup parsers to handle phenomena like ellipsis, the ability to parse sentences that
are not strictly grammatical, and the ability to make sense out of input that cannot be
fully parsed. Let us now compare some approaches to these problems within both
frameworks,

it would seem that there are two plausible methods for adding to parsers like
SHROLU’s and the LUNAR system’s the capability to handle sentences that are to
some degree ungrammatical. The first is to exhaust all grammatical parses and then
effectively start over again, loosening up various grammaticality constraints. The
second is to originally throw away those constraints which can usually be violated and
still leave sentences understandable to people, making less use of the syntactic
guides still present in fully grammatical sentences. It would seem that option (2) is
not very good, and that option (1) implies that all the enumerated options must be
exhaustively attempted and fail before ungrammatical sentence handling can begin.
Ellipsis handling is much the same sort of problem. A guess-and-then-back-up
parser, it would seem, either needs to enumerate all possible ellision options in its
code and then guess them or else must bomb out and only then go into a special
ellipsis handling mode. Even more difficult is trying to pull something useful out of
input which the parser is unable to parse. Given such a sentence, a guess-and-then-
backup parser exhaustively goes through its search space and then throws up its
hands knowing - and able to tell the user - only that it has failed. Not only is this
distressing to the user, but it also fails to be a very good mode! of how people
behave.

These difficulties all arise directly from the basic nature of a guess-and-then-
backup parser and hence seem to be very difficult to overcome within that
framework. The problem is quite fundamental: Such a parser chooses to follow a
given path in its search space for no other reason than the fact that that path is the
next untried option in its code, hence it must assume that any given path is quite
likely to be wrong and thus that it should constantly be on the lookout for signs that
it has made-a wrong turn. When such a parser runs into difficulty on any given path,



wp 75 18 WAIT-AND-SEE STRATEGIES

it is almost always correct for it to assume that it should abandon that path and try
another; furthermore, there seems to be no good way for it to spot the cases when
that assumption is false. Thus, if such a parser is given a sentence that doesn’t
exactly conform to any given path through the parser, it will attempt and abandon
every path through its search space, and finish with no more information than the
knowledge that the sentence "does not parse”.

One great advantage that the WASP has over such parsers is that it always
believes that the path it is on is the only feasible path (ignoring for now the problem
of ambiguity). Thus even in the worst case, given a sentence (or non-sentence) it
cannot parse, when the parse becomes blocked, it still has some structure with which
to say "here is as far as | got, what is the difficulty?”. In fact, it would seem that the
parser can often do much better, simply building the largest pieces it can out of
remaining input, and then either handing the pieces to higher level processes to be
handled in some sort of problem-solving mode, or else giving the pieces to the user
and asking for some glue (if the parser isn’t completely astray). For example, assume
the parser takes the garden path on

| saw the grand canyon flying to New York.

It will first attempt to use "flying to New York” as a modifier of "the grand canyon”,
reject the modification on semantic grounds, (laugh(?),) and then end up with two
fragments, the first a clause "l saw the grand canyon”, the second an “ing"-
complement "flying to New York™. If there is a special higher level syntactic problem-
solver that knows about dangling modifiers, perhaps an error recovery can be made.
Otherwise, the user can be told " know you saw the grand canyon, but what’s this
about flying to New York?.

Handling ellision within the WASP framework is facilitated by the fact that the
WASP is never so blinded by its expectations that it cannot immediately realize the
real form of the input. Modules with very low priority can always be active in the
parser to handle ellided structures or the sorts of sentence fragments that constantly
occur in conversation. The parser can have expectations of a full sentence in that
the high priority modules are those that put together substructures to build a
sentence, but low priority modules can lurk in the background ready to spring if their
patterns match when no higher priority module applies. It is also quite easy within



WP. 75 19 WAIT-AND-SEE STRATEGIES

this framework for given sorts of fragments to be expected (i.e. the corresponding
modules or packets of modules to be made active) following some sort of comment in
conversation. After a curious natural language understanding system asks the user
"What are blocks good for?", it can activate a set of modules to expect the sorts of
fragments likely in answer to such a question. The response "To build arches with."”
will be caught by a module with pattern "(VP INF) (PREP) ()" that will add the PREP
onto the infinitive phrase as an incomplete PG, noting that an implied relative head is
missing. A higher level context-oriented mechanism can then (somehow) fill out the
ellided "blocks are good for...".

The "differential diagnosis™ nature of the module’s task seems to be an excellent
view of the world for handling minor ungrammaticality. A module never asks if a peth
is worth attempting, but rather which of the possible paths is the best. Grammatical
constraints thus become evidence that a path is more correct than another, rather
than entrance exams which must be passed before a path can be entered at all. If
some constraint, such as person-number agreement, is absolutely essential to
diagnose which of two possible paths is correct, it can be used as the final arbiter of
the decision. If the decision is otherwise clear, such a constraint can be ignored. If
the differentiation is very difficult (which | believe is rarely the case) more complex
evidence weighing can be effected by giving the module a more complex decision
tree. .

It should be noted that in the case of minor ungrammaticality that the parser
knows how to overcome, as well as in the case of utterances so bad they are
unparsable, it is central to the above strategies that the parser is always sure that
the path it is.following is the only feasible path. Indeed, perhaps the greatest benefit
that wait-and-see strategies provide is that the determinism | believe they make
possible allows the parser to assume that the obstruction in its way is to be climbed
over at all costs rather than taken as an indication that the road is closed.

A PARADIGM FOR RECOGNITION

Let us now back off from the specific problem of parsing natural language, and
examine the structure of the WASP as a paradigm for recognition problems in
general. Most recognition systems, whether for language, vision, or whatever, fall
into either the top-down or bottom-up recognition paradigms, i.e. they are, for the



WP, 75 20 WAIT-AND-SEE STRATEGIES

most part, either data-driven or hypothesis-driven. Both paradigms have advantages,
but both have distinct disadvantages. A data-driven system can react immediately
and smoothly to the specific environment in which it finds itself, but will quickly
become swamped if the domain in which it is to function provides too much
information; in such an enviroment a data-driven system quickly suffers from serious .
sensory overload. A hypothesis-driven system, on the other hand, need look at only
some small amount of data to confirm its preconception of its environment; it can ask
its senses for only the specific information it needs to assure itself that its current
hypothesis is valid. The problem with such a system, of course, is that if the
hypothesis is wrong, alternative hypothesis must be found and tried until one is found
which seems to be an accurate model of the world. (The notion (first suggested by
Marvin Minsky <Minsky 74> and developed by Ben Kuipers as a model for block
recognition <Kuipers *74>) of a transition net connecting stereotypic hypotheses, with
transitions triggered by observations that conflict with the current hypothesis yet
suggest another, may eliminate some thrashing between hypotheses, but | do not
believe that it will entirely solve the problem, especially in complex domains) The
WASP, however, is neither data-driven nor hypothesis-driven, but rather a mixture
of both. It is-a combination of several notions that attempts to utilize the advantages
of both paradigms.

The central idea behind the WASP recognition paradigm is the notion of situation
specialists, actually a collection of notions. A situation specialist, implemented in the
WAGSP as a module, is initially data-driven in that it is triggere& by combinations - of
low-fevel features that jointly define the general “shape™ of the environment, the
"situation” that exists in the world. Determining this situation requires only a very
low level of "sensory” resolution, hence this data-driven portion of the situation
specialist need not be swamped by irrelevant detail and too much data. In such a
world, with little detail and a need for only limited resolution, data-driven systems
behave very well, as noted above, immediately responding to the actual structure of
the environment.

Once a situation specialist is active, it then acts as a "differential diagnostician®,
becoming hypothesis-driven in a very special sense. A situation specialist can be
said to be hypothesis-driven in that it knows exactly what the competing hypotheses
are which may be models of that situation and in that it does “differential diagnasis”
to determine exactly which one of them is right. It can more strictly be said to be



W.P. 75 2l WAIT-AND-SEE STRATEGIES

hypothesis-driven in that it gathers information only by making specific requests of
its senses, thereby retaining the principal advantage for recognition of hypothesis-
driven systems without the need to confirm or reject possible hypotheses one at a
time. Furthermore, the differential diagnosis notion allows the situation specialist to
use information global to the entire set of competmg hypotheses to efficiently
determine which is best.

Another- important notion is that of maintaining intermediate levels of structure.
While this notion is certainly central to present data-driven vision systems that first
find lines, then regions, then objects, the notion of intermediate levels of structure is
also useful to systems that are less strictly bottom-up and that work in domains
where the levels of structure are not quite so conceptually distinct. Forming an
intermediate level of structure in a "middle-down" fashion, based on local criteria,
allows detail irrelevant or of limited usefulness to higher level processes with more
global concern to be hidden from the casual gaze of those processes. This
conglomeration of data greatly reduces the complexity of the data-domain in which
higher level processes must operate.

To what extent are these notions useful for othere sorts of recognition? While a
general answer to this question will be left both as an exercise to the reader and as
a "suggested area for future research”, it is interesting to note that these notions are
in part quite similar to those developed by Andee Rubin within the framework of a
mode! of "disease recognition”, i.e. medical diagnosis <Rubin *74>. In Rubin’s model,
disease hypotheses are first triggered by symptoms or combinations of symptoms, and
then attempt to substantiate themselves in a very top-down manner. Her model first
conglomerates data into symptoms as an intermediate level of structure, and then
shifts to disease-centered processing, as higher level hypotheses become active.

CONCLUSION

As a final point, it is perhaps most appropriate to restate the key hypothesis of
the theory of language on which the WASP is based. The WASP itself is very
precisely a test of this theory: to the extent that this theory is true, the WASP will
succeed; to the extent that it is false, the WASP will fail. The central hypothesis of
the theory is simply this: that the process of building up the structure of natural -
language utterances should be viewed as consisting of several strata of processes,



W.P. 75 22 WAIT-AND-SEE STRATEGIES

and that natural language provides explicit clues in local contexts at each level that
allow a deterministic decision of what to do next. By "local”, we mean within an
environment of 3 or 4 or 5 contiguous units at any given level of structure. By
"deterministic”, we mean that except for "garden path” sentences, those on which
people need to do some sort of conscious processing to determine the correct
structure, decisions based on these local clues can be perfectly accurate. The task
of writing a grammar for the WASP, to repeat a statement made in an earlier section,
involves finding out exactly what these clues are and what form they take. Thus, if
this theory is correct, the grammar of the WASP should shed a new sort of light on
the nature of language. '



W.P. 75 23 WAIT-AND-SEE STRATEGIES

BIBLIOGRAPHY

Scott Fahiman, A Hypothesis-Frame System For Recognition Problems,
Working Paper 57, MIT-Al Lab, 1973

Carl Hewitt, Description and Theoretica! Analysis of PLANNER,
MIT-AI-TR-258, 1972

Benjamin Kuipers, An Hypothesis-Driven Recognition System for the
Blocks World, Working Paper 63, MiT-Al Lab, 1974

Marvin Minsky, A Framework for Representing Knowledge, A.l. Memo 306,
MIT-Al Lab, 1974 |

Allen Newell and H.A. Simon, Human Problem Solving, Prentice Hall, 1972

Andee Rubin, Hypothesis Formation and Evaluation in Mgdical Diagnosis,
E.E. thesis, MIT, May 1974

David Waltz, Generating Semantic Descriptions from Drawings of
Scenes with Shadow, MIT-AI-TR-271, 1972

Terry Winograd, Understanding Natural Language, Academic Press, 1972

William Woods, The Lunar Sciences Natural Language Information
System, BBN Report No. 2378, 1972




