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ABSTRACT

This paper is based on a B.S. thesis supervised by Patrick Winston. It
deals with some previously unexplored problems in the analysis of visual
scenes. The scenes consist of two dimensional line drawings of simple
objects such as blocks and wedges. The problems have come out of the work
that Patrick Winston has done and in discussing them I will be assuming
the environment of his system. The first problem asks the questions "When
is an object standing? When is it lying?" In the course of answering
this question a method is developed for determinig the relative true dimen-
sions of an object from its two dimensional oblique projection. The
second problem develops methods for discovering when one object is in front
of another in situations where previous methods have failed.

Work reported herein was conducted at the Artificial Intelligence Laboratory,
a Massachusetts Institute of Technology research program supported in part
by the Advanced Research Projects Agency of the Department of Defense and
monitored by the Office of Naval Research under Contract Number N000O4-70-A
-0362-0002.



1. THE ATTITUDE OF AN OBJECT

1.0

In Patrick Winston's Ph.D. thesis, Learning Structural Descriptions

from Examples, one of the properties that could be assigned to an object

was its attitude -- the object could either be standing or lying. How-

ever, as of yet, no method has been devised to determine the attitude

of an object from its two-dimensional line drawing representation. This

problem breaks easily into two parts, namely:

1. Giving the machine a definition of standing and

lying that will agree with human judgment.

2. Determining the true dimensions of an object

from its two dimensional representation.

Both of these problems turn out to be fairly complex for a general

object and even a class of "simple" objects. Consequently, I will

address myself first to answering these problems for the "simplest" of

solids -- the BRICK (rectangular parallelepiped) -- and then speculate

on extensions to other 'simple objects'.

1.1 What Do We Mean by Standing and Lying

Let's assume that we are looking at bricks that are resting on a

flat surface. The intuitive definitions of standing and lying seem to be:



A brick is STANDING if it is resting

on one of its smallest sides.

A brick is LYING if it is resting on

one of its largest sides.

So far this is fine, but what do we say-if a brick rests on a

side which is neither its largest or smallest? See figure 1.1.1.

Sometimes we would want to say that such a brick is standing and sometimes

lying, depending on the areas of the other sides, as in figure 1.1.2.

Let's imagine we have long, think boards which we will nail together

to form thicker boards, as in figure 1.1.3. I would judge that when

we have just one board, it is standing. With a second board added, I

would still adjuge the resulting object to be standing. If we increase

the thickness any more, the object seems to be lying. Let's define the

ratio R1 to be equal to the ratio of the largest area to the next-to-largest

area.
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R = zy= y
1 zx x

where z = longest side

y = next-to-longest side

x = shortest side.

Using this measure, it would seem that when R1 is greater than about

3, we would say that the object is standing, and when less than three, lying.

This ratio does not take into account the length of our boards

however, to let's look at another example. Imagine we have a short board

(not too thin) which we can stretch, as in figure 1.1.4. We will define

a ratio R2 to be the ratio of the next-to-largest area to the smallest

area.

R = yz _ z
2 yx y

It would seem that if R2 is less than about three, then the brick

is standing, and if greater than than three, then the brick is lying.

When a brick of general dimensions is resting on its next-to-largest

side we must use both these measures to determine whether it is standing

or lying.

We have: R1 >3 -> standing

R1  3 - lying

R2 > 3 lying

R , < 3 -, standing
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If both our measures agree for an object, fine. If they contradict

one another, then we will accept whichever evidence is stronger. The

more extreme the measure, the stronger the evidence.

If: R1 > 3 and R2 >3 and R1 > R2 - standing

R1 > 3 and R2 >3 and R1 ( R2  • lying

R1 ( 3 and R2 < 3 and R1 )R 2  • standing

R1 ( 3 and R2 < 3 and R1 < R2  . lying

We can simplify this to one test through a new ratio:

R= R 1  y2
R = R •- y2 )1 -1 standing

zx

2

y- <1 -- lyingzx

In fact, we can ue this same ratio to define the attitude of

a brick resting on any of its sides. Let x and z be the dimensions of

the side on which the brick rests and y the other dimension. The ratio

is then the brick's height squared over the area of the side on which it

rests.

If the object rests on its largest side then:

zx > xy -- z > y

zx > yz -• x > y

so that R L- will certaily be less than one, implying that our object

is lying. If the object rests on its smallest side then:



xz < xy - z < y

xz ( zy o x ( y

so that R = Y- will be greater than one and our object must be standing.
xz

Thus, if we can determine this ratio for a brick, then we decide

whether it is standing or lying. Let's see how this can be done.

Using a procedure Winston has developed, we can pick out the lines

which form the bottom border of the object. See figure 1.1.5. These

lines determine the side on which the brick rests, as well as the de-

nominator of our test ratio. To get the numerator of our ratio we must

simply square the other dimension. Any of the lines intersecting one

of the bottom lines will suffice to get y2

Of course, when R is close to one, its judgment becomes somewhat

arbitrary. In these cases it would perhaps be..best to say that the ob-

ject could be either standing or lying. See figure 1.1.6. In such

cases our human judgment allows for both statements of the object's

attitude.

This same ratio seems to work well in determining the attitude

of objects such as parallelepipieds, pyramids and wedges. For other

objects, the problem is more complex. Consider the cylindrical solid

in figure 1.1.7. If this object rests on one of its ends, as in

figure 1.1.7A, then the ratio of its height squared to the area of its

base seems to give a good definition of its attitude.
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In figure 1.1.7B, however, the ratio still claims the object is standing,

by virtue of the small area on which it rests. I suspect that we might

be able to win with such objects if we consider a box just large enough

to hold the object. If the box is standing, then the object is standing.

If the box is lying, then the object is lying.

Other objects give us even more trouble, such as cones and truncated

cones. The nature of these objects exhibits a strong influence on our

judgment of standing and lying. Consider the conic section in figure

1.1.8B. I am hesitant to say that it is standing even though it's

height is much larger than any of its other dimensions. It would seem

that such an object is standing only if it rests on its base and the

ratio of its height squared to the area of its base is greater than one

(figure 1.1.8A). It would be lying if it did not rest on its base

(figures 1.1.8B and 1.1.8C). When such an object rests on its base and

the ratio is less than one we would probably be better off not assigning

a standing-lying attitude at all (figure 1.1.8D).
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1.2 True Dimensions of a Block from its Oblique Projection

In order to determine whether a block is standing or lying we must

know the ratios of its dimensions. In the two dimensional projections

we are working with, some, if not all, of the dimensions will appear

foreshortened. The amount of foreshortening will depend, of course,

on the angle from which we are viewing.

Let's assume we are viewing blocks which rest on a level table.

A block in a general oblique position will then appear as in figure 1.2.1.

X', Y', and Z' are the apparent dimensions as measured in our projection,

and E' and 0' are the apparent angles X and Y make with a horizontal
x y

line. From the angles 0' and 9' we can determine our viewing angle,
x y

defined by an angle of elevation, S, and an angle of rotation, R, and

thus the amount of foreshortening in our projected drawing. Figure 1.2.2

shows our scene from some different views, the arrow representing our line

of sight.

The amount of distortion between the apparent angles 0' and e'
x y

and the true angles 0x and Ey depends on the elevation angle of our

viewpoint. Going through the geometry of our situation we find that:

tan E' = tan e sin S (1)x x
tan o' = tan e sin S (2)

y y
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We also know that ex plus ay must equal r/2 which gives us:

0 + 0
x y

= 7r/2

tan ex  = tan (ex + or/2)

tan ex  =
tan ay

We

unknowns:

now

e)

have

y' ey

three equations which we can solve for our three

and S. Solving them we get:

-1S = sin -l  tane' tan e'
xay

-1 tanoxe= tan ane
y

-= tan 1 tan e

tan e0

THE FORESHORTENING OF THE THREE DIMENSIONS

Determining the foreshorrtening of Z is easy. We already know

that the angle between Z and our image plane is S so that its apparent

length will be equal to its true length times the cosine of S (Refer
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to figure 1.2.3).

Z z (7)cos S
Determining the true length of the other two dimensions is a little

more difficult. Figure 1.2.4 shows the top surface of our block.

We resolve X into components a and 0 where a is parallel to the horizontal

line and ý is perpendicular to the horizontal line.

From figure 1.2.4A we have:

a' = X' Cos e'x

8' = X' sin 0'x

From figure 1.2.4B we have:

X2 = a2 + 2

Since a is parallel to our image plane, its projection a' will

appear in it's true length. We know that B intersects the image plane

at an angle w/2 - S so that:

sin S

(Refer to figure 1.2.5)

So we get:

X = 2 + 2

= a,2 + 8' 2
sin S

= X'2 cos 2 ex + X 2 sin2 O
X cin 2 i

X = X' cos2 ex +
1/2

(8)
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Similarly:
2 ' 1/2

Y = Y' Cos 2 ey + sin 2 oy
sin S
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Let's see how

1.2.6. We have:
I

o =x

o =

XIY' =

IZ' =

And we calculate:

S = s

= 2

X = 5

this works for an example, the scene in figure

170

250

5.2 cm.

4.5 cm.

6 cm.

in-1 ( tan 170 tan 250

g0

.2 cm.

= 6.4 cm.

Y = 4.5 cm.

cos 2  170 + sin 2 170

sin 2 220

2 sin 2 250

sin 2 220

1/2

1/2

6.5 cm.

6 cm.o 2 = 6.5 cm.cos 220

Thus the object is actually a cube.
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1.3 Identifying the Shape of Some Objects Through Their Dimensions

Once we have determined the true dimensions of an object, we can

use this information to help us identify its shape. For example, we

could divide the class of rectangular parallelepiped into cubes, bricks,

boards, sticks, sheets, etc. as in figure 1.3.1.

Which of the shapes in figure 1.3.1 an object might best match

would depend on its relative dimensions. One means of identifying such

an object would be to look at the ratio of its longest dimension to

its next-to-longest dimension and the ratio of its next-to-longest

dimension to its shortest dimension. With these ratios we could define

a sort of two-dimensional object space as in the graph in figure 1.3.2.
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3. THE IN-FRONT-OF RELATION

3.0

The IN-FRONT-OF relation is a useful one in developing descriptions

of scenes. Winston has developed an algorithm for detecting the IN-FRONT-

OF relation which works well except for cases where the objects are aligned.

The method works by noting that if one of two objects appears to obscure

the other, then it is either above or in front of the other.

Obscuring objects are detected by searching for particular types

of T-joints on the periphery of the objects. The type of T-joints sought

are those whose crossbars belongs to the object conjectured to be the

obscuror. If both regions bordering the shaft of the T belong to a

second object, or if one shaft-bordering region belongsto a second object

and the other to the background, then the object belonging to the crossbar

of the T-joilnt obscures that second object. Figure 3.0.1 shows both kinds

of qualifying T-joints. This yields pairs of obscuring and obscured

objects which are candidates for the IN-FRONT-OF relation. A separate

program which determines when one object is above another (and works by

a different method) is then called to reject all candidates for which the

ABOVE relation is known to hold.

The weakness of this algorithm is that the seam between the obscuring

and obscured objects may not exhibit the required type of T-joints. This

is the case when the objects are aligned, as in figure 3.0.2. This is a

serious problem since aligned objects are frequently encountered, no doubt
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due to some human predilection to order.

3.1 The IN-FRONT-OF Relation for Aligned ObjeCts

Objects which meet at X vertices, K vertices or certain types of

T vertices suggest alignment and resulting occlusion of one object by

another. Figure 3.1.1 shows these cases. To determine the IN-FRONT-OF

relation for aligned objects we can use a two part procedure similar to

Winston's. First, examine the X, K, and T vertices on the seam between

two objects to find pairs of obscuring and obscured objects which are

candidates for the IN-FRONT-OF relation. Second, we use the program

which detects the ABOVE relation to reject all candidates for which that

relation is known to hold.

If two objects meet at an X vertex (where only two of the lines

are collinear) then the object on the narrow angle side of the non-

collinear lines is the obscuring object. See figure 3.1.2.

If two objects meet at a K vertex, then the object which has one

of the legs of the K as its interior line is the obscuring object, as

in figure 3.1.3.
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If two objects are separated by the stem of a T vertex with the

background on the wide angle side of the T, then the object on the side

of the larger of the angles formed by the stem and the crossbar of the T,

obscures the other object. In figure 3.1.4 we can tell that object A

obscures B by virtue of vertex 1, A obscures C by vertex 2, B obscures

D by vertex 3, and C obscures D by vertex 4. This type of T vertex is

actually a degenerate form of X vertex, since these T's would be seen as

X's if viewed from other angles.

A K vertex, when viewed from some angles, can also appear as a T

vertex as is shown in figure 3.1.5. A T vertex of this type will have

its wide angle side and one other side belonging to one object and the

other side belonging to a second object. If we have such a T vertex

formed by two objects, then the object belonging to only one side of the

T vertex will be the obscuring object. In figure 3.1.6 this heuristic

is necessary in determining that object A obscures object C.

These four heuristics will suggest pairs of objects which are can-

didates for the IN-FRONT-OF relation. Part two of the procedure rejects

all candidates for which the ABOVE relation is known to hold.
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3.2 An Assumption And A Problem

This algorithm uses Winston's procedure for determining ABOVE

relationships to reject improper candidates for the IN-FRONT-OF relation.

Winston's procedure assumes that we view the scene from above. If we knew

that we were viewing the scene from below, then we could use a procedure

which determined if one object were below another to filter our candidates

for the IN-FRONT-OF relation. In general, we could check both. That

is, if object A is known to obscure object B and A is neither above nor

below B, then A is in front of B.

The heuristics which examine X-vertices and certain T-vertices to

discover obscured and obscuring objects work mainly for objects whose edges

meet at right angles where the X- and T-vertices are created. If this is

not the case, then these heuristics will make mistakes. For example,

in figure 3.2.1, the T-vertex suggests that B is in-front-of A, since B is

not above A.
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3.3 What Does IN-FRONT-OF Mean Anyway?

The definition of IN-FRONT-OF that we have been using is that if

one object obscures a second object but is not above it, then the first

object is in-front-of the second. This definition does not seem to be in

complete harmony with the human notion of IN-FRONT-OF. Consider the scene

in figure 3.3.1. By our definition, object B is in-front-of object A,

whereas humans would probably prefer the reverse or noncommitment.

Again, consider the sequence of drawings in figure 3.3.2. In this

sequence, when does object B become in-front-of object A? By our defini-

tion in scene two, as soon as object B obscures object A. In my own

judgment, B becomes in-front-of A somewhere around scene five. The

natural orientation of the objects seems to have a strong influence. To

me, scenes one through four exhibit more of a left-right relationship.

Even in scene five I am hesitant to say that B is in-front-of A.

Occlusion must certainly play an important part in the concept of

IN-FRONT-OF, but only a part. The fact that humans can manage visual

perceptions quite well with only one eye suggests that there is more to be

learned without jumping to stereoscopic vision.



-32-

.1

2

3

6

I?

FI G. 3.3.2

I

A

i

3

IY

FIG. 
3.3.9_

a


