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Abstract

Distal Hydrogen-Bonding Effects and Cofacial Bimetallic Salen
Architectures for Oxygen Activation Chemistry

By Jenny Yue-fon Yang

Submitted to the Department of Chemistry
on April 18, 2007 in partial fulfillment of

the requirements for the degree of
Doctor of Philosophy in Inorganic Chemistry

Abstract

Two distinct structural scaffolds elaborated from Schiff-base macrocycles were designed
to study the proton-coupled electron transfer chemistry of 0-0 bond forming and
activation chemistry. The "Hangman" architecture is composed of hydrogen-bonding
functionalities poised over a redox active manganese salophen or salen platform. The
complexes proved to be proficient catalase mimics (disproportionation of hydrogen
peroxide to water and oxygen). Detailed spectroscopic, computational, and structure-
function relationship studies elucidated the key redox, steric, and secondary coordination
sphere effects for optimal catalytic ability. The incorporation a chiral backbone into the
macrocycle led to catalysts that perform enantioselective epoxidation of unfunctionalized
olefins. A macrocycle with an amide, imine, and bisphenolic functionalities was also
incorporated as the redox platform in the Hangman framework; the manganese complex
also performed catalytic oxygen atom transfer to olefins. The second framework, dubbed
"Pacman", is composed of two salen platforms linked cofacially by rigid pillars xanthene
or dibenzofuran. A series of bimetallic complexes, including chromium, iron, manganese,
cobalt, copper, and zinc were generated. Mossbauer spectroscopy was used in the
characterization of the iron salen complexes, which were also examined for photolytic
oxidation chemistry.

Thesis supervisor: Daniel G. Nocera
W. M. Keck Professor of Energy and Professor of Chemistry
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Chapter 1

Introduction



1.1 Proton Coupled Electron Transfer in Nature

The principal theme of the research presented is the elucidation of mechanistic details in

the coupled transport of both protons and electrons in bond-making and bond-breaking

catalysis. 1-4 This is a recurring theme throughout a broad range of natural systems that

encompass a diverse range of reactivity. Consummate examples are the four electron

oxidation of water to oxygen by Photosystem II (PSII), 5-9 and its microscopic reverse, the

reduction of oxygen to water by cytochrome c oxidase (CcO),'o -17 which highlights our

interests in 0-0 bond chemistry.

While electron transfer at active sites is typically regulated via a transition metal platform

or cluster, proton transfer is mediated through non-covalent hydrogen-bonding

interactions in the secondary coordination sphere. A prototypical example of the dual

importance of electron and proton control by structure and function can be found in

heme-dependent hydroperoxidases.1 8-22 A ferric protoporphyrin IX prosthetic group is

found at the active site of peroxidases, catalases, and the cytochrome P450

monooxygenases, as shown in Figure 1.1. Structurally oriented acidic or basic amino acid

residues and/or locally hydrogen bonded water assist 0-0 bond cleavage of hydrogen

peroxide in peroxidases and catalases, and oxygen in the cytochrome P450

monooxygenases. These interactions on the distal oxygen, frequently characterized as the

"pull effect",18-22 promote heterolytic bond cleavage to form the two electron oxidized

Compound I intermediate, 20-24 as opposed to the one electron oxidized Compound II

Figure 1.1 Representation of the active sites (a) peroxidases, (b) catalases, and (c)
cytochrome P450 monooxygenases highlighting the proposed roles distal residues play
in O-O bond cleavage. Adapted from reference 67.



species that results from homolytic bond cleavage. The reactivity of the of Compound I

species in these subclasses then diverge; peroxidases tend to behave as one electron

oxidants, 22,'25,26 while catalases are selective in their reactivity towards the two electron

oxidation of hydrogen peroxide,22' 26-28 and cytochrome P450 monoxygenases perform

two electron oxygen atom transfer chemistry to a variety of substrates. 19 The tuned

microenvironment guides proton and electron delivery within the active site, assisting in

O-0O bond activation, and the subsequent chemistry of the oxidizing intermediate.

The importance of this microenvironment has successfully been demonstrated by

modifying natural enzymes. By adjusting the distance and position of distal residue(s)

over the heme environment in the oxygen carrier myoglobin (Mb), peroxidase, catalase,

or enantioselective monooxygenase activity is observed.18,29-47 Additionally, the effect of

the redox environment has been studied independently by inserting unnatural redox

cofactors to generate artificial metalloenzymes. 48-64 Alternatively, these individual factors

can be analyzed in greater detail using a synthetic system which incorporates the key

factors that mediate reactivity in the natural systems we are targeting.

1.2 Proton Coupled Electron Transfer in Synthetic Systems

The complexity of tuning the precise factors which dictate PCET in biological systems

has led to the use of molecular models to elucidate important non-covalent interactions in

oxidation catalysis. A minimalist secondary coordination sphere is constructed onto a

ligand platform which can support metals in a wide range of oxidation states, as shown in

Scheme 1.1. This Hangman architecture in effect "hangs" an acid-base functional group

over the redox platform using a rigid scaffold.65 Synthetic methods can be used to tune

the redox properties of the metal, while the scaffold can be modified to specify the spatial

Scheme.1.1



location and pKa of the distal group. This allows structure-function relationships to be

probed using more direct methods.

The initial redox platform incorporated into this architecture was a porphyrin macrocycle

with a carboxylic acid functionality (HPX-CO 2H), as shown in Figure 1.2.6568 The iron

porphyrin platform faithfully reproduces many of the essential features of heme-

dependent hydroperoxidases, including a ferric hydroperoxide and Compound I and

Compound II type intermediates. Additionally, crystallographic characterization of the

ferric hydroxide complex reveals a water molecule oriented by the acid and bound

hydroxide. This is reminiscent of water molecules situated by distal amino acid residues

in heme peroxidases. 66 The effect of the hanging group is highlighted in the reactivity of

the Hangman complexes. The iron Hangman complexes are effective catalase mimics,

generating turnover numbers (TON) more than two orders of magnitude over the

unfunctionalized redox platform (Figure 1.2).67,68 Stop-flow spectroscopic studies of the

reaction using the oxidant m-CPBA found the presence of the hanging group both

accelerated peroxy acid ligation and exclusively favored the proton-coupled two-electron

0-0 bond heterolysis to form a Compound I-like intermediate, as opposed to a less

oxidizing Compound II-like intermediate. 69 In the presence of olefin substrate and

Figure 1.2. Proposed catalytic cycle of the catalase-like disproportionation of
hydrogen peroxide by iron (HPX-CO2H), and epoxidation by manganese (HPX-
CO 2H). Adapted from reference 67.
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hydrogen peroxide, the manganese Hangman complexes catalyzed epoxidation at

improved TON over the manganese porphyrin lacking the hanging group. 67 In both cases,

the exceptional improvement in catalytic activity due to the hanging acid group is due to

the proton mediated formation of the more oxidizing high valent M=O species.

1.3 Photolytic Generation of Metal Oxo Species

In Nature, O-0O bond formation is performed by the oxygen evolving complex (OEC) in

Photosystem II. In the proposed mechanism, 0-0 bond formation is initiated via a

nucleophilic hydroxide or water attack onto an electrophilic manganese oxo. 6' 9 Initially,

we are interested in studying the formation and electrophilic character of high valent

metal oxo species. Both of these factors can be probed by their reaction with a variety of

electron rich substrates. (Analogous to the use of olefin epoxidation in investigating high

valent oxo formation in the manganese hangman porphyrins described above.) This

approach has been successful in the cofacial bimetallic "pacman" porphyrin system that

has also been explored in this research program. 70-77 The Fe-O bond in diiron p-oxo

pacman porphyrin complexes can be photolytically cleaved to expose an iron(IV) oxo

Figure 1.3. Proposed catalytic cycle for the photolytic oxidation catalysis performed
by diiron pacman porphyrin complexes, and summary of substrates and turnover
numbers observed.78 82

subsbaf Tdh ONO

DMS DMSO 9635 ± 165

0

0
CdG H3 150 * 27 (10%)

H 1609 340 (87%)

37 ± 6 (3%)

0

Ph-'*'Ph Ph p Ph 160 * 25

OH

116 14(45%)

U6 143 101(56%)0S101 S C"3 --- cr, 76*11



capable of oxidation chemistry.78-82 Detailed mechanistic studies resulted in ligand

architecture modifications that dramatically increased turnover numbers. 81' 82 This was

coupled with the use of electron withdrawing groups on the porphyrin to increase the

electrophilic nature of the iron oxo intermediate and thus the ability to oxidize more

difficult substrates, as shown in Figure 1.3. The photolytic generation of a high valent

metal oxo from a thermally inert diiron i-oxo complex to perform oxidation chemistry

using molecular oxygen as the oxidant was an additional avenue of reactivity that we

were interested in expanding.

1.4 Schiff-base Macrocycles as Redox Platforms

The use of porphyrin macrocycles to support the redox platform in Hangman and Pacman

porphyrin architectures was very successful in producing effective catalysts for oxidation

chemistry. Furthermore, modulating functional groups around the porphyrin platform

allowed tuning of the steric, redox, and photophysical properties in order to expand the

scope of substrate and catalytic conditions. While synthetic preparation of variously

functionalized porphyrins is well established, most procedures still require lengthy, multi-

step synthesis, particularly in order to allow attachment to the xanthene and dibenzofuran

spacers in constructing the Hangman and Pacman ligands. Alternatively, the replacement

of the porphyrins with Schiff-base macrocycles as the redox platform in our architectures

engenders several advantages. Firstly, they are easily assembled via condensation of two

salicylaldehydes with a diamine, as shown in the retrosynthesis in Chart 1. lb. Secondly, a

large variety of functionalized salicylaldehydes exists commercially and in the literature,

Chart 1.1
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and can typically be prepared in one or two steps. 83-87 The 3 and 5 positions are

highlighted in Chart 1.1lb as they are activated and thus the easiest positions to

functionalize. Combined with the scope of aliphatic and aromatic diamines that can be

used, this constitutes a modular approach to a wide range of macrocycles with tunable

steric and redox properties. Additionally, given the rich oxidation chemistry displayed by

the porphyrin hangman and pacman complexes, one of the features that would be

appealing to add to the catalytic chemistry is enantioselectivity. Although some

metalloporphyrins catalysts have, through elaborate synthetic pathways, incorporated

asymmetric functional groups to promote chiral induction of substrates, the enantiomeric

excess (ee) of the products tend to be poor, and the scope of substrates limited.88-95 This is

partly due to the lack of sp 3 carbons near the metal center; addition of chiral

functionalities has to occur on the perimeter of the macrocycle (Chart 1.1a). As shown in

Chart 1.1.b, an aliphatic diamine provides a location for enantioselective induction

proximate to the reactive metal center. Macrocycles of this type have already

demonstrated excellent stereochemical communication to a wide variety of substrates in

organic transformations.96-105 We are interested in integrating these features into the

catalysts that we have studied thus far.
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Chapter 2

Hangman Salophen Mediated Activation

of 0-0 Bonds: Mechanistic Insights

Portions of the work presented in this chapter have been published:

Liu, S.-Y.; Soper, J. D.; Yang, J. Y.; Rybak-Akimova, E. V.; Nocera, D. G. lnorg. Chem.
2006, 45, 7572-7574.



2.1. Motivation and Specific Aims

The Hangman ligand architecture, which incorporates an acid functionalized scaffold

over a metal-ligand platform, is expanded by replacing the previously studied porphyrin

ligand platform with a salophen macrocycle. This modification permits a more facile

synthetic introduction of functional groups to the phenolic arms of the salophen, thereby

permitting the steric and redox environment of the metal center to be varied more easily.

The manganese Hangman salophen compounds are successful catalase mimics, and their

reactivity can be tuned by varying the redox properties of the salophen macrocycle. In

order to determine the basis for the enhanced activity for the dismutation of hydrogen

peroxide, stopped-flow spectroscopic techniques using the peroxyacid m-CPBA to probe

intermediates in the catalytic cycle and the kinetics of their formation. This includes

heterolysis of the O-0O bond to form a putative Mn(V) oxo. Stopped-flow studies help

define the electronic effects that perturb the kinetics of the Mn(V) oxo formation.

Conditions to independently generate the Mn(V) salophen oxo using hydrogen peroxide

have also been discovered. By comparing our results to those of manganese salophen

platforms lacking the acid functionalized scaffold and Hangman porphyrins, insight into

the mechanism of catalase activity by manganese salophens is gained.

2.2. Background

Chart 2.1

S1 control of acid-base properties

X I PCET

control of redox properties

HSX

Expanding upon the work on the Hangman Porphyrin ligand, HPX' -4 (discussed in

Chapter 1), a series of Hangman Salophen compounds were assembled (HSX, shown in

Chart 2.1). 5 The modular synthesis of salophen compounds allows for easy synthetic



modification in the functionalities of the 5 and 5' position along the phenolic arms

(indicated by X) of the macrocycle. This position exerts a particularly strong influence on

the redox properties of the metal center.6 Within the HSX framework, PCET catalysis

was explored in the activation of O-O bonds by studying the disproportionation of

H20 2.

catalase
2 H20 2  2 H20 + 02 (1)

This catalase reaction is an important PCET process that is catalyzed by a variety of

enzymes. 7-1 1 In the case of manganese(III) chloride HSX compounds where X = tert-

butyl, the turnover number (TON) for oxygen production upon addition of hydrogen

peroxide is dramatically higher with the acid functionalized xanthene (4372 TON/hour)

compared to the ester analogue (98 TON/hour), which lacks the acidic proton. The

control experiment with the redox only manganese salophen platform (lacking the

xanthene scaffold) shows a similarly low activity (86 TON/hour). 5 Thus, an enhancement

of catalase activity is observed by positioning a carboxylic acid group over a redox

platform. This enhanced reactivity is also observed for iron(III) Hangman porphyrin

compounds when compared to iron(III) tetramesityl porphyrin (TMP). 3 While similar

reactivity is also observed for Hangman salophen and porphyrin platforms, the former is

synthetically much easier to modify. The meso-positions of the porphyrins are not

available for modification because they are needed to incorporate steric protection to

prevent formation of inactive diiron pt-oxo dimers. 12 To this end, a series of HSX analogs

Table 2.1. Redox potential of manganese (HSX) chloride compounds with varying X
functionalities in the 5 and 5' position, observed LMCT band in the UV-visible
spectrum, and the amount of time after injection that half of 4388 equivalents of H2 0 2

was measured to be consumed by monitoring the amount of oxygen evolved.5'13

X Ei/2(Mn"/Mn"') kmax(nm) t (50%) (sec)

OMe -0.36 511 560

Br -0.5 490 860

H 0.0 486 970

t-Bu 0.14 476 1760

NO2 0.44 460 -



with X = OMe, Br, H, t-Bu, and NO2 were synthesized. This family of manganese(III)

Hangman salophen compounds shows an increase in oxidation potential as the electron

with-drawing ability of groups in the 5 and 5' position (shown in Table 2.1) is

increased.5 '13 The redox potential of the manganese(II/III) couple can be varied from 0.37

V, with the introduction of electron donating methoxy groups to 0.44 V with the

introduction of electron withdrawing nitro groups. 5"' 3 The electronic perturbation of

substituent groups is reflected in a low energy absorption band, 14 which exhibits a red-

shift from 511 nm to 460 nm along the series of increasing electron-donating ability of

the substituent. This trend is consistent with a salophen ligand-to-metal charge transfer

parentage of the absorption band. Variations in redox potential and electron density at the

metal site are directly correlated with the rate of catalase activity as measured by the rate

of H20 2 consumption (shown in Table 2.1 and Figure 2.1). We can also measure

reactivity by comparing the amount of time it takes for half of the H2 0 2 equivalents to be

dismutated into oxygen and water. We can also measure reactivity by comparing the

amount of time it takes for half of the H20 2 equivalents to be dismutated into oxygen and

water. The Hangman salophen with X = NO2 displays very little reactivity and only

achieves a TON of 81, or 2% conversion over the hour the reaction was monitored,

whereas the methoxy substituted congener is the most successful catalase mimic. There is

only a moderate correlation between the initial rates of reaction and the Gpi constant and

the sensitivity parameter (p = -0.3) is quite low, which suggests there are little changes in

the transition state of the rate-limiting step of the reaction. 13 It is likely that under the

biphasic reaction conditions used in these studies, the diffusion of H20 2 is an important

factor in the rate-determining step for the initial reactivity and this result in the low

observed p value.

2.3. Results and Discussion

2.3.1. Synthesis

The compounds that are the focus of this Chapter are shown in Chart 2.2. The acid

functionalized manganese Hangman salophen (1) was synthesized as described

previously.5 The synthesis of the corresponding methyl ester is outlined in Scheme 2.1.

The functionalized xanthene precursor 75 was condensed with two equivalents of 3-tert-

butyl-2-hydroxy-5-methoxy-benzaldehyde to give the ligand 8, which was refluxed with



Scheme 2.1
t-Bu

t-Bu O
C0O O- OMe

OMe Me,. 0 OMe
Me. 0 Me
Mee

/ \ - ' NH2  N t-Bu
- NH2  t-Bu OH

t-Bu NH2  tBu
MOe

7 8: H2[HSX(OMe)-COOMe] 2: Mn[HSX(OMe-COOMe)]CI

manganese(II) acetate in air, followed by an aqueous sodium chloride wash to give the

Mn(III) complex 2. Manganese salophen complex 3 was synthesized for the purposes of

performing control experiments; it was prepared by the stepwise condensation of two

equivalents of 3-tert-butyl-2-hydroxy-5-methoxybenzaldehyde with 1,2,-

phenylenediamine followed by the same metalation procedure described for 2.

2.3.2. Stopped-flow Spectroscopy

Chart 2.2

OMe

MO

t-Bu
MeO

1: Mn[HSX(OMe)-COOH]CI, R = H
2: Mn[HSX(OMe)-COOMe]CI, R = Me 3: Mn(salophen(OMe)]CI

In order to understand the role the hanging functionality may play in the catalase activity

of manganese salophens, stopped-flow kinetic studies were used to provide spectroscopic

evidence of intermediates and their rates of their formation. The stopped-flow

spectroscopic experiments were conducted by postdoctoral associate Jake Soper on the

acid (1) and ester (2) functionalized manganese Hangman salophens, substituted with

methoxy in the 5 and 5' position as shown in Chart 2.2. The unfunctionalized manganese

salophen (3) was also investigated to provide a side by side comparison to the Hangman

compounds. The experiments were performed using m-CPBA as the oxygen atom source

instead of hydrogen peroxide, which would continue to react with the oxidizing
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Figure 2.2. (a) Stopped-flow UV-vis spectra obtained from reaction of m-CPBA (3.3
x 10-4) with 4.0 x 10-5 M 1 (red solid line) ca. 3 s post injection in 1:1 MeOH:MeCN
at -20 'C. (b) UV-vis spectrum obtained from a solution of 5.0 x 10-5 M 1 in
MeOH:MeCN at room temperature (red solid line). UV-vis spectrum obtained from a
solution of 5.0 x 10-5 M 1 in 1:1 MeOH:MeCN at room temperature in the presence of
benzoic acid (5.0 x 10 3 M) (black dotted line).

intermediate and complicate kinetic studies. The use of m-CPBA arrests the catalase

cycle after formation of the high valent manganese species, enabling detection of the first

two intermediates at the Hangman salophen platform.

The initial stage of the reaction upon addition of m-CPBA to 1 is characterized by small

changes in the stopped-flow UV-vis spectrum (Figure 2.2a), suggesting a simple ligand

substitution by the perbenzoate at the Mn(III) center. This substitution reaction was

modeled by the addition of benzoic acid to 1. The benzoate substrate circumvents the

possibility of 0-0 bond cleavage, therefore allowing the substitution reaction to be

isolated. The small spectral shifts observed for perbenzoate substitution are captured with

the benzoate model (Figure 2.2b). Global fitting of the transient spectra indicates that

ligand substitution is complete in 3 s at -20 'C.

The appearance of the Mn(III) perbenzoate complex (Figure 2.3a, black dotted line) is

immediately followed by a subsequent reaction that generates a species with the spectrum

shown by the green line in Figure 2.3a. The spectrum does not depend on the nature of

the oxidant; a similar spectrum is obtained with the same isosbestic points when m-CPBA

is replaced by the two-electron oxidant, iodosylbenzene. These results lead us to assign

* Nj

N

N



c-ia)

0CO
.0

C.-
0

LO
LL.

400 500 600 700 0 200 400 600 800
X/ nm time / s

Figure 2.3. (a) Absorption spectra obtained from spectral global analysis of a stopped-
flow reaction of 4.0 x 10- 5 M 1 and 3.3 x 10- 4 M m-CPBA in 1:1 MeOH:MeCN at -20
'C. Formation of Mn(V) oxo (green solid line) is immediately followed by a bleach,
likely to a Mn"' decay product (red solid line) over 800 s. (b) Calculated
concentrations of the colored species with respect to time by spectral global analysis
by Jake Soper.

this intermediate to the Mn(V) oxo salophen. Several observations support this

assignment. First, the transient spectrum is reminiscent to that of structurally similar,

crystallographically characterized Mn(V) oxo complexes of bis-amido bis-alkoxo redox

platforms. 15 Moreover, the spectral features in Figure 2.3a (green line) concur with those

of other (non-oxo) multiply bonded Mn(V) ligand salophen species. The corresponding

nitrido complex, Mn[salophen(OMe)]N complex was also synthesized and isolated. The

crystal structure of the compound is similar to other Mn(V) nitrido complexes featuring a

formal Mn-N triple bond (d(Mn-N) = 1.523 (3) A). 6 The absorption spectrum of the

Mn(V) complex shows a pronounced absorption band at Xmax = 459 nm, similar to 420

nm feature that dominates the absorption spectrum of Figure 2.3a (green line). The

electron-donating methoxy group on the salophen platform of the Mn(V) oxo species

impart sufficient stability"7 that it is observed as a stopped-flow transient. The reactive

high-valent oxo intermediate eventually disappears 60-800 seconds after substrate

injection as evidenced by the decrease of the absorption profile across the entire spectral

range (360 - 700 nm). The final spectrum, shown by the red line in Figure 2.3a, strongly

resembles the Mn(III) starting material, though the product was not unequivocally

identified.



Table 2.2. Rates of the formation of Mn(V) oxo intermediates and their decay for a

series of Mn[salophen(X)] peroxyacid complexesa

O
II kl

Mn(III)-(H)OOCAr N Mn(V)- OX() "Mn(Ill)"

Entry Mn-Complex K, (s"') k2 (S-1)

1 Mn[HSX(OMe)-COOH] (1) 2.3 ± 0.6 x 102 3.6 ± 0.3 x 10-3

2 Mn[HSX(OMe)-COOMe] (2) 2.8 ± 0.8 x 10-2 2.5 ± 0.3 x 10-3

3 Mn[salophen(OMe)] (3) 2.1 ± 0.5 x 102  4.1 ± 0.3 x 10-3

4 Mn[HSX(OMe)-COOH] (1)b 2.9 ± 0.6 x 10-2 5.5 + 0.5 x 10 3

a Rate constants determined with global analysis using A to B to C kinetic model. All

reactions at -20 'C in 1:1 MeOH: MeCN with [Mn(III)] = 4.0 x 10-5 M and [m-CPBA]
= 3.3 x 10-4 M.
b [m-CPBA] = 13 x 104 M

The rate constants for the O-0O bond heterolysis to produce the Mn(V) oxo salophen and

its subsequent decay were obtained from global analysis of the full-spectral stopped-flow

data (360 - 700 nm). The data were modeled with a consecutive unimolecular kinetic

model in which the A - B phase represents the heterolytic O--0O bond cleavage to

furnish the Mn(V) oxo transient, and the B --* C phase corresponds to the decay of the

transient to the final Mn(III) species. Figure 2.3b illustrates the calculated concentrations

of each of the manganese species with respect to time according to this kinetic model,

and Table 2.2 provides the rate constants that yields the best fit for the kinetics model.

We note several features of the kinetics analysis: (1) Both the growth of the Mn(V)

transient spectrum and the decay of the Mn(III) reactant are simultaneously fit well by a

first-order exponential equation indicating heterolytic cleavage to generate Mn(V) oxo

occurs without intermediates. This result is consistent with the heterolysis of O-0O bonds

of peroxides at Fe(III) heme centers to form Compound 1.18 -20 (2) The production of the

Mn(V) oxo intermediate is independent of the presence of the hanging acid-base group

(entry 1 vs. 3 in Table 2.2) or intramolecular proton inventory (entry 1 vs. entry 2 in

Table 2.2). (3) The rate of the O--0O bond heterolysis appears to be independent of the

initial concentration of the m-CPBA oxidant (Table 2.2, entry 1 vs. entry 4) though an



increase in m-CPBA concentration results in a slightly enhanced decay of the Mn(V) oxo

intermediate (Table 2.2, k2 in entry 1 vs. entry 4).

2.3.3. Decomposition in the Presence of Hydrogen Peroxide

To address the role of the intramolecular acid on enhancing TON, 1 was monitored by

post-doctoral fellow Shih-Yuan Liu in the presence of H202 (30% aqueous solution in

MeOH) in homogeneous solution conditions. The UV-vis absorption spectrum shows that

the Mn(III) starting material gradually decomposes over time. Kinetics experiments show

that the decomposition of 1 is first order with respect to the Mn(III) complex and H20 2,

and zero order with respect to water. As shown by the rate constants in Table 2.3, the

Hangman architecture improves the kinetic stability of the salophen catalyst against

oxidative degradation by -1 order of magnitude. This increased stability is expected to

account for the higher TONs listed in Table 2.3 for the Hangman salophen system.

Table 2.3. Stability of Methoxy-Substituted Manganese Salophen Complexes

Mn-complex Yield of 02/ TONa kobs (s- )

Mn[HSX(OMe)-COOH]CI (1) 4500 2.9 x 104

Mn[HSX(OMe)-COOMe]Cl (2) 550 1.3 x 10-3

Mn[salophen(OMe)]Cl (3) 100 b  2.3 x 103

a Yield of 02 measured in TON after 1 hr of reaction time

b In the presence of I equivalent of benzoic acid

2.3.4. Mechanistic Implications

The results of the stopped-flow studies on the manganese Hangman salophen compounds

contrast with the results of the analogous studies on iron Hangman porphyrin compounds,

which also display high catalase activity. Despite what superficially appears to be the

same enhancement of catalytic activity by the same structural modification (addition of a

proximate carboxylic acid group by the rigid xanthene scaffold), it appears the reasons

behind the "Hangman effect" are different for the porphyrin and salophen ligand systems.

Addition of m-CPBA to the Fe(III) porphyrin hydroxide complex, tetramesityl porphyrin



Scheme 2.2. Proposed catalytic cycle for iron Hangman porphyrin and manganese

Hangman salophen compounds. The porphyrin compounds are indicated in green,

and the salophen in black. The catalase reaction is represented in blue. The stopped-

flow kinetic studies were performed using the red reagents, as well as the rates that

can be determined using the double-mixing setup.

salophen, X = CI, M = Mn
porphyrin, X = OH, M = Fe

r m-CPBA
OH H202IOH

i/a
H20 2

R = COC 6H4C
R=H

M = MnV
M = FeIv-

HO2CC 6H4CI
H20

(TMP), and the two Fe(III) Hangman porphyrins functionalized with the acid and ester

group also undergo substitution to form the Fe(III) acylperoxo complex (shown as

reaction a in Scheme 2.2). 2 1 However, the substitution rate increases along the following

trend: TMP < HPX-CO 2Me < HPX-CO2H, which suggest the hydrogen-bonding

microenvironment for the Hangman porphyrin complexes assists in the ligand

substitution.2 1 This contrasts with the manganese salophen compounds, which undergo

ligand substitution at very close to the same rate for the Hangman compounds and the



unfunctionalized salophen (Table 2.2). The formation of the acyl peroxo porphyrin

complex is followed by cleavage of the O-0O to form a metal oxo, shown as reaction b in

Scheme 2.2. As discussed in Chapter 1, the two electron oxidation of Fe(III) heme in

hydroperoxidase enzymes to generate a ferryl Fe(IV) oxo with an associated radical that

resides on the ligand is commonly referred to as Compound I (reaction b1). 22-26 This is

coupled with the delivery of a proton from a precisely positioned acid/base residue in the

active-site cavity to the distal oxygen of a Fe(III) hydroperoxide complex, which

contributes a "pull' effect that facilitates two electron heterolytic bond cleavage. 22-25' 27-32

Alternatively, homolytic cleavage of the O---O results in the one electron oxidation of the

metal to generate the less oxidizing Fe(IV) oxo, commonly called Compound II (reaction

b2).33'34 In the Hangman porphyrin compounds, the acid group impacts the ratio of

productive two electron heterolytic O-0O bond cleavage to form the high-valent

Compound I like oxidant, as opposed to homolytic cleavage to form a Fe(IV)=0, or by

favoring reaction b, over reaction b2 .2 1 However, the hanging group does not affect the

rate of formation of the Compound I like species.21 On the other hand, the acid group in

the Hangman salophen compounds does not appear to have the same effect; heterolytic

cleavage to form the Mn(V)=O occurs at close to the same rate and quantity for the

Hangman compounds as for the unfunctionalized salophens; the lower valent Mn(IV) oxo

is not observed (product from b2). It has been noted that Mn(III) Schiff-base compounds

are less prone to homolytic cleavage and one electron oxidation to form the less active

metal oxo species. 35' 36 Therefore these studies suggest that the "Hangman effect" that we

see for the manganese Hangman salophens does not affect the rate or reactivity in the

first two steps of the catalase cycle (substitution of the peroxo species, followed by 0-0

bond cleavage to form the high valent metal oxo species).

Using stopped-flow spectroscopic methods to investigate the kinetics of the next step

(reaction c, oxidation of hydrogen peroxide by the putative Mn(V) oxo to form oxygen

and water) is considerably more difficult. It would require a triple-mixing experiment in

order to add hydrogen peroxide to the premixed manganese salophen and m-CPBA

solution. Alternatively, monitoring the decay of the Mn(III) salophen in solution in the

presence of hydrogen peroxide indicates that the acid group may protect the compound

from oxidative damage. The greater stability of the manganese Hangman salophen



catalysts suggests that it is an important factor in the greater turnover numbers exhibited

in the dismutation of hydrogen peroxide.

2.3.5. Generation of Manganese Salophen Oxo with Hydrogen Peroxide

Chart 2.3

X
-X 3: X = OMe

Mr M-B 4: X = t-Bu

t-Bu
XB 6: X = Br

The generation of a Mn(V) oxo salen intermediate using H20 2 itself is highly desired

since this species is generally accepted to be the active oxidant for a variety of important

organic reactions,37-40 particularly in asymmetric epoxidation. Generation of the Mn(V)

oxo with H2 0 2 was not possible using the conditions employed with the m-CPBA system.

We discovered that Mn-oxo could be cleanly generated from H2 0 2 if the solution pH was

basic. Under these conditions, we observe spectral changes of 1 (Figure 2.4a) that have

the same isosbestic points as when the same complex is treated with m-CPBA (Figure 4b)

or with iodosylbenzene (Figure 2.4c).

The substituent effects of the salophen ligand on the absorption maxima of corresponding

Mn-oxo intermediates was determined by using redox-only Mn(salophen)Cl complexes
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Figure 2.4. Observation of a common oxidized Hangman salophen intermediate by
treating Mn[HSX(OMe)-COOH]CI (1) with three different oxidants: (a) hydrogen
peroxide, (b) m-CPBA, (c) iodosylbenzene.
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Figure 2.5. UV-vis of high-valent Mn-salophens: (a) comparison of the spectra of
Mn-oxo complexes derived from Mn[salophen(t-bu)] and Mn[salophen(OMe)],
respectively; (b) comparison of the spectra of Mn(V)-nitrido complexes derived from
Mn[salophen(t-bu)] and Mn[salophen(OMe)], respectively.

(Chart 2.3). These complexes were synthesized stepwise by condensing the appropriately

functionalized salicylaldehydes with 1,2-phenylenediamine followed by reflux with

manganese acetate in air. Workup with aqueous sodium chloride gives chloride as the

counteranion.

As can be seen from Figure 2.5a, the absorption maxima of the high-valent Mn-oxo

complexes exhibit a red shift along the series from X = t-Bu < X = OMe.4 1 Interestingly,

this spectral feature concurs with that of the corresponding high-valent Mn(V)-nitrido
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salophen species (Figure 2.5b). Thus, for both high-valent Mn-salophen complexes (oxo

and nitrido) the observed spectral trends are consistent with a salophen ligand-to-metal

charge transfer parentage of the absorption band.

Upon standing, the high-valent Mn[salophen(X)]O intermediates decompose gradually.

On the other hand, treatment of Mn[salophen(t-Bu)]O with reducing substrates such as

Et 2S immediately produces a spectrum that strongly resembles the starting material

Mn(III)[salophen(t-Bu)]Cl (4) (Figure 2.6a). Similar spectral shifts are observed when

Et 2S is replaced with another reducing substrate, P(OEt)3 (Figure 2.6b). These results in

total support our assignment of the primary oxidation intermediate as a Mn(V) oxo

species.

Ivan V. Korendovych from Elena Rybak-Akimova's group at Tufts carried out stopped-

flow kinetic studies on the reactions of Mn[salophen(X)]Cl complexes with H20 2. The

formation of the Mn(V) oxo species was observed to be first order in the Mn-complex

and first order in H20 2 . Furthermore, the experiments established that the rate of Mn(V)

oxo formation at -50 'C is slightly enhanced when the redox platform contains 7-

donating, albeit G-withdrawing substituents (Table 2.4, entries 3-4 vs. entries 1-2). We

have also studied the kinetics of the Mn(V) oxo formation over a temperature range of

40K (233 - 273 K). As can be seen from Table 2.4, the resulting activation entropies are

consistent with a bimolecular transition state. Furthermore, the activation parameters for

the formation of the Mn(V) oxo are independent of substituent effects. These results are

consistent with a rate-limiting coordination of the H20 2 oxidant.

Table 2.4. Stopped-Flow Kinetic Studies on the Formation of Mn(V) oxo

Intermediatesa

ki (223 K)b AH 'b ASt 'b

Entry Compound k (nm) s1  kcal/mol e.u.

1 3 (X = H) 400 0.61 (3) 9.6(2) - 18(1)

2 4 (X = t-Bu) 420 0.75(8) 11 (1) - 10(5)

3 5 (X = OMe) 440 1.4 (2) 8.6 (7) -20 (3)

4 6 (X = Br) 410 2.14 (3) 8.8 (7) - 19 (3)

a Mn[salophen(X)]Cl = 2.5 x 10-5 M, [H20 2] =0.17 M, [NaOH] = 2.5 x 10-4 M



2.4. Concluding Remarks

We have successfully captured the active site of catalase enzymes by designing synthetic

Hangman constructs that precisely position an acid-base functionality from a xanthene

spacer over the face of salophen redox cofactors. In these systems, the distal function of

the enzymes is faithfully modeled by the acid-base hanging group5 allowing us to

compare the chemistry of model catalase systems to their biological counterparts. Using

stopped-flow methods and m-CPBA as opposed to H202 as the peroxide substrate allows

the reaction to be arrested after O-0O bond heterolysis, and allowing the Mn(V) oxo to

build-up and be detected with facility. This intermediate is often cited as the active

catalyst in model42 and enzymatic systems, but its characterization heretofore has

remained elusive. 43' 44 In accordance with theoretical predictions of the salen catalase

models,45'46 the stopped-flow results show that the rate for the production of the high-

valent oxo at the salen platform is independent of the distal acid-base functional group.

Instead, the role of the hanging group appears to stabilize the catalyst against oxidative

degradation.

Additionally, we have established reaction conditions to generate the Schiff base-derived

Mn(V) oxo that is capable of reacting with reducing substrates. Stopped-flow kinetic data

of an electronically diverse set of Mn-salophen complexes are consistent with a

mechanism involving a rate-limiting coordination of the oxidant to generate the Mn(V)

oxo intermediates.

2.5. Experimental

2.5.1. General Methods

Dichloromethane and diethyl ether were passed through a neutral alumina column under

argon before usage. NaOCI (13% in water) and hydrogen peroxide (30% solution) were

used as received from Alfa Aesar. The purchased hydrogen peroxide was volumetrically

determined to be 10.4 M (32%) via its decomposition to oxygen gas over manganese

dioxide. Methyl alcohol (anhydrous), ethyl alcohol (anhydrous), 1,2-phenylenediamine,

ammonium hydroxide (28% NH 3 in water), 3-tert-butyl-2-hydroxybenzaldehyde, diethyl

sulfide, and triethyl phosphate were used as received from Aldrich. Manganese(II)



acetate tetrahydrate (99+%) was used as received from Strem. 4-[2,7-Di-tert-butyl-5-

(4,5-diamino-cyclohexa-1,3-dienyl)-9,9-dimethyl-9H-xanthen-4-yl]-cyclohexa-1,3-

dienecarboxylic acid methyl ester (7)5 and 3-tert-butyl-2-hydroxy-5-methoxy-

benzaldehyde, 4 7 and Mn(salophen)Cl (X = OMe (3), t-Bu (4), Br (6)) 4 8 was prepared

according to literature procedures. The compound Mn[HSX(OMe)-COOH]Cl (1) was

synthesized and characterized according to published procedures and recrystallized from

CH2C12/Et20 before usage. 5

2.5.2. Physical Measurements

'H-NMR and 13C NMR spectra were recorded at the MIT Department of Chemistry

Instrumentation Facility (DCIF) on a Varian Inova 500 spectrometer. 'H NMR chemical

shifts are quoted in ppm relative to tetramethylsilane and spectra have been internally

calibrated to the monoprotio impurity of the deuterated solvent used. Spectra were

recorded at 20 'C unless otherwise stated.

UV-Visible absorption spectra were recorded on a Spectral Instruments 440

spectrophotometer. IR absorption spectra were recorded on a Perkin-Elmer 2000 FT-IR

spectrophotometer.

2.5.3. Synthesis

2.5.3.1. H2 [HSX(OMe)-COOMe] (8)

The synthesis was accomplished as described in Scheme 2. A vial containing a stirbar

was charged with 4-[2,7-di-tert-butyl-5-(4,5-diamino-cyclohexa- 1,3-dienyl)-9,9-

dimethyl-9H-xanthen-4-yl]-cyclohexa-1,3-dienecarboxylic acid methyl ester (7) (21.0

mg, 0.0373 mmol) and 3-tert-butyl-2-hydroxy-5-methoxy-benzaldehyde (16.0 mg, 0.078

mmol). Ethanol (0.5 mL) was added, and the vial was sealed with a Teflon cap, and the

reaction mixture was allowed to stir at 100 'C for 24 hours. The desired product

precipitated out of solution as a red-orange solid and was collected on a glass frit after

filtering and copious washing with EtOH. The resulting material was purified by column

chromatography (silica gel, pentane: dichloromethane 1: 1) to elute the desired product as

a yellow solid (24 mg, 69%). 'H NMR (500 MHz, CD 2Cl 2, 8): 13.50 (s, 1H), 13.41 (s,

1H), 8.75 (s, 1H), 7.97 (s, 1H), 7.67 (d, J = 8.0 Hz, 2H), 7.53 (d, J = 2.5 Hz, 1H), 7.52



(d, J = 2.5 Hz, IH), 7.38 (d, J= 8.0 Hz, 2H), 7.32 (dd, J - 8.5 Hz, J = 2.0 Hz, 1H), 7.31

(d, J = 2.5 Hz, 1H), 7.25 (d, J = 2.5 Hz, 1H), 7.22 (d, J = 2.0 Hz, 1H), 7.18 (d, J = 8.0

Hz, 1H), 7.06 (d, J= 3.0 Hz, 1H), 7.02 (d, J = 3.0 Hz, 1H), 6.97 (d,J = 3.0 Hz, 1H), 6.58

(d, J = 3.0 Hz, 1H), 3.85 (s, 3H), 3.78 (s, 3H), 3.51 (s, 3H), 1.76 (s, 6H), 1.46 (s, 9H),

1.43 (s, 9H), 1.39 (s, 9H), 1.37 (s, 9H). 13C NMR (125 MHz, CD 2 C12, 8)-. 167.0, 164.8,

164.3, 155.9, 155.8, 152.1, 151.9, 146.5, 146.4, 146.3, 146.1, 143.4, 142.1, 142.0, 139.72,

139.70, 138.3, 131.2, 130.9, 130.1, 129.4, 129.3, 129.0, 128.9, 128.5, 126.4, 126.3, 123.1,

122.7, 121.6, 120.1, 120.0, 119.8, 119.3, 118.8, 112.7, 112.5, 56.24, 56.20, 52.3, 35.7,

35.51, 35.49, 35.08, 35.05, 32.1, 31.85, 31.80, 29.61, 29.60. FTIR (thin film) 2958, 2870,

1719, 1611, 1577, 1445, 1393, 1362, 1333, 1279, 1234, 1211, 1151, 1061. HRMS (ESI)

Calcd for C61H 70N207: ([M + H]) = 943.5256. Found 943.5237.

2.5.3.2. Mn[HSX(OMe)-COOMe)1CI (2)

The synthesis was accomplished as described in Scheme 2. A vial containing a stirbar

was charged with H2[HSX(OMe)-COOMe] (8) (21.0 mg, 0.0222 mmol) and

Mn(OAc) 2-4H20 (6.0 mg, 0.025 mmol). Ethanol (1.0 mL) was added, followed by

CH2C12 (0.2 mL) and the reaction mixture was stirred at room temperature for 24 h. The

dark brown reaction mixture was diluted with CH2C12. The organic extract was washed

with brine, dried over Na 2 SO 4 , and concentrated under vacuum. The crude material was

purified by column chromatography (CH 2C12/Et20 gradient), and the desired product was

obtained as a brown solid (22 mg, 96%). HRESI-MS ([M - C1] ÷) C61H68N 20 7MnC1 m/z,

Calcd. 995.4402, Found 995.4436.

2.5.3.3. H2[salophen(OMe)]

A vial containing a stirbar was charged with 1,2-phenylenediamine (0.108 g, 1.00 mmol)

and 3-tert-butyl-2-hydroxy-5-methoxybenzaldehyde (0.416 g, 2.00 mmol). Ethanol (4.0

mL) was added, the vial was sealed with a Teflon cap, and the reaction mixture was

stirred at 100 'C for 21 hours. The desired product precipitated out of solution as a red-

orange solid and was collected on a glass frit after filtering and copious washing with

ethanol (0.369 g, 76%). 'H NMR (500 MHz, CD 2C 2 , 8): 13.42 (s, 2H), 8.66 (s, 2H), 7.37

(dd, J = 5.5 Hz, 3.0 Hz, 2H), 7.29 (dd, J = 5.5 Hz, 3.0 Hz, 2H), 7.03 (d, J = 3.0 Hz, 2H),

6.77 (d, J = 3.0 Hz, 2H), 3.78 (s, 6H), 1.42 (s, 18H). "3C NMR (125 MHz, CD 2C12, 5):



164.8, 155.8, 152.1, 143.0, 139.8, 128.2, 120.1 (2x), 119.0, 112.5, 56.2, 35.5, 29.5. FTIR

(thin film) 1) = 2954, 1617, 1595, 1571, 1448, 1428, 1333, 1206, 1150, 1060 cm .

HRESI-MS ([M + Na]+) C30H36N 20 4 m/z, Cacld. 511.2567, Found 511.2584.

2.5.3.4. Mn[salophen(OMe)] Cl (3)

A vial containing a stirbar was charged with H2[salophen(OMe)] (0.070 g, 0.143 mmol)

and manganese (II) acetate tetrahydrate (0.039 g, 0.158 mmol). Ethanol (1.6 mL) was

added, and the reaction mixture was stirred at room temperature for 21 hours. The dark

brown reaction mixture was diluted with dichloromethane. The organic extract was

washed with brine. The desired product precipitated out of solution as a brown solid and

was collected on a glass frit after filtering and copious washings with diethyl ether (0.072

g, 87%). HRESI-MS ([M - C1]') C30H34N20 4MnCl m/z, Calcd. 541.1894, Found

541.1870.

2.5.3.5. H2[salophen], X = H

A vial containing a stirbar was charged with 1,2-phenylenediamine (108 mg, 1.00 mmol)

and 3-tert-butyl-2-hydroxy-benzaldehyde (356 mg, 2.00 mmol). Ethanol (4.0 mL) was

added, the vial was sealed with a Teflon cap, and the reaction mixture was stirred at 100

'C for 21 hours. The desired ligand precipitated from solution as a orange solid and was

collected on a glass frit after filtering and copious washings with EtOH (287 mg, 67%).

IH NMR (500 MHz, CD2C12):. 13.80 (s, 2H), 8.69 (s, 2H), 7.41-7.36 (m, 4H), 7.31-7.29

(m, 4H), 6.88 (t, J = 7.5 Hz, 2H), 1.42 (s, 18H). 13C NMR (125 MHz, CD 2CI2):. 165.0,

161.2, 143.1, 138.2, 131.3, 131.1, 128.2, 120.1, 119.7, 118.8, 35.3, 29.6. FTIR (thin film)

2959, 2943, 2908, 2867, 1610, 1571, 1427, 1391, 1363, 1311, 1275, 1194, 1146, 1107,

1087. HRMS (ESI) Calcd for C28H33N20 2: [M + H]+ = 429.25365. Found 429.25349.

2.5.3.6. Mn[salophen]Cl, X = H (5)

A vial containing a stirbar was charged with the ligand H2[salophen], X = H (60.0 mg,

0.131 mmol) and Mn(OAc) 2 *4H20 (36.0 mg, 0.144 mmol). Ethanol (1.6 mL) was added,

and the reaction mixture was stirred at room temperature for 21 hours. The dark brown

reaction mixture was diluted with CH 2C12. The organic extract was washed with brine,

dried over Na 2 SO 4 , and concentrated to dryness. The crude material was purified by



column chromatography (CH 2CI2/Et 20/MeOH gradient), and the desired final product

Mn[salophen]C1, X = H was obtained as a brown solid (60 mg, 84%). HRMS (ESI)

Calcd for C28H3oMnN20 2Mn: [M - Cl] = 481.16823. Found 481.16650.

2.5.3.7. Mn(V)[salophenlN, X = OMe

A vial containing a stirbar was charged with Mn(salophen)C1, X = OMe (3) (25 mg,

0.043 mmol) in 0.6 mL MeOH. Under vigorous stirring at room temperature, ammonium

hydroxide (41 gL, 0.65 mmol; 16M in water) was added dropwise followed by NaOCl

(130 [tL, 0.26 mmol; 2.0 M in water). CH 2C 2 was added, followed by water to form a

biphasic mixture. The brown organic phase was washed with water (x3), dried over

Na 2 SO 4, and concentrated to dryness. The crude material was purified by flash

chromatography (CH 2C12 as eluent) to furnish the desired product as a brown solid (16.1

mg, 67%). The UV-vis spectrum of Mn(V)[salophen]N, X = OMe is shown in red in

Figure 3b (5.0 x 10 M Mn(V)[salophen]N, X = OMe in 1: 1 MeOH: MeCN at room

temperature). 1H NMR (500 MHz, CD 2Cl2): 8.84 (s, 2H), 7.85 (dd, J = 6.0 Hz, 3.0 Hz,

2H), 7.40 (dd, J = 6.0 Hz, 3.0 Hz, 2H), 7.21 (d, J= 3.5 Hz, 2H), 6.71 (d, J = 3.5 Hz, 2H),

3.81 (s, 6H), 1.48 (s, 18H). 13C NMR (125 MHz, CD 2CI 2): 166.6, 158.4, 150.4, 145.7,

143.9, 128.0, 126.4, 119.3, 115.6, 110.6, 56.1, 36.3, 29.9. FTIR (thin film) 2944, 1602,

1582, 1534, 1458, 1427, 1411, 1387, 1359, 1312, 1212, 1191, 1059, 1040. HRMS (ESI)

Calcd for C30H34MnN 304: [M + H] = 555.1930. Found 555.1911.

2.5.3.8. Mn(V)[salophenjN, X = t-Bu

A vial containing a stirbar was charged with Mn[salophen]C1, X = t-bu (4) (25 mg, 0.040

mmol) in 0.6 mL MeOH. Under vigorous stirring at room temperature, ammonium

hydroxide (41 pL, 0.65 mmol; 16M in water) was added dropwise followed by NaOCl

(130 gL, 0.26 mmol; 2.0 M in water). CH 2C12 was added, followed by water to form a

biphasic mixture. The dark organic phase was washed with water (x3), dried over

Na 2 SO 4 and concentrated to dryness. The crude material was purified by flash

chromatography (pentane:CH 2CI2 = 2:1 as eluent) to furnish the desired product as a

greenish solid (19.5 mg, 81%). The UV-vis spectrum of Mn(V)[salophen]N, X = t-Bu, is

shown in blue in Figure 3b (5.0 x 10- 5 M Mn(V)[salophen]N, X = t-Bu in 1:1

MeOH:MeCN at room temperature). 'H NMR (500 MHz, CD 2C12): 8.89 (s, 2H), 7.86



(dd, J = 6.5 Hz, 3.5 Hz, 2H), 7.61 (d, J = 2.5 Hz, 2H), 7.40 (dd, J = 6.5 Hz, 3.5 Hz, 2H),

7.27 (d, J = 2.5 Hz, 2H), 1.51 (s, 18H), 1.35 (s, 18H). 13C NMR (125 MHz, CD2C 2):

168.6, 159.5, 145.8, 141.5, 139.0, 133.1, 128.8, 128.0, 119.8, 115.6, 36.4, 34.5, 31.5,

30.0. FTIR (thin film) 2954, 2909, 2867, 1605, 1579, 1527, 1488, 1463, 1422, 1387,

1359, 1258, 1197, 1179, 1046. HRMS (ESI) Calcd for C36H47MnN 30 2: [M + H]+ =

608.30433. Found 608.30316.

2.5.4. Stopped-flow Kinetic Studies

2.5.4.1. General Considerations

All solutions were prepared and handled in an inert atmosphere (argon-filled glove box),

unless otherwise noted. Kinetics measurements were made using a Hi-Tech Scientific

(Salisbury, Wiltshire, U.K.) SF-43 multi-mixing anaerobic cryogenic stopped-flow

instrument equipped with a Hi-Tech Scientific Kinetascan diode array rapid scanning

unit. Full-spectra kinetics data were fitted globally with the commercially available

software Specfit32 with IS-2 Rapid Scanning Kinetic Software (Hi-Tech Scientific).

2.5.4.2. Materials

MeOH (anhydrous) was used as received (Burdick & Jackson). All other solvents were

purchased from VWR Scientific Products, passed through an M. Braun, Inc. purification

system and sparged with N2 to remove trace 02 prior to use. 3-Chloroperoxybenzoic acid

(m-CPBA) was purchased from Aldrich (77%) and purified by washing with pH 7.40

phosphate buffer and recrystallized from pentane to remove 3-chlorobenzoic acid. Purity

(>95%) was determined by 'H NMR.

2.5.4.3. Stopped-Flow Experiments

In a representative procedure, a gas-tight syringe was charged with 8.0 x 10-5 M (1) in 1:

1 MeOH: MeCN (25 mL, 2.0 gmol). A second gas-tight syringe was charged with 6.6 x

10-4 M m-CPBA in a 1: 1 MeOH: MeCN (25 mL, 17 imol). The solutions were loaded

into the stopped-flow spectrophotometer and triggered by simultaneous injection of a 0.1

mL of each solution to make the reactant concentrations 4.0 x 10- M and 3.3 x 104 M in

manganese and m-CPBA, respectively. The solutions were cooled to -20 'C prior to



mixing and maintained at that temperature in a chilled heptane bath throughout the

reaction. The reaction was monitored by UV-vis spectroscopy. Spectra (350-700 nm)

were acquired for 100 s at 0.5 second intervals. Figure 2.2a shows the absorption

spectrum of the Mn(III) substitution of the axial chloride ligand of the reactant by the m-

CPBA substrate. The spectral changes associated with the addition of the non-reactive

benzoate, which serves as a model for the substitution reaction, are shown in Figure 2.2b.

Conditions to obtain spectra in Figure 2.2a.

Stopped-flow UV-vis spectra obtained from reactions of m-CPBA (3.3 x 10-4) with 4.0 x

10-5 M 1 (red solid line) ca. 3 s post injection in 1:1 MeOH: MeCN at 20 'C.

Conditions to obtain spectra in Figure 2.2b

UV-vis specrum obtained from a solution of 5.0 x 10-5 M 1 in 1: 1 MeOH: MeCN at

room temperature (red solid line). UV-vis spectrum obtained from a solution of 5.0 x 10-5

M 1 in 1:1 MeOH:MeCN at room temperature in the presence of benzoic acid (5.0 x 10-3

M) (black dotted line).

Conditions to obtain spectra in Figure 2.3a

Absorption spectra obtained from spectral global analysis of a stopped-flow reaction of

4.0 x 10 -5 M 1 and 3.3 x 10- M m-CPBA in 1:1 MeOH:MeCN at -20 'C over 800 s.

2.5.5. Hydrogen Peroxide Disproportionation Reactions

Dismutation reactions were performed at room temperature in a sealed (PTFE septum) 3

mL reaction vial equipped with a magnetic stirbar and a capillary gas delivery tube linked

to a graduated burette filled with water. The reaction vial was charged with a stock

solution of the corresponding catalyst in CH2C12 (1.0 mL). MeOH (0.5 mL) was added

followed by H20 2 (790 pL, 8.22 mmol; 10.4 M (30% aqueous solution), and the reaction

mixture was stirred vigorously. The time was set to zero immediately after the addition

of H20 2. The progress of the reaction was monitored volumetrically, and the amount of

produced 02 (n) was calculated through the gas equation pV=nRT, assuming that p = 1

atm.



The amount of catalyst used to obtain the results of Table 2.2: Mn[HSX(OMe)-COOH]Cl

(1.0 mg, 0.00098 mmol; from a 1.0 mg/mL CH 2Cl 2 stock solution) to give 106 cm 3 of 02

in 1 hr; Mn[HSX(OMe-COOMe]Cl (1.0 mg, 0.00097 mmol; from a 1.0 mg/mL CH 2Cl 2

stock solution) to give 13.0 cm 3 of 02 in I hr; and Mn[salophen(OMe)]Cl (0.56 mg,

0.00098 mmol) and benzoic acid (1.2 mg, 0.00098 mmol) in 10.0 mL CH 2Cl 2 ) to give 2.5

cm 3 of 0 2 in 1 hr.

2.5.6. UV-Vis Kinetics of Mn[HSX(OMe)]C1 (1) Decomposition in the Presence of

H20 2.

Kinetic studies were performed in a sealed quartz cuvette at room temperature. The

cuvette was charged with a stock solution of 1 (2.6 x 10-5 M) in MeOH (3.0 mL). H20 2

was added (50 gL; 32% aqueous solution; d = 1.1126 g/mL), thereby generating a 2.5 x

10-5 M, 0.17 M, and 0.69 M solution of 1, H20 2, and H20, respectively. The time was set

to zero immediately after addition of H20 2. The first spectrum was taken 30 seconds after

injection of H20 2. The progress of the reaction was monitored by UV-vis spectroscopy at

two minute intervals. The decrease in absorbance at 500 nm was fitted to an exponential

function, and kobs was determined to be 2.9 x 10-4 S-1

2.5.7. Independent Generation of High-Valent Mn(V) oxo

Conditions to obtain the spectra in Figure 3a

Absorption spectra from a stopped-flow reaction of 2.5 x 10-5 M Mn[HSX(OMe)-

COOH]Cl with 1.7 x 10- M H20 2 in 2.5 x 10 4 M NaOH solution in MeOH at -50 'C.

Formation of Mn-oxo (green) is observed at - 96 s post-injection.

Conditions to obtain the spectra in Figure 3b

Absorption spectra from spectral global analysis of a stopped-flow reaction of 4.0 x 10- 5

M Mn[HSX(OMe-COOH]Cl with 3.3 x 10 4 M m-CPBA in 1: 1 MeOH: MeCN at -20

'C. The calculated Mn-oxo intermediate at -60 s post-injection is shown in green.

Conditions to obtain the spectra in Figure 3c



Absorption spectra from a reaction of 5.0 x 10-s M Mn[HSX(OMe)-COOH]CI with

iodosylbenzene (50 equiv.) in 1: 1 MeOH: MeCN at room temperature. Formation of

Mn-oxo (green) is observed 28 min post-addition. Due to insolubility of iodosylbenzene,

the reaction solution was filtered through an acrodisc prior to measurement.

Conditions to obtain the spectra in Figure 4a

Absorption spectrum from a reaction of 2.5 x 10- 5 M Mn[salophen(X)]Cl with 3.5 x 10- 2

M H2 0 2 in 2.5 x l0 g M NaOH solution in MeOH at room temperature. Formation of

Mn[salophen(t-Bu)]O (blue) is observed 10 s post-injection. Formation of

Mn[salophen(OMe)]O (red) is observed 10 s post-injection.

Conditions to obtain the spectra in Figure 3, left

Absorption spectrum from a reaction of 2.5 x 10- 5 M Mn[salophen(t-Bu)]Cl with 3.5 x

102 M H20 2 in 2.5 x 10 4 M NaOH solution in MeOH (3.0 mL) at room temperature.

Formation of Mn[salophen(t-Bu)]O (green) is observed 10 s post-injection. Et 2S (100

mL, 0.937 mmol) is added at 50 s post-injection of H20 2. Formation of Mn[salophen(t-

Bu)]Cl starting material (red) is observed 20 s post-injection of Et2S.

Conditions to obtain the spectra in Figure 3, right

Absorption spectrum from a reaction of 2.5 x 10- 5 M Mn[salophen(t-Bu)]C1 with 3.5 x

10-2 M H20 2 in 2.5 x 10- M NaOH solution in MeOH (3.0 mL) at room temperature.

Formation of Mn[salophen(t-Bu)]O (green) is observed 10 s post-injection. P(OEt) 3 (100

mL, 0.584 mmol) is added at 50 s post-injection of H20 2 . Complete re-formation of

Mn[salophen(t-Bu)]Cl starting material (red) is observed 760 s post-injection of P(OEt)3.



References and Notes

1. Yeh, C.-Y.; Chang, C. J.; Nocera, D. G. J. Am. Chem. Soc. 2001, 123, 1513-1514.

2. Chang, C. J.; Yeh, C.-Y.; Nocera, D. G. J. Org. Chem. 2002, 67, 1403-1406.

3. Chang, C. J.; Clhng, L. L.; Nocera, D. G. J. Am. Chem. Soc. 2003, 125, 1866-1876.

4. Chng, L. L.; Chang, C. J.; Nocera, D. G. Org. Lett. 2003, 5, 2421-2424.

5. Liu, S.-Y.; Nocera, D. G. J. Am. Chem. Soc. 2005, 127, 5278-5279.

6. Palucki, M.; Finney, N. S.; Pospisil, P. J.; Giller, M. L.; Ishida, T.; Jacobsen, E. N. J.
Am. Chem. Soc. 1998, 120, 948-954.

7. Law, N. A.; Caudle, M. T.; Pecoraro, V. L. In Manganese Redox Enzymes and
Model Systems: Properties, Structure, and Reactivity; Pecoraro, V. L., Ed.;
Academic Press: San Deigo, CA, 1999; Vol. 46.

8. Nicholls, P.; Fita, I.; Loewen, P.C. Adv. Inorg. Chem. 2001, 51, 51-106.

9. Yodar, D. W.; Hwang, J.; Penner-Hahn, J. E. In Metal Ions in Biological Systems;
Sigel, A.; Sigel, H., Eds.; Marcel Dekker: New York, 1999; Vol. 37.

10. Christianson, D. W. Prog. Biophys. Mol. Biol. 1997, 67, 217.

11. Wu, A. J.; Penner-Hahn, J. E.; Pecoraro, V. L. Chem. Rev. 2004, 104, 903-938.

12. Rosenthal, J.; Chng, L. L.; Friedman, S. P.; Nocera, D. G. in press.

13. Liu, S.-Y.; Yang, J. Y., Nocera, D. G. unpublished work.

14. Feth, M.P.; Bolm, C.; Hildebrand, J. P.; K6hler, M.; Beckmann, O.; Bauer, M.;
Ramamonjisoa, R.; Bertagnolli, H. Chem.-Eur. J. 2003, 9, 1348-1359.

15. McDonnell, F. M.; Fackler, N. L. P.; Stemrn, C.; O'Halloran, T. V. J. Am. Chem. Soc.
1994, 116, 7431-7432.

16. Du Bois, J.; Hong, J.; Carreira, E. M.; Day, M. W. J. Am. Chem. Soc. 1996, 118,
915-916.

17. Feichtinger, D.; Plattner, D. Chem. Eur. J. 2001, 7, 591-599.

18. Davydov, R.; Makris, T. M.; Kofman, V.; Werst, D. E.; Sligar, S. G.; Hoffman, B.
M. J. Am. Chem. Soc. 2001, 123, 1403-1415.

19. Ogliaro, F.; de Visser, S. P.; Cohen, S.; Sharma, P. K.; Shaik S. J. Am. Chem. Soc.
2002, 124, 2806-2817.

20. Groves, J. T.; Watanabe, Y. J. Am. Chem. Soc. 1988, 110, 8443-8452.

21. Soper, J. D.; Kryatov, S. V.; Rybak-Akimova, E. V.; Nocera, D. G. J. Am. Chem.
Soc. 2007, ASAP, DOI: 10.1021/ja0683032.

22. Cytochrome P-450 Structure, Mechanism, and Biochemistry; Ortiz de Montellano,
P. R., Ed.; Plenum Press: New York, 1986.



23. Sono, M.; Roach, M. P.; Coulter, E. D.; Dawson, J. H. Chem. Rev. 1996, 96, 2841-
2887.

24. Dunford, H. B. Heme Peroxidases; Wiley: New York, 1999.

25. Watanabe, Y. In The Porphyrin Handbook; Kadish, K. M.; Smith, K. M.; Guilard,
R., Eds.; Academic Press: San Diego, 2000; Vol. 4, pp 97-117.

26. Newcomb, M.; Zhang, R., Chandrasena, R. E. P.; Halgrimson, J. A.; Homer, J. H.;
Makris, T. M.; Sligar, S. G. J. Am. Chem. Soc. 2006, 128, 4580-4581.

27. Suslick, K. S. In The Porphyrin Handbook; Kadish, K. M.; Smith, K. M.; Guilard,
R., Eds.; Academic Press: San Diego, 2000; Vol. 4, pp 41-63.

28. Rodriquez-Lopez, J. N.; Lowe, D. J.; Hernandez-Ruiz, J.; Hiner, A. N. P.; Garcia-
Canovas, F.; Thomeley, R. N. F. J. Am. Chem. Soc. 2001, 123, 11838-11847.

29. Veitch, N. C.; Smith, A. T. In Advances in Inorganic Chemistry; Academic Press:
New York, 2001; Vol. 51, pp 107-162.

30. Newcomb, M.; Chandrasena, R. E. P. Biochem. Biophys. Res. Commun. 2005, 338,
394-403.

31. Davydov, R.; Chemerisov, S.; Werst, D. E.; Rajh, T.; Matsui, T.; Ikeda-Saito, M.;
Hoffman, B. M. J. Am. Chem. Soc. 2004, 12, 15960-15961.

32. Hiner, A. N. P. Raven, E. L.; Thorneley, R. N. F.; Garcia-Canovas, F.; Rodriguez-
Lopez, J. N. J. Inorg. Biochem. 2002, 91, 27-34.

33. Hersleth, H.-P.; Ryde, U.; Rydberg, P.; Gorbitz, C. H.; Andersson, K. K.J. Inorg.
Biochem. 2006, 100, 460-476.

34. Behan, R. K.; Green, M. T. J. Inorg. Biochem. 2006, 100,448-459.

35. Khavrutskii, I. V.; Musaev, D. G.; Morokuma, K. Inorg. Chem. 2005, 44, 206-315.

36. Yang, J. Y.; Nocera, D. G. submitted for publication.

37. Zhang, W.; Loebach, J. L.; Wilson, D. R.; Jacobsen, E. N. J. Am. Chem. Soc. 1990,
112, 2081-2083.

38. Irie, R.; Noda, K.; Ito, Y.; Matsumoto, N.; Katsuki, T. Tetrahedron Lett. 1990, 31,
7345-7348.

39. Jacobsen, E. N.; Wu, M. H. In Comprehensive Asymmetric Catalysis, Jacobsen, E.
N., Pfaltz, A., Yamamoto, H., Eds.; Springer: New York, 1999; pp 649-677.

40. Lin, G.-Q.; Li, Y.-M.; Chan, A. S. C. In Principles and Applications of Asymmetric
Synthesis; Wiley-Interscience: New York, 2001; pp 237-241.

41. A similar trend is observed for Hangman Mn-salophen complexes, see reference 5.

42. McGarrigle E. M.; Gilheany, D. G. Chem. Rev. 2005, 105, 1563-1602.

43. Sabater, M. J.; Alvaro, M.; Garcia, H.; Palomares, E.; Scaiano, J. C. J. Am. Chem.
Soc. 2001, 123, 7074-7080.



44. Srinivasan, K.; Michaud, P.; Kochi, J. K. J. Am. Chem. Soc. 1986, 108,2309-2320.

45. Abashkin, Y. G.; Burt, S. K. Inorg. Chem. 2005, 44, 1425-1432.

46. Abashkin Y. G.; Burt, S. K. J. Phys. Chem. B 2004, 108, 2708-2711.

47. Larrow, J. R.; Jacobsen, E. N.; Gao, Y.; Hong, Y.; Nie, X.; Zepp, C. M. J. Org.
Chem. 1994, 59, 1939-1942.

48. Liu, S.-Y.; Nocera, D. G. Tetrahedron Lett. 2006, 47, 1923-1926.



Chapter 3

Synthesis of Enantiopure Manganese

Hangman Salens and Their Epoxidation

Activity

Portions of the work presented in this chapter have been published:

Yang, J. Y.; Bachmann, J.; Nocera, D. G. J. Org. Chem. 2006, 71, 8706-8714.



3.1. Motivation and Specific Aims

The Hangman salophen system described in Chapter 2 permitted the study of redox

effects on the catalase activity, and the stopped-flow detection of intermediates in the first

two steps of the catalase cycle and the kinetics of their formation, including a putative

Mn(V) oxo species. We wished to extend the reactivity of the Hangman salen framework

to oxygen atom transfer (OAT) chemistry. In addition, we sought to modify the ligand

framework to incorporate a chiral functionality to see if we can add the feature of

enantioselectivity to OAT transformations. A synthetic strategy for the construction of

chiral salen ligands bearing two rigid xanthene spacers functionalized with carboxylic

acid groups is presented. Suzuki cross-coupling methodology is used to furnish the

appropriately functionalized xanthene spacers to a salicyaldehyde, which is subsequently

condensed with (1R,2R)-(-)- 1,2-diaminocyclohexane to produce salen ligands featuring

an expandable molecular cleft capable of multiple hydrogen bonding interactions, in

addition to metallosalen oxidation chemistry. Within this functionalized Hangman

framework, the stereochemistry of the cyclohexane backbone of the salen platform is

revealed in the epoxidation of 1,2-dihydronapthalene by the metal oxo.

3.2. Background

Catalytic oxygen atom transfer chemistry to olefins using first row metallosalen

compounds was first explored by Kochi1 -2 and Burrows 3 using achiral salen ligands.

Shortly thereafter, Katuski4 and Jacobsen 5 independently synthesized manganese salen

complexes incorporating chiral functionalities into the ligand that were capable of

epoxidizing a wide range of olefins with very high selectivity. Manganese salen catalysts

have been optimized to synthesize cis-disubstitued,6' 7  trans-disubstituted,8' 9

trisubstituted, 1o and even some monosubstituted'1 epoxides with high enantioselectivity.

Prior to this, the most selective epoxidation catalyst had been titanium tartrate, which is

limited in substrate scope to allylic alcohols.12 The broad substrate scope of manganese
• 5 13-19

salens and modular synthesis led to a rapid expansion to catalyst variants. 5,13-19

The most commonly used and commercially available catalyst is manganese [(1,2-

cyclohexanediamino-N,N'-bis(3,5-di-tert-butylsalicylidene)] chloride (shown in Chart



Chart 3.1

t-Bu--<478 M t-Bu

t-Bu t-Bu

Jacobsen's catalyst

R2  R3  0

catalyst R R3R1 R4 R1 R4
80 - 95% ee

3.1), which combines the key electronic and steric features necessary for high selectivity

with synthetic accessibility and substrate generality.6" 3-20 It is frequently employed on

both a laboratory and industrial scale and its synthesis has been commercialized on a

multi-hundred kilogram scale.21'22 The widespread use of this catalyst has been fueled by

its ease of use and economical cost. This has mediated one of the catalyst's shortcomings;

decomposition under the oxidizing conditions typically limits the catalyst to double digit

turnover numbers (TON). Depending on the substrate, the TON can be as low ten.5 Given

the remarkable ability for the manganese Hangman porphyrins (HPX) to enhance the

epoxidation of olefins by an order of magnitude over the unmodified platform using the

mild oxidant hydrogen peroxide, we set out to unite the enantioselective OAT chemistry

of a salen framework with the PCET-mediated catalysis afforded by a Hangman

framework.

3.3. Results and Discussion

3.3.1. Ligand Design

We wished to incorporate the highly successful chiral 1,2-diaminocyclohexane bridge

into our Hangman architecture. This objective precluded the use of Hangman salophen

platforms of the type presented in Chapter 2, because the ligand bridge lacks the sp 3

carbons that can impart chirality. Simply replacing the 1,2-phenylenediamine backbone is

not prudent; attachment of the xanthene scaffold on a cyclohexane backbone would

dynamically shift the ligand geometry as it transitioned through chair and boat

conformers. Additionally, forming a bond between the aryl-carbon on the xanthene to the

aliphatic-carbon bond on the cyclohexanediamine is synthetically more challenging

relative to aryl-aryl bond coupling. Therefore, we sought to adjust the attachment point of
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the functionalized xanthene to the 5 and 5' position on the phenolic arms of the

macrocycle.

The two imine bonds on a salen are prone to hydrolysis23-26 and exchange 27 which makes

it difficult to synthesize salens composed of two uniquely functionalized

salicylaldehydes, since they can easily disproportionate in the presence of trace water to

form a mixture of symmetric and asymmetric salens.2 29 (This issue is discussed further

in Chapter 5). To circumvent this problem, we construct the symmetric salen complex

using two equivalents of the functionalized salicylaldehyde per 1,2-cyclohexanediamine

bridge. The (1R,2R)-(-)-1,2-diaminocyclohexane enantiomer was targeted owing to its

lower cost. As the role of the acid-to-metal distance is unclear, we set out to synthesize

the two variants, named HSX* and HphSX*, shown in Chart 3.2. The synthesis and OAT

chemistry of these compounds is described below.

3.3.2. Synthesis of Hangman Salen Ligands (HSX*)

Scheme 3.1 illustrates our initial attempts to synthesize 5, the precursor to synthesis of

the HSX* ligand. We followed established methods to functionalize the xanthene bridge

selectively with a carboxylic acid (1) from the commercially available xanthene

dibromide.30,31 The methyl ester (2) derivative is obtained directly by protection of 1

upon refluxing methanol with a catalytic amount of sulfuric acid.31 We initially focused

on obtaining 5 by replacing the bromide in 1 with a boronic acid in order to establish a

site for subsequent cross-coupling with 5-bromosalicylaldehyde. This was achieved using

palladium catalyzed cross-coupling conditions with bis(pinacolato)diboron, 32 but the

reaction and the subsequent Suzuki coupling only proceeded when the acid is protected
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Pd(dppf)Cl 2, KOAc, DMSO, (d) 5-bromosalicylaldehyde, Pd(dppf)Cl 2, Na2CO 3, DME:
H20 (9: 1), (e) BBr 3, CH 2Cl2

by an ester functionality. Methyl ester 2 was used to obtain the boronic ester which is

hydrolyzed to the boronic acid upon recrystallization to generate precursor 3 in 43%

yield. X-ray quality crystals confirmed the structure, shown in Figure 3.2 in the

Experimental Section. 3 is then coupled to 5-bromosalicylaldehyde to afford precursor 4

in 40% yield.33' 34 The two coupling steps provided product for a combined 17% yield.

However, it was found that the methyl ester proved difficult to deprotect to achieve the

desired precursor 5. Very little or no reaction was observed upon refluxing with a variety

of weak bases; the harsher reagent boron tribromide successfully gave the acid with a

modest 28% yield.

Alternatively, the benzyl ester protecting group on the acid was also used as shown in

Scheme 3.2. The benzyl ester 6 can be made in quantitative yield from the previously

described precursor 1 using benzyl alcohol and 3-dicyclohexylcarbodiimide with a

catalytic amount of 4-dimethylaminopyridine. 35 Following the otherwise analogous

synthetic route of replacing the bromide on the benzyl ester protected xanthene with a

boronic acid followed by Suzuki coupling to 5-bromosalicylaldehyde to give 8 also



Scheme 3.2

t-Bu t-Bu

\ýCO 2 H CO2Bn

a b

Br Br

t-Bu t-Bu
1 6

t-Bu t-Bu

CO2Bn CO2Bn

0 C00 c0

/ \ /a 0B(OH) 2  \ ' OH

t-Bu t-Bu
7 8

t-Bu

\ CO2Bn

/ N B(OH) 2

t-Bu
7

t-Bu

/ CO2H

d
0

/ -0-OH

t-Bu

(a) benzyl alcohol, DCC, DMAP, CH 2Cl2, (b) bis(pinacolato)diboron, Pd(dppf)Cl 2,
KOAc, DMSO, (c) 5-bromosalicylaldehyde, Pd(dppf)C12, Na 2CO 3, DME: H20 (9:1),

(d) H2, Pd on charcoal, ethyl acetate

resulted in a modest combined yield of 19% in the successive palladium catalyzed cross-

coupling steps. Although the benzyl ester was easier to cleave using hydrogen gas over

activated palladium on charcoal, the overall yield along this synthetic pathway was not

favorable. We therefore sought an alternative synthetic pathway to the Hangman salen

ligand HSX*.

Scheme 3.3 outlines the synthetic strategy that successfully delivers the HSX* ligand in

good yield. With the appropriately functionalized xanthene precursor 1 in hand, the

construction of the salen macrocycle begins with the catenation of 3-formyl-4-

ethoxyphenyl boronic acid to the remaining bromide of 1. Effectively the site of boronic

acid and bromide functionalization on the xanthene and salicylaldehyde has been inverted

form that of Scheme 3.1 and Scheme 3.2. This important modification provides a better

nucleophilic site for the Suzuki cross-coupling step than the boronic acid functionalized

xanthene and consequently delivered 9 in good yield. Subsequent deprotection of the

methyl ether by treatment with boron tribromide 36' 37 yields the appropriate xanthene

functionalized salicylaldehyde derivatives 5. The construction of the salen ring is
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completed with the condensation, in high yield, of 5 with 0.5 equivalents of (lR,2R)-(-)-

1,2-diaminocyclohexane to produce the desired Hangman salen ligand 11. Mass spectral

evidence shows no evidence of any singly condensed diamine product and the 1H NMR

integrations are consistent with two functionalized xanthenes to one cyclohexanediamine

bridge. Analogous porphyrins ligands bearing two xanthene bridges possess two different

atropisomers (xanthenes facing each other across the macrocycle as opposed to the

xanthenes being one-up and one-down) that can be independently identified by 1H NMR

spectroscopy. For these porphyrin ligands, no exchange is observed between the two

atropisomers in solution at room temperature. 38'3 9 In contrast, the 'H NMR for the HSX*

and HphSX* ligands at room temperature show only one set of well-resolved ligand

peaks, suggesting there is either one atropisomer in solution, or exchange between the

two is extremely rapid. The metallated salen 12 is synthesized by refluxing the ligand

with manganese(II) acetate in air, followed by an aqueous sodium chloride solution

workup, which provides the chloride salt.



3.3.3. Synthesis of Benzoic Acid Functionalized Hangman Salen Ligands (HphSX*)
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In order to assemble the benzoic acid functionalized Hangman salen ligand (HphSX*), we

targeted the synthesis of precursor 25 (shown in Scheme 3.6). The selective

functionalization of the 4 and 5 positions of the xanthene spacer with a benzoic acid and a

salicylaldehyde functionality, respectively, was required. In order to attach these two

aryl groups, we once again looked to palladium-catalyzed cross-coupling methods.

The most straightforward attempt to achieve this selective functionalization is described

in Scheme 3.4. Xanthene dibromide was first allowed to react with one equivalent with

of 4-methoxycarbonylphenylboronic acid as shown in route A under Suzuki coupling

conditions. However, this did not result in the mono-functionalized xanthene spacer; the

product consisted only of the symmetric doubly functionalized benzoic acid (28). The

next attempt (route B) began with the boronic acid/ester group on the xanthenes,

effectively reversing the electrophile/nucleophile groups for the coupling reaction.

0

14: Ar OH

28: Ar2 -- COOMe

t-Bu

15: R = Me J4 CO2MB

R16 R H 0"" O -0> 0

\N OH

t-Bu



Reaction with less than one equivalent of 5-bromosalicylaldehyde and methyl-4-

bromobenzoate resulted primarily in the bis-coupled products 14 and 28. The highest

yield for a monocatenated product was obtained by coupling the xanthene dibromide with

0.75 equivalents of 3-formyl-4-methoxyphenylboronic acid, which only provided 5%

yield of 15. Upon deprotection of the methyl ether via boron tribromide, we obtain 16,

which can be subsequently coupled under Suzuki conditions with

methoxycarbonylphenylboronic acid to give 17 for an overall yield of less than 3%. From

the resulting predominant biscoupled products in this series of reactions, it is apparent

that the initial coupling to the xanthene bromo or boronic acid group activates the other

aryl carbon site palladium-catalyzed Suzuki coupling that we employ, thus resulting in

impractical yields for the overall synthesis.
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We therefore sought to begin our synthesis with differentially functionalized xanthenes as

starting synthons, thereby introducing the selectivity before addition of the benzoic acid

and salicylaldehyde to the xanthene framework, as shown in Scheme 3.5. We xanthene

dibromide was treated with one equivalent of phenyllithium, followed by addition of

triisopropyl borate and hydrolysis. The resulting product (19) could be purified via

column chromatography. However, 19 was completely unreactive to the aryl boronic

acids and aryl bromides that we tested under a variety of Suzuki- coupling conditions.

Attempts were made to promote coupling using conditions described to couple the

generally more difficult aryl chlorides.4044 Notwithstanding, precursor 19 was found to

be completely inert to palladium-catalyzed cross-coupling conditions. In the same vein,

we isolated the alkyltin and bromo functionalized xanthene 18 was isolated by using

trimethyltin chloride following treatment with phenyllithium. Stille-coupling conditions45
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were attempted in an effort to attach a salicylaldehyde to the aryl tin site, but this strategy

also proved fruitless. It is not entirely clear why a xanthene functionalized with both

nucleophlilic and elctrophilic group would be unreactive to aryl-aryl bond coupling.

However, it appears from the attempts outlined in Scheme 3.4 that there are non-trivial

electronic effects between the two aryl carbons that are the site of functionalization. The

oxygen on the xanthene may effectively neutralize the nucelophilic or electrophilic nature

of the functionalized aryl carbons, limiting their ability to react with the palladium

catalyst.



Ultimately, the selective aryl coupling to the xanthene was achieved by an alternative

route, described in Scheme 3.6.46 The unreactive alkyltin and bromo functionalized

xanthene (20) was treated with elemental iodine to give 21. This allows the more

reactive aryl iodide to be selectively coupled to 4-bromobenzoic acid methyl ester using

the catalyst tetrakis(triphenylphosphine)palladium to give the benzoic acid methyl ester

functionalized xanthene 22, which can be deprotected to the acid by refluxing in base to

give 23. The bromo site on 23 can then be coupled to 3-formyl-4-methoxyphenyl boronic

acid to give 24, respectively. Deprotection of the methyl ether using boron tribromide

furnishes the salen precursors 25, which can be condensed with half an equivalent of

(1R,2R)-(-)-l,2-diaminocyclohexane to give the targeted benzoic acid and ester

functionalized Hangman ligand. Manganese ion is inserted into the salen core by

refluxing the ligand with an excess of manganese acetate in air, followed by workup with

a saturated aqueous sodium chloride solution to give 27 in 93% yield.

3.3.4. Epoxidation Activity of Manganese Hangman Salens

We tested the epoxidation of the prochiral olefin 1,2-dihydronapthalene by Mn(HSX*-

COOH)Cl (12) using sodium hypochlorite as the oxygen atom transfer source, and

conditions found to be optimal for previously studied manganese salen compounds. 47 We

were pleased to find that our modified chiral salen macrocycle transfers stereochemical

information in the oxygen atom transfer reaction to the prochiral substrate. The epoxide

product was resolved with 23% enantiomeric excess (ee) as determined by chiral GC, and

demonstrates communication with the chiral backbone and substrate despite the xanthene

functionalizations situated at the 5 and 5' position of the macrocycle. Whereas this ee

does not compete with the best salen epoxidation catalysts, it is on par with the

"introductory" ees observed for first generation catalysts, such as salen macrocycles

unfunctionalized in the 3 and 3' positions.' 5 However, we feel that we can improve on

this by making a minor modification on the ligand macrocycle.

3.3.5. Design of Sterically Protected Hangman Salens



Figure 3.1. Potential approaches of an olefin to Jacobsen's Catalyst. The high valent

oxo bound to the manganese (not shown) is perpendicular to and coming out of the
page. Figure is adapted from reference 19.

b

t-Bu'

The high selectivity that has been the centerpiece of Jacobsen's catalyst is believed to be

enforced by sterically encumbering functionalities incorporated in the macrocycle. Figure

3.1 shows the potential directions substrate can approach the high valent Mn(oxo), the

catalytic oxidant. T-Butyl group in the 5 and 5' position blocks approaches a and b, while

the tert-butyl groups in the 3 and 3' position deter approach c. This favors the

unencumbered approach a, which maximizes substrate communication with the chiral

diamine, orienting the substrate for high resulting enantioselectivity upon oxygen atom

transfer. 13- 15 ,19' 4 8'4 9 With this in mind, changes in the site of functionalization around the

macrocycle was considered with the goal of optimizing the enantiomeric selectivity

within this Hangman framework. Although determining the optimal routes in the initial

Hangman synthesis was not as straightforward as we had hoped, the modular nature of

salen ligands allowed us to more easily revise the ligand to add the bulky substituents at
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the desired 3 and 3' position. As described below, we were indeed able to quickly access

the HSX*tBu and HphSX* tBu ligands shown in Chart 3.3.

3.3.6. Synthesis of Mn[HSX* tBulCI and Mn[HphSX* tBu]CI

The synthesis of the Hangman family of salens substituted with tert-butyl groups in the 3

and 3' positions is presented in Scheme 3.7. The ligand construction again begins with

the commercially available 4,5-dibromo-2,7-di-tert-butyl-9,9-dimethylxanthene to give

the functionalized precursors 1 and 22, as described earlier in this Chapter. Synthesis of

the precursor boronic ester 29, which installs the tert-butyl groups on the salicylaldehyde

prior to insertion into the ligand, required a two-step procedure. Firstly, the commercially

available 3-tert-butyl-2-hydroxybenzaldehyde was functionalized with a bromo group in

the 5 position (28) as described in the literature. 50 The bromo was then replaced with a

boronic ester functionality by palladium catalyzed cross coupling methods51 to give 29.

Synthon 29 serves as a good nucleophilic substrate for the conversion of xanthene

precursors 1 and 22 to 31 and 32, respectively. 34 Hangman ligands 33 and 34 are

provided by the condensation of 31 and 32 with 0.5 equivalent of (IR,2R)-(-)-1,2-

diaminocyclohexane. The amount of product depends critically on the stoichiometry of

Scheme 3.7
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(1R,2R)-(-)-1,2-diaminocyclohexane. If more than 0.5 equivalent is used, varying

amounts of product with an incompletely formed macrocycle is obtained; only one imine

forms to make an -- (ONN)- tridentate sparingly soluble ligand impurity. This

unintended product can be identified by 'H NMR and mass spectrometry. When 0.5

equivalent of (lR,2R)-(-)- 1,2-diaminocyclohexane is employed, 1H NMR integrations of

33 and 34 establish the presence of one cyclohexanediimine per two xanthene scaffolds.

Manganese acetate is again an efficient metalation agent for 33 and 34. The oxidized

Mn(III) products 35 and 36 are obtained when the metalation is performed in air followed

by a workup with aqueous sodium chloride.

3.3.7. Epoxidation Activity of Sterically Protected Manganese Hangman Salens

To investigate whether the presence of the acid Hangman moiety in conjunction with 3

and 3' substitution leads to better yields as well as enantioselectivity, a comparative study

was undertaken of the epoxidation of the prochiral olefin, 1,2-dihydronapthalene by 35

and 36 versus the unsubstituted Hangman salens, Mn(HSX* tBu-COOH)Cl and

Mn(HphSX* tBu-COOH)C1, and the non-Hangman catalyst (1R,2R)(-)[1,2-

cyclohexanediamino-N,N'-bis(3,5-di-tert-butylsalicylidene)]manganese(III) chloride

(Jacobsen's catalyst). 47 Table 3.1 lists the TONs measured by GC/MS for the various

catalysts and oxidants. Unlike the Hangman porphyrin complexes, hydrogen peroxide is

limited in its utility as an oxidant owing to its proclivity to disproportionate. ' Hence

low TONs are observed for hydrogen peroxide as an oxidant even when diluted solutions

are added via a syringe pump to high concentrations of substrate to reduce the amount of

available hydrogen peroxide in solution. Conversely, the more commonly used oxidants,

sodium hypochlorite (NaOC1) under biphasic reaction conditions of dichloromethane and

water, and iodosobenzene (PhIO) in dichloromethane, results in higher TONs, but are

commensurate with the unmodified platform. The reactions using hydrogen peroxide and

iodosobenzene as the oxidant were also performed in the presence of one equivalent of

N-methylimidazole, as that has been shown to sometimes favorably affect overall activity

and catalyst stability. For the oxidants or conditions that we tried, we did not see any

significant improvement in TONs in the Hangman complexes, although both acid

functionalized Hangman complexes 35 and 36 give products with a considerably



Table 3.1. Turnover numbers (TON) for epoxidation of 1,2-dihydronapthalene in
dichloromethane

[O]

0

Oxidant t (hrs) Catalyst

Mn(salen)C1 a Mn(HSX*-tBu)C1 Mn(HphSX*-tBu)Cl

NaOC1 3 21 12 29

NaOCI 24 76 59 69

PhIO 3 22 28 25

PhlO 24 89 79 85

PhlO b 3 24 31 25

PhlO b 24 80 75 85

H202  4 3 2 2

H202b  4 6 9 4

a salen = (IR, 2R)-(-)-[1,2-cyclohexanediamino-N,N'-bis(3,5-di-tert-

butylsalicylidene)].

b With 1 equivalent of N-methylimidazole.

improved 53% ee, demonstrating that the functionalities at the 3 and 3' positions on the

salicylaldehyde are a critical element for good enantioselectivity by maximizing

stereochemical communication between the manganyl oxo and substrate.13-15,19,49,54

3.3.8. Mechanistic Implications

Mn(V) oxo is believed to be the enantioselective oxidant in manganese salen epoxidation

reactions.' This manganyl oxo is formed by the activation of the O-X bond

(intermediate A in Scheme 3.8) of various oxidants."55 Computational56 studies performed

on the O-0O bond cleavage of acylperoxo manganese salen complexes in acidic and

neutral media identify the proton as a means to promote O-O bond heterolysis, and

prevent O--O bond homolysis to produce the less reactive Mn(IV) oxo. Such acid-base

induced bond activation chemistry, classically known as the "pull effect" in heme

oxidations, 57-6 1 is responsible for the enhanced olefin epoxidation observed in Hangman
porphyrin complexes.31,62 We did not see an increase in TON for our Hangman salenporphyrin complexes. We did not see an increase in TON for our Hangman salen
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compounds with iodosylbenzene and hypochlorite as the oxidant. We can therefore infer

that the acid group does not have any effect on cleaving the O-I or O-Cl bond,

respectively, to form B in Scheme 3.8. Using hydrogen peroxide as the oxidant, excess

equivalents successfully compete with substrate upon formation of B, and the catalase

activity mentioned in Chapter 2 (and Chapter 4, vide infra) predominates. Hence, olefins

are a poor probe for Mn(V) oxo formation with H20 2 as an oxidant. We also tried to

probe Mn(V) oxo formation with hydrogen peroxide using more electron rich substrates

such as sulfides or phosphates, but they are easily oxidized in the presence of oxidant

without any catalyst.

3.4. Concluding Remarks

We have developed a versatile methodology to install Hangman scaffolds on salen

macrocycles while maintaining the ligand's chiral framework. Two functionalized

xanthene scaffolds form a symmetric molecular cleft, which can be structurally tuned

with spacers appended to the xanthene scaffold. Epoxidation studies using prochrial

substrates such as 1,2-dihydronapthalene demonstrated asymmetric induction with an

introductory ee of 23%. Addition of tert-butyl groups on the macrocycle confers an

improved 53% enantioselectivity by promoting substrate interaction with the chiral

cyclohexanediamine backbone of the salen macrocycle. The turnover number (TON) for

•Y



epoxidation was also determined using hydrogen peroxide, sodium hypochlorite, and

iodosylbenzene as oxidants. We did not see any enhancement in TON for our Hangman

compounds, indicating either that the acid-hanging group does not facilitate formation of

the oxidizing intermediate (Mn(V) oxo) or that oxygen atom transfer to the olefin is the

rate-determining step in the epoxidation reaction.

3.5. Experimental Section

3.5.1. Materials

Silica gel 60 (70 - 230 and 230 - 400 mesh) was used for column chromatography.

Analytical thin layer chromatography was performed using F254 silica gel (pre-coated

sheets, 0.2 mm thick). Solvents for synthesis were reagent grade or better and used as

received from Aldrich or dried according to standard methods. 63 4,5-Dibromo-2,7-di-tert-

butyl-9,9-dimethylxanthene, boron tribromide (1.0 M in dichloromethane), (1R,2R)-(-)-

1,2-diaminocyclohexane, manganese(II) acetate tetrahydrate, 5-bromosalicylaldehyde, 4-

dimethylaminopyridine, 3-dicyclohexylcarbodiimide, 3-tert-butyl-2-

hydroxybenzaldehyde, 1,2-dihydronaphthalene, dodecane, and N-methylimidazole were

used as received from Aldrich. Iodosobenzene was used as received from TCI America.

Bis(pinacolato)diboron, 3-formyl-4-methoxyphenylboronic acid, and 4-

methoxycarbonylphenylboronic acid were used as received from Frontier Scientific.

Sodium carbonate, potassium acetate, dichloro[ 1,1 '-

bis(diphenylphosphino)ferrocene]palladium(II) dichloromethane adduct,

tetrakis(triphenylphosphine)palladium, bis(tricyclohexylphosphine)palladium(0),

trimethyltin chloride, tri(n-butyl)tin chloride, tri(i-propyl)borate, and (1R, 2R)-(-)-[1,2-

cyclohexanediamino-N,N'-bis(3,5-di-tert-butylsalicylidene)]manganese(III) chloride

were used as received from Strem Chemicals. Phenyllithium (1.6- 1.7 M in cyclohexane)

and 30% aqueous solution of hydrogen peroxide were used as received from Alfa Aesar.

The following compounds were obtained using published protocols and their purity

confirmed by IH NMR: 4-hydroxycarbonyl-5-bromo-2,7-di-tert-butyl-9,9-

dimethylxanthene (1),31,39 4-methoxycarbonyl-5-bromo-2,7-di-tert-butyl-9,9-

dimethylxanthene (2), 31 4-bromo-2,7-di-tert-butyl-5-iodo-9,9-dimethyl-9H-xanthene 4-

(5-bromo-2,7-di-tert-butyl-9,9-dimethyl-9H-xanthen-4-yl)-benzoic acid methyl ester



(22),46 and bromo-3-tert-butylsalicylaldehyde (1).64 An optimized synthesis for 4,5-di(5-

salicylaldehyde)-2,7-di-tert-butyl-9,9-dimethylxanthene (14) will be presented in Chapter

5.

3.5.2. Physical Measurements

'H NMR, 13C NMR and "B NMR spectra were collected in CDCl3 or C 4DsO80 (Cambridge

Isotope Laboratories) at 25 'C unless otherwise noted. Spectra were taken on an Inova

500 or Mercury 300 Spectrometer housed in the MIT Department of Chemistry

Instrumentation Facility (DCIF). All chemical shifts are reported using the standard 6

notation in parts-per-million relative to tetramethylsilane. The 'H NMR and "3C NMR

spectra have been internally calibrated to the monoprotio impurity of the deuterated

solvent used. Boron trifluoride etherate was used as the standard for the "B NMR. High-

resolution mass spectral analyses were carried out by the MIT DCIF on a Bruker

APEXIV47e.FT-ICR-MS using an Apollo ESI source.

3.5.3. Synthesis

3.5.3.1. 5-(Boronic acid)-2,7-di-tert-butyl-9,9-dimethyl-9H-xanthene-4-carboxylic
acid methyl ester (3)

Under nitrogen, 4-methoxycarbonyl-5-bromo-2,7-di-tert-butyl-9,9-dimethylxanthene (2)

(1.00 g, 2.18 mmol), bis(pinacolato)diboron (0.830 g, 3.27 mmol), potassium acetate

(0.747 g, 7.63 mmol), dichloro[1,1'-bis(diphenylphosphino)ferrocene]-palladium(II)

dichloromethane adduct (0.159 g, 0.218 mmol) was added to 10 mL of anhydrous

dimethylsulfoxide and heated to 90 'C for 36 hours. Upon cooling, 60 mL of benzene

was added and the solution was washed with 3 x 100 mL of deionized water. The organic

layer was dried over MgSO 4 and reduced by rotary evaporation to obtain a black crude

product which was taken up in 200 mL of hexane and filtered; this was repeated three

times. The combined filtrates were reduced by rotary evaporation and the resulting solid

was recrystallized in hot isopropyl alcohol to yield the product as a white crystalline solid

upon cooling (0.398 g, 43% yield). X-ray quality crystals were grown from isopropyl

alcohol; the structure is shown in Figure 3.2. 'H NMR (500 MHz, CDCl3, 6): 7.56 (d, J =

2.5 Hz, IH), 7.51 (d, J = 2.5 Hz, IH), 7.48 (m, 2H), 3.95 (s, 3H) 1.62 (s, 6H) 1.41 (bs,

2H), 1.34 (s, 9H), 1.33 (s, 9H). '3C NMR (500 MHz, CDC13, 6): 166.7, 152.6, 149.1,



145.8, 145.0, 135.5, 131.4, 128.6, 128.0, 127.4, 126.2, 125.5, 116.2, 64.3, 52.8, 34.5,

33.0, 32.9, 31.7, 31.5, 24.9. HRESI-MS ([M + H]+) C2 5H340 5 B m/z, Calcd. 425.2495,

Found 425.2494. Subsequent synthetic procedure to bring 3 to 4 and then 5 as shown in

Scheme 3.1 can be found in Appendix B.

Figure 3.2. Thermal ellipsoid plot of 5-(boronic acid)-2,7-di-tert-butyl-9,9-dimethyl-
9H-xanthene-4-carboxylic acid methyl ester (3). Thermal ellipsoids are drawn at the
50% probability level.

3.5.3.2. 5-Bromo-2,7-di-tert-butyl-9,9-dimethyl-9H-xanthene-4-carboxylic

benzyl ester (6)
acid

4 -Hydroxycarbonyl-5-bromo-2,7-di-tert-butyl-9,9-dimethylxanthene (1) (0.500 g, 1.12

mmol), 4-dimethylaminopyridine (0.013 g, 0.107 mmol), and benzyl alcohol (0.12 mL,
1.12 mmol) was added to 50 mL of dry dichloromethane and the solution was cooled to 0

'C in an ice water bath. To this, 1.22 mL of a 1.0 M solution of 3-



dicyclohexylcarbodiimide in dichloromethane (1.22 mmol) was added and the reaction

stirred at 0 'C for 10 minutes than warmed to room temperature. Upon stirring for an

addition 6 hours at room temperature, the solution was again cooled to 0 'C, filtered, and

washed with a minimal amount of cold dichloromethane (about 6 mL). The filtrate was

reduced by rotary evaporation; the crude product was purified by column

chromatography (silica gel, 9:1 hexane: ethyl acetate) to elute the product as a pale

yellow oil that solidified under vacuum overnight. (0.599 g, 99% yield). IH NMR (500

MHz, CDCl3, 6): 7.71 (d, J = 2.5 Hz, 1H), 7.54 (m, 3H), 7.45 (d, J = 2.4 Hz, 1H), 7.38

(m, 2H), 7.33 (m, 2H) 5.50 (s, 2H), 1.65 (s, 6H), 1.34 (s, 9H), 1.33 (s, 9H). 13C NMR

(500 MHz, CDCI3, 6): 167.1, 147.4, 147.3, 145.7, 145.3, 136.5, 131.1, 130.7, 128.74,

128.72, 128.68, 128.3, 126.7, 126.6, 121.7, 119.7, 110.5, 67.3, 35.4, 34.79, 34.76, 32.2,

31.6, 20.8. HRESI-MS ([M + Na]÷) C3 1H350 3BrNa m/z, Calcd. 557.16406, Found

557.1641.

3.5.3.3. 2,7-Di-tert-butyl-9,9-dimethyl-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-

yl)-9H-xanthene-4-carboxylic acid benzyl ester (7)

Under nitrogen, 5-bromo-2,7-di-tert-butyl-9,9-dimethyl-9H-xanthene-4-carboxylic acid

benzyl ester (6) (0.500 g, 0.93 mmol), potassium acetate (0.321 g, 3.27 mmol),

bis(pinacolato)diboron (0.355 g, 1.40 mmol), and dichloro[l,1'-bis(diphenyl-

phosphino)ferrocene]palladium(II) dichloromethane adduct (0.068 g, 0.093 mmol) was

added to 5 mL of anhydrous dimethylsulfoxide and heated to 90 'C for 24 hours. Upon

cooling, 25 mL of benzene was added and the solution was washed with 3 x 50 mL of

water and dried with MgSO 4. The solvent was removed by rotary evaporation and the

resulting crude black oil was put under vacuum overnight to give a crude black solid. The

solid was stirred in 100 mL of hexane and filtered; this procedure was repeated three

times. The combined filtrate was rotary evaporated to reveal a semicrystalline colorless

solid, which was used in the next step without further purification.

3.5.3.4. 2,7-Di-tert-butyl-5-(3-formyl-4-hydroxy-phenyl)-9,9-dimethyl-9H-

xanthene-4-carboxylic acid benzyl ester (8)

Under nitrogen, 2,7-di-tert-butyl-9,9-dimethyl-5-(4,4,5,5-tetramethyl-

[1,3,2]dioxaborolan-2-yl)-9H-xanthene-4-carboxylic acid benzyl ester (7) (0.307 g, 0.61

mmol) is added to 5-bromosalicylaldehyde (0.123 g, 0.61 mmol), sodium carbonate



(0.094 g, 0.91 mmol), dichloro[1,1'-bis(diphenylphosphino)ferrocene]palladium(II)

dichloromethane adduct (0.027 g, 0.034 mmol), 9 mL of 1,2-dimethoxyethane and 3 mL

of deionized water and heated to 90 'C for 48 hours. Upon cooling, 50 mL of

dichloromethane was added and the solution was washed with 2 x 50 mL of deionized

water. The combined aqueous layers were extracted with 20 mL of dichloromethane, and

the combined organic layers were dried with MgSO4. Upon solvent removal by rotary

evaporation the crude solid was purified by column chromatography (silica gel, 8:2

hexane: ethyl acetate) to elute the desired product as a colorless solid (0.102 g, 29%). 'H

NMR (500 MHz, CDCl3, 6): 11.03 (s, 1H), 9.96 (s, IH), 7.91 (d, J = 2.5 Hz, 1H), 7.72

(dd, J = 8.5 Hz, 2 Hz, 1H), 7.58 (m, 2H), 7.46 (d, J = 2 Hz, IH), 7.24 (m, 4H), 7.15 (m,

2H), 7.00 (2, J = 8.5 Hz, 1H), 5.06 (s, 2H), 1.71 (s, 6H), 1.37 (s, 9H), 1.33 (s, 9H).

HRESI-MS ([M + Na]÷) C38H40OsNa m/z, Calcd. 599.2768, Found 599.2781. Synthetic

procedure to deprotect 8 to give 5 can be found in Appendix B.

3.5.3.5. 2,7-Di-tert-butyl-5-(3-formyl-4-methoxy-phenyl)-9,9-dimethyl-9H-xanthene-

4-carboxylic acid (9)

Under nitrogen, a mixture of 4-hydroxycarbonyl-5-bromo-2,7-di-tert-butyl-9,9-

dimethylxanthene (1) (0.150 g, 0.338 mmol), 3-formyl-4-methoxyphenylboronic acid

(0.067 g, 0.371 mmol), sodium carbonate (0.052 g, 0.507 mmol),

tetrakis(triphenylphosphine)palladium (0.015 g, 0.020 mmol), DMF (9 mL), and

deionized water (I mL) was heated to 90 'C for 36 hours. Upon cooling, 10 mL of water

was added and the mixture was extracted with 3 x 25 mL of dichloromethane. The

organic portions were combined and dried over MgSO 4 and the solvent removed by

rotary evaporation. The crude solid was purified by column chromatography (silica gel,

8:2 pentane: ethyl acetate) to elute the colorless product (0.108 g, 64% yield). 'H NMR

(500 MHz, CDCI3, 6): 10.55 (s, 1H), 8.03 (d, J = 2.5 Hz, 1H), 7.98 (d, J = 2.5 Hz, 1H),

7.70 (dd, J = 8.5 Hz, 2 Hz, 1 H), 7.68 (d, J = 2.5 Hz, 1H), 7.49 (d, J = 2.5 Hz, 1H), 7.21

(d, J = 2 Hz, IH), 7.15 (d, J = 8.5 Hz, 1H), 4.02 (s, 3H), 1.73 (s, 6H), 1.37 (s, 9H), 1.34

(s, 9H). 13C NMR (500 MHz, CDCl 3, 6): 190.1, 167.8, 161.7, 148.3, 147.1, 146.3, 144.7,

137.6, 134.2, 131.3, 130.1, 130.0, 129.3, 128.21, 128.16, 126.4, 124.8, 122.1, 116.9,

112.2, 56.0, 35.1, 34.83, 34.80, 32.0, 31.7, 31.5. HRESI-MS ([M - H] ) C3 2H350 5 m/z,

Calcd. 499.2490, Found 499.2482.



Figure 3.3. Thermal ellipsoid plot of 2,7-di-tert-butyl-5-(3-formyl-4-hydroxyphenyl)-
9,9-dimethyl-9H-xanthene-4-carboxylic acid (5). Thermal ellipsoids are drawn at the
50% probability level.
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3.5.3.6. 2,7-Di-tert-butyl-5-(3-formyl-4-hydroxy-phenyl)-9,9-dimethyl-9H-xanthene-
4-carboxylic acid (5)

2,7-Di-tert-butyl-5-(3-formyl-4-methoxy-phenyl)-9,9-dimethyl-9H-xanthene-4-

carboxylic acid (9) (0.545 g, 1.11 mmol) was added to 20 mL of dry dichloromethane and

cooled to 0 'C. A solution of boron tribromide (3 mL, 1.0 M in dichloromethane) was

added and upon stirring for 3 hours, 20 mL of water was added. The organic layer was

separated, washed with 10 mL of water, and dried over MgSO 4. The solvent was

evaporated and the residue was purified by column chromatography (silica gel, 98:2

dichloromethane: methanol) to elute the product (0.330 g, 62% yield). X-ray quality

crystals were grown by slow evaporation of a saturated dichloromethane solution. The



structure is shown in Figure 3.3. 1H NMR (500 MHz, CDCI3): 8 = 11.13 (s, IH), 9.97 (s,

1H), 8.02 (d, J = 2.5 Hz, 1H), 7.79 (d, J = 2.5 Hz, 1H), 7.71 (d, J = 2.5 Hz, 1H), 7.69 (d,

J= 2.5 Hz, 1H), 7.50 (d, J = 2.5 Hz, 1H), 7.23 (d, J = 2.5 Hz, 1H), 7.13 (d, J = 8.5, 1H),

1.74 (s, 6H), 1.39 (s, 9H), 1.38 (s, 9H). 13C NMR (500 MHz, CDC13, 6): 198.0, 169.8,

160.8, 147.0, 146.4, 145.7, 145.3, 138.7, 136.0, 130.6, 130.4, 130.1, 127.5, 126.4, 125.9,

125.8, 122.2, 121.5, 120.5, 117.5, 44.9, 35.1, 34.8, 34.7, 32.2, 31.7, 31.6. HRESI-MS ([M

- H] ) C31H330 5 m/z, Calcd. 485.2323, Found 485.2234.

3.5.3.7. H2(HSX*-COOH) (11)

A mixture of 2,7-di-tert-butyl-5-(3-formyl-4-hydroxy-phenyl)-9,9-dimethyl-9H-

xanthene-4-carboxylic acid (5) (0.100 g, 0.206 mmol) was combined with (1R,2R)-(-)-

1,2-diaminocyclohexane (0.012 g, 0.103 mmol) in 4 mL of absolute ethanol and refluxed

for 12 hours. Upon cooling the solvent was removed by rotary evaporation and the

resulting yellow solid was washed with 1 mL of cold methanol and dried under vacuum

to yield 0.100 g of product (92% yield). 'H NMR (500 MHz, CDCI3, 8): 8.63 (s, 2H),

7.90 (d, J = 2 Hz, 2H), 7.76 (d, J = 2.5 Hz, 2H), 7.58 (d, J = 2.5 Hz, 2H), 7.38 (m, 4H),

7.23 (d, J = 2 Hz, 2H), 6.95 (d, J = 8.5 Hz, 2H), 3.60 (d, J = 9.5 Hz, 2H), 2.07 (d, J =

11.5 Hz, 2H), 1.95 (d, J = 9.5 Hz), 1.76 (s, 6H), 1.73 (m, 2H), 1.68 (s, 2H), 1.61 (s, 6H),

1.36 (s, 18H), 1.35 (s, 18H). HRESI-MS ([M - H]-) C68H77N2 0 8 m/z, Calcd. 1049.5676,

Found 1049.5676. Anal. Calcd for C68H7 8N20 8: C, 77.68; H, 7.48; N, 2.61. Found: C,

77.61; H, 756; N, 2.61.

3.5.3.8. Mn(HSX*-COOH)CI (12)

H2(HSX*-COOH) (11) (0.100 g, 0.095 mmol) and manganese(II) acetate tetrahydrate

(0.035 g, 0.143 mmol) was added to 8 mL of ethanol and refluxed for 3 hours in air.

Upon cooling 1 mL of an aqueous saturated sodium chloride solution was added and after

stirring for 5 minutes an additional 10 mL of water was added. The mixture was then

extracted with 2 x 6 mL of dichloromethane. The combined organic portions were then

washed with 5 mL of water and dried over MgSO 4. The solvent was removed by rotary

evaporation to yield the brown product (0.101 g, 93% yield). HRESI-MS ([M - Cl]-)

C68H76MnN 208 m/z, Calcd. 1103.4977, Found 1103.4931. Anal. Caled for

C68H76ClMnN2Os-2H 20: C, 69.46; H, 6.86; N, 2.38. Found: C, 69.65; H, 6.67; N, 2.21.



3.5.3.9. 2,7-Di-tert-butyl-9,9-dimethyl-4-dihydroxyborane-5-(4,4,5,5-tetramethyl-

[1,3,2]dioxaborolan-2-yl)-9H-xanthene (13)

Under nitrogen, a mixture of 4,5-dibromo-2,7-di-tert-butyl-9,9-dimethylxanthene (2.00 g,

4.17 mmol), bis(pinacolato)diboron (3.17 g, 12.5 mmol), potassium acetate (2.86 g, 29.2

mmol), dichloro[1,1'-bis(diphenylphosphino)ferrocene]palladium(II) dichloromethane

adduct (0.305 g, 0.41 mmol), and anhydrous dimethyl sulfoxide (25 ml) was heated to 90

'C for 48 hours. Upon cooling, the mixture was extracted with 4 x 100 mL of

dichloromethane. The organic portions were combined and washed with 4 x 100 mL of

water and dried over MgSO4 and the solvent removed by rotary evaporation. 500 mL of

hexanes was stirred into the residue and filtered. The filtrate was reduced by rotary

evaporation to give a crude solid, which was recrystallized by hot isopropyl alcohol to

give the colorless product (0.622 g, 30 %). Upon recrystallization, the monoboronic acid

and mono-ester is typically the pure product. 'H NMR (300 MHz, CDC13, 6): 7.86 (d, J=

2.7 Hz, 1H), 7.72 (d, J = 2.4 Hz, 1H), 7.55 (d, J = 2.4 Hz, 1H), 7.47 (d, J = 2.7 Hz, 1H),

1.63 (s, 6H), 1.42 (s, 12H), 1.36 (s, 9H), 1.35 (s, 9H).

3.5.3.10. 5-(5-Bromo-2,7-di-tert-butyl-9,9-dimethyl-9H-xanthen-4-yl)-2-methoxy-

benzaldehyde (15)

Under nitrogen, 3-formyl-4-methoxyphenylboronic acid (0.409 g, 1.56 mmol), 4,5-

dibromo-2,7-di-tert-butyl-9,9-dimethylxanthene (1.00 g, 2.08 mmol), sodium carbonate

(0.321 g, 0.321 mmol), and dichloro[1,1 '-bis(diphenylphosphino)ferrocene]palladium(II)

dichloromethane adduct (0.076 g, 0.104 mmol) was added to 18 mL of dimethoxyethane

and 6 mL of deionized water, degassed prior to use. This was heated to 90 'C for 12

hours. Upon cooling, the mixture was extracted with 4 x 75 mL of dichloromethane. The

organic portions were combined and washed with 2 x 25 mL of water and dried over

MgSO 4 . The solvent removed by rotary evaporation and the residue was purified by

column chromatography (silica gel, 7: 3 hexane: dichloromethane) to elute the product

(0.040 g, 5 % yield). 'H NMR (500 MHz, CDC13, 6): 10.56 (s, IH), 8.16 (d, J = 2.5 Hz,

1H), 8.04 (dd, J = 9 Hz, 2 Hz, 1H), 7.44 (d, J = 2 Hz, 1H), 7.43 (d, J = 2 Hz, 1H), 7.38

(d, J = 2 Hz, 1H), 7.30 (d, J = 2 Hz, 1H), 7.12 (d, J = 9 Hz, IH), 4.02 (s, 3H), 1.71 (s,

6H), 1.39 (s, 9H), 1.33 (s, 9H). 13C NMR (500 MHz, CDCl 3, 6): 190.0, 161.2, 146.9,

146.2, 145.4, 145.3, 138.4, 131.3, 130.7, 130.5, 129.9, 128.5, 127.7, 126.0, 124.5, 122.1,



121.9, 111.3, 110.2, 56.0, 35.5, 34.8, 34.7, 32.4, 31.7, 31.75, 31.72, 31.6. HRESI-MS ([M

+ Na]') NaC31H35BrO3 m/z, Calcd. 557.1662 Found 557.1662.

3.5.3.11. 5-(5-Bromo-2,7-di-tert-butyl-9,9-dimethyl-9H-xanthen-4-yl)-2-hydroxy-

benzaldehyde (16)

Under nitrogen, 5-(5-bromo-2,7-di-tert-butyl-9,9-dimethyl-9H-xanthen-4-yl)-2-methoxy-

benzaldehyde (15) (0.040 g, 0.074 mmol) was added to dry dichloromethane (10 mL) and

the solution was cooled in an ice bath. Boron tribromide was added (1.4 mL, 1.0 M in

dichloromethane) and the solution was warmed to room temperature and for 12 hours.

The solution was washed with 3 x 6 mL of saturated sodium carbonate solution followed

by brine and dried using MgSO4. The solvent was removed by rotary evaporation to give

the product as a colorless oil (0.037 g, 97%). Synthetic procedure to take 16 to 17 can be

found in Appendix B.

3.5.3.12. (5-Bromo-2,7-di-tert-butyl-9,9-dimethyl-9H-xanthen-4-yl)-trimethyl-

stannane (18)

4,5-Dibromo-2,7-di-tert-butyl-9,9-dimethylxanthene (1.00 g, 2.08 mmol) was added to 12

mL of dry tetrahydrofuran and cooled to -78' C in a dry ice/acetone bath. Phenyllithium

(1.7 mL, 1.8 M in cyclohexane) was added dropwise and the mixture was stirred for one

hour and then warmed to room temperature. Trimethyltin chloride was added and stirred

an additional hour. The solution was reduced by rotary evaporation to an oil, and purified

by column chromatography (silica gel, pentane) to elute the product (0.446g, 38% yield).

'H NMR (500 MHz, CDC13, 6): 7.46 (d, J = 2 Hz, IH), 7.36 (m, 3H), 1.66 (s, 6H), 1.37

(s, 9H), 1.34 (s, 9H).

3.5.3.13. 4-Bromo-2,7-di-tert-butyl-9,9-dimethyl-5-(4-hydroxyborane)-9H1-

xanthene (19)

4,5-Dibromo-2,7-di-tert-butyl-9,9-dimethylxanthene (2.00 g, 4.16 mmol) was added to

40 mL of dry tetrahydrofuran under nitrogen and cooled to -78' C in a dry ice/acetone

bath. Phenyllithium (2.4 mL, 1.8 M in cyclohexane) was added dropwise and the

reaction was stirred for one hour and then warmed to room temperature. Tri-i-

propylborate (0.95 mL 4.15 mmol) was added and the reaction stirred for an additional

hour. 20 mL of dilute HCL was then added slowly and the organic solvent was removed



by rotary evaporation. The remaining aqueous solution was filtered, and the colorless

precipitate was recrystallized from hot methanol, and further purified by column

chromatography (silica gel, 8: 2 hexane: ethyl acetate) to elute the product (1.440 g, 78 %

yield). iH NMR (300 MHz, CDCl 3, 6): 7.87 (d, J = 2.5 Hz, 1H), 7.55 (d, J = 2.5 Hz,

1H), 7.47 (d, J = 2.5 Hz, 1H), 7.39 (d, J = 2.5 Hz, 1H), 6.09 (bs, 2H), 1.66 (s, 6H), 1.37

(s, 9H), 1.34 (s, 9H). 13C NMR (500 MHz, CDCl3, 6): 153.19, 147.52, 146.31, 144.63,

132.51, 131.55, 128.61, 128.25, 126.42, 122.38, 109.73, 35.24, 35.82, 34.72, 32.56,

31.72, 31.58. "B NMR (500 MHz, CDCl3, 6): 28.42.

Figure 3.4. Thermal ellipsoid plot of 4-Bromo-2,7-di-tert-butyl-9,9-dimethyl-5-(4-
hydroxyborane)-9H-xanthene (19). Thermal ellipsoids are drawn at the 50%
probability level.
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3.5.3.14. (5-Bromo-2,7-di-tert-butyl-9,9-dimethyl-9H-xanthen-4-yl)-tributyl-

stannane (20)



4,5-Dibromo-2,7-di-tert-butyl-9,9-dimethylxanthene (5.00 g, 10.42 mmol) was added to

80 mL of dry tetrahydrofuran and cooled to -78' C in a dry ice/acetone bath.

Phenyllithium (6.5 mL, 1.8 M in cyclohexane) was added dropwise and the mixture was

stirred for one and a half hours and then warmed to room temperature. Tri(n-butyl)tin

chloride was added and the reaction stirred an additional hour. The reaction was then

reduced by rotary evaporation to an oil, to which 10 mL of pentane was added and the

resulting solution filtered. The filtrate was reduced to oil and purified by column

chromatography (silica gel, pentane) to elute the product as colorless oil (3.12 g, 60%

yield). 'H NMR (500 MHz, CDCl3, 6): 7.46 (d, J = 2 Hz, 1H), 7.37 (m, 2H), 7.35 (d, J =

2 Hz, 1H), 1.66 (s, 6H), 1.61 (q, J = 8 Hz, 6H), 1.40 (m, 6H), 1.37 (s, 9H), 1.34 (s, 9H),

1.28 (t, J = 8 Hz, 6H), 0.91 (t, J = 8 Hz, 9H). "3C NMR (500 MHz, CDCl3, 6): 152.48,

146.36, 145.92, 145.78, 132.37, 131.48, 128.57, 128.45, 127.51, 123.31, 122.32, 109.80,

35.55, 34.71, 32.92, 31.82, 31.63, 29.54, 27.65, 13.98, 10.19. HRESI-MS ([M + Na]÷)

C35H55O 3BrOSn m/z, Calcd. 713.2355, Found 713.2352.

3.5.3.15. 4-(5-Bromo-2,7-di-tert-butyl-9,9-dimethyl-9H-xanthen-4-yl)-benzoic acid

(23)

A solution of 4-(5-bromo-2,7-di-tert-butyl-9,9-dimethyl-9H-xanthen-4-yl)-benzoic acid

methyl ester (22) (0.414 g, 0.773 mmol) in 10 mL of THF was refluxed with 5 mL of

saturated sodium hydroxide in water for 2 hours. The mixture was neutralized with

aqueous HCI and extracted with 3 x 25 mL of dichloromethane. The combined organic

layers were dried with MgSO 4 and the solvent removed by rotary evaporation to yield the

colorless product (0.334 g, 83.1% yield). 'H NMR (500 MHz, CDCI3, 6): 8.07 (d, J = 6.0

Hz, 2H), 7.65 (d, J = 6.0 Hz, 2H), 7.48 (s, 1H), 7.36 (s, 1H), 7.30 (s, IH), 7.22 (s, 1H),

1.63 (s, 6H), 1.28 (m, 18H). "3C NMR (500 MHz, CDCl3, 6): 172.6, 147.1, 146.3, 145.5,

145.4, 144.0, 131.4, 130.6, 130.2, 130.1, 128.6, 128.3, 128.0, 126.3, 122.9, 121.8, 110.4,

35.6, 34.83, 34.79, 35.4, 31.7, 31.6. HRESI-MS ([M + H]F) C30H330 3Br m/z, Calcd.

521.1686, Found 521.1679.

3.5.3.16. 4-[2,7-Di-tert-butyl-5-(3-formyl-4-methoxy-phenyl)-9,9-dimethyl-9H-

xanthen-4-yi]-benzoic acid (24)

Under nitrogen, a mixture of 4-(5-bromo-2,7-di-tert-butyl-9,9-dimethyl-9H-xanthen-4-

yl)-benzoic acid (23) (0.300 g, 0.575 mmol), 3-formyl-4-methoxyphenylboronic acid



(0.114 g, 0.633 mmol), sodium carbonate (0.089 g, 0.864 mmol),

tetrakis(triphenylphosphine)palladium (0.025 g, 0.034 mmol), DMF (9 mL), and

deionized water (1 mL) was heated to 90 oC for 36 hours. Upon cooling, the mixture was

extracted with 3 x 100 mL of dichloromethane. The organic portions were combined and

dried over MgSO 4 and the solvent removed by rotary evaporation. The crude solid was

purified by column chromatography (silica gel, 98:2 dichloromethane: methanol) to elute

the colorless product (0.323 g, 97.3% yield). 1H NMR (500 MHz, CDCl3, 6): 10.41 (s,

1H), 7.87 (s, 1H), 7.82 (s, 1H), 7.74 (d, J = 1.25 Hz, 1H), 7.49 (d, J = 2.5 Hz, 1 H), 7.45

(d,J = 2.5 Hz, 1 H), 7.43 (dd, J= 6 Hz, 2.5 Hz, IH), 7.36 (d, J= 8 Hz, 2H), 7.18 (dd, J

- 8 Hz, 2 Hz, 2H), 6.68 (d, J = 8.5 Hz, 1H), 3.96 (s, 3H), 1.75 (s, 6H), 1.37 (s, 9H), 1.36

(s, 9H). 13C NMR (500 MHz, CDCI3, 6): 189.9, 171.9, 161.1, 146.0, 145.94, 145.88,

145.5, 137.4, 135.3, 130.9, 130.5, 130.0, 129.8, 129.7, 128.3, 128.2, 128.1, 127.0, 125.73,

125.70, 124.4, 122.7, 121.9, 111.0, 55.8, 35.4, 34.8, 31.83, 31.79, 31.77, 29.9, 27.5.

HRESI-MS ([M + Na]) C38H4005Na m/z, Calcd. 599.2768, Found 599.2757.

3.5.3.17. 4-[2,7-Di-tert-butyl-5-(3-formyl-4-hydroxy-phenyl)-9,9-dimethyl-9H-

xanthen-4-yl]-benzoic acid (25)

4-[2,7-Di-tert-butyl-5-(3-fonrmyl-4-methoxy-phenyl)-9,9-dimethyl-9H-xanthen-4-yl]-

benzoic acid (24) (0.300 g, 0.520 mmol) was added to 10 mL of dichloromethane and

cooled to 0 'C. A solution of boron tribromide (1.6 mL, 1.0 M in dichloromethane) was

added and upon stirring for 2 hours, 6 mL of water was added. The organic layer was

separated, washed with 10 mL of water, and dried over MgSO 4. The solvent was

evaporated and the residue was purified by column chromatography (silica gel, 98:2

dichloromethane: methanol) to elute the product (0.181 g, 62% yield). 1H NMR (500

MHz, C4D80 5): 9.45 (s, IH), 7.74 (d,J = 8 Hz, 1H), 7.68 (d,J = 8 Hz, IH), 7.54 (d,J =

2 Hz, 2H), 7.45 (m, 4H), 7.31 (d, J = 8 Hz, 1H), 7.23 (dd, J = 10.5, 1.5 Hz, IH), 6.73 (d,

J = 8.5 Hz, 1H), 1.36 (s, 18H). 13C NMR (500 MHz, C4D80, 6): 196.9, 167.5, 161.7,

146.74, 146.66, 143.6, 138.6, 135.5, 133.0, 132.9, 132.5, 131.6, 131.5, 130.7, 130.6,

130.3, 130.1, 129.4, 129.3, 129.0, 126.7, 126.5, 123.3, 122.8, 121.8, 117.7, 36.1, 35.4,

32.0, 25.8, 25.6, 25.3, 25.2. HRESI-MS ([M - H] ) C3 7H3 70 5 m/z, Calcd. 561.2646,

Found 561.2646.

3.5.3.18. H2(HphSX*-COOH) (26)



A mixture of 4-[2,7-di-tert-butyl-5-(3-formyl-4-hydroxy-phenyl)-9,9-dimethyl-9H-

xanthen-4-yl]-benzoic acid (25) (0.025 g, 0.044 mmol) was combined with (lR,2R)-(-)-

1,2-diaminocyclohexane (0.003 g, 0.022 mmol) in 5 mL of absolute ethanol and refluxed

for 15 hours. Upon cooling the solvent was removed by rotary evaporation and the

resulting yellow solid was washed with 0.5 mL of cold methanol and dried under vacuum

to yield the product as a dull yellow solid (0.026 g, 97 % yield). 'H NMR (500 MHz,

CDCI3, 25 'C, 6): 7.91 (m, 4H), 7.47 (d, J = 7 Hz, 2H), 7.68 (m, 4H), 7.55 (d, J = 7 Hz,

2H), 7.39 (m, 4H), 7.19 (m, 2H), 7.11 (s, 2H), 7.10 (s, 2H), 3.54 (bs, 2H), 2.33 (bs, 4H),

2.05 (bs, 4H), 1.72 (s, 12H), 1.35 (s, 18H), 1.30 (s, 18H). HRESI-MS ([M - H] )

C80H85N20 8 m/z, Caled. 1201.6311, Found 1201.6329.

3.5.3.19. Mn(HphSX*-COOH)Cl (27)

H2(HphSX*-COOH) (26) (0.010 g, 0.008 mmol) and manganese(II) acetate tetrahydrate

(0.003 g, 0.012 mmol) was added to 3 mL of ethanol and refluxed for 4 hours in air.

Upon cooling 0.5 mL of an aqueous saturated sodium chloride solution was added and

the mixture was extracted with 2 x 15 mL of dichloromethane. The combined organic

portions were then washed with 15 mL of water and dried over MgSO 4. The solvent was

removed by rotary evaporation to yield the brown product (0.010 g, 93% yield). HRESI-

MS ([M - Cl] ) CsoH 84MnN20 8 m/z, Calcd. 1255.5603, Found 1255.5605. Anal. Calcd

for C80H84 C1MnN 208: C, 74.37; H, 6.55; N, 2.17. Found: C, 74.21; H, 6.72; N, 2.10.

3.5.3.20. 2,7-Di-tert-butyl-9,9-dimethyl-4,5-di-(4-benzoic acid methyl ester)-9H-

xanthene (28)

28 was the major product of reaction A under several Suzuki coupling conditions shown

in Scheme 3.4. Characterization data: 1H NMR (500 MHz, CDCI3, 6): 7.72 (d, J = 8.5

Hz, 4H), 7.48 (d, J = 2 Hz, 2H), 7.28 (d, J = 8.5 Hz, 4H), 7.19 (d, J = 2 Hz, 2H), 3.96 (s,

6H), 1.75 (s, 6H), 1.36 (s, 18H). 13C NMR (500 MHz, CDCl3, 8): 167.1, 145.9, 143.0,

130.8, 129.7, 129.1, 128.6, 128.4, 125.7, 122.3, 52.2, 35.5, 34.8, 31.8, 31.6. HRESI-MS

([M + Na]÷) NaC39H4 20 5 m/z, Calcd. 613.2924, Found 521.1679.

3.5.3.21. 3-tert-Butyl-2-hydroxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-

benzaldehyde (30)



Under nitrogen, a mixture of 5-bromo-3-tert-butylsalicylaldehyde (29) (1.00 g, 3.89

mmol), bis(pinacolato)diboron (1.087 g, 4.28 mmol), potassium acetate (0.572 g, 5.83

mmol), and bis(tricyclohexylphosphine)palladium(0) (0.130 g, 0.194 mmol) was

combined with 24 mL of dry dioxane and heated to 85 'C for 36 hours. Upon cooling, 20

mL of water was added and the mixture was extracted with 4 x 50 mL benzene. The

organic portions were combined and dried over MgSO 4. The solvent was removed by

rotary evaporation and the residue was purified by column chromatography (silica gel,

7:3 hexane: dichloromethane) to give the desired product (0.715 g, 60.4%). 'H NMR

(500 MHz, CDCl3, 25 'C): 6 = 12.00 (s, 1H), 9.90 (s, 1H), 7.93 (s, 1H), 7.91 (s, 1H), 1.43

(s, 9H), 1.35 (s, 12H). 13C NMR (500 MHz, CDC13, 65): 197.72, 163.81, 140.21, 140.18,

137.62, 120.61, 84.15, 35.04, 30.40, 29.44, 25.08. HRESI-MS ([M + H] +) calcd for

CI7H26BO4 m/z, 305.1933, found 305.1922.

3.5.3.22. 2,7-Di-tert-butyl-5-(3-tert-butyl-5-formyl-4-hydroxy-phenyl)-9,9-dimethyl-

9H-xanthene-4-carboxylic acid (31)

Under nitrogen, 4-hydroxycarbonyl-5-bromo-2,7-di-tert-butyl-9,9-dimethylxanthene (1)

(0.400 g, 0.898 mmol), 3-tert-butyl-2-hydroxy-5-(4,4,5,5-tetramethyl-

[1,3,2]dioxaborolan-2-yl)-benzaldehyde (30) (0.300 g, 0.988 mmol), sodium carbonate

(0.139 g, 1.35 mmol) and tetrakis(triphenylphosphine)palladium(0) (0.062 g, 0.053

mmol) were combined with 18 mL of DMF and 2 mL of deionized water and the mixture

was heated to 90 TC for 36 hours. Upon cooling 30 mL of dichloromethane was added

and the solution was washed with 10 mL of water. The aqueous layer was then extracted

with 2 x 10 mL dichloromethane and the combined organic portions were dried over

MgSO 4 . The solvent was removed by rotary evaporation and the residue was purified by

column chromatography (silica gel, 3:7 diethyl ether: pentane) to give the desired product

(0.265 g, 54%). 1H NMR (500 MHz, CDCI3, 25 'C): 6 = 11.92 (s, IH), 9.95 (s, 1H), 8.06

(d, J = 2 Hz, 1H), 7.71 (d, J = 2 Hz, 1H), 7.63 (d, J = 2 Hz, 1H), 7.57 (d, J = 2 Hz, 1H),

7.51 (d, J = 2 Hz, 1H), 7.24 (d, J = 2 Hz, IH), 1.76 (s, 6H), 1.48 (s, 9H), 1.40 (s, 9H),

1.37 (s, 9H). 13C NMR (500 MHz, CDCl3, 8): 197.29, 165.26, 161.25, 148.08, 147.57,

146.93, 144.52, 139.44, 135.25, 132.60, 131.19, 130.14, 129.00, 128.73, 128.54, 128.33,

126.68, 122.34, 120.88, 116.29, 35.32, 35.16, 34.91, 32.11, 31.72, 31.52, 29.32. HRESI-

MS ([M + H]") calcd for C 35H4 30 5 m/z, 543.3105, found 534.3109.



3.5.3.23. 4-[2,7-Di-tert-butyl-5-(3-tert-butyl-5-formyl-4-hydroxy-phenyl)-9,9-
dimethyl-9H-xanthen-4-yl]-benzoic acid (32)

Under nitrogen, 4-(5-bromo-2,7-di-tert-butyl-9,9-dimethyl-9H-xanthen-4-yl)-benzoic

acid (22) (0.312 g, 0.598 mmol), 3-tert-butyl-2-hydroxy-5-(4,4,5,5-tetramethyl-

[1,3,2]dioxaborolan-2-yl)-benzaldehyde (30) (0.200 g, 0.657 mmol), sodium carbonate

(0.092 g, 0.897 mmol), and tetrakis(triphenylphosphine)palladium(0) (0.041 g, 0.036

mmol) were added to 18 mL DMF and 2 mL deionized water. The mixture was heated to

90 'C for 36 hours. Upon cooling 30 mL of dichloromethane was added and the solution

was washed with 10 mL of water. The aqueous layer was then extracted with 2 x 15 mL

dichloromethane and the combined organic portions were dried over MgSO 4. The solvent

was removed by rotary evaporation and the residue was purified by column

chromatography (silica gel, 2:8 ethyl acetate: pentane) to give the desired product (0.273

g, 68% yield). 1H NMR (500 MHz, CDCI3, 25 °C): 8 = 11.72 (s, IH), 9.36 (s, IH), 7.80

(d, J = 8 Hz, 2H), 7.50 (m, 2H), 7.48 (d, J = 2 Hz, 1H), 7.32 (d, J = 8 Hz, 2H), 7.22 (J =

2 Hz, IH), 7.20 (m, 2H) 1.78 (s, 6H), 1.45 (s, 9H), 1.40 (s, 9H), 1.38 (s, 9H). 13C NMR

(500 MHz, CDC13, 6): 196.78, 170.83, 160.39, 145.95, 145.89, 145.78, 145.72, 143.74,

138.02, 135.02, 135.33, 133.63, 130.69, 130.38, 129.75, 129.62, 128.90, 128.69, 128.20,

127.69, 125.59, 122.75, 121.90, 120.39, 35.39, 35.08, 34.81, 31.14, 31.80, 31.77, 29.45.

HRESI-MS ([M + H] +) calcd for C4 1H470 5 m/z, 619.3418, found 619.3414.

3.5.3.24. H2[HSX*tBu-COOH] (33)

2 ,7-Di-tert-butyl-5-(3-tert-butyl-5-formyl-4-hydroxy-phenyl)-9,9-dimethyl-9H-xanthene-

4-carboxylic acid (31) (0.100 g, 0.184 mmol) was added to (IR,2R)-(-)-1,2-

diaminocyclohexane (0.010 g, 0.092 mmol) to 6 mL of absolute ethanol. The mixture

was heated to reflux for 12 hours. Upon cooling, the solvent was removed by rotary

evaporation and the residue was washed with 1 mL of cold methanol and then dried

under vacuum to give the bright yellow product (0.105 g, 98%). 'H NMR (500 MHz,

CDCl3, 250 C): 8 = 8.61 (s, 2H), 7.66 (s, 2H), 7.58 (bs, 2H), 7.51 (s, 2H), 7.46 (d, J = 2

Hz, 2H), 7.41 (d, J= 2 Hz, 2H), 7.31 (d, J= 2 Hz, 2H), 3.16 (bs, 2H), 2.97 (m, 2H), 2.31

(m, 2H), 1.83 (s, 12H), 1.52 (s, 18H), 1.50 (s, 4H), 1.39 (18H), 1.35 (18H). HRESI-MS

([M - H]-) calcd for C76H93N20 8 m/z, 1161.6926, found 1161.6884.

3.5.3.25. H2[HphSX*Bu-COOH] (34)



4-[2,7-Di-tert-butyl-5-(3-tert-butyl-5-formyl-4-hydroxy-phenyl)-9,9-dimethyl-9H-

xanthen-4-yl]-benzoic acid (32) (0.050 g, 0.081 mmol) was added to (1R,2R)-(-)-1,2-

diaminocyclohexane (0.005 g, 0.040 mmol) to 5 mL of absolute ethanol. The mixture

was refluxed for 12 hours. Upon cooling, the solvent was removed by rotary evaporation

and the residue was washed with 1 mL of cold methanol and dried under vacuum to give

the yellow product (0.051 g, 96%). 'H NMR (500 MHz, CDC13, 25°C): 5 = 7.82 (m, 6H),

7.49 (d, J = 2 Hz, 2H), 7.43 (d, J = 2 Hz, 2H), 7.34 (m, 6H), 7.22 (m, 4H), 6.92 (s, 2H),

3.74 (m, 2H), 3.66 (bs, 2H), 3.51 (bs, 2H), 2.02 (bs, 4H), 1.76 (s, 12H), 1.56 (s, 18H),

1.39 (s, 18H), 1.38 (s, 18H). HRESI-MS ([M + H]') calcd for C88HI 03N20 8 m/z,

1315.7709, found 1315.7704.

3.5.3.26. Mn[HSX*lBu-COOHICl (35)

H2[HSX*-'Bu-COOH] (33) (0.105 g, 0.093 mmol) was added to manganese(II) acetate

tetrahydrate (0.033 g, 0.140 mmol) in 6 mL of absolute ethanol and the solution was

refluxed in air for 2 hours. Upon cooling, 1 mL of an aqueous saturated sodium chloride

solution was added and the mixture was stirred for 10 minutes and then extracted with 3

x 10 mL of dichloromethane. The organic layers were combined and washed with 10 mL

of water and then dried over MgSO 4. The solvent was removed by rotary evaporation to

leave the brown product (0.112 g, 99%). HRESI-MS ([M - Cl]+) calcd for

C76H92C1MnN 2 0 8 m/z, 1215.6229, found 1215.6241. Anal. Calcd for C76H92C1MnN 2Os:

C, 72.91; H, 7.41; N, 2.24. Found: C, 72.84; H, 7.46; N, 2.35.

3.5.3.27. Mn[HphSX*tBu-COOHICI (36)

H2[HphSX*-'Bu-COOH] (34) (0.025 g, 0.019 mmol) was combined with manganese(ll)

acetate tetrahydrate (0.007 g, 0.028 mmol) in 3 mL of absolute ethanol and refluxed in air

for 2 hours. Upon cooling, 0.5 mL of an aqueous saturated sodium chloride solution was

added and the mixture was stirred for 10 minutes and then extracted with 3 x 10 mL of

dichloromethane. The organic layers were combined and washed with 5 mL of water and

dried over MgSO4. The solvent was removed by rotary evaporation to give the brown

product (0.027 g, 100%). HRESI-MS ([M - C1] ) calcd for C88H100ooMnN 208 m/z,

1367.6860, found 1367.7056. Anal. Calcd for C88Ho100CIMnN208: C, 75.27; H, 7.18; N,

2.00. Found: C, 75.15; H, 7.38; N, 2.13.



3.5.4. Epoxidation of 1,2-Dihydronapthalene

For the determination of ee, the epoxidation method and conditions are modified from

previous epoxidation studies using manganese salen complexes. 47 5 mL of a 0.05 M

solution of Na2HPO4 was added to 12.5 mL of commercial bleach (Clorox). The pH of

this solution (-55 mM in NaOC1) was adjusted to pH 12 by the dropwise addition of 1.0

M NaOH solution and cooled to 0 'C. 4.5 mL of this prepared bleach solution was added

to a pre-cooled 0 'C solution of 1,2-dihydronapthalene (100 mg, 0.77 mmol) and

Mn[HSX*-COOH]Cl (12) (85 mg, 0.077 mmol, 10% catalyst loading) in 2 mL of

dichloromethane. 4.8 mL of the prepared bleach solution was added to a pre-cooled 0 'C

solution of 1,2-dihydronapthalene (104 mg, 0.800 mmol) and Mn[HSX*tBu-COOH]Cl

(35) (10 mg, 0.008 mmol, 1% catalyst loading) in 8 mL of dichloromethane. 3.6 mL of

the prepared bleach solution was added to a pre-cooled 0 'C solution of 1,2-

dihydronapthalene (78 mg, 0.600 mmol) and Mn[HphSX* tBu-COOH]Cl (36) (8.4 mg,

0.006 mmol, 1% catalyst loading) in 6 mL of dichloromethane. Upon stirring for 12

hours, the layers were separated and the aqueous layer was extracted with 2 x 6 mL of

dichloromethane. The combined organic layers were washed with 10 mL of water and 10

mL of a saturated sodium chloride solution and dried over MgSO 4. After solvent removal

by rotary evaporation the crude product was purified to by column chromatography

(silica gel, 98:2 pentane:ethyl acetate) to yield the epoxide product. The ee was

determined by use of a chiral GC calibrated using a pure racemic epoxide sample. The ee

measurements were performed using a chiral GC housed in Professor Timothy Jamison's

laboratory and the experiment was assisted by graduate students Chudi Ndubaku and

Ryan Moslin.

The data from Table 3.1 was determined as followed: 0.2 mM solutions of the catalyst

(1R, 2R)-(-)-[1,2-cyclohexanediamino-N,N'-bis(3,5-di-tert-butylsalicylidene)]

manganese(III) chloride (1.3 mg in 10 mL of dichloromethane), Mn[HSX*'Bu-COOH]Cl

(35) (2.5 mg in 10 mL of dichloromethane), and [HphSX*tBu-COOH]Cl (36) (2.8 mg in

10 mL of dichloromethane) were prepared. A 20 mM solution of 1,2-dihydronapthalene

and 10 mM dodecane (65 mg of 1,2-dihydronapthalene and 43 mg of dodecane in 25 mL)

was prepared. For NaOCI as the oxidant, the oxidant solution was prepared by mixing 2

mL of 0.05 M NaHPO4 and 5 mL of commercial bleach (Clorox) and 0.1 mL of 1 M



NaOH solution and then cooled to 0 'C. 1.5 mL of this solution was added to 0.5 mL of

each catalyst solution and 0.5 mL of the 1,2-dihydronapthalene/dodecane solution, pre-

cooled to 0 'C. For PhlO as the oxidant, 4.0 mg of PhIO was added to 0.5 mL of each

catalyst solution with 0.5 mL of the 1,2-dihydronapthalene/dodecane solution. For the

trial with an equivalent of N-methylimidazole, 10 [tL of a 0.0104 M solution (42.7 mg in

50 mL of dichloromethane) of N-methylimidazole was added to each reaction. For H20 2,

the oxidant solution was prepared by diluting 1 mL of 30% H2 0 2 solution with 9 mL of

H20. A 40 mM solution of 1,2-dihydronapthalene and 10 mM of dodecane was prepared

(130 mg 1,2-dihydronapthalene and 43 mg of dodecane in 25 mL of dichloromethane).

0.5 mL of this was added to 0.5 mL of each catalyst solution. The diluted solution of

H20 2 was added over 3 hours. Upon completion of the oxidant addition, the reaction was

stirred for an additional hour before being sampled. The concentration of the substrate

and epoxide product was determined by GC/MS with dodecane as the internal standard to

determine the turnover numbers (TON). The GC/MS spectra were taken on an Agilent

Technologies 6890N Network housed at the MIT DCIF.

3.5.5. X-Ray Crystal Data Collection and Refinement Parameters

Data collection and reduction

Crystals were coated with Paratone N oil and mounted on a glass fiber. X-ray diffraction

data were collected at -80 'C on a Siemens three-circle diffractometer equipped with a

CCD detector, using the Mo Ka radiation, selected by a graphite monochromator. The

data were integrated to hkf-intensity and the final unit cell calculated using the SAINT

v.4.050 program from Siemens. Solution and refinement were performed with the

SHELXTL v.5.03 suite of programs developed by G. M. Sheldrick and Siemens

Industrial Automation, 1995. No absorption correction was performed. The structure was

solved by direct methods; the least-squares refinement converged normally (with

hydrogen atoms placed at calculated positions using a standard riding model and refined

isotropically).



Table 3.2. Crystal data and structure refinement for 5-(boronic acid)-2,7-di-tert-butyl-

9,9-dimethyl-9H-xanthene-4-carboxylic acid methyl ester (3).

Identification code 030780a

Empirical formula C25 H33 BO5

Formula weight 424.32

Temperature 467(2) K

Wavelength 0.71073 A

Crystal system Triclinic

Space group P 1

Unit cell dimensions a = 9.157(7) A -= 77.035(14)0

Volume

Z
Density (calculated)

Absorption coefficient

F(000)

Crystal size

0 range for data collection

Index ranges

Reflections collected

Independent reflections

Completeness to 0 = 24.690

Absorption correction

Refinement method

Data / restraints / parameters

Goodness-of-fit on F2

Final R indices [I > 2c(I)]

R indices (all data)

Largest diff. peak and hole

b = 11.143(10) A

c = 12.500(11) A

1217.6(18) A3

/-= 83.053(17)0

y= 79.421(18)0

1.157 Mg/m 3

0.078 mm-1

456

0.20 x 0.17 x 0.04 mm 3

2.26 to 24.69'

-8<h<7, -11 <k< 12,-5< <14

2658

2654 [Rint = 0.0508]

63.9%

None

Full-matrix least-squares on F2

2654 / 0 / 291

1.083

R- =0.0970, wR2 =0.1710

R, = 0.1935, wR2 = 0.2057

0.201 and -0.212 e/A 3



Table 3.3. Crystal data and structure refinement 2,7-di-tert-butyl-5-(3-formyl-4-hydroxy-
phenyl)-9,9-dimethyl-9H-xanthene-4-carboxylic acid (5).

Identification code

Empirical formula

Formula weight

Temperature

Wavelength

Crystal system

Space group

Unit cell dimensions

Volume

Density (calculated)

Absorption coefficient

F(000)

Crystal size

0 range for data collection

Index ranges

Reflections collected

Independent reflections

Completeness to 0 = 24.730

Absorption correction

Refinement method

Data / restraints / parameters

Goodness-of-fit on F2

Final R indices [I>25(l)]

R indices (all data)

Largest diff. peak and hole

03084a

C31 H34 05

486.58

467(2) K

0.71073 A

Triclinic

P1

a = 9.7828(9) A

b = 9.8015(9) A

c = 15.2502(14) A

1336.8(2) A3

a = 78.978(2)0

6= 82.309(2)0

y=68.047(2)0

1.209 Mg/m 3

0.081 mm - 1

520

0.34 x 0.31 x 0.15 mm 3

2.27 to 24.730

-ll<h<7, -11 < k < 9, 18 < <18

6974

4471 [Rint = 0.0274]

97.6 %

None

Full-matrix least-squares on F2

4471 / 0 / 334

1.021

R, = 0.0720, wR2 = 0.1568

R1 =0.1084, wR 2 = 0.1738

0.476 and -0.284 e/A 3
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Table 3.4. Crystal data and structure refinement 4-bromo-2,7-di-tert-butyl-9,9-dimethyl-

5-(4-hydroxyborane)-9H-xanthene (19)

Identification code 003321m

Empirical formula C23 .50 H31 B Br Cl 03

Formula weight 487.65

Temperature 193(2) K

Wavelength 0.71073 A

Crystal system Monoclinic

Space group P2 1/n

Unit cell dimensions a = 17.9609(11) A

b = 15.4003(9) A 8= 108.9950(10)0

c= 18.3354(11) A

Volume 4795.5(5) A3

Density (calculated)

Absorption coefficient

F(000)
Crystal size

Theta range for data collection

Index ranges

Reflections collected

Independent reflections

Completeness to theta = 23.270

Absorption correction

Refinement method

Data / restraints / parameters

Goodness-of-fit on F2

Final R indices [I>2sigma(I)]

R indices (all data)

1.351 Mg/m3

1.847 mm-1

2024

0.42 x 0.40 x 0.38 mm3

1.77 to 23.270.

-10<=h<=19, -17<=k<=17, -

20<=1<= 18

21429

6890 [R(int) = 0.1133]

99.9%

None

Full-matrix least-squares on F2

6890 / 0 / 577

0.894

RI = 0.0568, wR2 = 0.1082

RI = 0.1263, wR2 = 0.1249
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Chapter 4

Catalase Activity and Epoxidation of

Functionalized Olefins by Manganese

Hangman Salens

Portions of the work presented in this chapter have been published:

Yang, J. Y.; Bachmann, J.; Nocera, D. G. J. Org. Chem. 2006, 71, 8706-8714.
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4.1. Motivation and Specific Aims

The ability of the Hangman salen platform to support multielectron chemistry mediated

by proton-coupled electron transfer (PCET) is established by their proclivity to promote

the catalytic disproportionation of hydrogen peroxide to oxygen and water (Chapter 2)

and OAT (Chapter 3) via a high-valent metal oxo. The stopped-flow spectroscopic

studies discussed in Chapter 2 afforded kinetic information on the reaction with the first

equivalent of hydrogen peroxide to produce the oxidizing species in the manganese

Hangman salophen complexes. Although the second step of the catalase reaction, the

oxidation of the second equivalent of hydrogen peroxide by the Mn(V) oxo, is difficult to

probe directly, it has been examined computationally. The modular nature of the salen

Hangman ligand permits these computational predictions to be examined experimentally

by correlating catalytic efficiency with structural features, such as the addition of steric

parameters around the ligand macrocycle and changes in the acid-to-metal distance

within the molecular cleft. The interplay of experiment with computation in further

elucidating the mechanism of catalase activity by salen active sites is examined in this

Chapter.

4.2. Background

The penchant to be highly effective mimics of the catalase enzyme (see equation 1) is a

characteristic shared by the manganese Hangman salophen complexes studied in Chapter

2,12 and the previously studied iron Hangman porphyrin complexes. 3'4 The hanging

group in the Hangman ligand construct mediates proton-coupled electron transfer (PCET)

activation that is at the core of bond-making and -breaking reactions in Nature. 5-8 In these

systems, the hanging acid-base functional group controls the secondary coordination

sphere for substrate assembly and activation, distilling the essential components of their

enzymatic counterparts. 9 We were compelled to expand our knowledge of the catalase

reaction,

catalase
2 H202 catalase 2H 20 + 02(1)

and specifically with salen as catalase mimics because of the efficacy of manganese salen

complexes as therapeutic agents of reactive oxygen species (ROS) in biological
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systems. lO Increased formation of ROS has been associated with a number of

pathological processes, including inflammatory, ischemic and neurodegenerative

diseases. I I Oxidative stress and tissue damage is thought to occur if the amount of ROS

generated exceeds the capabilities of existing natural antioxidants to neutralize them. 12

Preventing this damage has prompted the search for low molecular weight, non-toxic,

synthetic compounds that can catalytically reduce ROS to serve as antioxidant

theraputics. II ,13 The discovery of nonpeptidyl macrocyclic manganese compounds that

are competent superoxide dismutase (SOD) mimics l4,15 (dismutate superoxide to

hydrogen peroxide and oxygen) has resulted in the screening of many different

manganese compounds for SOD and/or catalase activity.16 (Not all SOD mimics are good

catalase mimics; the production of cytotoxic hydrogen peroxide from the dismutation of

superoxide makes both abilities equally important as a ROS scavenger).17 Currently, the

patented salen complexes manganese bis(salicylidene)-1 ,2-ethylenediamine chloride

(EUK-8), and manganese bis(3-methoxysalicylidene)-1 ,2-ethylenediamine chloride

(EUK-134)IS have displayed extremely high SOD and catalase activity, and has already

demonstrated success in removing cytotoxic amounts of hydrogen peroxide in animal I9


23 and human tissue,24 preventing damage by endotoxic shock,20 stroke,22 and UV-light,24

as well as extending the life of a multicellular organism (the nematode Caenorhabditis

elegans).25 Both compounds are presently in clinical trials for their antioxidant

capabilities.26 The success of these compounds has prompted many structure

reactivitylO,27 and computationafS
,29 investigations aimed at elucidating key intermediates

and steps in the catalytic cycle and apply this knowledge to rationally design better

catalysts. To this end, the Hangman salen platform with its modular synthesis makes it an

ideal venue in which to define the structural and electronic properties of salen complexes

that are critical to enhanced ROS activity.

4.3. Results and Discussion

4.3.1. Synthesis
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Scheme 4.1

t-Bu t-Bu t-Bu t-Bu

/ \ R, R, R,

-0 -N .N/ ORR OM-O'_ O 2 /\ ,~2 -.- %

t-Bu t-Bu t-Bu t-Bu
3: R, = CO 2Me, R2 = Me 7 : R1 = CO2Me, M=2H

1 : R, = CO 2Me b 4 : R, = PhCO 2Me, R2 = Me d 8 : R, = PhCO 2Me, M=2H
b I d

2: R1 = PhCO 2Me 5 : R1 = CO 2Me, R2 = H 9 : R, = CO 2Me, M=MnCI

6 : R, = PhCO 2Me, R2 = H 10: R, = PhCO 2Me, M=MnCI

(a) 3-formyl-4-methoxyphenylboronic acid, Na2CO 3, Pd(PPh 3)4, DMF: H20 (9:1), (b)
BBr3, CH 2C12, (c) (1R,2R)-(-)-1,2-diaminocyclohexane, EtOH, (d) i)
Mn(OAc) 2(H20) 4, ii) NaCl(aq)

The synthesis of acid functionalized compounds Mn[HSX*-COOH]Cl and Mn[HphSX*-

COOH]Cl is described in Chapter 3. To serve as control compounds, we also synthesized

the analogous methyl esters Mn[HSX*-COOMe]Cl and Mn[HphSX*-COOMe]C1, as

shown in Scheme 4.1. The methyl ester functionalized xanthene precursors 13,30 and 21

are Suzuki coupled 31 with 3-formyl-4-methoxyphenylboronic acid to give 3 and 4. The

methyl ethers on 3 and 4 are deprotected using boron tribromide. , 3 3 Boron tribromide is

also known to deprotect methyl esters, 34 however, 5 and 6 can be isolated by reducing the

reaction time to selectively cleave the methyl ether while leaving the ester intact in the

major product. Condensation of 5 and 6 with 0.5 equivalents of (1R,2R)-(-)-1,2-

diaminocyclohexane provides the ligands 7 and 8 respectively; they are metallated using

manganese acetate with an aqueous sodium chloride workup, as described for their acid

functionalized analogues in Chapter 3 to give 9 and 10.

Scheme 4.2

R - OH a 11 :BR=Ph / N

C
12 : M = 2H 13 : M = MnCI

(a) phenylboronic acid, Na2CO 3, Pd(dppf)C12, DME: H20 (3: 1), (b) (1R,2R)-(-)-1,2-
diaminocyclohexane, EtOH, (c) Mn(OAc) 2(H 20) 4, (ii) NaC1(aq)
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To generate a redox- only control compound that lacks the functionalized xanthenes, we

synthesized the salen ligand (R,R)-N,N'-Bis(5-phenylsalicylidene)-1,2-

cyclohexanediamine (12) (see Scheme 4.2), which is functionalized with phenyl groups

in the 5 and 5' positions. The functionalized salicylaldehyde 4-hydroxy-biphenyl-3-

carbaldehyde (11) can be synthesized by Suzuki coupling 3 1 5-bromosalicylaldehyde to

phenylboronic acid and the synthesis of the ligand (12) followed standard condensation

conditions. Manganese ion may be inserted into the salen core by refluxing the ligand

with an excess of manganese acetate in air, followed by workup with a saturated aqueous

sodium chloride solution to give Mn[5-phsalen]CI (13).

4.3.2. Catalase Activity of Manganese Hangman Salen Complexes

The acid-functionalized Mn[HSX*-COOH]Cl and Mn[HphSX*-COOH]Cl comprise a

structurally homologous series of doubly-bridged Hangman constructs in which the acid

Figure 4.1. Turnover number (TON) of hydrogen peroxide dismutation catalyzed by
manganese compounds [Mn(5-phsalen)Cl] (13) (13* in the presence of 2 equivalents
of benzoic acid), Mn[HSX*-COOH]C1, Mn[HSX*-COOMe]Cl (9), Mn[HphSX*-
COOH]Cl and Mn[HphSX*-COOMe]Cl (10) after 1 hour.
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44

<71ý>



group can be differentially extended over the face of the salen. We examined the activity

of Mn[HSX*-COOH]Cl and Mn[HphSX*-COOH]Cl and their corresponding methyl ester

analogues 9 and 10 towards the disproportionation of hydrogen peroxide in biphasic

dichloromethane/methanol, under similar conditions to those used in the prior catalase

studies. Figure 4.1 shows the turnover numbers (TON) for oxygen production by

Mn[HSX*-COOH]Cl and Mn[HphSX*-COOH]C1, and control systems in which (i) a

proton is absent from the hanging group (9 and 10) and (ii) the salen platform is

unmodified [Mn(5-phsalen)Cl] (13). The presence of the acid-base hanging group results

in a dramatic increase in catalase-type reactivity. Whereas high TON can be achieved

with Mn[HSX*-COOH]Cl and Mn[HphSX*-COOH]C1, relatively low TONs are

observed when the carboxylic acid functionality is replaced by an ester (9 and 10).

Similarly, control experiments with the redox-only manganese salen complex 13 shows

low activity for disproportionation. The addition of an external H+ source (benzoic acid)

enhances TON of the parent salen complex, but the activity remains far inferior to that of

Figure 4.2. Oxygen release from hydrogen peroxide dismutation catalyzed by
manganese compounds Mn(5-phsalen)Cl] (13) ( ), 13* (*in the presence of 2
equivalents of benzoic acid) (0), Mn[HSX*-COOH]Cl (*), Mn[HSX*-COOMe]Cl (9)
(x), Mn[HphSX*-COOH]Cl (+), and Mn[HphSX*-COOMe]Cl (10) (o) over 1 hour.

Inset shows reaction profile for the first five minutes excluding the methyl ester
compounds 9 and 10.
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Mn[HSX*-COOH]Cl and Mn[HphSX*-COOH]C1, which manages the proton by

intramolecular transfer from the hanging functional group. The superior activity of

Mn[HSX*-COOH]Cl and Mn[HphSX*-COOH]Cl is reflected in the activity profiles

shown in Figure 4.2. Both Mn[HSX*-COOH]C1 and Mn[HphSX*-COOH]Cl exhibit

similar reactivity profiles. Initial turnover frequencies are the similar for both catalysts

but Mn[HSX*-COOH]C1 appears to be more robust over time and hence exhibits higher

overall activity.

4.3.3. Mechanistic Insights

The dismutation of hydrogen peroxide by manganese salens 28' 2 9 is believed to proceed via

the same "ping-pong" mechanism that has been proposed for the catalase enzyme. 35 In

this mechanism (outlined in Scheme 4.3), the first molecule of hydrogen peroxide binds

to the Mn(III) metal site and oxidizes it to Mn(V) oxo, releasing a molecule of water. A

second molecule of hydrogen peroxide is then oxidized by the Mn(V) oxo forming

oxygen and water while the metal is reduced back to the Mn(IIl) resting state. Although

each step in this proposed catalytic cycle is not understood in detail, recent experimental

and theoretical investigations have provided valuable insight into the potential

intermediates and their kinetic and energetic parameters.

In Chapter 2, we replaced H20 2 by acyl peroxide to permit the catalase cycle at the

Hangman salophen platform to be arrested; upon proton transfer, the acyl peroxide

coordinated to the Mn(III) center furnishes a high-valent Mn(V) oxo intermediate,

isolating the first step of the cycle.2 The stopped-flow studies reveal that this step,

however, is not rate-determining and for this reason we believe the acid-to-metal distance

is less crucial for the first step in of the catalase cycle in the Hangman systems. A

theoretical study of manganese salen oxidation to from Mn(V) oxo by hydrogen peroxide

supports this observation. Abashkin and Burt found that 0-0 bond cleavage, oxidation

of the Mn, and water molecule formation is an efficient intramolecular one-step reaction

with the low calculated TS barrier of 3.6 kcal/mol. 28

Instead, subsequent oxidation of the second molecule of hydrogen peroxide by the Mn(V)

oxo appears to be rate-determining. 2 8,29 The hydrogen peroxide can approach the terminal

oxo in two different orientations, and it is this orientation that is critical to the second step
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Scheme 4.3
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in the catalytic cycle. A top-side approach forms the end-on assembly shown in the

transition state, and provides a low energy pathway towards oxidation of the hydrogen-

bonded peroxide. Following a singlet reaction channel with this assembly, (spin ground-

state of the resting catalyst), the activation barrier for protonation of the metal oxo by the

hydrogen peroxide (to form water and release oxygen) is a modest 11.7 kcal/mol.29 We

believe the hanging acid group in the molecular cleft is beneficial to promoting the

formation of the end-on intermediate via a hydrogen bonding network, shown as

intermediate A in Scheme 4.3.

If the hydrogen peroxide instead approaches the Mn(V) oxo in a side-on fashion, it can

form productive hydrogen-bonds with the phenolic oxygen as well as the metal oxo to

give intermediate B. Both protons on the hydrogen peroxide are necessary to protonate

the metal oxo and form water; therefore the hydrogen-bond with the phenolic oxygen

must be broken in order to return to the Mn(III) resting state and complete the catalytic

cycle. The effect of this high activation barrier is that B is a kinetically stable

intermediate which limits the overall catalytic activity by temporarily deactivating the

catalyst.29 It is proposed that addition of steric blocking groups in the 3 and 3' position,

ortho to the phenols, can prevent the side-on approach and formation of the hydrogen-

110

H20

t

120



bond to the phenolic oxygen to form intermediate B. This would provide our catalysts

with a further bias for intermediate A versus intermediate B, and should show enhanced

catalytic activity as a result. Engineering our catalyst to enforce the ideal intermediate

geometry is particularly important since in the absence of any of these features both

intermediates are almost energetically equal, with intermediate B only 1.8 kcal/mol lower

in energy than the end-on assembly. 29 As we have already synthesized the analogous

manganese Hangman salens that are functionalized with tert-butyl groups in the 3 and 3'

position, we are well situated to test this hypothesis.

4.3.4. Synthesis of Methyl Esters of Sterically Protected Manganese Hangman

Salens

The synthesis of acid functionalized compounds Mn[HSX* tBu-COOH]Cl and

Mn[HphSX* tBu-COOH]Cl is described in Chapter 3. The methyl ester analogues were

synthesized as described in Scheme 4.4 to serve as proton-absent control catalysts. The

two precursors 13,30 and 21 were synthesized stepwise as previously described. They were

Suzuki-coupled" with 3-tert-butyl-2-hydroxy-5-(4,4,5,5-tetramethyl-

[1,3,2]dioxaborolan-2-yl)-benzaldehyde (synthesis described previously, compound 16 in

Chapter 3) to give 14 and 15, which is then condensed with 0.5 equivalents of (IR,2R)-

(-)-1,2-diaminocyclohexane. The manganese chloride ion was inserted similarly to the

procedure previously described in this Chapter, using manganese(II) acetate as the metal

Scheme 4.4

t-Bu t-Bu t-Bu t-Bu

\R R R RR

af... O b .. O o

Br OH 0 M /
t-Bu t-Bu t-Bu

t-Bu t-Bu t-Bu t-Bu
1 : R = CO 2Me 14: R = CO 2Me 16: R = CO 2Me, M=2H c 18: R = CO 2Me, M=MnCI
2 : R = PhCO 2Me 15: R = PhCO 2Me 17: R = PhCO 2Me, M=2H 19: R = PhCO2 Me, M=MnCI

(a) 3-tert-butyl-2-hydroxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-benzalde-
hyde, Na 2CO 3 , Pd(PPh3)4, DMF: H2O (9:1), (b) (1R,2R)-(-)-1,2-diaminocyclohexane,
EtOH, (c) Mn(OAc) 2 (H20) 4 , (ii) NaCl(aq)
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precursor to give the methyl-ester-functionalized manganese Hangman 18 and 19.

4.3.5. Catalase Activity of Sterically Protected Manganese Salen Complexes

Hangman complexes Mn(HSX*tBu-COOH)Cl and Mn(HphSX* tBu-COOH)Cl were

examined for their catalytic activity. Figure 4.3 shows the turnover numbers (TON) for

hydrogen peroxide dismutation by the Hangman systems over the course of one hour.

These results are compared to two controls: a manganese salen lacking a xanthene

scaffold but with the tert-butyl groups in the 3 and 3' position and the analogous

Hangman platform functionalized with methyl esters. The unsubstituted control, [(1,2-

cyclohexanediamino-N,N'-bis(3,5-di-tert-butylsalicylidene)] manganese chloride,

demonstrates negligible TONs, even with the addition of two equivalents of benzoic acid

to serve as an intermolecular proton source. Conversely, Hangman platforms show high

TONs, but only if a proton is present on the hanging group; Mn(HSX* tBu-COOH)Cl

exhibits TONs that are appreciably higher than Mn(HSX*tBu-COOMe)Cl (18), where the

Figure 4.3 Turnover number (TON) of hydrogen peroxide dismutation catalyzed by
manganese compounds Mn(salen)C1, Mn(salen)CI in the presence of 2 equivalents of
benzoic acid), Mn[HSX* tBu-COOH]CI, Mn[HSX* tBu-COOMe]Cl (18), Mn[HphSX*
tBu -COOH]Cl and Mn[HphSX* tBu-COOMe]Cl (19) after 1 hour.
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acid functionality has been replaced by an ester. The activity of Mn(HphSX*t Bu -

COOH)C1, with the acid extended from the xanthene with a phenylene group, also

demonstrates increased activity with respect to its methyl ester analogue Mn(HphSX* t Bu -

COOMe)Cl (19), albeit to a lesser extent. We note that the activity of 19 is complicated

by ester hydrolysis. Oxygen evolution is initially slow and ceases within 15 minutes of

hydrogen peroxide addition. At this point, a marked increase in activity is observed and

TONs are obtained that are higher than expected from the initial rate. Mass spectrometry

of Mn-containing species obtained from quenched reaction mixtures (-20 min) reveals

the presence of manganese salen complexes with the methyl ester deprotected.

Deprotection of methyl esters to give the acid derivative with hydrogen peroxide is

possible owing to the high pKa of the conjugate acid. Moreover it has been shown that

HOO- can nucleophilically cleave the methyl ester in some cases. 36 The oxygen evolution

profiles for the catalysts tested are shown in Figure 4.4.

4.3.6. Mechanistic Insights into Steric Protection

The effect of substitution at the 3 and 3' positions is revealed by comparison of the

activity of Mn(HSX*-COOH)Cl and Mn(HphSX*-COOH)Cl to Mn(HSX*tBu-COOH)Cl

and Mn(HphSX*'Bu-COOH)C1, respectively. An approximately three-fold increase in the

catalase activity is observed upon substitution of the tert-butyl groups. The overall TONs

are closely tied with the reaction rates in the first two minutes of the reaction. The initial

rate constants (kinit) for H 20 2 consumption by the four acid functionalized manganese

Hangman complexes are listed in Table 1. Mn(HSX*t Bu-COOH)Cl and Mn(HphSX*tBu -

Table 4.1. Observed turnover number (TON) and initial rate constant (k,) for Catalase-
like H202 disproportionation catalyzed by manganese catalysts in 2: 1
dichloromethane/methanol at 250 C.

Catalyst ki (M-1 s- )

Mn(HSX*-COOH)C1 6

Mn(HSX*tBu-COOH)Cla 14

Mn(HphSX-COOH*)Cl 5

Mn(HphSX* tBu-COOH)Cl 10

a Similar numbers were obtained using 2: 1 THF/methanol as the solvent.
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COOH)Cl display kinit that are roughly double that of their respective unsubstituted

congeners. Though the reactions are run under biphasic conditions with methanol serving

as a phase transfer reagent between dichloromethane/catalyst solution and the aqueous

hydrogen peroxide phase, reaction rates and TON are not limited by the biphasic nature

of the reaction. Dissolution of the more soluble Mn(HSX*tBu-COOH)Cl in

tetrahydrofuran and methanol yields a homogenous reaction mixture. Addition of the

aqueous hydrogen peroxide to this solution results in TONs that are commensurate with

those obtained under the biphasic conditions

We believe that it is the confluence of the hydrogen-bonding scaffold of the Hangman

platform and the steric blocking groups in the 3 and 3' position of Mn(HSX*t Bu -

COOH)Cl and Mn(HphSX*tBu-COOH)Cl that keeps the system on cycle and leads to the

enhanced rates and TONs for catalase activity.

4.3.7. Density Functional Theory on Manganese Hydroperoxide Hangman Salen
Complexes

Scheme 4.3 presents the possibility that the acid group of the Hangman scaffold enhances

catalase activity by pre-assembling intermediate A, which rapidly disproportionates to

bring the catalyst back to its resting state. The {Mn(V) oxo-H20 2} assembly is expected

to be sensitive to the positioning of the acid-base group over the face of the salen

platform. Energy minimized geometry optimizations were performed on our two acid

Figure 4.4. Energy minimized structure obtained from DFT of the hydroperoxide
complexes of Mn(HSX*-COOH), showing one of the carboxylic acids is hydrogen
bonded to the oxygen on the xanthene scaffold, while the other is hydrogen bonded to
the hydroperoxide.
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functionalized manganese Hangman salen ligands using the Amsterdam Density

Functional (ADF) program. In order to simplify the calculations, the methyl and tert-

butyl groups on the xanthene were excluded, and the cyclohexanediamine bridge was

replaced with ethylenediamine. The complexes were modeled with a hydroperoxide

bound axial to the manganese. The geometric parameters are listed in Table 4.3 later in

this Chapter, and the input file and optimized coordinates in the converged calculations

are listed in Appendix C.

For Mn[HSX*-COOH]OOH, the geometry optimized structure is shown in Figure 4.6.

Whereas one carboxylic acid can hydrogen-bond with the unbound oxygen on the

hydroperoxide at an acid-to-metal distance of -5 A, the other forms an unconstructive

intramolecular hydrogen-bond with the oxygen on the xanthene. To form this

intramolecular hydrogen bond, the xanthene tilts appreciably toward the plane of the

macrocycle ring presumably driven by the stabilization incurred from the formation of

the six-membered ring. This intramolecular bond has been observed in porphyrin

xanthene complexes in the absence of substrate.37 Hence, only one hanging group need

be involved for substrate assembly, even when two are available.

Figure 4.5. Energy minimized structure obtained from DFT of the hydroperoxide
complexes of Mn(HphSX*-COOH) showing the two carboxylic acids span the face of
the salen macrocycle to make a -(COOH) 2- dimer that interacts with the
hydroperoxide via a hydrogen bond.

The hydrogen bond network is structurally different for the phenyl-spaced system. Two

analogous energy-minimized calculation of the hydroperoxide bound Mn(HphSX*-
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Figure 4.6. Energy minimized structure obtained from DFT of the hydroperoxide

complexes of Mn(HphSX*-COOH) with the xanthenes splayed away from each other,
precluding formation of the -(COOH) 2- dimer. Each of the carboxylic acids has a

hydrogen- bonding interaction with the hydroperoxide.

COOH) were performed. The first revealed that the addition of the phenylene spacer

permits the two acids to comfortably span the distance above the salen platform to form

an intramolecular carboxylic acid dimer (Figure 4.7). An alternative structure was

explored by tilting the xanthene scaffolds away from each other so that while both

carboxylic acids can still form productive hydrogen bonds with the bound hydroperoxide,

they are not facing each other and thus cannot form a -(COOH) 2- dimer (Figure 4.8).

The structure is destabilized by 44 kJ/mol relative to that of the -(COOH) 2- dimer (Table

4.2) showing that formation of the dimer confers significant stabilization to Mn(HphSX*-

COOH). The formation of this stabilizing intramolecular hydrogen bond is likely

accompanied by a decrease in the acidity of the proton over the reactive cleft.

Accordingly, substrate assembly will be diminished due to the reduced ability to form

additional hydrogen bonds, thus accounting for the lower catalase activity of the benzoic

Table 4.2 Total bond energies of calculated manganese Hangman salen compounds.

Compound Total Energy (kJ/mol)

Mn(HSX*)-OOH -56695.92

Mn(HphSX*)-OOH (carboxylic acid dimer) -69749.31

Mn(HphSX*)-OOH (no carboxylic acid dimer) -69704.88
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acid functionalized complexes compared to when the acids are directly attached to the

xanthene bridge (vide supra), where the two acids are too far apart to form an

intramolecular dimer.

4.3.8. Acid-to-Metal Distance Effects

Chart 4.1

,-CO2H HO2C -

u tBu
-N I N

t-Bu t-Bu
Mn[HSD*tbu]CI Mn[HphSD* tBu]CI

Although the HSX* framework displayed greater catalase activity than HphSX*, the

correlation between reactivity and functional group distance can not be directly compared

because of the carboxylic acid dimer formed in the latter. Therefore, we are unable to

discern the effect of the acid distance from changes in the acid pKa upon formation of the

dimer. Because of the importance of the acid hanging groups in assembly of the

hydrogen peroxide in the molecular cleft, we wanted to investigate this effect. To this

end, we synthesized two additional Hangman ligands by replacing the xanthene scaffolds

with dibenzofuran. The geometry of the dibenzofuran scaffold positions the functionality

away from the metal center. By synthesizing the dibenzofuran manganese Hangman

salen compounds functionalized with carboxylic acid Mn[HSD* tBu-COOH]C1 and

benzoic acid Mn[HphSD* tBu-COOH]Cl (shown in Chart 4.1), we gain two additional

complexes to study the effect of the acid distance on catalase activity.

4.3.9. Synthesis of Dibenzofuran Analogues of Manganese Hangman Salens

The Hangman salen compounds using the dibenzofuran scaffold were assembled

according to the sequence described in Scheme 4.5. 4,6-Dibromodibenzofuran (20) was

synthesized by dilithiation of the commercially available dibenzofuran using sec-

butylithium followed by bromination by elemental bromide.38 To generate the

carboxylic-acid-functionalized Hangman, 4,6-dibromodibenzofuran was monolithiated
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Scheme 4.5
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OH t-Bu t-Bu
t-Bu d

29 30: M = 2H 31: M = MnCI

(a) (i) Phenyllithium, cyclohexane/THF, (ii) CO 2 gas (b) 3-tert-butyl-2-hydroxy-5-
(4,4,5,5-tetramethyl-[l,3,2]dioxaborolan-2-yl)-benzaldehyde, Na 2CO 3 , Pd(PPh 3)4,
DMF/H 20, (c) (1R,2R)-(-)-1,2-diaminocyclohexane, EtOH, (d) (i) Mn(OAc) 2(H20)4 ,
EtOH, (ii) aq. NaCI, (e) (i) Phenyllithium, cyclohexane/THF, (ii) SnBu 3Cl, (f) 12,
CH 2C02, (g) 4-methoxycarbonylphenyboronic acid, CsF, Pd(PPh3)4, dioxane, (h)
BBr 3, CH 2C12

using phenyllithium and carbon dioxide was bubbled through the solution to form 4-

bromo-6-hydroxycarbonyldibenzofuran (21). 38 Palladium-catalyzed Suzuki coupling

conditions with 3-tert-butyl-2-hydroxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-

benzaldehyde31 furnished the salen precursor 22. Synthesis of the benzoic acid

functionalized dibenzofuran required additional steps, similar to the multi-step procedure

used to obtain the analogous xanthene derivative.' 4,6-Dibromo-dibenzofuran (20) was

monolithiated using phenyllithium, followed by addition of tributyltin chloride to give

25. Addition of elemental iodine to 25 gave 4-bromo-6-iododibenzofuran (26). The aryl-

iodo position could be allowed to selectively react using palladium-catalyzed Suzuki

cross-coupling conditions with 4-methoxycarbonylphenylboronic acid to give 27. The

deprotected benzoic acid derivative of 27 could not be isolated cleanly due to its
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insolubility, but 27 can be coupled directly with 3-tert-butyl-2-hydroxy-5-(4,4,5,5-

tetramethyl-[1,3,2]dioxaborolan-2-yl)-benzaldehyde to give the more soluble 28. The

methyl ester can then be easily deprotected using boron tribromide to give 29. Ligand

precursors 22 and 29 can be condensed with half an equivalent of (1R,2R)-(-)-1,2-

diaminocyclohexane to give the ligands 23 and 30 in good yields. Manganese(III)

chloride can be inserted by refluxing with manganese(II) acetate, followed by workup

with an aqueous sodium chloride solution to give Mn[HSD*tBu-COOH]Cl (24) and

Mn[HphSD* tBu-COOH]Cl (31).

4.3.10. Density Functional Theory of Dibenzofuran Analogues of Manganese
Hangman Salens

Figure 4.7. Energy-minimized structures obtained from DFT of the hydroperoxide

complex Mn[HSD* tBu]OOH.

We examined the geometric parameters of the two manganese Hangman compounds

Mn[HSD* tBu-COOH]Cl (24) and Mn[HphSD* tBu-COOH]Cl (31), using the same

geometry optimized energy-minimization calculations on the hydroperoxide bound

species (replacing the chloride). Again, in order to simplify the calculations, we replaced

the cyclohexanediamine bridge with ethylenediamine and did not include the tert-butyl

and methyl groups. Selected bond and distance measurements for those two compounds

as well as the xanthene analogues are shown in Table 4.4 (located at the end of the

Chapter). For Mn[HSD* tBu-COOH]Cl (24), we find that the dibenzofuran tilts the

carboxylic acid functionalities appreciably away both vertically and laterally from the
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Figure 4.8. Energy-minimized structures obtained from DFT of the hydroperoxide

complex Mn[HphSD* tBu]OOH.

bound hydroperoxide, giving an average acid-to-metal distance of about 7.4 A (see

Figure 4.7). We expect this distance can increase slightly with some rotation about the

dibenzofuran-salen bond. As shown in Figure 4.8 (bottom), when the scaffold is

functionalized by a benzoic acid in Hangman complex 31, the acid is moved closer to the

metal along the salen macrocycle plane, but the tilt upwards forced by the dibenzofuran

geometry also moves the acid further away vertically from the metal center, giving acid-

to-metal distances of about 7.0 A and 7.6 A. In this structure, unlike the xanthene

analogue, the carboxylic acids are not close enough to form an intermolecular carboxylic

acid dimer.

4.3.11. Catalase Activity: Acid-to-Metal Distance Effects

The Hangman complexes Mn[HSD* tBu-COOH]Cl (24) and Mn[HphSD*tBu-COOH]Cl

(31) were evaluated for their reactivity in catalyzing the disproportionation of hydrogen

peroxide. The amount of 02 evolved in turnover numbers (TON) for each catalyst is

shown in Table 1. Of the two Hangman complexes with dibenzofuran scaffolds, the

benzoic acid functionalized catalyst [HphSD* tBu-COOH]C1 (31) demonstrated greater

activity, averaging 2537 TON after one hour. The acid-functionalized Mn[HSD* tBu -

COOH]CI (24), however, displays much lower activity, averaging only 767 TON an hour
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Table 4.2. Observed Turnover Number (TON) for H20 2 Disproportionation by

Manganese Hangman Catalysts over One Hour. a

Catalyst TON

Mn[HphSX*tBu]Clb 2495

Mn[HSX*tBu]Clb  5328

Mn[HphSD* tBu]C1 2537

Mn[HSD*tBu]CI 838

Mn[salen]ClbPc 164

Mn[salen]Clbd 182

a In 2:1 dichloromethane: methanol at 25 'C.
b Data taken from ref. 10.

c salen = (LR,2R)-(-)-[(1,2-cyclohexanediamino-N,N'-bis(3,5-di-tert-

butylsalicylidene)].
d Two equivalents of benzoic acid.

under the same conditions. For comparison, we have also included the average TON

from our two previously studied xanthene based Hangman salen compounds. The acid

functionalized xanthene Hangman Mn[HSX*tBu]Cl demonstrates the best catalase

activity, while the benzoic acid functionalized version Mn[HphSX* tBu]Cl is slightly less

active but similar to the dibenzofuran analogue [HphSD* tBu-COOH]Cl (31).

Although the distances are similar, the ideal assembly of the second equivalent of

hydrogen peroxide is thought to be roughly linear. This may explain why compound

[HphSD* tBu-COOH]Cl (31), where the increase in acid distance is primarily

perpendicular from the metallosalen macrocycle, is a superior catalysts to Mn[HSD*tBu -

COOH]C1 (24), which moves shifts the acids both vertically and horizontally. While

Mn[HSD* tBu-COOH]Cl (24) is the poorest-performing Hangman salen compound

studied thus far (shown in Table 4.2), it still outperforms the redox only manganese salen

platform with the addition of two equivalents of benzoic acid. So while it provides less

than ideal carboxylic acid distance for hydrogen peroxide, the structural Hangman

framework that provides the hydrogen bonding environment over the metal center is

better than the only having the proton source.
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4.3.12. Epoxidation of Functionalized Olefins

In Chapter 3, we examined the manganese Hangman salens with xanthene scaffolds for

their epoxidation activity. While they retained the ability to catalyze enantioselective

oxygen atom transfer, analogous to their manganese salen counterparts lacking the

Hangman framework, there was no appreciable enhancement in turnover number (TON).

From these results and our stopped-flow studies using Hangman salophens (discussed in

Chapter 2), the hanging group does not appear to facilitate the formation of the high

valent Mn(V) oxo species using peroxide, hypochlorite, or iodosobenzene as the oxidant.

However, we saw in this Chapter that the hanging group can assist hydrogen peroxide

oxidation by pre-assembly in the molecular cleft, resulting in turnover numbers orders of

magnitude over their unfunctionalized analogues. We sought to apply this principle to the

epoxidation of olefins appended with a functional group capable of hydrogen-bonding,

Scheme 4.6

thereby positioning the substrate for oxidation over the Mn(V) oxo, as shown in Scheme

4.6.

4-Acetoxystyrene was our initial substrate as it is well behaved in the GC-MS conditions

we employed to determine turnover numbers. As the different acid-to-metal distances in

our Hangman salens form molecular clefts of varying size, we examined the epoxidation

activity for the all of our acid fmunctionalized complexes, Mn[HphSX* tBu]C1,

Mn[HSX*tBu]C1, Mn[HphSD* tBu]C1, and Mn[HSD* tBu]Cl (listed from shortest to

longest acid-to-metal distance). As a control, we also examined the TON for an

unmodified manganese salen platform. Sodium hypochlorite was used as the oxidant. The

results we obtained are shown in Table 4.3. Although there was improvement in the TON

for some of the Hangman complexes, particularly Mn[HphSX* tBu]C1, the observed yield

122



Scheme 4.7

Br .OH a

Br

b

(a) pivaloyl chloride, pyridine, CH 2C 2, (b) tributyl(vinyl)tin, Pd(PPh3)4, toluene

for the epoxidation product for this substrate was not very high. Instead, we saw a

significant amount of a-mono- and di-chlorinated product, which was present in greater

amounts for the Hangman catalysts.

To prevent the formation of this side product, we initially thought to use the trifluorinated

analogue, but found during its synthesis that the trifluoroacetate appendage was

extremely prone to hydrolysis, particularly in the presence of base. 39 Instead, we used the

pivalic acid analogue, which was synthesized in two steps, shown in Scheme 4.7. 4-

Bromophenol was treated with pivaloyl chloride in the presence of pyridine to give 32,40

which was coupled under Stille coupling conditions 41 with tributyl(vinyl)tin to give the

functionalized olefin product 33.

This modified substrate prevents formation of the a-mono- and di-chlorinated side

products discussed above; the epoxidized substrate is instead the major product. As

shown in Table 4.3, the manganese Hangman salens with the functionalized xanthene

scaffolds demonstrate better epoxidation activity than the unmodified salen platform. The

dibenzofuran Hangman salen analogues show approximately the same activity as the

control. Although thus far we have only examined the two substrates described above, we

believe the enhanced TON we see with some of the Hangman complexes could be due to

a modest substrate pre-assembly via the carboxylic acid functionalities. Epoxidation of

functionalized olefins typically brings Sharpless' titanium tartrate catalyst to mind, which

enforces allylic alcohol assembly through a covalent bond between the metal and alcohol

group.42-44 In this case, we are using hydrogen-bonding interactions instead of covalent

interactions to direct reactivity. Hydrogen-bond interactions, along with n-stacking, are

thought to be important for the high regio- and stereoselective oxidation chemistry

performed by monoxoygenases, 4 5 48 heme peroxidases, 49 and fatty acid desaturases. 50-55
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Table 4.3. Analysis of products and turnover numbers (TON) for epoxidation
reactions as determined using GC/MS with 4-acetoxystyrene (R = H) and 2,2-
dimethyl-propionic acid 4-vinyl-phenyl ester (R = t-Bu) over 1 and 3 hours, using
sodium hypochlorite as the oxidant.

0 R

"N~ ~0
NaOCI

0 R

0

Mn(salen)Cla

Mn(HphSX* tBu)CI

Mn(HSX* tBu)Cl

Mn(HphSD* tBu)CI

Mn(HSD* tBu)C1

a salen = (1R,2R)-(

butylsalicylidene)]

R = H, (TON)

products

epoxid

1 hrs 3 hrs

1 3

11 13

5 10

9 7

4 8

monochl. dichl.

3 hrs 3 hrs

8 5

24 22

25 23

26 20

26 21

R -= t-Bu, (TON)

products

epoxide (34)

I hrs 3 hrs

3 8

3 26

7 16

7 8

4 4

)-[(1,2-cyclohexanediamino-N,N'-bis(3,5-di-tert-

The use of more labile non-covalent interactions plays an important role in facilitating

substrate turnover and catalyst activity. Secondary environments that take advantage of

this have already been successfully incorporated into synthetic catalysts to enforce

substrate selectivity.5 6-6 1 Although we have yet to demonstrate regioselectivity in our

epoxidation reactions, the hydrogen-bonding interactions we are accessing in our

Hangman framework are reminiscent of those found in enzymatic systems.

4.4. Concluding Remarks and Future Work

Comparison of the reactivity profiles and overall TON for H20 2 dismutation between

Hangman salens with pendant acid and methyl ester groups establishes the importance of

a hydrogen bonding group is in facilitating catalysis. Computational studies suggest that

only one carboxylic acid is needed to promote the favored end-on hydrogen peroxide

assembly with the metal oxo catalytic intermediate. When the functional group is

extended with a phenylene spacer, the two carboxylic acids are sufficiently close to form
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a -(COOH) 2- dimer, which reduces the propensity of the hanging group to promote

substrate assembly; accordingly, lower catalytic activity is observed.

The activity of the oxo catalyst of Mn salens is enhanced by the positioning of an acid-

base group over the salen that is modified with steric blocking groups at the 3 and 3'

position of the macrocycle, as predicted by theoretical investigations into the mechanism.

The hydrogen bonding network established by the Hangman scaffold and the steric

blocking groups work in concert to promote the end-on assembly of the second

equivalent of the hydrogen peroxide in conformation that productive for its subsequent

oxidation by the manganyl oxo. These design principles should find utility for the

construction of general Mn salen catalysts displaying enhanced ROS activity.

As the hydrogen-bonding functionalities on our Hangman ligands serve as a platform for

facilitating hydrogen peroxide disproportionation, we would like to investigate their

effect on the related ROS, the superoxide radical. This is a particularly important activity

in the context of developing therapeutic agents against oxidative stress.62-69 As mentioned

in the introduction, most manganese salens behave as superoxide dismutate (SOD)

mimics as well as demonstrating high catalase activity. 70,'7 1 The two most effective are

currently being tested in human studies. 17' 26 However, unlike catalase activity, the only

methods for detecting SOD activity are indirect. 72 Typically, superoxide is generated in

low levels using xanthine/xanthine oxidase. The concentration of superoxide can be

quantitatively tested spectroscopically using a reporter molecule, commonly

ferricytochrome c, which is reduced by superoxide and produces a spectral shift.73' 74

More accurate measurements of superoxide concentration can be made via

spectroscopically observing the superoxide itself using stopped-flow 72 or using pulse

radiolysis. 75 Regardless of the method used to measure SOD activity, they all require the

assay to be performed in aqueous solutions.

Synthesizing water-soluble versions of our Hangman complexes should be fairly

straightforward; the assembly of appropriately functionalized precursors should follow a

similar synthetic path we have already developed. Disulfonated xanthene derivatives are

already commonly used in the synthesis of water-soluble ligand for hydroformulation

catalysts76 and photoinitiaters. 77 The installation of sulfonate groups using fuming
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sulfuric acid should be feasible for a xanthene dibromide precursor. Additionally, our

chiral cyclohexane bridge is not necessary for this activity; therefore we can replace our

diamine bridge with one that possesses water solubilizing functional groups.

Of all of the complexes studied using the Hangman framework (porphyrin, salophen, and

salen), the Hangman salens are best suited to assay for SOD activity and potential use in

biological systems. In the Hangman porphyrin system, it was the iron complex that

displayed high catalase activity. Most of the interest in synthesizing a therapeutic drug

has focused on manganese. The likely product of catalyst decomposition is the hydrated

metal ion, and of the three metal ions used in the pursuit of SOD mimics, iron, copper

and manganese, the latter is the least toxic.62' 78 (Iron can also perform Fenton chemistry

with hydrogen peroxide to form hydroxyl radicals). The Hangman salophens will likely

be limited in their ability to serve as a therapeutic drug as well. Manganese salophens are

active SOD mimics under laboratory conditions, but showed loss of activity when

incubated in a cell culture, indicating instability under biological conditions. 79

Conversely, manganese salen compounds have demonstrated cytoprotective activity in

vivo. 19-25 They are stable in bovine serum albumin (BSA) and in acidic conditions.o, 80

This is particularly important as tissue in ischemic stress (lack of oxygen) can approach

pH 5. '•"2 All of these factors make the manganese Hangman salen system an ideal

candidate for extending our studies of ROS neutralization activity.

4.5. Experimental Section

4.5.1. Materials

Silica gel 60 (70-230 and 230-400 mesh) was used for column chromatography.

Analytical thin layer chromatography was performed using F254 silica gel (pre-coated

sheets, 0.2 mm thick). Solvents for synthesis were for reagent grade or better and used as

received or dried according to standard methods. 83 Boron tribromide (1M in

dichloromethane), iodine, 5-bromosalicylaldehyde, phenylboronic acid, 4-bromophenol,

pivaloyl chloride, pyridine, 4-acetoxystyrene, and (1R,2R)-(-)-1,2-diaminocyclohexane

were used as received from Aldrich. Bis(pinacolato)diboron and 3-formyl-4-

methoxyphenyl-boronic acid was used as received from Frontier Scientific.

Tetrakis(triphenylphosphine)palladium, tri(n-butyl)tin chloride, dichloro[ 1,1-
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bis(diphenylphosphino)ferrocene]palladium(II) dichloromethane adduct,

tributyl(vinyl)tin, sodium carbonate, cesium fluoride, and manganese(II) acetate

tetrahydrate were used as received from Strem Chemicals. Phenyllithium (1.6-1.7 M in

cyclohexane) and 30% aqueous solution of hydrogen peroxide were used as received

from Alfa Aesar. The following compounds were obtained using published protocols and

their purity confirmed by 'H NMR: 4-methoxycarbonyl-5-bromo-2,7-di-tert-butyl-9,9-

dimethylxanthene (1),3 4-(5-bromo-2,7-di-tert-butyl-9,9-dimethyl-9H-xanthen-4-yl)-

benzoic acid methyl ester (2), 3  4,6-dibromo-dibenzofuran (20),38 4-bromo-6-

hydroxycarbonyldibenzofuran (21).38 3-tert-butyl-2-hydroxy-5-(4,4,5,5-tetramethyl-

[1,3,2]dioxaborolan-2-yl)-benzaldehyde was synthesized as described in Chapter 3.

4.5.2. Physical measurements

IH NMR and 13C NMR spectra were collected in CDCl3 or C4 D80 (Cambridge Isotope

Laboratories) at the MIT Department of Chemistry Instrumentation Facility (DCIF) using

an Inova 500 or Mercury 300 Spectrometer at 25 'C. All chemical shifts are reported

using the standard 8 notation in parts-per-million relative to tetramethylsilane and spectra

have been internally calibrated to the monoprotio impurity of the deuterated solvent used.

High-resolution mass spectral analyses were carried out by the MIT Department of

Chemistry Instrumentation Facility on a Bruker APEXIV47e.FT-ICR-MS using an

Apollo ESI source.

4.5.3. Synthesis

4.5.3.1. 2,7-Di-tert-butyl-5-(3-formyl-4-methoxy-phenyl)-9,9-dimethyl-9H-

xanthene-4-carboxylic acid methyl ester (3)

Under nitrogen, a mixture of 4-methoxycarbonyl-5-bromo-2,7-di-tert-butyl-9,9-

dimethylxanthene (1) (0.300 g, 0.653 mmol), 3-formyl-4-methoxyphenylboronic acid

(0.130 g, 0.722 mmol), sodium carbonate (0.101 g, 0.981 mmol), tetrakis(triphenyl-

phosphine)palladium (0.029 g, 0.040 mmol), DMF (9 mL), and deionized water (1 mL)

was heated to 90 'C for 36 hours. Upon cooling, the mixture was extracted with 3 x 75

mL of dichloromethane. The organic portions were combined and dried over MgSO 4 and

the solvent removed by rotary evaporation. The crude solid was purified by column

chromatography (silica gel, 3:7 hexane: dichloromethane) to elute the colorless product
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(0.333 g, 99% yield). 1H NMR (500 MHz, CDCl 3, 8): 10.54 (s, 1H), 8.01 (d, J = 2.5 Hz,

1H), 7.85 (dd, J = 8.5 Hz, 2.5 Hz, 1H), 7.57 (s, 2H), 7.43 (d, J = 2.5 Hz, 1H), 7.21 (d, J

= 2.5 Hz, IH), 7.10 (d, J= 8.5 Hz, 1H), 4.01 (s, 3H), 3.50 (s, 3H), 1.70 (s, 6H), 1.36 (s,

9H), 1.33 (s, 9H). '3 C NMR (500 MHz, CDC13, 6): 190.0, 167.7, 160.9, 147.4, 146.1,

145.3, 145.2, 138.2, 131.4, 131.1, 130.2, 130.0, 127.9, 126.3, 126.2, 125.9, 124.5, 121.9,

119.7, 111.2, 56.0, 52.0, 35.0, 34.7, 34.6, 32.1, 31.7, 31.5. HRESI-MS ([M + Na]+)

NaC 33H3 80 5 m/z, Calcd. 537.2611, Found 537.2601.

4.5.3.2. 4-[2,7-Di-tert-butyl-5-(3-formyl-4-methoxy-phenyl)-9,9-dimethyl-9H-

xanthen-4-yll-benzoic acid methyl ester (4)

Under nitrogen, a mixture of 4-(5-bromo-2,7-di-tert-butyl-9,9-dimethyl-9H-xanthen-4-

yl)-benzoic acid methyl ester (2) (0.200 g, 0.374 mmol), 3-formyl-4-

methoxyphenylboronic acid (0.074 g, 0.411 mmol), sodium carbonate (0.058 g, 0.563

mmol), tetrakis(triphenylphosphine)palladium (0.016 g, 0.022 mmol), DMF (9 mL), and

deionized water (1 mL) was heated to 90 'C for 36 hours. Upon cooling, the mixture was

extracted with 3 x 100 mL of dichloromethane. The organic portions were combined and

dried over MgSO4 and the solvent removed by rotary evaporation. The crude solid was

purified by column chromatography (silica gel, dichloromethane) to elute the colorless

product (0.219 g, 99% yield). 1H NMR (500 MHz, CDC13, 8): 10.39 (s, IH), 7.77 (d, J =

8.5 Hz, 2H), 7.74 (d, J = 2.5 Hz, 1H), 7.47 (d, J = 2.5 Hz, 1H), 7.44 (d, J = 2.5 Hz, 1H),

7.38 (dd, J = 8.5 Hz, 2.5 Hz, IH), 7.31 (d, J = 8.5 Hz, 2H), 7.16 (m, 2H), 6.57 (2, J = 8.5

Hz, 1H), 3.97 (s, 3H), 3.89 (s, 3H), 1.74 (s, 6H), 1.36 (s, 9H), 1.35 (s, 9H). 13C NMR

(500 MHz, CDCl3, 8): 190.3, 167.8, 161.5, 146.5, 146.42, 146.40, 146.3, 144.0, 138.1,

131.4, 131.3, 131.1, 130.4, 130.0, 129.7, 128.9, 128.5, 128.4, 126.23, 126.17, 124.9,

123.0, 122.4, 111.5, 56.2, 52.7, 35.9, 35.3, 32.3, 32.2. HRESI-MS ([M + Na] )

C 39H4 2OsNa m/z, Calcd. 613.2924, Found 613.2920.

4.5.3.3. 2,7-Di-tert-butyl-5-(3-formyl-4-hydroxy-phenyl)-9,9-dimethyl-9H-

xanthene-4-carboxylic acid methyl ester (5)

2,7-Di-tert-butyl-5-(3-formyl-4-methoxy-phenyl)-9,9-dimethyl-9H-xanthene-4-

carboxylic acid methyl ester (3) (0.200 g, 0.389 mmol) was added to 8 mL of

dichloromethane and cooled to 0 'C. A solution of boron tribromide (1.2 mL, 1.0 M in

dichloromethane) was added and upon stirring for 1 hour, 4 mL of water was added. The
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organic layer was separated, washed with 10 mL of water, and dried over MgSO 4. The

solvent was evaporated and the residue was purified by column chromatography (silica

gel, 99:1 dichloromethane: methanol) to elute the product (0.054 g, 28% yield). 1H NMR

(500 MHz, CDCl3, 6): 11.12 (s, 1H), 10.07 (s, 1H), 7.96 (d, J = 2 Hz, 1H), 7.76 (dd, J =

8.5 Hz, 2 Hz, 1H), 7.58 (d, J = 2.5 Hz, 1H), 7.56 (d, J = 2 Hz, IH), 7.45 (d, J = 2.5 Hz,

1H), 7.25 (d, J = 2 Hz, 1H), 7.09 (d, J = 8.5 Hz, 1H), 3.55 (s, 3H), 1.71 (s, 6H), 1.38 (s,

9H), 1.34 (s, 9H). 13C NMR (500 MHz, CDCl3, 6): 197.8, 167.5, 160.8, 147.3, 146.3,

145.4, 145.3, 138.9, 135.9, 131.0, 130.3, 130.2, 127.6, 126.4, 126.0, 125.8, 122.2, 120.3,

119.8, 117.2, 52.3, 35.1, 34.8, 34.7, 32.3, 31.8, 31.6. HRESI-MS ([M + H] ) C 3 2H 3 70 5

m/z, Calcd. 501.2636 Found 501.2625.

4.5.3.4. 4-[2,7-Di-tert-butyl-5-(3-formyl-4-hydroxy-phenyl)-9,9-dimethyl-9H-

xanthen-4-yll-benzoic acid methyl ester (6)

4-[2,7-Di-tert-butyl-5-(3-formyl-4-methoxy-phenyl)-9,9-dimethyl-9H-xanthen-4-yl]-

benzoic acid methyl ester (4) (0.100 g, 0.169 mmol) was added to 8 mL of

dichloromethane and cooled to 0 'C. A solution of boron tribromide (0.51 mL, 1.0 M in

dichloromethane) was added and stirred for I hour. 4 mL of water of was then added. The

organic layer was separated, washed with 10 mL of water, and dried over MgSO 4. The

solvent was evaporated and the residue was purified by column chromatography (silica

gel, dichloromethane) to elute the product (0.076 g, 78% yield). 'H NMR (500 MHz,

CDCl3, 6): 10.87 (s, 1H), 9.29 (s, 1H), 7.26 (d,J= 8.5 Hz, 2H), 7.49 (d,J= 2.5 Hz, 1H),

7.46 (m, 2H), 7.33 (m, 2H), 7.31 (s, 1H), 7.20 (d, J = 2 Hz, 1H), 7.17 (d, J = 2 Hz, 1H),

6.85 (d, J = 8.5 Hz, 1H), 4.00 (s, 3H), 1.76 (s, 6H), 1.37 (s, 18H). 13C NMR (500 MHz,

CDCl 3, 8): 197.0, 167.4, 161.1, 146.5, 146.4, 146.1, 146.0, 143.6, 138.6, 135.8, 130.93,

130.91, 130.4, 130.3, 129.6, 129.1, 128.9, 128.1, 126.3, 126.0, 123.2, 122.7, 120.8, 117.8,

52.8, 35.8, 35.3, 32.7, 32.3. HRESI-MS ([M + Na]+) C38H4Os5Na m/z, Calcd. 599.2768,

Found 599.2756.

4.5.3.5. H2(HSX*-COOMe) (7)

A mixture of 2,7-di-tert-butyl-5-(3-formyl-4-hydroxy-phenyl)-9,9-dimethyl-9H-

xanthene-4-carboxylic acid methyl ester (5) (0.050 g, 0.100 mmol) was combined with

(1R,2R)-(-)-1,2-diaminocyclohexane (0.006 mg, 0.050 mmol) in 5 mL of absolute
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ethanol and refluxed for 8 hours. Upon cooling the solvent was removed by rotary

evaporation and the resulting solid was washed with 1 mL of cold methanol and dried

under vacuum to yield the product as a yellow solid (0.053 g, 98%). 'H NMR (500 MHz,

CDCl 3, 8): 13.42 (bs, 2H), 8.46 (s, 2H), 7.55 (d, J = 2.5 Hz, 2H), 7.52 (d, J = 2.5 Hz,

2H), 7.56 (s, 2H), 7.45 (d, J = 2.5 Hz, 2H), 7.38 (d, J = 2.5 Hz, 2H), 7.16 (d, J = 2.5 Hz,

2H), 6.96 (d, J = 9 Hz, 2H), 3.45 (d, J = 9 Hz, 2H), 3.32 (s, 6H), 1.99 (d, J = 9 Hz, 2H),

1.92 (d, J = 9 Hz, 2H), 1.78 (d, J = 9 Hz, 2H), 1.69 (s, 6H), 1.67 (s, 6H), 1.53 (t, J = 9

Hz, 2H), 1.43 (s, 9H), 1.33 (s, 9H). 13C NMR (500 MHz, CDC13, 8): 168.2, 165.3, 160.3,

147.4, 146.0, 145.4, 145.2, 134.0, 133.2, 131.2, 130.1, 129.1, 128.6, 126.2, 126.1, 125.7,

121.4, 120.1, 118.3, 116.5, 72.9, 52.1, 35.1, 34.73, 34.70, 33.5, 32.1, 31.9, 31.7, 31.6,

24.4. HRESI-MS ([M + H] ) C70H83N20 8 m/z, Calcd. 1079.6144, Found 1079.6167.

4.5.3.6. H 2(HphSX*-COOMe) (8)

A mixture of 4-[2,7-di-tert-butyl-5-(3-formyl-4-hydroxy-phenyl)-9,9-dimethyl-9H-

xanthen-4-yl]-benzoic acid methyl ester (6) (0.018 g, 0.031 mmol) was combined with

(lR,2R)-(-)-1,2-diaminocyclohexane (0.002 g, 0.016 mmol) in 5 mL of absolute ethanol

and refluxed for 8 hours. Upon cooling the solvent was removed by rotary evaporation

and the resulting yellow solid was washed with 0.5 mL of cold methanol and dried under

vacuum (0.019 mg, 98% yield). 'H NMR (500 MHz, CDCl3, 6): 13.09 (bs, 2H), 8.05 (s,

2H), 7.65 (d, J = 8 Hz, 2H), 7.61 (d, J = 8 Hz, 2H), 7.43 (d, J = 1.5 Hz, 2H), 7.35 (d, J =

2 Hz, 2H), 7.20 (m, 4H), 7.13 (d, J = 2 Hz, 2H), 7.09 (d, J =1.5 Hz, 2H), 7.02 (m, 4H),

6.50 (d, J = 8 Hz, 2H), 4.37 (t, J = 11.5 Hz, 2H), 3.25 (bs, 2H), 2.97 (m, 4H), 1.72 (s,

6H), 1.67 (s, 6H), 1.53 (bs, 2H), 1.34 (s, 18H), 1.38 (s, 18H). "3C NMR (500 MHz,

CDC13, 5): 167.1, 164.8, 160.3, 146.1, 145.9, 145.6, 142.9, 138.1, 135.3, 133.5, 132.8,

130.9, 130.43, 130.37, 129.6, 129.0, 128.8, 128.5, 128.1, 125.8, 125.6, 122.2, 121.2,

118.2, 116.3, 72.8, 52.1, 35.4, 34.8, 34.74, 34.68, 33.0, 32.14, 32.11, 31.7, 31.2, 29.91,

29.87, 29.6, 24.4. HRESI-MS ([M + H]+) C82H9 1N20 8 m/z, Calcd. 1231.6770, Found

1231.6799.

4.5.3.7. Mn(HSX*-COOMe)CI (9)

H2(HSX*-COOMe) (7) (0.020 g, 0.019 mmol) and manganese(II) acetate tetrahydrate

(0.007 g, 0.029 mmol) was added to 4 mL of ethanol and refluxed for 2 hours in air.
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Upon cooling 0.5 mL of an aqueous saturated sodium chloride solution was added and

the mixture was extracted with 2 x 15 mL of dichloromethane. The combined organic

portions were then washed with 15 mL of water and dried over MgSO 4. The solvent was

removed by rotary evaporation to yield the brown product (0.021 g, 98% yield). HRESI-

MS ([M - Cl]) C70H80MnN20 8 m/z, Calcd. 1131.5290, Found 1131.5318. Anal. Calcd

for C7oH80oC1MnN 2 08: C, 72.00; H, 6.90; N, 2.40. Found: C, 71.82; H, 6.72 N, 2.48.

4.5.3.8. Mn(HphSX*-COOMe)CI (10)

H2(HphSX*-COOMe) (8) (0.010 g, 0.008 mmol) and manganese(II) acetate tetrahydrate

(0.003 g, 0.012 mmol) was added to 3 mL of ethanol and refluxed for 4 hours in air.

Upon cooling 0.5 mL of an aqueous saturated sodium chloride solution was added and

the mixture was extracted with 2 x 15 mL of dichloromethane. The combined organic

portions were then washed with 15 mL of water and dried over MgSO 4. The solvent was

removed by rotary evaporation to yield the brown product (0.010 g, 93% yield). HRESI-

MS ([M - Cl] ) C82 Hs88MnN 208 m/z, Calcd. 1283.5926, Found 1283.5857. Anal. Calcd

for C82H88CIMnN208: C, 74.61; H, 6.72; N, 2.12. Found: C, 74.53; H, 6.60; N, 2.10.

4.5.3.9. 4-Hydroxy-biphenyl-3-carbaldehyde (11)

Under nitrogen, 5-bromosalicylaldehyde (1.00 g, 4.98 mmol), phenylboronic acid (0.910

g, 7.46 mmol), sodium carbonate (0.800 g, 7.46 mmol), dichloro[1,1'-bis(diphenyl-

phosphino)ferrocene]palladium(II) dichloromethane adduct (0.109 g, 0.15 mmol) was

added to degassed 1,2-dimethoxyethane (36 mL) and deionized water (12 mL) and heated

to 80 'C for 24 hours. Upon cooling, 20 mL of deionized water was added, and the

solution was extracted with 3 x 100 mL dichloromethane. The organic layers were

combined and dried using MgSO 4 and the solvent was removed by rotary evaporation.

The residue was purified by column chromatography (silica gel, 7: 3 pentane:

dichloromethane) to elute the product (0.355 g, 36%). 'H NMR (500 MHz, CDCl3, 8):

11.02 (s, 1H), 10.00 (s, 1H), 7.28 (m, 2H), 7.56 (m, 2H), 7.47 (t, J = 7 Hz, 2H), 7.37 (t, J

= 7 Hz, 1H), 7.10 (d, J = 8 Hz, IH). 13C NMR (500 MHz, CDCl3, 6): 196.89, 161.13,

135.93, 132.05, 129.175, 129.08, 128.66, 127.58, 126.80, 126.77, 118.31. HRESI-MS

([M + Na]') NaCl 3HI 00 2 m/z, Calcd. 221.0573, Found 221.0562.

4.5.3.9. (R,R)-N,N'-Bis(5-phenylsalicylidene)-1,2-cyclohexanediamine (12)
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A mixture of 4-hydroxybiphenyl-3-carbaldehyde (11) (0.300 g, 1.51 mmol) was refluxed

with (1R,2R)-(-)-1,2-diaminocyclohexane (0.086 g, 0.757 mmol) in 5 mL of absolute

ethanol for 12 hours and then cooled to 0 'C and filtered. The precipitate was collected by

vacuum filtration and washed with 2 x 5 mL of cold ethanol and dried in vacuo to yield

0.241g of the bright yellow product in 67% yield. 'H NMR (500 MHz, CDCl3, 6): 13.39

(bs, 2H), 8.35 (s, 2H), 7.50 (d, J = 2 Hz, 2H), 7.47 (m, 2H), 7.46 (s, 2H), 7.40 (s, 2H),

7.38 (m, 4H), 7.30 (s, 2H), 7.29 (s, 2H), 6.97 (d, J = 9 Hz, 2H), 3.38 (d, J = 9 Hz, 2H),

1.99 (m, 2H), 1.92 (d, J = 9 Hz, 2H), 1.78 (d, J = 9 Hz, 2H), 1.51 (t, J = 9 Hz, 2H). 13C

NMR (500 MHz, CDC13, 6): 165.0, 160.7, 140.4, 132.1, 131.2, 130.1, 128.9, 126.9,

126.7, 118.9, 117.5, 72.9, 33.3, 24.3. HRESI-MS ([M + H]+) C32H3 1N20 2 m/z, Calcd.

475.2380, Found 475.2371.

4.5.3.10. Mn[(R,R)-N,N'-Bis(5-phenylsalicylidene)-l,2-cyclohexanediaminatoj Cl

(13)

(R,R)-N,N'-Bis(5-phenylsalicylidene)-1,2-cyclohexanediamine (12) (0.050 g, 0.105

mmol) and manganese(II) acetate tetrahydrate (0.039 g, 0.158 mmol) was added to 4 mL

of ethanol and refluxed for 4 hours in air. Upon cooling 1 mL of an aqueous saturated

sodium chloride solution was added and the mixture was extracted with 2 x 15 mL of

dichloromethane. The combined organic portions were then washed with 15 of mL of

water and dried over MgSO4. The solvent was removed by rotary evaporation to yield a

brown product (0.050 g, 84% yield). HRESI-MS ([M - Cl] ) C32H2- 8MnN20 2 m/z, Calcd.

527.1526, Found 527.1518. Anal. Calcd for C32H28CIMnN2 O2 : C, 68.27; H, 5.01; N,

4.98. Found: C, 68.20; H, 5.21.; N, 5.08.

4.5.3.11. 2,7-Di-tert-butyl-5-(3-tert-butyl-5-formyl-4-hydroxy-phenyl)-9,9-dimethyl-

9H-xanthene-4-carboxylic acid methyl ester (14)

Under nitrogen, 4-methoxycarbonyl-5-bromo-2,7-di-tert-butyl-9,9-dimethylxanthene (1)

(0.100 g, 0.218 mmol), 3-tert-butyl-2-hydroxy-5-(4,4,5,5-tetramethyl-

[1,3,2]dioxaborolan-2-yl)-benzaldehyde (0.073 g, 0.239 mmol), sodium carbonate (0.034

g, 0.327 mmol), and tetrakis(triphenylphosphine)palladium(0) (0.015 g, 0.013mmol)

were added to 9 mL DMF and I mL deionized water. The mixture was heated to 90 'C

for 24 hours. Upon cooling 10 mL of deionized water was added and the solution was
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extracted with 3 x 20 mL of dichloromethane. The combined organic portions were

washed with 10 mL of deionized water and dried over MgSO 4. The solvent was removed

by rotary evaporation and the residue was purified by column chromatography (silica gel,

1:9 diethyl ether: pentane) to give the desired product (0.084 g, 69% yield). iH NMR

(500 MHz, CDCl3, 25 °C): 6 = 11.87 (s, 1H), 10.03 (s, 1H), 7.78 (d, J = 2.5 Hz, 1H), 7.68

(d, J = 2.5 Hz, 1H), 7.57 (d, J = 2.5 Hz, 1H), 7.56 (d, J = 2.5 Hz, 1H), 7.44 (d, J = 2.5

Hz, 1H), 7.22 (d, J= 2.5 Hz, 1H), 3.46 (s, 3H), 1.71 (s, 9H), 1.49 (s, 9H), 1.38 (s, 9H),

1.33 (s, 9H). 13C NMR (500 MHz, CDCl 3, 6): 198.41, 198.12, 167.24, 160.40, 147.40,

146.11, 145.31, 145.28, 137.72, 136.22, 134.02, 130.92, 129.98, 129.46, 128.44, 126.50,

126.16, 125.81, 121.99, 120.30, 120.28, 119.65, 52.04, 35.14, 35.08, 34.78, 34.72, 32.47,

31.75, 31.58, 29.45. HRESI-MS ([M + Na]+) caled for C36H 44NaO5 m/z, 579.2903, found

579.2911.

4.5.3.12. 4-[2,7-Di-tert-butyl-5-(3-tert-butyl-5-formyl-4-hydroxy-phenyl)-9,9-

dimethyl-9H-xanthen-4-yl]-benzoic acid methyl ester (15)

The addition of 4-(5-bromo-2,7-di-tert-butyl-9,9-dimethyl-9H-xanthen-4yl)-benzoic acid

methyl ester (2) (0.100 g, 0.187 mmol), 3-tert-butyl-2-hydroxy-5-(4,4,5,5-tetramethyl-

[1,3,2]dioxaborolan-2-yl)-benzaldehyde (0.063 g, 0.205 mmol), sodium carbonate (0.029

g, 0.280 mmol), and tetrakis(triphenylphosphine)palladium(0) (0.013 g, 0.011 mmol) to 9

mL DMF and 1 mL deionized water was performed under N2 . The mixture was heated to

90 'C for 24 hours. Upon cooling 10 mL of deionized water was added and the solution

was extracted with 3 x 20 mL of dichloromethane. The combined organic portions were

washed with 10 mL of deionized water and dried over MgSO 4. The solvent was removed

by rotary evaporation and the residue was purified by column chromatography (silica gel,

1:9 diethyl ether: pentane) to give the desired product (0.106 g, 90% yield). 'H NMR

(500 MHz, CDCl 3, 25'C): 6 = 11.66 (s, 1H), 9.29 (s, 1H), 7.67 (s, 1H), 7.65 (s, 1H), 7.49

(d, J = 2.5 Hz, 1H), 7.47 (dd, J = 2.5 Hz, 7 Hz, 2H), 7.27 (d, J = 2.5 Hz, 1H) 7.25 (s,

1H), 7.18 (m, 2H), 7.16 (d,J = 2.5 Hz, 1H), 3.98 (s, 3H), 1.76 (s, 6H), 1.42 (s, 9H), 1.39

(s, 9H). 13C NMR (500 MHz, CDCl 3, 6): 197.00, 196.93, 166.84, 160.27, 145.93, 145.87,

145.70, 142.88, 137.86, 135.39, 133.71, 130.64, 130.39, 129.63, 129.06, 128.92, 128.57,

128.40, 128.26, 125.76, 125.54, 122.64, 121.93, 120.35, 52.20, 35.38, 35.03, 34.79,
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32.13, 31.78, 31.75, 29.43. HRESI-MS ([M + Na]) calcd for C42H48OsNa m/z, 655.3185,

found 655.3196.

4.5.3.13. H2IHSX*-Bu-COOMe] (16)

2,7-Di-tert-butyl-5-(3-tert-butyl-5-formyl-4-hydroxyphenyl)-9,9-dimethyl-9H-xanthene-

4-carboxylic acid methyl ester (14). (0.040 g, 0.072 mmol) was added to (1R,2R)-(-)-1,2-

diaminocyclohexane (0.004 g, 0.036 mmol) in 4 mL of absolute ethanol and heated to

reflux for 12 hours. Upon cooling, the solvent was removed by rotary evaporation and the

residue was washed with 1 mL of cold deionized water and then dried under vacuum to

give the bright yellow product (0.042 g, 98%). 'H NMR (500 MHz, CDCl3, 25 0 C): 6 =

13.92 (bs, 2H), 8.46 (s, 2H), 7.55 (d, J = 2.5 Hz, 2H) 7.51 (d, J = 2.5 Hz, 2H), 7.37 (m,

4H), 7.29 (d, J = 2 Hz, 2H), 7.15 (d, J = 2 Hz, 2H), 3.46 (d, J = 10 Hz, 2H), 3.18 (s, 6H),

2.02 (d, J = 7 Hz, 2H), 1.92 (d, J = 10 Hz, 2H), 1.80 (d, J = 7 Hz, 2H), 1.69 (s, 6H), 1.68

(s, 6H), 1.53 (m, 2H), 1.40 (s, 18H), 1.34 (s, 18H), 1.33 (s, 18H). HRESI-MS ([M + H])

calcd for C78H99N20 8 m/z, 1191.7396, found 1191.7342.

4.5.3.14. H2 [HphSX*-tBu-COOMe] (17)

4-[2,7-Di-tert-butyl-5-(3-tert-butyl-5-formyl-4-hydroxyphenyl)-9,9-dimethyl-9H-

xanthen-4-yl]-benzoic acid methyl ester (15) (0.050 g, 0.080 mmol) was added to

(lR,2R)-(-)-1,2-diaminocyclohexane (0.004 g, 0.040 mmol) to 6 mL of absolute ethanol

and the mixture was refluxed for 12 hours. Upon cooling, the solvent was removed by

rotary evaporation and the residue was washed with 1 mL of cold deionized water and

dried under vacuum to give the yellow product (0.053 g, 100%). IH NMR (500 MHz,

CDCI3, 25 oC): 6 = 13.71 (bs, 2H), 7.48 (d, J = 8 Hz, 4H), 7.42 (d, J = 2.5 Hz, 2H), 7.39

(d, J = 2.5 Hz, 2H), 7.09 (m, 6H), 7.02 (d, J = 2 Hz, 2H), 6.97 (d, J = 2 Hz, 2H), 6.87 (d,

J = 2 Hz, 2H), 2.91 (s, 6H), 3.32 (J = 10 Hz, 2H), 2.07 (bs, 2H), 2.04( bs, 2H), 1.97 (d, J

= 10 Hz, 2H), 1.72 (s, 6H), 1.70 (s, 6H), 1.55 (m, 2H), 1.34 (s, 18H), 1.31 (s, 18H), 1.14

(s, 18H). HRESI-MS ([M + H]+) calcd for C90H107N20 8 m/z, 1343.8022, found

1343.8016.

4.5.3.15. Mn[HSX*-'Bu-COOMe]Cl (18)

H2[HSX*-tBu-COOMe] (16) (0.020 g, 0.017 mmol) was added to manganese(II) acetate

tetrahydrate (0.006 g, 0.025 mmol) in 4 mL of absolute ethanol and the solution was
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refluxed in air for 2 hours. Upon cooling, 0.5 mL of an aqueous saturated sodium

chloride solution was added and the mixture was stirred for 10 minutes and then extracted

with 3 x 10 mL of dichloromethane. The organic layers were combined and washed with

10 mL of water and then dried over MgSO 4. The solvent was removed by rotary

evaporation to leave the brown product (0.021 g, 98%). HRESI-MS ([M - Cl] ) calcd for

C78H96MnN20 8 m/z, 1243.6542, found 1243.6582. Anal. Calcd for C78H96C1MnN 2Os: C,

73.19; H, 7.56; N, 2.19. Found: C, 73.01; H, 7.76; N, 2.30.

4.5.3.16. Mn [HphSX*- tBu-COOMe]Cl (19)

H2[HphSX*- tBu-COOMe] (17) (25 mg, 0.019 mmol) was combined with manganese(II)

acetate tetrahydrate (6.8 mg, 0.028 mmol) in 4 mL of absolute ethanol and refluxed in air

for 2 hours. Upon cooling, 0.5 mL of an aqueous saturated sodium chloride solution was

added and the mixture was stirred for 10 minutes and then extracted with 3 x 10 mL of

dichloromethane. The organic layers were combined and washed with 5 mL of water and

dried over MgSO 4. The solvent was removed by rotary evaporation to give the brown

product (0.026 g, 98%). HRESI-MS ([M - Cl] ÷) calcd for C9oHI 04MnN 2Os m/z,

1395.7168, found 1395.7136. Anal. Calcd for C9o0HI0 4C1MnN 2Os: C, 75.48; H, 7.32; N,

1.96. Found: C, 75.34; H, 7.45; N, 2.03

4.5.3.17. 6-(3-tert-Butyl-5-formyl-4-hydroxyphenyl)-dibenzofuran-4-carboxylic

acid (22).

Under nitrogen, a mixture of 4-bromo-6-hydroxycarbonyldibenzofuran (21) (0.200 g,

0.687 mmol), 3-tert-butyl-2-hydroxy-5-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-

benzaldehyde (0.230 g, 0.756 mmol), sodium carbonate (0.106 g, 1.03 mmol), and

tetrakis(triphenylphosphine)palladium (0.048 g, 0.041 mmol) was added to 14.5 mL of

DMF and 1.5 mL of deionized water and heated to 90 'C for 36 hours. Upon cooling, the

reaction mixture was extracted with 3 x 20 mL of dichloromethane. The combined

organic layers were then washed with 2 x 20 mL of water and dried over MgSO 4, and the

solvent was removed by rotary evaporation. The residue was purified by column

chromatography (8: 2 pentane: ethyl acetate) to give the colorless product (0.125 g, 47 %

yield). 1H NMR (500 MHz, C 4D 80, 25'C): 6 = 12.08 (s, 1H), 10.06 (s, 1H), 8.40 (d, J =

2 Hz, 1H), 8.37 (d, J = 2 Hz, 1H), 8.29 (dd, J = 7.5 Hz, 1 Hz, 1H), 8.13 (dd, J= 7.5 Hz,
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1 Hz, IH), 8.03 (dd, J = 7.5 Hz, 1 Hz, 1H), 7.80 (dd, J = 7.5 Hz, 1 Hz, 1H), 7.47 (inm,

2H), 1.56 (s, 9H). 13C NMR (500 MHz, C4H 80, 8): 198.13, 164.97, 160.67, 154.99,

153.44, 137.98, 134.22, 132.49, 129.79, 127.10, 125.94, 125.76, 125.18, 124.38, 124.26,

123.79, 122.59, 121.28, 119.49, 116.25, 35.04, 28.93. HRESI-MS ([M + Na] ÷) cacld for

C24H20OsNa m/z, 411.1208, found 411.1202.

4.5.3.18. H2 [HSD*tBu-COOH] (23)

A mixture of 4-[6-(3-tert-butyl-5-formyl-4-hydroxy-phenyl)-dibenzofuran-4-yl]-benzoic

acid methyl ester (22) (30.0 mg, .077 mmol) and (lR,2R)-(-)-1,2-diaminocyclohexane

(4.4 mg, 0.039 mmol) was added to 6 mL of absolute ethanol. The solution was heated to

reflux for 2 hours and upon cooling the solvent was removed by rotary evaporation. The

yellow residue was washed with 0.3 mL cold methanol and dried under vacuum to give

the product (30 mg, 91% yield). HRESI-MS ([M + H] +) cacld for C54Hs5 1N20 8 m/z,

855.3640, found 855.3631. Anal. Calcd for C54H5soN 20 8: C, 75.86; H, 5.89; N, 3.28.

Found: C, 75.73; H, 6.01; N, 2.45.

4.5.3.19. Mn[HSD* tBu-COOHI CI (24)

A mixture of 23 (30.0 mg, 0.035 mmol) and manganese(II) acetate tetrahydrate (13.0 mg,

0.053 mmol) was added to 4 mL of absolute ethanol and heated to reflux for 2 hours.

Upon cooling, 4 mL of saturated aqueous sodium chloride was added and the solution

was stirred for 20 minutes and the solid was collected by filtration and washed with

water. Upon drying, the brown solid was taken up in dichloromethane and filtered. The

filtrate was reduced to give the brown product (14 mg, 42% yield). HRESI-MS ([M -

Cl]) cacld for C5 4 H4 8MnN 208 m/z, 907.2792, found 907.2821. Anal. Caled for

C54H4 8CIMnN 208: C, 68.75; H, 5.13; N, 2.97. Found: C, 68.66; H, 5.23 N, 2.85.

4.5.3.20. (6-Bromo-dibenzofuran-4-yl)-tributyl-stannane (25)

Under nitrogen, a solution of 4,6-dibromodibenzofuran (20) (0.500 g, 1.53 mmol) in 40

mL of dry THF was cooled in an acetone/dry ice bath. Phenyllithium (1.1 mL, 1.7 M

solution in cyclohexane) was added and the resulting solution was stirred for 30 minutes

and then warmed to room temperature and stirred for an additional 30 minutes before the

addition of tri(n-butyl)tin chloride (0.549 g, 1.69 mmol). After 15 minutes, the solvent

was removed by rotary evaporation to give an oily residue. 15 mL of pentane was added
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and the solution was filtered. The filtrate was reduced back to an oil by rotary

evaporation and purified by column chromatography (silica gel, pentane) to give the

desired product as an oil at room temperature (0.592 g, 72% yield). 'H NMR (500 MHz,

CDC13, 25 0 C): 8 = 7.94 (d, J= 8 Hz, 1H), 7.90 (d, J= 7.5 Hz, 1H), 7.66 (m, 2H), 7.43 (t,

J = 8 Hz, 1H), 7.23 (t, J = 8 Hz, 1H), 1.76 (min, 6H), 1.48 (sextet, J = 7.5 Hz, 6H), 1.39 (t,

J= 8 Hz, 6H), 1.00 (t, J = 7.5 Hz, 9H). 13C NMR (500 MHz, CDCl 3, 6): 162.21, 153.29,

135.69, 129.70, 126.35, 124.23, 123.66, 123.41, 122.16, 121.08, 119.73, 104.72, 29.41,

27.65, 13.98, 10.29.

4.5.3.21. 4-Bromo-6-iodo-dibenzofuran (26)

Iodine (0.280 g, 1.75 mmol) was slowly added to a rapidly stirring solution of (6-bromo-

dibenzofuran-4-yl)-tributylstannane (25) (0.592 g, 1.10 mmol) dissolved in 10 mL of

dichloromethane. After stirring for one hour, the solution was washed with a saturated

aqueous sodium carbonate solution (2 x 10 mL) followed by 10 mL of deionized water.

The organic portion was dried over MgSO4 and the solvent was removed by rotary

evaporation to give an oily solid which was purified by loading onto a short silica plug,

flushing with pentane, followed by dichloromethane to elute the product as colorless

solid (0.386 g, 94%). 'H NMR (500 MHz, CDCl 3, 25 0 C): 6 = 7.90 (d, J = 8 Hz, I H),

7.87 (m, 2H), 7.66 (d, J = 8 Hz, 1H), 7.26 (dt, J = 8 Hz, 2.5 Hz, 1H), 7.15 (dt, J -= 5.5

Hz, 2.5 Hz, IH). 13C NMR (500 MHz, CDC13, 6): 153.06, 136.89, 130.88, 126.16,

125.08, 124.70, 124.57, 121.14, 120.32, 105.05, 75.82. HRESI-MS ([M + Na]f) cacld for

C1 2H6BrIONa m/z, 394.8539, found 394.8542.

4.5.3.22. 4-(6-Bromo-dibenzofuran-4-yl)-benzoic acid methyl ester (27)

Under nitrogen, a mixture of 4-bromo-6-iodo-dibenzofuran (26) (0.250 g, 0.670 mmol),

4-methoxycarbonylphenylboronic acid (0.133 g, 0.737 mmol), cesium fluoride (0.336 g,

2.21 mmol) and tetrakis(triphenylphosphine)palladium (0.077 g, 0.067 mmol) was added

to 8 mL of 1,2-dimethoxyethane and heated to 90 'C for 24 hours. Upon cooling to room

temperature, the solvent was removed under vacuum and the residue was taken up in 50

mL of dichloromethane and washed with 2 x 10 mL of deionized water. The organic

portion was dried with MgSO 4 and the solvent was removed by rotary evaporation. The

residue was purified by column chromatography (silica gel, 7: 3 dichloromethane:
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pentane) to give the colorless product (0.235 g, 92%). 1H NMR (500 MHz, CDCl3,

250 C): 6 = 8.21 (d, J = 8.5 Hz, 2H), 8.04 (d, J = 8.5 Hz, 2H), 7.90 (dd, J = 7.5 Hz, 1 Hz,

1H), 7.87 (dd, J = 7.5 Hz, 1 Hz, 1H), 7.66 (dd, J = 7.5 Hz, 1 Hz, 1H), 7.61 (dd, J = 7.5

Hz, 1 Hz, 1H), 7.43 (t, J = 7.5 Hz, 1H), 7.22 (t, J = 7.5 Hz, 1H), 3.98 (s, 3H). '3C NMR

(500 MHz, CDCl3, 6): 166.99, 153.29, 153.09, 140.40, 130.30, 130.01, 129.34, 128.59,

127.33, 125.38, 125.14, 124.80, 124.19, 123.84, 120.94, 119.72, 104.68, 52.23. HRESI-

MS ([M + H]+) calcd. for C20HI4BrO 2 m/z, 381.0121, found 381.0130.

4.5.3.23. 4-[6-(3-tert-Butyl-5-formyl-4-hydroxyphenyl)dibenzofuran-4-yll-benzoic

acid methyl ester (28)

Under nitrogen, a mixture of 4-(6-bromo-dibenzofuran-4-yl)-benzoic acid methyl ester

(27) (0.250 g, 0.656 mmol), 3-tert-butyl-2-hydroxy-5-(4,4,5,5-tetramethyl-

[1,3,2]dioxaborolan-2-yl)-benzaldehyde (0.219 g, 0.72 1mmol), sodium carbonate (0.101

g, 0.984 mmol), and tetrakis(triphenylphosphine)palladium (0.045 g, 0.039 mmol) was

added to 9 mL of DMF and 1 mL of deionized water and heated to 90 'C for 24 hours.

Upon cooling, the reaction mixture was extracted with 3 x 20 mL of dichloromethane.

The combined organic layers were then washed with 2 x 20 mL of water and dried over

MgSO4, and the solvent was removed by rotary evaporation. The residue was purified by

column chromatography (7:3 dichloromethane: pentane) to give the colorless product

(0.238 g, 76% yield). 'H NMR (500 MHz, CDC13, 25 0 C): 6 = 11.91 (s, 1H), 9.97 (s, 1H),

8.16 (d, J = 9 Hz, 2H), 8.10 (d, J = 2 Hz, 1H), 8.03 (dd, J = 9 Hz, 1 Hz, 1H), 7.97 (m,

4H), 7.68 (dd, J = 7.5 Hz, 1 Hz, 1H), 7.63 (dd, J = 7.5 Hz, 1 Hz, 1H), 7.49 (quartet, J =

7.5 Hz, 2H), 3.98 (s, 3H), 1.44 (s, 9H). 13C NMR (500 MHz, CDC13 , 8): 197.47, 167.01,

161.10, 153.42, 141.03, 138.84, 134.81, 132.07, 130.08, 129.52, 128.86, 128.74, 127.52,

127.15, 126.47, 125.21, 125.02, 124.95, 124.88, 123.84, 123.75, 121.06, 121.02, 120.87,

119.97, 119.84, 52.44, 35.25, 29.32. HRESI-MS ([M + Na]+) calcd for C3 1H26 OsNa m/z,

501.1672, found 501.1678.

4.5.3.24. 4-[6-(3-tert-Butyl-5-formyl-4-hydroxyphenyl)dibenzofuran-4-yl]-benzoic

acid (29)

Under nitrogen, 4-[6-(3-tert-butyl-5-formyl-4-hydroxyphenyl)dibenzofuran-4-yl]-benzoic

acid methyl ester (28) (0.080 g, 0.167 mmol) was dissolved in 6 mL of dry

dichloromethane and cooled to 0 'C in an ice bath. A solution of 1.0 M boron tribromide
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(0.50 mL, 0.502 mmol) was added via syringe and the temperature of the reaction

mixture was raised to room temperature. This was then stirred for 2 hours, upon which 10

mL of deionized water was added. The subsequent mixture was extracted with 3 x 20

mL of dichloromethane, and the combined organic layers was washed with 10 mL of

fresh deionized water, and than dried over MgSO 4 and the solvent was removed by rotary

evaporation. The residue was purified by column chromatography (99:1

dichloromethane: methanol) to give the colorless product (0.046 g, 59% yield). IH NMR

(500 MHz, C4D80, 25QC): 6 = 12.10 (s, 1H), 11.48 (bs, 1H), 10.04 (s, 1H), 8.16 (m, 4H),

8.11 (dd, J = 7.5 Hz, 1 Hz, 1H), 8.06 (m, 3H), 7.77 (dd, J = 7.5 Hz, 1 Hz, 1H), 7.71 (dd,

J = 7.5 Hz, 1 Hz, IH), 7.50 (min, 2H), 1.44 (s, 9H). 13C NMR (500 MHz, C4D80, 6):

198.96, 167.64, 161.68, 154.31, 154.18, 141.43, 139.10, 135.22, 133.14, 131.50, 131.04,

129.45, 128.53, 128.00, 127.40, 126.12, 125.90, 125.82, 124.73, 124.68, 122.31, 121.68,

120.70, 35.89, 29.75. HRESI-MS ([M + H] +) calcd for C30H250 5 m/z, 465.1696, found

465.1691.

4.5.3.25. H2[HphSD*tBu-COOH] (30)

A mixture of 4-[6-(3-tert-butyl-5-formyl-4-hydroxyphenyl)dibenzofuran-4-yl]-benzoic

acid (29) (42.0 mg, 0.090 mmol) and (IR,2R)-(-)-1,2-diaminocyclohexane (5.2 mg,

0.045 mmol) was added to 6 mL of absolute ethanol. The solution was heated to reflux

for 2 hours and upon cooling the solvent was removed by rotary evaporation. The bright

yellow residue was washed with 0.5 mL cold methanol and dried under vacuum to give

the product (36 mg, 80% yield). HRESI-MS ([M + H]-) cacld for C66H 59N20 8 m/z,

1007.4266, found 1007.6217. Anal. Calcd for C 66H 58N 20 8: C, 78.71; H, 5.80; N, 2.78.

Found: C, 78.52; H, 6.00 N, 2.85.

4.5.3.26. Mn[HphSD* tBu-COOH]CI (31)

A mixture of 30 (30.0 mg, 0.030 mmol) and manganese(II) acetate tetrahydrate (11.0 mg,

.045 mmol) was added to 6 mL of absolute ethanol and heated to reflux for 2 hours.

Upon cooling, 4 mL of saturated aqueous sodium chloride was added and the solution

was stirred for 20 minutes and the solid was collected by filtration and washed with

water. Upon drying, the brown solid was taken up in tetrahydrofuran and filtered. The

filtrate was reduced to give the brown product (30 mg, 91% yield). HRESI-MS ([M -
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Cl] ÷) cacld for C66H56MnN208 m/z, 1059.3423, found 1059.3457. Anal. Calcd for

C66H56 CIMnN2 08: C, 72.36; H, 5.15; N, 2.56. Found: C, 72.16; H, 5.26 N, 2.43.

4.5.3.27. 2,2-Dimethylpropionic acid 4-bromophenyl ester (32)

4-Bromophenol (1.00 g, 5.78 mmol) was dissolved in 20 mL of dry dichloromethane.

Pyridine (0.93 mL, 11.56 mmol) was added via syringe, followed by pivaloyl chloride

(1.42 mL, 11.56 mmol) and the reaction was stirred for 24 hours. 20 mL of deionized

water was added to quench the reaction, and the separated aqueous layer was extracted

with 2 x 20 mL of dichloromethane. The combined organic layers were dried using

MgSO 4 , and the solvent removed by rotary evaporation. The residue was purified by

column chromatography (silica gel, 2: 8 pentane: dichloromethane to dichloromethane) to

elude the product (1.40 g, 94% yield). 'H NMR (500 MHz, CDCl3 , 8): 7.49 (dd, J = 9

Hz, 5Hz, 2H), 6.96 (dd, J = 9H, 1.5 Hz, 2H), 1.35 (s, 9H). HRESI-MS ([M + Na] -) calcd

for NaC, 3H160 2 m/z, 227.1043, found 227.1043.

4.5.3.28. 2,2-Dimethylpropionic acid 4-vinylphenyl ester (33)

Under nitrogen, 2,2-dimethylpropionic acid 4-bromophenyl ester (32) (0.500 g, 1.94

mmol), tri(butyl)vinyltin (0.762 g, 2.05 mmol), and

tetrakis(triphenylphosphine)palladium (0.450 g, 0.39 mmol) was added to toluene (8 mL)

and heated to 1100 C in a sealed bomb for 12 hours. Upon cooling, 50 mL of

dichloromethane was added, and the solution was washed with 2 x 10 mL of deionized

water and dried using MgSO4 . The solvent was removed by rotary evaporation and the

residue purified by column chromatography (silica gel, 9: 1 pentane: dichloromethane) to

yield the colorless product (0.351 g, 88% yield). IH NMR (300 MHz, CDCl3 , 6): 7.45 (d,

J = 8.4 Hz, 2 H), 7.07 (dd, J = 6.9 Hz, 1.8 Hz, 2H), 6.74 (dd, J = 17.8 Hz, 10.8 Hz, 1H),

5.75 (dd, J = 17.8 Hz, 0.6 Hz, 1H), 5.28 (dd, J = 17.8 Hz, 0.6 Hz, 1H), 1.42 (s, 9H). 13C

NMR (500 MHz, CDCl3, 6): 177.12, 150.78, 136.05, 135.22, 127.22, 121.92, 121.67,

113.96, 39.18, 27.25.

4.5.3.29. 2,2-Dimethylpropionic acid 4-oxiranylphenyl ester (34)

5 mL of a 0.05 M solution of Na2HPO4 was added to 12.5 mL of commercial bleach

(Clorox). This was added to 2,2-dimethylpropionic acid 4-vinylphenyl ester (33) (0.150

g, 0.68 mmol) and manganese(salophen)chloride (25 mg, 0.04 mmol) in 10 mL of
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dichloromethane and stirred for 3 hours. The solution was extracted with 3 x 10 mL of

dichloromethane and the organic layers were combined and dried using MgSO 4 and the

solvent removed by rotary evaporation and resulting residue purified by column

chromatography (silica gel 3: 7 pentane: dichloromethane) to elude the product (0.45 g,

31% yield). 'H NMR (500 MHz, CDCl 3, 6): 7.29 (d, J = 8.5 Hz, 2H), 7.04 (d, J = 8.5,

2H), 3.87 (t, J = 2 Hz, 1H), 3.15 (dd, J = 5 Hz, 4 Hz, 1H), 2.78 (dd, J = 5 Hz, 2 Hz, 1H),

1.36 (s, 9H). '13C NMR (500 MHz, CDCl 3, 6): 177.26, 156.10, 135.11, 126.67, 121.85,

52.17, 52.49, 27.31. HRESI-MS ([M + Na] +) calcd for NaC13H160 3 m/z, 243.0992, found

243.0998.

4.5.4. Hydrogen Peroxide Disproportionation Reactions

Dismutation reactions were performed at room temperature in a sealed (PTFE septum) 20

mL reaction vial equipped with a magnetic stirbar and a capillary gas delivery tube linked

to an inverted graduated burette filled with water. The reaction vial was charged with a

stock solution of the corresponding catalyst in CH2Cl 2 (1.0 mL). MeOH (0.5 mL) was

added followed by H20 2 (790 [tL, 8.22 mmol; 10.4 M (30%) aq. solution), and the

reaction mixture was stirred vigorously. The time was set to zero immediately after

addition of H20 2. The conversion was monitored volumetrically, and the amount of 02

(n) produced was calculated through the perfect gas equation pV = nRT, assuming that p

= 1 atm. As a check on our experimental set-up, MnO 2 was employed to dismutate the

hydrogen peroxide completely. Calibration runs show that the amount of oxygen

collected matches the amount expected, given the concentration of the hydrogen peroxide

solution.

The amount of catalyst used to obtain the turnover numbers for the catalase experiments:

Mn(5-phsailen)Cl (13) (1.0 mL from a 5.3 mg into 10 mL CH2Cl2 solution or 0.00095

mmol) to give an average of 1.01 mL 02 in 1 hour. Mn(5-phsalen)Cl (13) with I

equivalent of benzoic acid (1.0 mL from a 2.7 mg Mn(5-phsalen)Cl and 0.6 mg benzoic

acid into 5 mL CH2Cl solution or 0.00095 mmol of each) to give 3.21 mL 02 in 1 hour.

Mn(HSX*-COOH)Cl (1.0 mL from a 5.6 mg into 5 mL CH 2 C12 solution or 0.00095

mmol) to give 35.91 mL 02 in 1 hour. Mn(HSX*-COOMe)Cl (9) (1.0 mL from a 5.54

mg into 5 mL CH2Cl2 solution or 0.00095 mmol) to give 1.61 mL 02 in 1 hour.
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Mn(HphSX*-COOH)Cl (1.0 mL from a 2.5 mg into 2 mL CH 2CI2 solution or 0.00095

mmol) to give 18.01 mL 02 in 1 hour. Mn(HphSX*-COOMe)CI (10) (1.0 mL from a 2.5

mg into 2 mL CH2CI2 solution or 0.00095 mmol) to give 2.01 mL 02 in 1 hour. (1R, 2R)-

(-)-[ 1,2-Cyclohexanediamino-NNN'-bis(3,5-di-tert-butylsalicylidene)]manganese(III)

chloride (1.0 mL from a 6.0 mg into 10 mL CH 2CI 2 solution or 0.00095 mmol) to give an

average of 3.7 mL 02 in 1 hour. (1R, 2R)-(-)-[1,2-Cyclohexanediamino-N,N'-bis(3,5-di-

tert-butylsalicylidene)] manganese (III) chloride with 2 equivalent of benzoic acid (1.0

mL from a 6.0 mg (IR, 2R)-(-)-[1,2-cyclohexanediamino-N,N'-bis(3,5-di-tert-

butylsalicylidene)]manganese(III) chloride and 1.2 mg benzoic acid into 10 mL CH 2C12

solution or 0.00095 mmol and 0.0019 mmol respectively) to give on average 4.2 mL 02

in 1 hour. Mn(HSX*-'Bu-COOH)Cl (1.0 mL from a 3.0 mg into 5 mL CH 2C12 solution or

0.000475 mmol) to give 60.7 mL 02 in I hour. Mn(HSX*- tBu-COOMe)Cl (18) (1.0 mL

from a 2.4 mg into 2 mL CH2C 2 solution or 0.00095 mmol) to give 1.4 mL 02 in 1 hour.

Mn(HphSX*-COOH)Cl (1.0 mL from a 1.3 mg into 2 mL CH 2 CI2 solution or 0.00095

mmol) to give 56.9 mL 02 in 1 hour. Mn(HphSX*-COOMe)Cl (19) (1.0 mL from a 2.7

mg into 2 mL CH 2C12 solution or 0.00095 mmol) to give 27.5 mL 02 in 1 hour. The

standard deviations on the turnover number (TON) measurements over one hour are

derived from at least three data points.

4.5.5. Epoxidation of Functionalized Olefins

The TON for epoxidation of 4-acetoxystyrene was determined as follows: 0.47 mM

solutions of the catalyst (1R, 2R)-(-)-[1,2-cyclohexanediamino-N,N'-bis(3,5-di-tert-

butylsalicylidene)]manganese(III) chloride (7.5 mg in 25 mL of dichloromethane),

Mn[HSX* tBu-COOH]C1 (5.9 mg in 10 mL of dichloromethane), [HphSX*tBu-COOH]Cl

(6.7 mg in 10 mL of dichloromethane), Mn[HSD*'Bu-COOH]Cl (2.2 mg in 10 mL of

dichloromethane), [HphSD* tBu-COOH]Cl (5.2 mg in 10 mL of dichloromethane) were

prepared. A 47.5 mM solution of 4-acetoxystyrene and 23.75 mM dodecane (192.6 mg of

4-acetoxystyrene and 101.1 mg of dodecane in 25.00 mL) was prepared. For NaOCI as

the oxidant, the oxidant solution was prepared by mixing 10 mL of 0.05 M NaHPO4 and

25 mL of commercial bleach (Clorox) and 1.0 mL of I M NaOH solution and then cooled

to 0 'C. 1.0 mL of this solution was added to 0.5 mL of each catalyst solution and 0.5 mL
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of the 4-acetoxystyrene/dodecane solution, pre-cooled to 0 'C and stirred at room

temperature.

The TON for epoxidation of 2,2-dimethylpropionic acid 4-bromophenyl ester was

determined as follows: A 47.5 mM solution of 2,2-dimethylpropionic acid 4-bromo-

phenyl ester and 23.75 mM dodecane (242.6 mg of 2,2-dimethylpropionic acid 4-bromo-

phenyl ester and 101.1 mg of dodecane in 25 mL) was prepared. For each reaction, 0.5

mL of the catalyst solution (as prepared above) were added to 0.5 mL of the of 2,2-

dimethylpropionic acid 4-bromophenyl ester/dodecane solution and cooled to 0 'C. 1.0

mL of the oxidant solution pre-cooled to 0 'C (as prepared above) was added to each

reaction and stirred at room temperature.

The reactions were calibrated at time zero, and examined by GC/MS at t = 1 hour and 3

hours. The response factor of the substrate and epoxidation product relative to the internal

standard of dodecane was determined and fitted with at least three points using a linear

calibration curve. The calibration curve was used to determine the concentration of the

substrate and epoxide product, and calculate the corresponding turnover numbers (TON)

based on the concentration of the latter. The GC/MS spectra were taken on an Agilent

Technologies 6890N Network housed at the MIT DCIF.

4.5.6. Density Functional Theory Calculations

Gas-phase density functional theoretical (DFT) calculations of the hydroperoxide

complexes of Mn(HSX*-COOH), Mn(HphSX*-COOH), Mn(HSD*-COOH),

Mn(HphSD*-COOH) were performed using the Amsterdam Density Functional

(ADF2002.02) 84,85 package on a home-built Linux cluster of sixty Intel processors

running in parallel groups of twelve. To simplify the calculation, the t-butyl and methyl

groups were removed from the xanthenes, as well as replacing the cyclohexyl backbone

to ethylenediamine. The generalized gradient approximation (GGA) was implemented by

use of Becke's 1988 exchange functional 86 and Perdew and Wang's 1991 correlation

functional.87 The basis set was of triple-zeta quality for manganese, oxygen, and nitrogen,

with a double set of polarization functions for Mn and a single polarization set for O and

N, and of double-zeta quality with single polarization set for carbon and hydrogen; the

frozen core approximation was used for the 1s shell of C, N, and O and for the ls, 2s, and
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2p shells of Mn. Full geometry optimizations of the entire complexes were run at O0 K.

All computations were carried out in the quintet spin state and the spin restriction was

lifted. The molecular geometries and the spatial components of the resulting Kohn-Sham

single-electron wavefunctions were visualized and analyzed using the software

Molekel.88 '8 9 The input (run) file and final geometry optimized output coordinates are

located in Appendix C.
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Chapter 5

Synthesis of Amido-Imine Macrocyclic

Ligands

153



5.1. Motivation and Specific Aims

Several key catalyst design elements have been identified for managing oxidation and

catalase chemistry promoted by Hangman salophen and Hangman salen architectures,

such as redox properties and the presence of proximate acid-base functionalities.

Incorporation of these features into one Hangman Schiff-base ligand is difficult owing to

imine hydrolysis. This complication provided the impetus for the design of the amido-

imine bisphenolic macrocycle described in this Chapter. The resulting Hangman ligand

framework incorporates: (1) the chiral trans-cyclohexyldiamine bridge; (2) an open site

for facile integration of electron-withdrawing/donating functionalities along the

macrocycle; and, (3) the acid-base group over the reactive metal site. The resulting

manganese complex is examined for its oxygen atom chemistry to ascertain whether the

crucial catalyst profiles are maintained in a non-salen redox platform.

5.2. Background

The epoxidation studies described in Chapter 3 reveal that manganese salens bearing two

functionalized xanthene scaffolds are capable of catalytically epoxidizing olefins

enantioselectively.1, 2 Chiral information is relayed to the substrate by the enantiopure

cyclohexanediamine bridge and the redox properties of the salophen ring can be tuned

with substituent modification. 3 We were interested in retaining these properties upon

removal of one of the Hangman scaffolds. The xanthene scaffold Hangman ligand

architecture shown in Chart 5.1 is present to position an acid-base functionality in the

secondary coordination sphere, and the cyclohexanediamine bridge incorporates the

Chart 5.1

t-Bu

I control of acid-base properties

incorporation of chirality

I control of redox propertie
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desired chiral function. The lack of a second xanthene pillar allows for greater flexibility

in design by opening a site for the installation of various functional groups to tune the

redox properties of the metal center, as demonstrated by the Hangman salophen ligand of

Chapter 2. With this ligand, we hope to integrate all of the productive elements of the

previously described Hangman Schiff-base ligand constructs.

5.3. Results and Discussion

5.3.1. Synthetic Attempts towards a Hangman Salen Bearing a Single

Functionalized Xanthene Scaffold

Isolated salen ligands that are asymmetric across their diamine bridge are rare, 4-7 and in

these cases, small amounts of symmetrical impurities are typically observed 4' 5 owing to

facile hydrolysis of the imine bond (represented in Figure 5.1).8 The hydrolysis occurs

even under very mild conditions. 9 One of the more successful approaches for

synthesizing a salen composed of two unique salicylaldehyde units involves a precursor

with one amine protected by forming the hydrochloric acid salt (2),6 as shown in Scheme

5.1. This half-salen (2) can be synthesized in two steps. First, hydrochloric acid in diethyl

ether is added dropwise to a solution of the diamine to give 1, which is subsequently

condensed with 3,5-di-tert-butyl salicylaldehyde to give 2.6 The HCI can then be removed

using triethylamine to expose the amine for condensation with the xanthene-

functionalized-salicylaldehyde (3). However, the resulting product is a mixture of

symmetric and asymmetric salens. An effort was made to separate the mixture, but

attempts to isolate the desired ligand were frustrated by the reappearance of the

symmetric ligand in solution. In an effort to avert hydrolysis of the imines, the

condensation was performed under rigorously dry conditions over activated molecular

Figure 5.1. Equilibrium representing the exchange reaction that produces symmetric

impurities when salens containing two unique phenolate arms undergo hydrolysis. The

two unique salicylaldehyde components are represented in blue (dashed) and red

(solid).
(CHa)n (CH 2)n (CH2)nI N . , H=N N%=, N-• N• N ,,--,=" ",--,- ,

', "-"OH H7H H. -- OH HO---" ")
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Scheme 5.1

NNH3C,
t-Bu - OH

t-Bu

t-Bu

HO 2C

3 t-Bu

(a) 3,5-di-tert-butyl salicylaldehyde, MeOH/EtOH, 4A mol. sieves

sieves. Notwithstanding, the reaction produces water and thus we were unable to prevent

the disproportionation of the ligand. A re-design of the ligand was needed to circumvent

the hyrdrolysis re-distribution.

5.3.2. Design and Synthesis of Amido-Imine Macrocycles and Manganese Complexes

To evade the problem presented by Figure 5.1 in the synthesis of an asymmetric salen,

we decided to replace one of the imine bonds with an amido bond, which are less prone

to hydrolysis. We targeted the synthesis of macrocyclic "half-units", where a

cyclohexanediamine could be singly condensed to form an amido bond, leaving the other

amine available to form an imine bond.

The step-wise synthesis of the necessary precursors is described in Scheme 5.2. We

Scheme 5.2

H
0

a
X OH -a

t-Bu

X = t-Bu
X=H

4 : X = OMe
5:X= Br
6 : X = NO2

X = t-Bu
7:X=H
8 : X = OMe
9:X= Br
10 : X = NO2

NH NH2

b-b X OH

R2

11 : X = t-Bu, R2 = t-Bu
12:X=H, R2 H
13: X = H, R2 = t-Bu
14: X = OMe, R2 = t-Bu
15 : X = Br, R2 = t-Bu
16 : X = NO2, R2 = t-Bu

(a) Ag 20, 3M NaOHaq, (b) (I1R,2R)-(-)-1,2-diaminocyclohexane, N-
methylmorpholine, 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimine-HC1, CH 2Cl2, or
i) SOC12 , ii) (1R,2R)-(-)-1,2-diaminocyclohexane, Et 3N, CH 2Cl 2
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assembled a series of salicylaldehydes with various functionalities in the 5 position. 3,5-

di-tert-butyl salicylaldehyde and 3-tert-butyl salicylaldehyde were obtained

commercially. The methoxy,10 bromo,11 and nitro12 functionalized salicylaldehydes (4 -

6) could all be prepared in one step as described in the literature. The aldehydes were

oxidized to the carboxylic acid by heating with silver(I) oxide in basic solution. Coupling

proceeded with one equivalent of (1R,2R)-(-)-l,2-diaminocyclohexane using two

methods to form the amide bond. 11 and 12 were synthesized in higher yields by

allowing the acid and diamine to react with 1-[3-(dimethylamino)propyl]-3-

ethylcarbodiimine-HC1 and N-methylmorpholine. 13 - 16 were synthesized by allowing

the acid to react with thionyl chloride to form the acetyl chloride in situ, followed by

addition of the diamine. Both methods gave varying amounts of the symmetric diamide

ligand impurity despite dilute reaction conditions. The symmetric ligand was separated

from the desired products 11 - 16 by column chromatography. Macrocycle formation is

completed by condensation of the amine to the imine, furnishing the amido-imine

macrocycles shown in Scheme 5.3.

Scheme 5.3

0 17: M = 2H

a tN% M N B c 18:M= Mn

O t-Bu t-Bu
NH NH2  t-Bu

0
t-Bu OH

HO - 19: M =2H
t-Bu "

11 C 1N .N- 20: M = Mn
t-Bu O

t-Bu
t-Bu

(a) 3,5-di-tert-butyl-2-hydroxybenzaldehyde, EtOH, (b) 2,7-di-tert-butyl-5-(3-formyl-
4-hydroxy-phenyl)-9,9-dimethyl-9H-xanthene-4-carboxylic acid, EtOH, (c)
Mn(OAc) 2(H20) 4, EtOH

11 was refluxed in ethanol with 3,5-di-tert-butyl salicylaldehyde to give the bright yellow

macrocycle 17. The Hangman-type ligand 19 was also synthesized by condensation of 11

with a salicylaldehyde attached to the carboxylic acid functionalized xanthene scaffold.
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With 19, we saw no evidence of any functional group exchange in solution. The distinct

phenolic groups were maintained in the NMR spectrum. The manganese(III) ion can be

inserted into the ligands 17 and 19 by refluxing with manganese(II) acetate tetrahydrate

in ethanol in air to give 18 and 21, respectively. The amido nitrogen is deprotenated

during metallation to afford the neutral complex. 13 The molecular weights of the ions

(sodium adduct) obtained by high resolution mass spectrometry are consistent with this

formulation for the complex. Unique amide (C=0) and imine (C=N) stretches are present

in the infrared spectra. The C=O stretch is observed at 1628 cm - ' in 17 and 1638 cm - ' in

19. In the manganese complexes, the stretching frequency shifts to 1624 cm -1 in 18 and

1626 cm -- in 20. The shift upon metallation is more dramatic for the imine bond; the

stretching frequency at 1587 cm -1 in 17 and 1588 cm - 1 in 19 shifts to 1535 cm _1 and 1531

cm 1 in their respective manganese complexes.

5.3.3. Epoxidation Activity of Manganese Complexes

We were interested in ascertaining how our substitution of an amido group for an imine

in our ligand would affect the reactivity compared to its double-scaffold salen congeners.

Particularly, we were interested in learning whether this ligand framework could support

the type of oxidation chemistry observed in salens, and if the chirality of the ligand would

be transferred effectively to substrate. To this end, we examined the manganese complex

20 towards the epoxidation of 1,2-dihydronapthalene. Sodium hypochlorite was used as

the external oxidant, under the same conditions previously used to study their salen

counterparts.1, 2 The complexes did catalytically perform the desired epoxidation

chemistry with good yields, but the epoxide product was racemic. The lack of

asymmetric induction by these ligands may be due to their geometry. In salens, the

geometry of the macrocycle in the Mn(V) oxo species is believed to be roughly planar.14

However, the analogous diamido macrocycles are known to be more structurally flexible

and they can deviate from a non-planar coordination. 5-18 If such conformational changes

perturb substrate approaches towards the oxidizing intermediate, then communication

with the chiral cyclohexane bridge may be prevented.

5.4. Concluding Remarks
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Although there was no chiral induction by the amido-imine ligands, they represent an

interesting family of trianionic ligands. The oxygen atom transfer chemistry performed

by the manganese complexes suggest they are capable of supporting high-valent metal

oxidation states. This result is not too surprising as similar diamido diphenolic ligands

have long been used to stabilize metals in high oxidation states. 19 -24 Additionally, the

synthetic method is extremely modular. Several variations of the "half-units" were

rapidly synthesized with varying functionalities, permitting facile synthetic tuning of

electronic and steric ligand properties.

5.5. Experimental Section

5.5.1. Materials

Silica gel 60 (70 - 230 and 230 - 400 mesh) was used for column chromatography.

Analytical thin layer chromatography was performed using F254 silica gel (pre-coated

sheets, 0.2 mm thick). Solvents for synthesis were reagent grade or better and used as

received from Aldrich or dried according to standard methods.25 3,5-Di-tert-butyl-2-

hydroxybenzaldehyde, 3-tert-butyl-2-hydroxybenzaldehyde, 3,5-di-tert-butylsalicylic

acid, salicylic acid, 1-[3-dimethylamino)propyl)-3-ethylcarbodiimide hydrochloric acid,

N-methylmorpholine, (1R,2R)-(-)-1,2-diaminocyclohexane, thionyl chloride, manganese

(II) acetate tetrahydrate and 1,2-dihydronapthalene were used as received from Aldrich.

Silver(I) oxide was used as received from Strem Chemicals.

The following compounds were obtained using published protocols and their purity

confirmed by 1H NMR: (lR,2R)-(-)-l,2-diaminocyclohexane-HCI adduct (1),' 2-[(2-

aminocyclohexaneimino)-methyl]-4,6-di-tert-butyl-phenol.HCI adduct (2), 7 2,7-di-tert-

butyl-5-(3-formyl-4-hydroxyphenyl)-9,9-dimethyl-9H-xanthene-4-carboxylic acid (3),' 3-

tert-butyl-2-hydroxy-5methoxybenzaldehyde (4), l°  5-bromo-3-tert-butyl-2-

hydroxybenzaldehyde (5),11 3-tert-butyl-2-hydroxy-5-nitrobenzaldehyde (6). 12

5.5.2. Physical Measurements

1H NMR and '"C NMR spectra were performed in CDC13 (Cambridge Isotope

Laboratories) at 25 'C unless otherwise noted. Spectra were taken on an Inova 500 or
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Mercury 300 Spectrometer housed in the MIT Department of Chemistry Instrumentation

Facility (DCIF). All chemical shifts are reported using the standard 8 notation in parts-

per-million relative to tetramethylsilane. The 1H NMR and 1 3C NMR spectra were

internally calibrated to the monoprotio impurity of the deuterated solvent used. High-

resolution mass spectral analyses were carried out by the MIT DCIF on a Bruker

APEXIV47e.FT-ICR-MS using an Apollo ESI source.

5.5.3. Synthesis

5.5.3.1. 3-tert-Butyl-2-hydroxybenzoic acid (7)

3-tert-Butyl-2-hydroxybenzaldehyde (0.300 g, 1.68 mmol) and silver(I) oxide (0.234 g,

1.01 mmol) were added to 8 mL of 3 M aqueous NaOH solution and heated to 80 'C for 4

hours, followed by stirring at room temperature for an additional 12 hours. The solution

was then neutralized using HCl and filtered. The white precipitate was washed with

diethyl ether (20 mL) to leave the product (0.180 g, 46% yield). 1H NMR (500 MHz,

CDCb3, 6): 11.21 (s, 1H), 7.82 (dd, J = 8 Hz, 2 Hz, 1H), 7.54 (dd, J = 8 Hz, 2 Hz, 1H),

6.87 (t, J = 8 Hz, lH), 1.44 (s, 9H).

5.5.3.2. 3-tert-Butyl-2-hydroxy-5-methoxy-benzoic acid (8)

3-tert-Butyl-2-hydroxy-5-methoxybenzaldehyde (4) (0.500 g, 2.40 mmol) and silver(I)

oxide (0.557 g, 2.40 mmol) was added to 8 mL of 3 M aqueous NaOH solution and

heated to 80 TC for 4 hours, followed by stirring at room temperature for 8 hours. The

solution was then neutralized using HCi and filtered. The precipitate was washed with

diethyl ether (10 mL) to leave the red product (0.131 g, 24% yield). 'H NMR (500 MHz,

CDCl 3, 8): 10.90 (s, 1H), 7.23 (d, J = 3 Hz, 1H), 7.19 (d, J = 3 Hz, 1H), 3.81 (s, 3H),

1.43 (s, 9H). 13C NMR (500 MHz, CDCI3, 8): 175.45, 157.08, 151.37, 140.08, 124.13,

110.57, 108.89, 55.89, 35.30, 29.40.

5.5.3.3. 5-Bromo-3-tert-butyl-2-hydroxybenzoic acid (9)

5-Bromo-3-tert-butyl-2-hydroxybenzaldehyde (5) (0.500 g, 1.95 mmol) and silver(I)

oxide (0.270 g, 1.17 mmol) was added to 12 mL of 3M aqueous NaOH solution and

heated to 80 'C for 4 hours, followed by stirring at room temperature for 10 hours. The

solution was then filtered. The collected filtrate was neutralized using HCI and the
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resulting precipitate was collected by filtration. The precipitate was washed with

deionized water (20 mL) to give the orange product (0.171 g, 32% yield). 1H NMR (500

MHz, CDCl3, 6): 11.24 (bs, 1H), 7.91 (d, J = 2.5 Hz, 1H), 7.57 (d, J = 2.5 Hz, 1H), 1.41

(s, 9H). '13C NMR (500 MHz, CDCl 3, 6): 174.60, 161.02, 140.95, 137.04, 130.94, 129.41,

110.95, 35.45, 29.30.

5.5.3.4. 3-tert-Butyl-2-hydroxy-5-nitrobenzoic acid (10)

3-tert-Butyl-2-hydroxy-5-nitrobenzaldehyde (6) (0.300 g, 1.34 mmol) and silver(I) oxide

(0.187 g, 0.81 mmol) were added to 5 mL of 3M aqueous NaOH and heated to 80 'C for

4 hours and then stirred at room temperature for 12 hours. The solution was then filtered

over Celite. The collected filtrate was neutralized using HC1 and refiltered to collect the

resulting colorless precipitate. The filtrate was extracted with 2 x 10 mL of diethyl ether,

and the organic portions combined with the previously collected precipitate and purified

by column chromatograph (silica gel, 90:10 dichloromethane: methanol) to elute the

product (0.276 g, 86% yield). 1H NMR (500 MHz, CDCl3, 6): 12.05 (bs, 1H), 8.77 (d, J

= 3 Hz, 1H), 8.41 (s, IH), 3.53 (bs, 1H), 1.47 (s, 9H).

5.5.3.5. N-(2-Aminocyclohexane)-3,5-di-tert-butyl-2-hydroxybenzamide (11)

3,5-Di-tert-butylsalicylic acid (1.80 g, 6.81 mmol) (0.460 g, 1.74 mmol), (1R,2R)-(-)-

1,2-diaminocyclohexane, 1 -[3-(dimethylamino)propyl]-3-ethylcarbodiimine hydrochloric

acid (0.367 g, 1.91 mmol) and N-methylmorpholine (0.76 mL, 6.96 mmol) were added to

6 mL of dry dichloromethane and stirred at room temperature for 12 hours. The solution

was washed with dilute NaOH, dried over MgSO 4, and the solvent removed by rotary

evaporation. The residue was purified by column chromatography (silica gel, 5:5

pentane: dichloromethane, followed by dichloromethane, followed by 98:1:1

dichloromethane: methanol: triethylamine) to elute the product (0.239 g, 40% yield). 'H

NMR (500 MHz, CDC13, 6): 7.42 (d, J = 2 Hz, 1H), 7.32 (d, J = 2 Hz, 1H), 7.01 (bs,

1H), 3.62 (bs, 1H), 2.54 (bs, 1H), 1.97 (d, J = 2 Hz, 1H), 1.87 (bs, 1H), 1.62 (d, J = 6 Hz,

2H), 1.38 (s, 9H), 1.26 (s, 9H), 1.24 (m, 2H), 1.11 (t, J - 9 Hz, 2H). 13C NMR (500 MHz,

CDCl 3, 6): 171.79, 158.88, 140.00, 138.16, 128.92, 119.61, 113.50, 56.10, 55.05, 35.53,

35.32, 34.47, 32.42, 31.65, 29.52, 25.12, 25.10.

5.5.3.6. N-(2-Aminocyclohexane)-2-hydroxybenzamide (12)
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Salicyclic acid (0.300 g, 2.17 mmol), (1R,2R)-(-)-1,2-diaminocyclohexane (0.250 g, 2.17

mmol), 1-[3-dimethylamino)propyl)-3-ethylcarbodiimide hydrochloric acid (0.458 g,

2.39 mmol), and N-methylmorpholine (0.96 mL, 8.68 mmol) were added to 12 mL of dry

dichloromethane in an oven-dried flask and stirred for 36 hours. The reaction was then

washed with a dilute aqueous sodium carbonate solution and the organic portion dried

with MgSO4. The solvent was removed by rotary evaporation and the residue was

purified by column chromatography (silica gel, 98:1:1 dichloromethane: methanol:

triethylamine followed by 89:10:1 dichloromethane: methanol: triethylamine) to elute the

product (0.203 g, 40% yield). 'H NMR (500 MHz, CDCl3 , 6): 7.52 (dd, J = 8 Hz, 1.5 Hz,

IH), 7.50 (bs, 1H), 7.36 (dt, J = 8 Hz, 1.5 Hz, 1H), 6.89 (dd, J = 8 Hz, 1 Hz, IH), 6.85

(dt, J = 8 Hz, 1.5 Hz, 1H), 3.99 (bs, 1H), 3.68 (t, J = 4.5 Hz, 2H), 2.40 (bs, 2H), 2.27 (s,

2H), 2.24 (s, IH), 1.85 (d,J= 6.5 Hz, 1H), 1.45 (m, 2H).

5.5.3.7. N-(2-Amino-cyclohexane)-3-tert-butyl-2-hydroxybenzamide (13)

3-tert-Butyl-2-hydroxybenzoic acid (7) (0.160 g, 0.824 mmol) was heated to 70 'C in

neat thionyl chloride (2 mL) for about one hour, or when evolution of gas from the

reaction ceased. The excess thionyl chloride was removed under reduced pressure and

100 mL of dry dichloromethane was added to the residue. A solution of (IR,2R)-(-)-1,2-

diaminocyclohexane (0.114 g, 0.989 mmol) in 100 mL of dry dichloromethane was

slowly added to the acyl chloride solution in 15 mL aliquots, followed by neat

triethylamine (0.115 mL, 0.824 mmol). After stirring at room temperature for 12 hours,

the solution was filtered and the filtrate was reduced by rotary evaporation to give the

crude product, which was purified by column chromatography (silica gel, 98:1:1

dichloromethane: methanol: triethylamine) to give the product (0.091 g, 38% yield). 'H

NMR (500 MHz, CDCl 3, 6): 7.40 (t, J = 6.5 Hz, 1H), 6.78 (m, 2H), 3.80 (bs, IH), 3.00

(bs, 1H), 3.07 (m, 2H), 2.75 (bs, 2H), 2.19 - 2.05 (m, 2H), 1.75 (d, J = 11 Hz, 2H). 1.42

(s, 9H). 171.52, 161.23, 138.95, 131.31, 123.88, 117.82, 114.24, 55.82, 55.05, 35.25,

35.17, 34.68, 32.46, 29.46, 25.06. 13C NMR (500 MHz, CDCl3, 6): 171.52, 161.23,

138.95, 131.31, 123.88, 117.82, 114.24, 59.01, 55.82, 55.05, 45.98, 35.17, 32.46, 29.46,

25.06.

5.5.3.8. N-(2-Aminocyclohexane)-3-tert-butyl-2-hydroxy-5-methoxybenzamide

(14)
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3-tert-Butyl-2-hydroxy-5-methoxybenzoic acid (8) (0.100 g, 0.446 mmol) was heated to

70 'C in neat thionyl chloride (2 mL) for about one hour. The excess thionyl chloride was

removed under reduced pressure and 100 mL of dry dichloromethane was added to the

residue. A solution of (lR,2R)-(-)-l,2-diaminocyclohexane (0.061 g, 0.535 mmol) in

100 mL of dry dichloromethane was slowly added to the acyl chloride solution in 15 mL

aliquots, followed by neat triethylamine (0.061 mL, 0.446 mmol). After stirring at room

temperature for 12 hours, the solution was filtered and the filtrate was reduced by rotary

evaporation to give the crude product, which was purified by column chromatography

(silica gel, 98:1:1 dichloromethane: methanol: triethylamine followed by 89:10:1

dichloromethane: methanol: triethylamine) to give the product (0.061 g, 43% yield). 1H

NMR (500 MHz, CDCl 3, 5): 7.04 (t, J = 3 Hz, 1H), 6.97 (bs, 1H), 3.81 (s, 3H), 3.53 (bs,

1H), 3.34 (bs, 1H), 3.07 (m, 2H), 2.8 (bs, IH), 2.40 (d, J = 12 Hz, 1H), 2.18 - 2.03 (m,

2H), 1.74 (d, J = 8.5 Hz, 2H), 1.40 (s, 9H). "3C NMR (500 MHz, CDCl 3, 5): 171.53,

155.58, 150.92, 140.22, 119.98, 113.77, 107.13, 56.21, 55.20, 54.26, 46.00, 35.29, 32.19,

29.38, 24.93, 24.75.

5.5.3.9. N-(2-Aminocyclohexane)-5-bromo-3-tert-butyl-2-hydroxybenzamide (15)

5-Bromo-3-tert-butyl-2-hydroxybenzoic acid (6) (0.120 g, 0.439 mmol) was heated to 70

'C in neat thionyl chloride (2 mL) for about one hour. The excess thionyl chloride was

removed under reduced pressure and 100 mL of dry dichloromethane was added to the

residue. A solution of (1R,2R)-(-)-1,2-diaminocyclohexane (0.061 g, 0.535 mmol) in

100 mL of dry dichloromethane was slowly added to the acyl chloride solution in 15 mL

aliquots, followed by neat triethylamine (0.061 mL, 0.446 mmol). After stirring at room

temperature for 12 hours, the solution was filtered and the filtrate was reduced by rotary

evaporation to give the crude product, which was purified by column chromatography

(silica gel, 98:1:1 dichloromethane: methanol: triethylamine followed by 89:10:1

dichloromethane: methanol: triethylamine) to give the product (0.078 g, 48% yield). 1H

NMR (500 MHz, CDC13, 5): 7.64 (d, J = 2.5 Hz, 1H), 7.42 (d, J = 2.5 Hz, 1H), 7.02 (bs,

1H), 3.70 (bs, 1H), 3.51 (m, 2H), 2.72 (m, 2H), 2.67 (bs, 1H), 2.09 (bs, 1H), 2.00 (bs,

1H), 1.74 (min, 2H), 1.35 (s, 9H). "3C NMR (500 MHz, CDCl 3, 6): 170.53, 160.31, 141.06,

133.96, 127.33, 115.86, 109.91, 55.22, 53.93, 52.93, 35.35, 32.12, 29.26, 24.86, 24.82.

5.5.3.10. N-(2-Aminocyclohexane)-3-tert-butyl-2-hydroxy-5-nitrobenzamide (16)
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3-tert-Butyl-2-hydroxy-5-nitrobenzoic acid (10) (0.040 g, 0.167 mmol) was heated to 70

'C in neat thionyl chloride (2 mL) for about one hour. The excess thionyl chloride was

removed under reduced pressure and 50 mL of dry dichloromethane was added to the

residue. A solution of (1R,2R)-(-)-1,2-diaminocyclohexane (0.023 g, 0.201 mmol) in 50

mL of dry dichloromethane was slowly added to the acyl chloride solution in 15 mL

aliquots, followed by neat triethylamine (0.023 mL, 0.167 mmol). After stirring at room

temperature for 12 hours, the solution was filtered and the filtrate was reduced by rotary

evaporation to give the crude product, which was purified by column chromatography

(silica gel, 89:10:1 dichloromethane: methanol: triethylamine) to give the product (0.013

g, 23% yield). tH NMR (500 MHz, CDCI3, 8): 8.98 (s, 1H), 8.11 (s, 1H), 4.12 (bs, 1H),

3.80 (bs, IH), 3.25 (m, IH), 2.35 (d, J = 12 Hz, IH), 2.15 (d, J = 9 Hz, IH), 1.96 (m,

2H), 1.88 (d,J= 7 Hz, 1H), 1.75 (bs, 2H), 1.39 (s, 9H).

5.5.3.11. 3,5-Di-tert-butyl-N-{2-[(3,5-di-tert-butyl-2-hydroxybenzylidene)amino]-

cyclohexane}-2-hydroxybenzamide (17)

N-(2-Aminocyclohexane)-3,5-di-tert-butyl-2-hydroxybenzamide (11) (0.250 g, 0.721

mmol) and 3,5-di-tert-butyl-2-hydroxybenzaldehyde (0.169 g, 234.23 mmol) were added

to 6 mL of ethanol and heated to reflux for 12 hours. The reaction was then cooled to 0

'C and filtered. The bright yellow precipitate was washed with cold ethanol (2 mL) to

give the product (0.300 g, 74% yield). IR (KBr) vmax: 1628 cmn-1 (C=O), 1587 cn -1

(C=N). 'H NMR (500 MHz, CDC13, 8): 13.42 (s, 1H), 12.54 (s, 1H), 8.40 (s, 1H), 7.38

(d, J = 2.5 Hz, IH), 7.32 (d, J= 2.5 Hz, 1H), 7.03 (m, 2H), 6.11 (d,J= 7.5 Hz, IH), 4.19

(bs, 1H), 3.25 (dt, J = 10.5 Hz, 4 Hz, 1H), 2.19 (bs, 1H), 1.96 - 1.73 (m, 4H), 1.55 - 1.50

(m, 3H), 1.38 (s, 9H), 1.34 (s, 9H), 1.25 (s, 9H), 1.22 (s, 9H). '3 C NMR (500 MHz,

CDC13, 8): 171.16, 165.60, 158.74, 158.26, 140.25, 139.83, 138.28, 137.10, 128.81,

127.50, 126.01, 119.05, 117.75, 113.79, 54.06, 35.34, 35.22, 34.35, 34.29, 33.84, 31.66,

31.58, 31.53, 31.31, 29.62, 29.53, 24.85, 24.33. HRESI-MS ([M + H]) C36H54N2 0 3 m/z,

Calcd. 563.4207 Found 563.4202.
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Figure 5.2. 'H NMR of compound 17.
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5.5.3.12. Mn[3,5-di-tert-butyl-N-{2-[(3,5-di-tert-butyl-2-hydroxybenzylidene)-

amino] cyclohexane}-2-hydroxybenzamide] (18)

The ligand 3,5-di-tert-butyl-N-{2-[(3,5-di-tert-butyl-2-hydroxybenzylidene)amino]-

cyclohexane}-2-hydroxybenzamide (17) (15.0 mg, 0.027 mmol) was added to

manganese(II) acetate tetrahydrate (6.5 mg, 0.027 mmol) in 2 mL of ethanol and refluxed

in air for 4 hours. Upon cooling, the solvent was removed under reduced pressure. The

residue was washed with methanol and the insoluble portion dissolved in

dichloromethane and washed with 2 x 10 mL of deionized water. The organic portion

was dried with MgSO 4 and the solvent removed by rotary evaporation to give the brown

product (8.0 mg, 49% yield). IR (KBr) vmax: 1624 cm'- 1 (C=O), 1535 cm- ' (C=N).

HRESI-MS ([M + Na]÷) NaC36H51MnN 20 3 m/z, Calcd. 637.3178 Found 637.3204.

5.5.3.13. 2,7-Di-tert-butyl-5-(3-{ [2-(3,5-di-tert-butyl-2-hydroxybenzoylamino)-

cyclohexaneimino]methyl}-4-hydroxyphenyl)-9,9-dimethyl-9H-xanthene-4-

carboxylic acid (19)

N-(2-Aminocyclohexane)-3,5-di-tert-butyl-2-hydroxybenzamide (11) (25.0 mg, 0.072

mmol) was added to 2,7-di-tert-butyl-5-(3-formyl-4-hydroxyphenyl)-9,9-dimethyl-9H-

xanthene-4-carboxylic acid (35.1 mg, 0.072 mmol) in 3 mL of methanol. The mixture

was refluxed for 12 hours and then cooled to 0 'C and filtered. The precipitate was

washed with 4 mL of cold methanol to leave the bright yellow product (26 mg, 44%

yield). IR (KBr) vmax: 1638 cm - ' (C=O), 1588 cm - 1 (C=N). 'H NMR (500 MHz, CDCl3,
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6): 8.45 (s, IH), 7.95 (d, J = 2.5 Hz, lh), 7.69 (d, J = 2.5 Hz, 1H), 7.46 (d, J = 2.5 Hz,

IH), 7.39 (m, 2H), 7.17 (d, J = 2.5 Hz, 1H), 7.07 (d, J = 2.5 Hz, 1H), 7.03 (d, J = 9 Hz,

IH), 6.19 (d, J = 9 Hz, 1H), 4.22 (d, J = 6 Hz, IH), 3.42 (s, 1H), 3.37 (dt, J = 11.5 Hz,

4.5 Hz, 1H), 2.18 (bs, 1H), 2.01 (d,J= 13.5 Hz, 1H), 1.89 - 1.76 (m, 3H), 1.54 - 1.48 (m,

2H), 1.34 (s, 9H), 1.21 (s, 9H). "3C NMR (500 MHz, CDC13, 6): 171.47, 160.92, 159.00,

146.06, 145.64, 145.13, 139.99, 137.81, 130.33, 128.75, 128.57, 128.40, 128.02, 126.08,

125.85, 124.62, 124.47, 124.32, 124.15, 121.77, 121.58, 120.64, 120.47, 118.35, 117.13,

116.90, 113.88, 69.9, 53.93, 53.70, 50.74, 50.57, 44.26, 35.30, 35.05, 34.68, 31.74, 31.65,

31.60, 31.51, 29.63, 29.55, 29.51. HRESI-MS ([M + H]f) C 52H 66 N20 6 m/z, Caled.

815.4994 Found 815.5028.

Figure 5.3. 1H NMR spectra of compound 19.
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5.5.3.14. Mn[2,7-di-tert-butyl-5-(3-{ [2-(3,5-di-tert-butyl-2-hydroxybenzoylamino)-

cyclohexaneimino]methyl}-4-hydroxyphenyl)-9,9-dimethyl-9H-xanthene-4-
carboxylic acid] (20)

2,7-Di-tert-butyl-5-(3- {[2-(3,5-di-tert-butyl-2-hydroxybenzoylamino)cyclohexaneimino]-

methyl}-4-hydroxyphenyl)-9,9-dimethyl-9H-xanthene-4-carboxylic acid (19) (26.0 mg,

0.032 mmol) was added to manganese(II) acetate tetrahydrate (7.8 mg, 0.032 mmol) in 2

mL of ethanol and refluxed in air for 4 hours. Upon cooling, the solvent was removed

under reduced pressure, and the residue was washed with methanol. The insoluble portion

was dissolved in dichloromethane and washed with 2 x 10 mL of deionized water. The

organic portions were dried with MgSO 4 and the solvent was removed by rotary
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evaporation to leave the product (14 mg, 52% yield). IR (KBr) vmax: 1626 cm- 1 (C=O),

1531 cm-1 (C=N). ESI-MS ([M + Na] ) NaC 52H63MnN 20 6 m/z, Calcd. 889.40 Found

889.56.

5.5.4. Epoxidation Measurements

The epoxidation measurement was performed as follows: 0.75 mL of 0.05 M Na 2HPO4

was added to 2 mL of commercial bleach (Clorox) and cooled to 0 oC. This solution of

oxidant was added to a solution of Mn[2,7-di-tert-butyl-5-(3- {[2-(3,5-di-tert-butyl-2-

hydroxybenzoylamino)-cyclohexaneimino]methyl}-4-hydroxyphenyl)-9,9-dimethyl-9H-

xanthene-4-carboxylic acid] (20) (6.7 mg, 0.008 mmol) and 1,2-dihydronapthalene (100

mg, 0.768 mmol) in 1 mL of dichloromethane, also cooled to 0 'C. Upon stirring for 12

hours, the layers were separated and the aqueous layer was extracted with 2 x 6 mL of

dichloromethane. The combined organic layers were washed with 10 mL of water and 10

mL of a saturated sodium chloride solution and dried over MgSO 4. After solvent removal

by rotary evaporation the crude product was purified to by column chromatography

(silica gel, 98:2 petane: ethyl acetate) to yield the epoxide product (36 mg, 32% yield).

The ee of 0% was determined by use of a chiral GC calibrated using a pure racemic

epoxide sample. The ee measurements were performed using a chiral GC housed in

Professor Gregory Fu's laboratory by Shih-Yuan Liu.
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Chapter 6

Synthesis of Cofacial Pacman Salen

Architectures and Their Iron Complexes
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6.1. Motivation and Specific Aims

Our interest in multi-electron reactivity has led us to synthesize a series of bimetallic

cofacial Pacman salen architectures with different inter-metal distances. A general

synthetic methodology is developed for the construction of the ligands with two different

pillars, which can be assembled and isolated in the absence of a metal ion template. This

Chapter focuses on the synthesis of diferric, diferrous, and the p-oxo diferric salen

Pacman complexes and their reactivity; the ensuing Chapter captures the diversity of

metal Pacman complexes that can be made from the ligands described here. We attempt

to photolytically activate the p-oxo bond in an attempt to expose a high-valent iron oxo

that can perform enantioselective oxygen atom transfer chemistry to electron rich

substrates, as displayed in the diiron Pacman porphyrin analogues.

6.2. Background

The design of ligand architectures capable of arranging two metal sites in a cofacial

fashion has been explored with a variety of porphyrin' -26 and other macrocyclic 275 2

frameworks for a variety of reasons, including modeling enzymatic active sites, exploring

multi-electron reactivity, and studying host-guest chemistry. Schiff-base macrocycles

have been used in several of these architectures as they can support a wide range of

transition metals in many oxidation states. The facile incorporation of enantioselective

features into the salen macrocycles makes them interesting templates for assembling

bimetallic ligands that form a chiral cleft between the metal centers. Moreover, Lewis-

acid-assisted epoxide ring opening reactions are catalyzed by metallosalens and the

mechanism is believed to involve a bimetallic intermediate. Therefore, a cofacial disalen

construct that can pre-organize the transition state is a logical approach to improve

catalytic activity though ligand design (this will be discussed further in Chapter 7).

The features of oxidative stability and construction of a chiral cleft are the primary

motivations in extending the chemistry that has been performed with cofacial "Pacman"

ligands. One of the intriguing reactions performed by the diiron p-oxo bonded complexes

is photocatalytic oxidation of electron rich substrates.22 6'5  The overall catalytic cycle

is shown in Scheme 5.1. The g-oxo bonds, formed upon oxidation of the diferrous
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Scheme 6.1

0.5

subf0l sub

species with molecular oxygen, is thermally unreactive. However, transient absorption

spectroscopy has shown that the Fe-O bond can be photolytically cleaved, generating an

iron(IV) oxo capable of performing oxygen atom transfer (OAT) chemistry. 24 These

studies reveal that the geometrically splayed dibenzofuran pillar directs substrate

approach to the oxidizing intermediate, favoring oxidation of substrate instead of the

reverse reaction, re-clamping to reform the g-oxo bond. Additionally, functionalizing the

porphyrins with electron-withdrawing groups shifts the excitation wavelength into the

visible and increases the electrophilicity of the iron(IV) oxo intermediate sufficiently to

oxidize more challenging substrates such as hydrocarbons. 25' 26

We were motivated to extend this photocatalytic oxidation chemistry using molecular

oxygen as the oxidant to Pacman salen architectures. Using these architectures, we could

potentially expand the utility of this reaction to the oxidation of prochiral substrates.

Although no efforts that we are aware of have been made to photoactivate a diiron salen

g-oxo bond, there is chemical precedent for the last two steps of the catalytic cycle.

Firstly, iron salens have shown catalytic oxygen atom transfer to olefins56 and sulfides57

using the oxidants sodium hypochlorite and iodosylbenzene, respectively, although the

nature of the oxidizing iron intermediate is still under debate.58-60 The subsequent reaction

of the diferrous species with molecular oxygen to oxidize the metals by one electron and

reform the g-oxo bridge is also well known in the iron salen literature. 6 1-72 Therefore, a
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catalytic cycle using diiron Pacman salens may be constructed provided that the Fe-O

bond may be cleaved photolytically.

The synthesis of cofacial salens has been demonstrated in the literature using a variety of

linkers, such as naphthalene, 47  methylene, 50,5 1  1,2-ethanediol, 50 ' 51  and 9,9-

dimethylxanthene. 48 The cofacial geometry is enforced by bridging the salens on both

ends of the phenolic arms via the synthetically accessible 3 and 3' or 5 and 5' positions.

In all of these examples, the complexes were synthesized in the presence of a metal

ion46 ,4 8,50 ,51 or boric acid,52 which is believed to be critical in templating the formation of

the ligand. This requirement complicates the synthesis of other bimetallic complexes;

only M2+ ions (specifically Mn, Ni, and Zn) have successfully been used as templates for

ligand assembly. Consequently, in our synthesis of diiron and diiron p-oxo Pacman salen

complexes, we sought to synthesize and isolate the free ligands in the absence of a

templating agent.

6.3. Results and Discussion

6.3.1. Ligand Design

Chart 6.1

DSX DSD

Xanthene and dibenzofuran were used as the rigid pillars to bridge the two macrocycles

to form the ligands DSX and DSD, respectively, shown in Chart 5.1. Because the imine

bonds on the salen macrocycle are easily hydrolyzed, 73-76 resulting in exchange, 77 salens

with unique salicylaldehydes are difficult to isolate and extremely sensitive to water. To

avoid this issue, we once again turned to using two pillars to form salen macrocycles that

were symmetric across the diamine bridge. The (lR,2R)-(-)-1,2-diaminocyclohexane

enantiomer was used as the diamine bridge for complexes that we hoped to effect
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enantioselective chemistry; the racemic version was used for the other Pacman

complexes. The xanthenes are expected to hold the salens roughly parallel, whereas the

dibenzofuran pillars enforces a more splayed geometry, as they do in the porphyrin

Pacman complexes. Thus, the two pillars provide geometric endpoints for molecular cleft

sizes of Pacman salens.

6.3.2. Synthesis of DiSalen Xanthene Ligand (DSX)

The synthesis of the DSX ligand is outlined in Scheme 6.1. The formation of the

xanthene-to-salicylaldehyde aryl-aryl bonds of ligand 4 required the precursor 4,5-di(5-

salicylaldehyde)-2,7-di-tert-butyl-9,9-dimethylxanthene (3), which was approached from

two different synthetic pathways. In the first, 7-di-tert-butyl-9,9-dimethyl-4-

dihydroxyborane-5-(4,4,5,5-tetramethyl-[ 1,3,2]dioxaborolan-2-yl)-9H-xanthene (1) was

synthesized from Rebek's xanthene dibromide (procedure described in Chapter 3).

Suzuki coupling of 1 directly with 5-bromosalicylaldehyde gave 3, with an overall yield

of 13%. Alternatively, the xanthene dibromide is already equipped with the electrophilic

Scheme 6.1

t-Bu t-Bu

V\ 1-0
Br OMe

0 C0

-0
Br -OMe

t-Bu t-Bu
2

a d
t-Bu

-0
OH

b 0. e
00

- OH
t-Bu

(a) bis(pinacolato)diboron, Pd(dppf)C12, KOAc, DMSO, (b) 5-bromosalicylaldehyde,
Na2 CO 3, Pd(dppf)C12, DME: H20 (3:1) (c) 3-formyl-4-methoxyphenylboronic acid,
Na2 CO 3, Pd(dppf)C12, DME: H20 (3:1), (d) BBr 3, CH 2Cl2, (e) 1,2-
diaminocyclohexane, EtOH
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aryl carbons necessary for palladium catalyzed coupling. Under Suzuki coupling

conditions, the commercially available 3-formyl-4-methoxyphenylboronic acid was

joined to the xanthene dibromide to furnish 4,5-di-(3-formyl-4-methoxyphenyl)-2,7-di-

tert-butyl-9,9-dimethylxanthene (2). The methyl ether was then deprotected using boron

tribromide to give 3 in 53% overall yield. Both pathways to 3 require two steps from the

xanthene starting material. The modest yield is limited by the consecutive application of

two palladium catalyzed cross-coupling steps, which are typically low yielding.

The precursor 4,5-di(5-salicylaldehyde)-2,7-di-tert-butyl-9,9-dimethylxanthene (3) was

refluxed with one equivalent of 1,2-diaminocyclohexane to give the DSX ligand (4).

Unlike previous attempts by other groups to synthesize a disalen ligand, we were able to

isolate the ligand 4 without using a metal ion template. The isolated ligand was

characterized by high-resolution mass spectrometry and elemental analysis was used to

determine purity. The 'H NMR spectra at room temperature of 4 was poorly resolved and

broad (see Figure 6.1). The spectra of different isomers were resolved at lower

temperatures. Head-to-head or head-to-tail orientations will be obtained with rotation of

the salen macrocycles about the bond connecting the macrocycle to the xanthene.

Insight into the geometry disposition of the cofacial macrocycles was provided from the

X-ray analysis. Single crystals of 4 suitable for X-ray diffraction were grown from the

slow evaporation of a pentane-dichloromethane solution. The structure, shown in Figure

6.2 indicates considerable flexibility of the ligand salen macrocycle. They can twist along

the aliphatic diamine bridge to break the square planar ligand arrangement and form the

bent orientation observed in the crystal structure. We believe that insertion of a metal ion

is expected to enforce the planar orientation of the ligand and provides the cofacial

parallel construction desired of this architecture.

The DSX ligand was also characterized by infrared spectroscopy. The most notable

feature is the imine bond stretch, found at 1589 cm ~. This is a useful diagnostic in

characterizing the subsequent DSX complexes as it blue shifted when coordinated to a

metal.
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Figure 6.1. Variable temperature IH NMR spectra of DiSalen Xanthene ligand (4)

from room temperature (20 'C) to -60 'C, taken in 10 'C intervals.

8 6 4 2 0
ppm

Figure 6.2. X-Ray crystal structure of DiSalen Xanthene (4). Crystals were grown
from slow evaporation of a pentane-dichloromethane solution. Carbons are depicted
as gray, oxygens as red, and nitrogens as blue. H atoms are omitted for clarity.
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6.3.3. Synthesis of DiSalen Dibenzofuran Ligand (DSD)

Scheme 6.2

Br

0B
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1 \\ 0&
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(a) bis(pinacolato)diboron, Pd(dppf)Cl 2, KOAc, DMSO, (b) BBr3, CH2Cl2 , (c) 3-
formyl-4-methoxyphenylboronic acid, Na2CO3, Pd(dppf)Cl2, DME: H20 (3: 1), (d) 5-
bromosalicylaldehyde, Na2CO 3, Pd(dppf)C12, DME: H20 (3: 1) (e) 1,2-
diaminocyclohexane, EtOH

The synthesis of the disalen dibenzofuran ligand (DSD) is outlined in Scheme 5.2.

Dibenzofuran (5) is not commercially available but can be produced in a one-pot

synthesis by treating dibenzofuran successively with sec-butyllithium, followed by

elemental bromine. We initially synthesized the diboronate (6) using palladium catalyzed

cross-coupling conditions with bis(pinacolato)diboron, followed by its reaction with 5-

bromosalicylaldehyde under Suzuki coupling conditions to give the desired precursor 8.

The low overall yield along this path led us to synthesize 2-hydroxy-5-(4,4,5,5-

tetramethyl-[ 1,3,2]dioxaborolan-2-yl)-benzaldehyde as a precursor, but this was also met

with disappointing yields (this synthesis is presented in Appendix B2). A few years into

this work, 3-formyl-4-methoxyphenylboronic acid became commercially available,

which can be coupled directly to dibromodibenzofuran (5). Attempted Suzuki coupling

conditions resulted in the monocatenated product (also discussed in Appendix B2), but
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proper conditions were eventually found to give 7 in good yields. The methyl ethers were

deprotected using boron tribromide to give 8 in 62% overall yield.

The DSD ligand (9) is produced upon refluxing 8 with one equivalent of 1,2-

diaminocyclohexane. Unlike the DSX ligand, the 1H NMR spectrum of DSD is well

resolved; the splayed pillar may strain the salens enough to prevent rotation in solution.

The product was analyzed using high-resolution mass spectrometry and elemental

analysis. The infrared spectra of the ligand contained a peak at 1586 cm-1, assigned to the

imine bond stretch. X-ray quality crystals grown from pentane-dichloromethane solutions

gave the surprising structure shown in Figure 6.3. Diamine couples to the

salicylaldehydes on the same dibenzofuran spacers instead of bridging between two

dibenzofurans. The 1H NMR clearly shows the existence of only one isomer in solution,

and the mass spectrum proves it to be the heavier disalen dibenzofuran (DSD) ligand.

Because the imine bonds in salen ligands are in equilibrium with their hydrolysis

products, we believe that impurity shown in Figure 6.3 is formed in small concentrations

from the fluxional nature of the imine bonds in our ligand. Solutions left under conditions

for crystallization typically form large single crystals of the impurity, which is less

soluble. The impurity appears to be in equilibrium with the disalen. When the crystals are

Figure 6.3. X-Ray crystal structure of DSD impurity. Crystals were grown out of a
pentane-dichloromethane solution. Carbons are depicted as gray.
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isolated and redissolved into solution, their mass spectrum is again composed primarily

of the disalen dibenzofuran ligand. Therefore we believe the desired product DSD is the

major component of our condensation reaction, and the impurity crystallizes out of

solution as a minor product. As the impurity is less soluble, crystallizing conditions

drives the equilibrium to the undesired product. Although present in small amounts in

solutions of the ligand, metalation of the salen prevents hydrolysis and thus stabilizes the

formation of the disalen ligand; the impurity may easily be separated from the metallated

ligand. We have not observed an analogous impurity in the synthesis of disalen xanthene

(DSX). The aldehydes are likely too close to bridge a cyclohexanediamine bridge.

5.3.4. Synthesis of Ferric Chloride Complexes

Chart 6.2

10: M = FeCI 13
16 : M = Fe

11 : M = FeCI
17: M = Fe

t ou*t-Bu - 0M' t-Bu
t-Bu t-Bu

12: M = FeCI
18 : M = Fe

t-Bu

t-Bu
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The iron salen and Pacman salen complexes shown in Chart 6.2 were prepared. Iron(III)

insertion into the Pacman ligands was achieved by the reaction of two equivalents of

ferric chloride in ethanol; the procedure is analogous to the preparation of monomeric

iron salen compounds. 78 Anhydrous reactions conditions and workup were required to

prevent the formation of pt-oxo-bridged impurities.79,80 This is particularly important as

elemental analysis is not sensitive enough to distinguish between a partially aquated

species and pt-oxo bridged impurities. This metalation method was also successful in

producing the iron salen complex monomer 12 cleanly and in good yield. The purity of

the ferric complexes 10 - 12 was determined by elemental analysis and their molecular

formula by mass spectrometry. The infrared spectrum of the Pacman complexes also

possessed the blue-shifted imine peaks of 1540 cm for 10 and 1538 cm ' for 11

(compared to the free ligand), diagnostic of metal coordination.

5.3.5. Synthesis of Diiron p-Oxo Complexes

The diiron p-oxo complexes 13 - 15 (as shown in Chart 6.2) were prepared using a

method similar to a procedure used for other salen ligands.81,'82 Ferric chloride

hexahydrate was added to the ligand, followed by slow addition of excess triethylamine.

The iron(III) centers are expected to be paramagnetic, but coupling through the p-oxo can

result in ferromagnetic or antiferromagnetic coupling, depending on the angle of the Fe-

O-Fe bond. A crystal of the unpillared 15 was grown out of a tetrahydrofuran solution

Figure 6.4. X-Ray crystal structure of the unpillared Fe 2(salen) 20 (15). Crystals were
grown from a pentane-dichloromethane solution. The angle of the Fe-O-Fe bond
is 165.2(7)0, and the salens are by rotated 124.5' with respect to each other.
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Figure 6.5. Infrared spectra displaying the fingerprint region of Fe 2DSXO (13),
Fe2DSDO (14), and Fe 2(salen)20 (15), highlighting the imine (C=N, blue) and Fe-

O-Fe bond (purple) stretch.
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and the structure is shown in Figure 6.4. The Fe-O-Fe bond of 1650 (it should be

noted that the quality of the crystal data was poor). The structure is shown in Figure 5.4.

This observed angle is more linear than the related diiron R-oxo

bis(disalicylalethylenediamine) complex, which displays an Fe-O-Fe of 144.6(7)0,83

but within the 139'-1750 range expected with a variety for four-coordinate macrocycles,

The more linear geometry may indicate more a-bonding character in the Fe--O-Fe.72

Additionally, the Fe-O bond distances of 1.773(9) and 1.754(9) are expected for a

diiron t-oxo bridge, as opposed to the longer distances indicative of a hydroxyl bridged

species. We expect the restricted geometry of the Pacman complexes to alter the angle of

the diiron t-oxo coordination, although we have yet to determine this parameter using

crystallographically. The imine stretch was again diagnostic of metal coordination in the

infrared spectra, coming in at 1536 cm - 1 for both 13 and 14 and 1533 cm -n for 15. The

Fe-O-Fe asymmetric bond stretch was also identified (based on published literature

values), coming in at 833 cm - 1n, 830 cm - 1 and 837 cm l for 13, 14 and 15, respectively

(see Figure 6.5). In additional to 'H NMR spectroscopy, the compounds were

characterized by mass spectroscopy and their purity determined by elemental analysis.

5.3.6. Synthesis of Ferrous Complexes
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Previous preparations of iron(II) salen compounds have used ferrous acetate to insert the

metal ion in dimethylformamide. 62 We found the air-sensitive ferrous complexes 16 - 18

could be cleanly synthesized with this starting material using tetrahydrofuran instead,

which is more convenient to remove during product isolation. The purity of the products

was determined by elemental analysis.

6.3.7. 5 7sFe Mossbauer Spectroscopy of Iron Complexes

57Fe Mossbauer spectra were recorded for all of the iron compounds 10 - 18 in the solid

state at 4.2K. The parameters from the data fit are given in Table 6.1. The data for the

iron salen compounds, along with the fit, are shown in Figures 6.6, 6.7 and 6.8, and a

summary of the parameters found is listed in Table 6.1.

The Fe(III) chloride salen complexes (Figure 6.6) have similar isomer shifts (8) (0.428,

0.435, and 0.447 mm/s for 10, 11, and 12 respectively), indicating that the chemical

environment around the irons are comparable. These values fall within the range of an

Fe(III) high spin S = 5/2 species, typically listed as between 0.25 and 0.60 mm/s. 84-86 This

Figure 6.6. Fitted 57Fe M6ssbauer spectra of (a) Fe 2DSXCl2 (10), (b) Fe 2DSDC12
(11), (c) Fe(salen)Cl (12) at 4.2 K. Gray dots represent the experimental data points
and the black solid line represents the fit. The vertical axis is an arbitrary
transmission scale.
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Figure 6.7. Fitted 57Fe Massbauer spectra of (a) Fe2DSXO (13), (b) Fe2DSDO (14),
(c) Fe 2(salen)20 (15) at 4.2 K. Gray dots represent the experimental data points and
the black solid line represents the fit. The vertical axis is an arbitrary transmission
scale.
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-6 -4 -2 0 2 4 6
Velocity (mm/s)

Table 6.1. Summary of M6ssbauer parameters for compounds 10 - 18
K. 6 is relative to elemental iron. All samples were measured in
(powdered). F is the half-width at half-maximum of the peaks, and the
is the same for both peaks.

recorded at 4.2
the solid state

value presented

Complex 6 (mm/s) AEQ (mm/s) F

Fe 2DSXC12 (10) 0.428 1.03 0.387

Fe2(DSD)C12 (11) 0.435 1.23 0.617

Fe(salen)C1 (12)a 0.447 1.18 0.219

Fe2(DSX)O (13) 0.439 0.90 0.259

Fe2(DSD)O (14) 0.490 0.97 0.498

Fe2(salen)20 (15)" 0.441 0.73 0.275

Fe 2(DSX) (16) 0.472 0.94 0.372

Fe2(DSD) (17) 0.416 0.87 0.581

Fe(salen) (18)a 0.578 1.08 1.362
a salen = (1R, 2R)-(-)-[1,2-cyclohexanediamino-N,N'-bis(3,5-di-tert-

butylsalicylidene)].

184



Figure 6.8. Fitted 57Fe MSssbauer spectra of (a) Fe2DSX (16), (b) Fe 2DSD (17),
(c) Fe(salen) (18) at 4.2 K. Gray dots represent the experimental data points and
the solid black line represents the fit. The vertical axis is an arbitrary transmission

scale.
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spin state is supported by magnetic data on the related Fe(salen)Cl compounds (with

ethylenediamine and phenylenediamine bridges) in the literature. 78' 79 The similar

quadrupole splitting value AEQ of the diiron Pacman complexes (1.03 for 13 and 1.23 for

14) compared to the monomeric compound 12 (AEQ = 1.18 mm/s) suggests the

tetradendate salen ligand geometry is probably not distorted from its normal square

planar geometry by incorporation in the Pacman framework. The F values are the same

for both peaks.

The diiron t-oxo-bridged species (data shown in Figure 6.7) have 6 values of 0.439,

0.490, and 0.447 mm/s for 13, 14 and 15, respectively. These values are consistent with

other unbound Fe(III) t-oxo bridged salen complexes, which display isomer shifts of

0.47 to 0.56 mm/s (at 77 K).72'87-90 The slightly higher quadrupole splitting (AEQ) seen in

the Pacman complexes (0.90 and 0.97 mm/s for the Pacmans 13 and 14 compared to 0.73

mmn/s for the monomer 15) could be due to a more acute FeO---Fe angle due to ligand

constraints, although this is a tentative conclusion in the absence of more structural

evidence.
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The Fe(II) salen complexes (Figure 6.8) display isomer shifts (8) of 0.472, 0.416, and

0.578 mm/s for 16, 17 and 18 respectively. These shifts for 16 and 17 are consistent with

a low spin Fe(II) environment. As mentioned previously, the ferrous compounds are

subject to oxidation in the presence of air. Although the samples were prepared under an

inert atmosphere, and brought to the instrument immersed in liquid nitrogen, they may

have been exposed to air during the manipulation into the sample holder. This may

explain the poor data quality of 18, and 8 values that are on the high end for low-spin

Fe(II) complexes (approaching the range observed for high-spin Fe(III) complexes).

However, the isomer shifts we measured are below the range expected for high spin

Fe(II) complexes, which generally fall between 6 = 0.8 - 1.5 mm/s.86

6.3.8. Photolysis Studies of Iron Complexes

The diiron t-oxo salen photo-oxidation studies were performed under conditions similar

to those used in the analogous porphyrin systems. We examined the Pacman complexes

bridged with xanthene (13), dibenzofuran (14), and the species lacking a pillar, 15.

Dimethyl sulfide and dibutyl sulfide used as OAT substrates, and dodecane was used as

the internal standard for product analysis via GC/MS. Excess substrate was used (10

Figure 6.9. UV-vis absorption profiles of 30 jmol solutions of Fe 2DSXC12 (13)(---

), Fe 2DSDCl2 (14) ("'), and Fe 2(salen) 20 (15) (-) in acetonitrile. The spectra is
scaled to molar absorbtivity.
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equivalents) and the reactions were photolyzed for 20 hours; the wavelength was tailored

using long-wavelength-pass filters. Unlike the porphyrin complexes, the diiron It-oxo

salens do not absorb strongly above 300 nm. In the Pacman salen complexes 13 and 14,

there is only a tail above 350 nm that extends into the visible, as shown in Figure 6.9. The

disalen complex 15 exhibits a broad shoulder at about 380 nm. Photolysis using kexcc >

400 nm gave no oxidation products. When kXxec was shifted into the ultraviolet (295 nm

and 324 nm), there were no sulfoxide or sulfone products obtained above the background

level, as determined by control experiments in the absence of catalysts. (Trace oxidation

of sulfides occurs upon aerobic photolysis with ultraviolet light). In the context of the

previous studies with the Pacman porphyrin catalytic cycle we can make a few

observations about the lack of reactivity from the diiron pt-oxo salens. Transient

absorption spectroscopy of the Pacman porphyrins shows that photon absorption results

in cleavage of the Fe-O bond to give the ferrous and ferryl oxo species. Oxidation of

substrate competes with reclamping to reform the g-oxo diiron bridge. The double-

pillared structure of the Pacman salens would appear to facilitate the reclamping and

prevent exposure of any photolytically generated ferryl oxo. However, the unbridged

complex also does not display any oxidation chemistry. This leads us to believe that the

lack of photocatalytic activity is likely due to the low absorptive qualities of the diiron t-

oxo complexes. The Pacman porphyrin complexes are excited in the LMCT (k =360 nm,

S105). The salen compounds, however, lack any pronounced absorption peaks in k >

350 with lower molar absorptivity. In an effort to elucidate the LMCT bands, the

absorption spectra was taken in solvents of varying dielectric constants 9' (specifically

benzene, acetonitrile, and propylene carbonate), but no notable changes were observed.

6.4. Concluding Remarks

We have developed a synthetic methodology to synthesize cofacial salen ligands using

dibenzofuran and xanthene pillars in the absence of a templating agent. As a result, we

were able to isolate and characterize the unmetallated ligands, and easily synthesize

several diiron compounds. We tested the pt-oxo diiron complexes for the same

photocatalytic oxidation chemistry that is observed in the porphyrin analogues, but did

not see any activity. This is likely due to the lack of prominent absorption features that

are present in the porphyrin complexes.

187



6.5. Experimental Section

6.5.1. Materials

Silica gel 60 (70 - 230 and 230 - 400 mesh) was used for column chromatography.

Analytical thin layer chromatography was performed using F254 silica gel (pre-coated

sheets, 0.2 mm thick). Solvents for synthesis were reagent grade or better and used as

received from Aldrich or dried according to standard methods. 92 4,5-Dibromo-2,7-di-tert-

butyl-9,9-dimethylxanthene, boron tribromide, (1R,2R)-(-)-1,2-diaminocyclohexane,

triethylamine, and (LR, 2R)-(-)-(1,2-cyclohexanediamino-N,N'-bis(3,5-di-tert-

butylsalicylidene)] were also used as received from Aldrich. Bis(pinacolato)diboron and

3-formyl-4-methoxyphenylboronic acid were used as received from Frontier Scientific.

Sodium carbonate, potassium acetate, anhydrous iron(III) chloride, iron(III) chloride

hexahydrate, anhydrous iron(II) acetate, and dichloro[1,1'-

bis(diphenylphosphino)ferrocene]palladium(II) dichloromethane adduct were used as

received from Strem Chemicals. The following compound was obtained using published

protocols and its purity confirmed by iH NMR: 4,6-dibromodibenzofuran (5). The

synthesis for 2,7-di-tert-butyl-9,9-dimethyl-4-dihydroxyborane-5-(4,4,5,5-tetramethyl-

[1,3,2]dioxaborolan-2-yl)-9H-xanthene (1) was presented in Chapter 3 (as compound 13).

The synthesis of 4,5-di(5-salicylaldehyde)-2,7-di-tert-butyl-9,9-dimethylxanthene (3) via

(1) can be found in Appendix B2.

6.5.2. Physical Measurements

1H NMR and 'C NMR spectra were collected in CDC13 (Cambridge Isotope

Laboratories) at the MIT Department of Chemistry Instrumentation Facility (DCIF) using

an Inova 500 Spectrometer at 25 'C. All chemical shifts are reported using the standard 6

notation in parts-per-million relative to tetramethylsilane and spectra have been internally

calibrated to the monoprotio impurity of the deuterated solvent used. High-resolution

mass spectral analyses were carried out by the MIT Department of Chemistry

Instrumentation Facility on a Bruker APEXIV47e.FT-ICR-MS using an Apollo ESI

source. Infrared spectrum were taken on a Perkin-Elmer Model 2000 FTIR using KBr

pellets prepared using a high pressure press. Mdssbauer absorption data were recorded at
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4.2 K on an MS1 spectrometer (WEB Research Co.) equipped with a 57Co source and a

Janus cryostat, and referenced to elemental iron. UV-visible absorption spectra were

recorded on a Spectral Instruments 440 spectrophotometer. Molar absorptivity

coefficients were determined on solutions of sub-mM concentrations of the respective

compounds.

6.5.3. Synthesis

6.5.3.1. 4,5-Di-(3-formyl-4-methoxyphenyl)-2,7-di-tert-butyl-9,9-

dimethylxanthene (2)

Under nitrogen, a mixture of 4,5-dibromo-2,7-di-tert-butyl-9,9-dimethylxanthene (2.00 g,

4.17 mmol), 3-formyl-4-methoxyphenylboronic acid (1.65 g, 9.17 mmol), sodium

carbonate (1.33 g, 12.5 mmol), dichloro[1,1'-bis(diphenylphosphino)ferrocene]-

palladium(II) dichloromethane adduct (0.367 g, 0.500 mmol), 1,2-dimethoxyethane (45

mL), and deionized water (15 mL) was heated to 90 'C for 48 hours. Upon cooling, the

mixture was extracted with 4 x 100 mL of dichloromethane. The organic portions were

combined and dried over MgSO 4 and the solvent removed by rotary evaporation. The

crude solid was purified by column chromatography (silica gel, 2: 8 hexane:

dichloromethane) to elute the colorless product (1.671 g, 69 % yield). 'H NMR (500

MHz, CDCl3, 6): 10.35 (s, 2H), 7.73 (d, J = 2.5 Hz, 2H), 7.44 (d, J = 2.5 HZ, 2H), 7.39

(dd, J = 8.5 Hz, 2 Hz, 2H), 7.13 (d, J = 2 Hz, 2H), 6.61 (d, J= 8.5 Hz, 2H), 3.94 (s, 6H),

1.74 (s, 6H), 1.35 (s, 18H). 13C NMR (500 MHz, CDC13, 6): 189.53, 160.46, 145.71,

137.57, 131.12, 130.37, 129.97, 127.81, 125.54, 124.28, 122.07, 121.93, 111.95, 55.68,

35.26, 34.71, 32.03, 31.72. HRESI-MS ([M + Na] ) NaC39H420 5 m/z, Calcd. 613.2924

Found 613.2925.

6.5.3.2. 4,5-Di(5-salicylaldehyde)-2,7-di-tert-butyl-9,9-dimethylxanthene (3)

4,5-Di-(3-formyl-4-methoxyphenyl)-2,7-di-tert-butyl-9,9-dimethylxanthene (2) (1.01 g,

1.63 mmol) was added to 55 mL of dry dichloromethane and cooled to 0 'C. A solution

of boron tribromide (7.0 mL, 1.0 M in dichloromethane) was added and upon stirring for

3 hours, 40 mL of water was added. The aqueous layer was separated and extracted with

3 x 50 mL of dichloromethane. The combined organic layers were washed with 25 mL

of water, and dried over MgSO 4. The solvent was evaporated and the residue was eluted
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by column chromatography (silica gel, dichloromethane) and further purified by

recrystallization in hot ethanol (0.748 g, 77% yield). 'H NMR (500 MHz, CDC13, 8):

10.86 (s, 2H), 9.38 (s, 2H), 7.50 (d, J = 3 Hz, 2H), 7.47 (t, J = 3 Hz, 2H), 7.40 (d, J = 2.5

Hz, 2H), 7.17 (d, J = 2.5 Hz, 2H) 6.84 (d, J = 8.5 Hz, 2H), 1.76 (s, 6H), 1.37 (s, 18). 13C

NMR (500 MHz, CDCl3 , 6): 195.84, 160.47, 146.07, 145.27, 145.26. 138.01, 135.35,

130.01, 127.38, 125.60, 122.53, 122.40, 120.20, 117.35, 35.24, 34.81, 32.56, 31.76.

HRESI-MS ([M + Na] ) NaC37H3805 m/z, Calcd. 585.2617 Found 585.2605.

6.5.3.4. DSX (4)

4,5-Di(5-salicylaldehyde)-2,7-di-tert-butyl-9,9-dimethylxanthene (3) (500 mg, 0.841

mmol) and (lR,2R)-(-)-l,2-diaminocyclohexane (96 mg, 0.841 mmol) was added to 8

mL of anhydrous ethanol and heated to reflux overnight. The solution was then cooled in

a freezer and filtered. The bright yellow solid collected was washed with an additional 4

mL of cold ethanol to give the product (504 mg, 94% yield). X-Ray quality crystals were

grown from slow evaporation of a pentane-dichloromethane solution. IR (KBr) Vmax :

1589 cm - ' (C=N). HRESI-MS ([M + H] ) C86H96N40 6 m/z, Calcd. 1281.7403 Found

1281.7405. UV-vis (CH 2C 2 ) Xmax, nm (F): 307 (31,924), 336 (14,984). Anal. Calcd for

C 86H 96N4 0 6 : C, 80.59; H, 7.55; N, 4.37. Found: C, 80.65; H, 7.38; N, 4.29.

6.5.3.5. 4,6-(4,4,5,5-Tetramethyl-[1,3,2] dioxaborolan-2-yl)-dibenzofuran (6)

Under nitrogen, a mixture of 4,6-dibromodibenzofuran (5) (2.00 g, 6.14 mmol),

bis(pinacolato)diboron (4.67 g, 18.4 mmol), potassium acetate (4.22 g, 43.0 mmol),

dichloro[1,1'-bis(diphenylphosphino)ferrocene]palladium(II) dichloromethane adduct

(0.450 g., 0.613 mmol), dimethyl sulfoxide (30 mL), was heated to 90 'C for 48 hours.

Upon cooling, the mixture was extracted with 4 x 200 mL of dichloromethane. The

organic portions were combined and washed with 5 x 100 mL of water and dried over

MgSO4 and the solvent removed by rotary evaporation. 2 x 500 mL of hexanes was

stirred into the residue and filtered. The filtrate was reduced by rotary evaporation to

give a crude solid, which was recrystallized by hot ethanol to give the colorless product

(2.253 g, 87 % yield). Subsequent synthetic procedure to produce 8 from 6 is presented in

Appendix B2. 1H NMR (500 MHz, CDC13, 8): 8.02 (d, J = 7.5 Hz, 2H), 7.85 (d, J = 7.5

Hz, 2H), 7.32 (t, J = 7.5 Hz, 2H), 1.46 (s, 12H). 13C NMR (500 MHz, CDCl3, 8): 160.83,
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134.00, 123.58, 123.39, 122.16, 122.16, 120.05, 83.94, 83.62, 25.25, 25.16, 25.09.

HRESI-MS ([M + Na]+) NaC24H30B2Os m/z, Calcd. 443.2195 Found 443.2192.

Figure 6.10. X-Ray crystal structure of 4,6-(4,4,5,5-Tetramethyl-[1,3,2]dioxaborolan-
2-yl)-dibenzofuran (6).
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6.5.3.6. 4,6-Di(3-formyl-4-methoxyphenyl)-dibenzofuran (7)

Under nitrogen, a mixture of 4,6-dibromodibenzofuran (5) (1.00 g, 3.07 mmol), 3-

formyl-4-methoxyphenylboronic acid (1.22 g, 6.75 mmol), sodium carbonate (0.948 g,

9.20 mmol), tetrakis(triphenylphosphine)palladium (0.425 g, 0.368 mmol),

dimethylformamide (27 mL), and deionized water (3 mL) was heated to 90 'C for 48

hours. Upon cooling, the mixture was extracted with 4 x 100 mL of dichloromethane.

The organic portions were combined and dried over MgSO 4 and the solvent removed by

rotary evaporation. The crude solid was purified by column chromatography (silica gel,

dichloromethane) to elute the colorless product (1.02 g, 76% yield). IH NMR (500 MHz,
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CDC13, 8): 10.58 (s, 2H), 8.48 (d, J = 2.5 Hz, 2H), 8.28 (d, J = 7.5 Hz, 2H), 7.97 (dd, J=

2.5 Hz, 1 Hz, 2H), 7.68 (dd, J = 7.5 Hz, 1 Hz, 2H), 7.25 (m, 4H), 4.04 (s, 6H).

6.5.3.7. 4,6-Di(5-salicylaldehyde)dibenzofuran (8)

4,6-Di(3-formyl-4-methoxyphenyl)dibenzofuran (7) (1.02 g, 2.34 mmol) was added to 50

mL of dry dichloromethane and cooled to 0 'C. A solution of boron tribromide (10 mL,

1.0 M in dichloromethane) was added and upon stirring for 3 hours, 30 mL of water was

added. The aqueous layer was separated and extracted with 3 x 50 mL of

dichloromethane. The combined organic layers were washed with 25 mL of water, and

dried over MgSO 4. The solvent was evaporated and the residue was eluted by column

chromatography (silica gel, dichloromethane) and further purified by recrystallization in

hot ethanol (0.773 g, 81% yield). 'H NMR (500 MHz, CDCl3, 8): 11.11 (s, 2H), 9.97 (s,

2H), 8.17 (m, 4H), 8.01 (dd, J = 7.5 Hz, 1 Hz, 2H), 7.66 (dd, J = 2.5 Hz, 1 Hz, 2H), 7.51

(d, J = 7.5 Hz, 1H), 7.15 (d, J = 7.5 Hz, 2H). 13C NMR (500 MHz, CDC13, 6): 196.73,

161.20, 153.14, 137.18, 135.35, 133.78, 131.73, 128.36, 126.31, 125.14, 123.93, 120.97,

120.21. HRESI-MS ([M + Na]+) NaC26H160 5 m/z, Calcd. 431.0890 Found 431.0893.

6.5.3.8. DSD (9)

4,6-Di(5-salicylaldehyde)dibenzofuran (8) (0.400 g, 0.980 mmol) and (1R,2R)-(-)-1,2-

diaminocyclohexane (0.112 g, 0.980 mmol) was added to 12 ml of anhydrous ethanol and

heated to reflux overnight. The solution was then cooled in a freezer and filtered. The

bright yellow solid collected was washed with an additional 8 mL of cold ethanol to give

the product (0.416 g, 87% yield). 'H NMR (500 MHz, CDC13, 8): 13.96 (s, 4H), 8.20 (s,

4H), 8.17 (d, J = 2.5 Hz, 4H), 7.92 (dd, J = 7.5 Hz, 1 Hz, 4H), 7.71 (dd, J = 8 Hz, I H,

4H), 7.63 (dd, J = 8.5 Hz, 2 Hz, 4H), 7.56 (t, J = 8 Hz, 4H), 7.14 (d, J = 8.5 Hz, 4H),

3.24 (m, 4H), 2.35 (d, J = 10.5 Hz, 4H), 1.93 (m, 8H), 1.50 (m, 4H). 13C NMR (500

MHz, CDCI3, 8): IR (KBr) vmax : 1586 cn - 1 (C=N). HRESI-MS ([M + H]+) C 6 4H 5 3N 40 6

m/z, Calcd. 943.3960 Found 973.3957. UV-vis (CH 2C12) kmax, nm (e): 297 (sh, 37,096),

318 (sh, 30,396), 327 (sh, 32,334). Anal. Calcd for C 64H 52N 4 0 6: C, 78.99; H, 5.39; N,

5.76. Found: C, 78.76; H, 5.26; N, 5.68.

6.5.3.9. Fe2(DSX)CI 2 (10)
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Under a nitrogen atmosphere, anhydrous ferric chloride (7.6 mg, 0.047 mmol) was added

to 5 mL of anhydrous ethanol. The ligand DSX (4) (30.0 mg, 0.023 mmol) was added and

the solution turned reddish-brown with precipitate. Upon stirring for 18 hours the now

purple-red solution was filtered, and the precipitate was washed with an additional 10 mL

of ethanol. The combined filtrates were reduced under vacuum and the resulting residue

was recrystallized from hot acetone to give the dark purple product (27 mg, 82% yield).

IR (KBr) Vmax : 1540 cm -' (C=N). ESI-MS ([M - Cl] ) C86H92N4 0 6C1Fe 2 m/z, Calcd.

1423.53 Found 1423.61. Anal. Calcd for C86H92C12Fe2N4 0 6 : C, 70.73; H, 6.35; N, 3.84.

Found: C, 70.63; H, 6.39; N, 3.88.

6.5.3.10. Fe2(DSD)CI2 (11)

Under a nitrogen atmosphere, anhydrous ferric chloride (55.6 mg, 0.206) was added to 10

mL of anhydrous methanol. The ligand DSD (9) was added and the solution was heated

to reflux overnight. Upon cooling, the green solution was cooled in an ice bath and

filtered. The precipitate was washed with 1 mL of cold methanol to give the dark purple

product (45 mg, 75% yield). IR (KBr) Vmax: 1538 cm -n (C=N). HRESI-MS ([M - Cl]-)

C64H4 8N40 6C1Fe 2 m/z, Calcd. 1115.1976 Found 1115.1973. Anal. Calcd for

C64H4 8N40 6Cl2Fe2 : C, 66.74; H, 4.20; N, 4.86. Found: C, 66.68; H, 4.28; N, 4.81.

6.5.3.11. Fe[(1R, 2R)-(-)-(1,2-cyclohexanediamino-N,N'-bis(3,5-di-tert-butylsalicyli

dene))jCl (12)

This compound has previously been prepared using different reagents and conditions. 58' 93

Under a nitrogen atmosphere, anhydrous ferric chloride (14.8 mg, 0.091 mmol) was

added to (1R, 2R)-(-)-(1,2-cyclohexanediamino-N,N'-bis(3,5-di-tert-butylsalicylidene)

(50.0 mg, 0.091 mmol) in 4 mL of anhydrous ethanol. Upon stirring at room temperature

for 12 hours, the reaction was filtered and the precipitate was washed with cold ethanol

and recrystallized from hot acetone to give (42 mg, 72 % yield). HRESI-MS ([M - Cl] )

C36H52N2 0 2Fe m/z, Calcd. 600.3378 Found 600.3379. Anal. Calcd for C36H52C1FeN 202:

C, 67.97; H, 8.24; N, 4.40. Found: C, 67.75; H, 8.05; N, 4.46.

6.5.3.12. pi-oxo-(Fe 2DSX) (13)

Ferric chloride hexahydrate (84.5 mg, 0.312 mmol) was slowly added to the ligand DSX

(4) (200.0 mg, 0.156 mmol) in 8 mL of methanol. After 5 minutes, triethylamine (0.44
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mL, 3.12 mmol) was added dropwise to the dark red solution and precipitate formed. The

mixture was stirred for an additional 3 hours, then cooled in an ice bath and filtered. The

precipitate was taken up in dichloromethane and filtered through a 0.45 ptm

polypropylene syringe filter. The filtrate was reduced by rotary evaporation to leave the

reddish-brown product (173 mg, 80% yield). IR (KBr) Vmax : 1536 cm' (C=N), 834 cm - 1

(Fe-O-Fe). ESI-MS ([M + H] ) C86H93N40 7Fe 2 m/z, Calcd. 1405.57 Found 1405.61.

Anal. Calcd for C86H92Fe 2N407: C, 73.50; H, 6.60; N, 3.99. Found: C, 73.42; H, 6.62; N,

4.06.

6.5.3.13. g-oxo-(Fe 2DSD) (14)

Ferric trichloride hexahydrate (44.4 mg, 0.164 mmol) was added slowly to a solution of

the ligand DSD (9) (80.0 mg, 0.082 mmol) in 2 mL of methanol, which turned dark olive

green. After 10 minutes, triethylamine 0.23 mL, 1.64 mmol) was added dropwise and the

solution was stirred for an additional 2 hours, then cooled in an ice bath. The red mixture

was filtered using 0.22 pm polypropylene filter paper, and the precipitate was washed

with 20 mL of methanol. The solid was then taken up in dichloromethane and filtered.

The dark red filtrate was reduced by rotary evaporation to leave the reddish- orange

product (53 mg, 59% yield). IR (KBr) vmax: 1536 cm - ' (C=N), 830 cm -1 (Fe-O-Fe).

Anal. Calcd for C64H48Fe2N40 7: C, 70.09; H, 4.41; N, 5.11. Found: C, 69.84; H, 4.30; N,

4.96.

6.5.3.14. p-oxo-[Fe(1R, 2R)-(-)-(1,2-cyclohexanediamino-NN'-bis(3,5-di-tert-butyl

salicylidene))]2 (15)

Ferric trichloride hexahydrate (24.7 mg, 0.091 mmol) was added slowly to a solution of

(1R, 2R)-(-)-[1,2-cyclohexanediamino-N,N'-bis(3,5-di-tert-butylsalicylidene)] (50.0 mg,

0.091 mmol) in 4 mL of methanol. After 5 minutes, triethylamine (0.13 mL, 0.914 mmol)

was added dropwise to the purplish brown solution, which turned orange with precipitate.

This was stirred for an additional 3 hours, then filtered washed with 2 mL of methanol.

The precipitate was then taken up in dichloromethane and refiltered. The filtrate was

reduced by rotary evaporation to leave the orange product (35 mg, 64% yield). X-Ray

quality crystals were grown from a pentane-dichloromethane solution. IR (KBr) Vmax :

1533 cm 1 (C=N), 837 cm 1. HRESI-MS ([M + H]t) C72H1o05N4OsFe 2 m/z, Caled.
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1217.6872 Found 1217.6902. Anal. Calcd for C72HIO04Fe2N4Os: C, 71.04; H, 8.61; N,

4.60. Found: C, 71.15; H, 8.40; N, 4.55.

6.5.3.15. Fe2(DSX) (16)

Under a nitrogen atmosphere, ferrous acetate (27.2 mg, 0.156 mmol) was added to the

ligand DSX (4) (50.0 mg, 0.078) in 6 mL of anhydrous tetrahydrofuran. The solution

went from red to dark purple upon stirring for 24 hours. The solvent was removed under

reduced pressure and the residue was washed with 2 mL of anhydrous ether to leave the

dark purple product (100 mg, 92% yield). Anal. Calcd for C86H92Fe 2N40 6: C, 74.34; H,

6.67; N, 4.03. Found: C, 74.26; H, 6.74; N, 3.91.

6.5.3.16. Fe2(DSD) (17)

Under a nitrogen atmosphere, ferrous acetate (18.0 mg, 0.103 mmol) was added to the

ligand DSD (9) (50.0 mg, 0.051 mmol) in 10 miL of anhydrous tetrahydrofuran. The

solution turned red and was stirred for 24 hours. The solvent was removed under reduced

pressure and the remaining residue was washed with 4 mL of anhydrous ether to leave

the reddish-purple product (48 mg, 88% yield). Anal. Calcd for C64H4 8Fe2 N40 6 : C, 71.12;

H, 4.48; N, 5.18. Found: C, 70.94; H, 4.58; N, 5.08.

6.5.3.17. Fe[(1R, 2R)-(-)-[1,2-cyclohexanediamino-N,N'-bis(3,5-di-tert-butylsalicyli

dene)] (18)

Under a nitrogen atmosphere, ferrous acetate (31.8 mg, 0.183 mmol) was added to (1R,

2R)-(-)-[ 1,2-cyclohexanediamino-N,N'-bis(3,5-di-tert-butylsalicylidene) (100.0 mg,

0.183 mmol) in 10 mL of anhydrous tetrahydrofuran and stirred at room temperature for

24 hours. The solvent was removed under reduced pressure and the remaining residue

was washed with 2 mL of anhydrous ether to give the purple product (72.5 mg, 66%

yield). Anal. Calcd for C36H52FeN 20 2: C, 71.99; H, 8.73; N, 4.66. Found: C, 69.55; H,

8.46; N, 3.88.

6.5.4. Photolysis Studies

Representative Procedure. 100 mL of a 3.13 mM substrate (dibutyl sulfide or methyl

sulfide) and 74.9 mM dodecane solution of acetonitrile or benzene was prepared. 4.0 mL
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of this solution was added to separate matching cells containing 5.4 mg of Fe 2DSXO

(13), 2.1 mg of Fe 2DSDO (14), 2.4 mg of Fe 2(salen)20 (15), or no catalyst. Each of these

reactions was then photolyzed for 20 hours and the solutions were then analyzed using

GC/MS. Using light through a 400 nm long wavelength pass (LWP) filter, there were no

oxidation products observed. Using light through a 295 nm and 324 nm LWP there were

trace amounts of sulfoxide and sulfone produced, all in quantities similar to that observed

for the control solution with no catalyst.

6.5.5. X-Ray Crystal Data Collection and Refinement Parameters

Data collection and reduction

Crystals were coated with Paratone N oil and mounted on a glass fiber. X-ray diffraction

data were collected at -80 'C on a Siemens three-circle diffractometer equipped with a

CCD detector, using the Mo Kcc radiation, selected by a graphite monochromator. The

data were integrated to hke-intensity and the final unit cell calculated using the SAINT

v.4.050 program from Siemens. Solution and refinement were performed with the

SHELXTL v.5.03 suite of programs developed by G. M. Sheldrick and Siemens

Industrial Automation, 1995. No absorption correction was performed. The structure was

solved by direct methods; the least-squares refinement converged normally (with

hydrogen atoms placed at calculated positions using a standard riding model and refined

isotropically).
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Table 6.2 Crystal data and structure refinement for DSX (4).
Identification code c05035 ortho

Empirical formula C96H1 19N40 6

Formula weight 1424.95

Temperature 100(2) K

Wavelength 0.71073

Crystal system Orthorhombic

Space group P2(1)2(1)2(1)

Unit cell dimensions a = 16.2351(5) A

b = 18.8877(6) A

c = 28.0461(8) A

Volume 8600.2(5) A3

Z

Density (calculated)

Absorption coefficient

F(000)

Crystal size

Theta range for data collection

Index ranges

Reflections collected

Independent reflections

Completeness to theta = 23.260

Absorption correction

Max. and min. transmission

Refinement method

Data / restraints / parameters

Goodness-of-fit on F2

Final R indices [I>2sigma(I)]

4

1.101 Mg/m 3

0.068 mm-'

3084

0.30 x 0.18 x 0.12 mm3

1.65 to 23.260.

-16<=h<=18, -20<=k<=20, -

27<=1<=3 1

41819

12323 [R(int) = 0.0502]

99.8 %

None

0.9919 and 0.9800

Full-matrix least-squares on F2

12323 / 2 / 1001

1.059

R1 = 0.0473, wR2 = 0.1160
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Table 6.3 Crystal data and structure refinement for 4,6-(4,4,5,5-Tetramethyl-

[1,3,2]dioxaborolan-2-yl)-dibenzofuran (6).

Identification code 002220m

Empirical formula C24 H30 B2 05

Formula weight 420.10

Temperature 193(2) K

Wavelength 0.71073 A

Crystal system Monoclinic

Space group P2(1)/c

Unit cell dimensions a = 23.2735(18) A

b = 8.2995(7) A f= 100.3650(10).

c = 12.2614(10) A
Volume 2329.7(3) A3

Density (calculated)

Absorption coefficient

F(000)

Crystal size

Theta range for data collection

Index ranges

Reflections collected

Independent reflections

Completeness to theta = 20.00'

Absorption correction

Refinement method

Data / restraints / parameters

Goodness-of-fit on F2

Final R indices [I>2sigma(I)]

R indices (all data)

1.198 Mg/m 3

0.081 mm - 1

896

0.48 x 0.31 x 0.07 mm 3

2.61 to 20.00'.

-22<=h<=22, -7<=k<=7, -6<=1<=11

6450

2157 [R(int) = 0.0555]

99.6 %

None

Full-matrix least-squares on F2

2157 / 0 / 289

1.077

R1 = 0.0551, wR2 = 0.1321

R1 = 0.0584, wR2 = 0.1345
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Table 6.4. Crystal data and structure refinement for structure shown in Figure 6.3.

Identification code c04085m

Empirical formula C3 2 H26 N2 03

Formula weight 486.55

Temperature 150(2) K

Wavelength 0.71073

Crystal system Orthorhombic

Space group P2, 2 12,

Unit cell dimensions a = 11.269(3) A

b = 13.507(3) A

c = 16.031(4) A

Volume 2440.2(11) A3

Z 4

Density (calculated) 1.324 Mg/m 3

Absorption coefficient 0.085 mm-1

F(000) 1024

Crystal size 0.09 x 0.07 x 0.07 mm3

Theta range for data collection 1.97 to 23.34'.

Index ranges -12<=h<= 12, -14<=k<= 15, -17<=1<= 13

Reflections collected 11313

Independent reflections 3528 [R(int) = 0.0624]

Completeness to theta = 23.34' 99.8 %

Absorption correction

Refinement method

Data / restraints / parameters

Goodness-of-fit on F2

Final R indices [I>2sigma(I)]

R indices (all data)

None

Full-matrix least-squares on F2

3528 / 0 / 341

1.044

R1 = 0.0413, wR2 = 0.0922

R1 = 0.0517, wR2 = 0.0982
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Table 6.5. Crystal data and structure refinement for structure shown in Figure 6.4.

Identification code C04060

Empirical formula C 36 H52 Fe 2 N4 05

Formula weight 732.52

Temperature 150(2) K

Wavelength 0.71073 A

Crystal system Triclinic

Space group P-1

Unit cell dimensions a = 13.75(3) A a= 105.76(3)0.

b = 17.69(3) A 83= 102.39(3)0.

c = 17.73(4) A y = 107.99(4).

Volume 3731(13) A3

Density (calculated)

Absorption coefficient

F(000)

Crystal size

Theta range for data collection

Index ranges

Reflections collected

Independent reflections

Completeness to theta = 20.000

Absorption correction

Refinement method

Data / restraints / parameters

Goodness-of-fit on F2

Final R indices [I>2sigma(I)]

R indices (all data)

1.304 Mg/m3

0.822 mm-

1552

0.16 x 0.10 x 0.10 mm3

1.26 to 20.000.

-12<=h<=13, -15<=k<=17, -

15<=1<=17

7468

5781 [R(int) = 0.0389]

83.2 %

None

Full-matrix least-squares on F2

5781 / 1321 / 1034

2.956

R1 = 0.2492, wR2 = 0.5434

RI = 0.2760, wR2 = 0.5732
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Chapter 7

Synthesis of Bimetallic Cofacial Pacman

Salens
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7.1. Motivation and Specific Aims

The untemplated synthesis of cofacial Pacman ligands using the rigid pillars xanthene

(DSX) and dibenzofuran (DSD) was presented in Chapter 6. In many cases, metalation

can proceed under conditions similar to those established for monomeric salens, allowing

easy synthetic access to a diverse metallosalen library of complexes. This metalation

chemistry is explored here to generate bimetallic complexes of copper, chromium,

manganese, cobalt, and zinc. Initial studies into catalytic Lewis-acid assisted epoxide

ring-opening chemistry is also explored.

7.2. Background

An avenue of reactivity we sought to explore with our Pacman salens was the ring-

opening of epoxides. The intrinsic ring-strain of epoxides can be coupled with

coordination of the oxygen to a Lewis acid to induce ring opening. This reaction has been

catalyzed with a variety of chiral metallosalens with a host of nucleophiles. 1-25 The ring

opening reactions are significant because of their high selectivity; this reaction produces

produces two adjacent stereocenters from an achiral precursor. Additionally, several of

the catalysts (notably the chromium-azide nucloephile and and cobalt/water nucleophile

systems) are able to efficiently kinetically resolve racemic mixtures of epoxides, an

important strategy in asymmetric synthesis.26

Scheme 7.1

6M

Nuc

The mechanism of epoxide ring-opening reaction is believed to involve two metals; one

metal is utilized for epoxide coordination while the second metal poises the nucelophile

for attack at the a-carbon, as shown in Scheme 7.1.23-25 Non-rigid oligomeric

multinuclear salens exhibit marked improvements in reaction rates as compared to their
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monomeric counterparts for the asymmetric ring opening (e.g., chromium/azide

system)," as well as the hydrolytic kinetic resolution of epoxides (e.g., dicobalt).27-3 We

set out to explore whether analogous reactivity enhancements would be achieved with the

more rigid cofacial Pacman architectures.

7.3. Results and Discussion

7.3.1. Ligand Characteristics and Synthesis

Metallo complexes of the DSX ligand 1 were prone to oil in crystallization attempts. We

therefore synthesized the DSX ligand lacking the tert-butyl functionalities on the

xanthene pillar to produce the slightly less soluble 2 (shown in Chart 7.1). This ligand

was prepared in similar fashion to 1, as discussed in Chapter 6. Other complexes of note

in this Chapter are also listed in Chart 7.1.

Chart 7.1

1: M =2H,R= t-Bu

2: M = 2H, R= H

5 : M = CrCI, R = t-Bu

7 : M = Cu, R = t-Bu

3:M=2H

6: M = CrCI

9: M = Cu

13 : M = MnCI

15: M= Co

8: M = Cu, R=H

12 : M = MnCl, R = t-Bu

14: M = Co, R = t-Bu

16: M = Zn, R = t-Bu

4: M = 2H, R1 =H, R2 = Ph

10: 1:M=Cu,R 1 =H,R 2 = Ph

R, O" "O0 R2 11 :M= Cu, R= R2 = t-Bu
R2 RM

17: M = Zn, R1 = H, R2 = Ph

7.3.2. Synthesis of Chromium Pacman Salen Complexes

Dichromium Pacman complexes Cr2DSXCI2 (5) and Cr2DSDC12 (6) were synthesized by

procedures adapted from the literature. 9 The divalent metal ions were inserted by stirring

two equivalents of anhydrous chromium(II) chloride in dry tetrahydrofuran under an inert

atmosphere. Upon exposure to air, the metal was oxidized to chromium(III); addition of

ammonium chloride forms the chloride salt. The yield was quantitative for DSX but only

11% for DSD, possibly due to its lower solubility in tetrahydrofuran. The compounds
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were characterized by mass spectrometry and their purity was established by elemental

analysis. Small hexagonal crystals of Cr2DSXC12 could be grown from the evaporation of

concentrated tetrahydrofuran solutions, but none diffracted well enough for X-ray

crystallographic analysis. In an effort to improve the diffraction intensity, an attempt was

made to synthesize the bromide salt of [Cr2DSX]2+, but the Pacman complex could not be

obtained cleanly.

7.3.3. Epoxide Ring Opening Reactivity with Chromium Pacman Complexes

The chromium Pacman complexes were explored for their activity towards the catalytic

ring-opening of cyclohexene oxide. The conditions used were similar to those described

as successful for Cr(salen)Cl and meso-epoxide substrates. 9 Cr2DSDCl 2 (6) was not

sufficiently soluble in diethyl ether, so the study was only performed with Cr 2DSXCI2 (5)

and Cr(salen)CI was employed as the control. Trimethylsilyl azide was used to deliver the

nucleophile in diethyl ether. The reaction was monitored using GC/MS (with dodecane as

the internal standard). The amount of substrate consumed per equivalent of catalyst was

found to be the same for both compounds.

7.3.4. Synthesis of Cu Pacman Salen Complexes

The copper(II) Pacman salen complexes were synthesized using a procedure similar to

that described for the monomeric salens.32 The disalen ligands DSX (1), DSX ^ (2) and

DSD (3) were refluxed with two equivalents of copper(II) acetate hydrate in ethanol for 1

- 2 hours. (Another method used to metallate salen monomers using aqueous sodium

hydroxide to deprotonate the salens followed by addition of copper(II) nitrate trihydrate

did not give any product). The yields ranged from 36 - 93% for the various Pacman

ligands. The copper salen monomers 10 and 11 were also synthesized using sodium

hydroxide and the copper nitrate salt as described above.

The 7 - 11 compounds were characterized by mass spectrometry and elemental analysis

was used to determine the purity. We had hoped it would be easier to grow crystals of the

xanthene Pacman lacking the di-tert-butyl groups on the pillar, Cu2DSX ^ (8), since this
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Figure 7.1 EPR spectra of compound 11 taken a chloroform-ethanol frozen solution at
4.5 K.

28o 28OO 300 3200 3400 3•o00 30oo
Field (gauss)

was the case for the analogous porphyrin Pacman complexes. But we found that this was

not the case. With Cu 2DSX (7), small needle-like crystals could be grown, but none were

large or high quality enough for X-ray structural determination. The EPR spectrum of the

copper complex 11 was taken in a frozen chloroform-ethanol solution (Figure 7.1). The

g-values of, g1l = 2.283 and gi- = 2.094 are within a range that is observed for monomeric

copper salens.33-38 Frozen solutions of 7 - 11 were also recorded, but the spectra was

poorly resolved and the g values were not obtained.

7.3.5. Synthesis of Manganese, Cobalt, and Zinc Pacman Salen Complexes

Manganese Pacman salens 12 and 13 were synthesized under conditions similar to that

used to prepare manganese salen monomeric compounds. The ligands were refluxed in

ethanol with manganese(II) acetate tetrahydrate in air and worked up with aqueous

sodium chloride to give the chloride compounds. The compounds were analyzed by mass

spectrometry.

The air-sensitive dicobalt(II) Pacman salens 14 and 15 were synthesized by adding a

solution of the ligand in dichloromethane to a solution of cobalt(II) acetate tetrahydrate in

methanol under an inert atmosphere. The product was isolated by collecting the bright red

(14) or orange (15) product that precipitates. Co 2(DSX) (14) was identified as the positive

ion in the high resolution mass spectra, suggesting some of the sample may have been

singly oxidized to Co(III) during data collection. This does not appear to be an issue with

the obtained product; Co2(DSX) (14) was analytically pure by elemental analysis. The
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Co2DSD (15) product was also identified in the high resolution mass spectra and

analyzed for purity.

Preparation of the zinc Pacman salens was pursued on several fronts. Metal ion

incorporation was attempted by refluxing the ligand with: (i) refluxing zinc(II) chloride

and triethylamine; (ii) diethylzinc in tetrahydrofuran; and (iii) refluxing with zinc acetate

in ethanol. For the DSX (1) and (R,R)-N,N'-bis(5-phenylsalicylidene)-l,2-

cyclohexanediamine (4) ligand, the latter reaction showed the desired compound in the

mass spectra. But the isolated product was not analytically pure, and a suitable solvent for

recrystallization could not be found. The zinc complexes of the DSD (3) ligand escaped

preparation.

7.4. Concluding Remarks and Future Work

We were able to establish the generality of the Pacman salen ligands by synthesis of a

variety of metallocomplexes. For most of the Pacman complexes, particularly DSX,

synthetic procedures for the introduction of the metal into the macrocycle follows from

those typically used for metallosalen monomers. From these established methods we

were able to cleanly prepare the copper, manganese, and cobalt (DSX only) Pacman

salens. A preliminary study was done on the catalytic ring-opening of cyclohexene oxide

by the Cr2DSXCl 2, although no enhancement of activity was observed. Zinc Pacman

salens, and could not be prepared in a straightforward manner and we were unable to

isolate pure products.

7.5. Experimental Section

7.5.1. Materials

Solvents for synthesis were reagent grade or better and used as received from Aldrich or

dried according to standard methods.3 9 (IR,2R)-(-)-l,2-diaminocyclohexane, and

manganese acetate tetrahydrate, and cyclohexene oxide were also used as received from

Aldrich. Copper(II) acetate monohydrate, anhydrous chromium(II) chloride, cobalt(II)

acetate tetrahydrate, and zinc(II) acetate dihydrate were used as received from Strem

Chemicals. Tetramethylsilyl azide was used as received from Alfa Aesar. The following
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compound was obtained using published protocols and its purity confirmed by 1H NMR:

4,5-di(5-salicylaldehyde)-9,9-dimethylxanthene (5).40 The following compounds were

obtained as described previously: DiSalen Xanthene (DSX), compound 4 in Chapter 6;

DiSalen Dibenzofuran (DSD), compound, compound 9 in Chapter 6; (R,R)-N,N'-bis(5-

phenylsalicylidene)-l1,2-cyclohexanediamine, compound 12 in Chapter 4.

7.5.2. Physical Measurements

iH NMR spectra were collected in CDCl3 (Cambridge Isotope Laboratories) at the MIT

Department of Chemistry Instrumentation Facility (DCIF) using an Inova 500

Spectrometer at 25 oC. All chemical shifts are reported using the standard 6 notation in

parts-per-million relative to tetramethylsilane and spectra have been internally calibrated

to the monoprotio impurity of the deuterated solvent used. High-resolution mass spectral

analyses were carried out by the MIT Department of Chemistry Instrumentation Facility

on a Bruker APEXIV47e.FT-ICR-MS using an Apollo ESI source. Infrared spectrum

were taken on a Perkin-Elmer Model 2000 FTIR using KBr pellets prepared using a high

pressure press. UV-visible absorption spectra were recorded on a Spectral Instruments

440 spectrophotometer. X-band EPR measurements were carried out on frozen

chloroform-ethanol solutions on a Bruker EMX spectrometer; the cavity was maintained

at 4.5 K by an Oxford liquid helium cryostat. The spectrum was not fitted and the g

values presented in the text correspond to zeros of the first or second derivative of the

signal with respect to the field.

7.5.3. Synthesis

7.5.3.1. DSX ^ (2)

4,5-Di(5-salicylaldehyde)-9,9-dimethylxanthene (5) (250 mg, 0.56 mmol) and (1R,2R)-

(-)-1,2-diaminocyclohexane (63 mg, 0.56 mmol) were added to 9 mL of anhydrous

ethanol and heated to reflux overnight. The solution was then cooled in a freezer and

filtered. The bright yellow solid collected was washed with an additional 2 mL of cold

ethanol to give the product (266 mg, 88% yield). HRESI-MS ([M + H] ) C 70H 65N 40 6

m/z, Calcd. 1057.4899 Found 1057.4903.

7.5.3.2. Cr(DSX)C12 (5)
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In an inert atmosphere, the ligand DSX (8) (250.0 mg, 0.195 mmol) was dissolved in 6

mL of dry tetrahydrofuran. Anhydrous chromium(II) chloride (72.0 mg, 0.586 mmol)

was added and the solution rapidly turned greenish-brown. Upon stirring overnight, the

reaction was exposed to air and 6 mL of aqueous saturated ammonium chloride was

added. After stirring in air for 6 hours, the organic layer was washed with 6 mL of

additional aqueous saturated ammonium chloride, followed by 2 x 6 mL of aqueous

saturated sodium chloride. The organic layer was dried with MgSO 4 and the solvent

reduced by rotary evaporation to leave the brown product in quantitative yield (293 mg).

HRESI-MS ([M - Cl]) C86H92Cr 2N406 m/z, Calcd. 1411.5621 Found 1411.5668. Anal.

Calcd for C86H92C12CrzN 4 06: C, 71.11; H, 6.38; N, 3.86. Found: C, 71.18; H, 6.44; N,

3.78.

7.5.3.3. Cr(DSD)C12 (6)

In an inert atmosphere, the ligand DSD (13) (100.0 mg, 0.103 mmol) was dissolved in 4

mL of dry tetrahydrofuran. Anhydrous chromium(ll) chloride (38.0 mg, 0.308 mmol)

was added. Upon stirring overnight, the olive green solution was exposed to air and 2 mL

of aqueous saturated ammonium chloride was added. After stirring in air for 6 hours, the

organic layer was washed with 2 mL of additional aqueous saturated ammonium

chloride, followed by 2 x 2 mL of aqueous saturated sodium chloride. The organic layer

was dried with MgSO 4 and the solvent reduced by rotary evaporation to leave the green

product (14 mg, 11% yield). Anal. Calcd for C64H48C12Cr2N406: C, 67.19; H, 4.23; N,

4.90. Found: C, 67.38; H, 4.25; N, 4.78.

7.5.3.4. Cu 2(DSX) (7)

The disalen xanthene (DSX) ligand (8) (145 mg, 0.113 mmol) was added to copper(II)

acetate monohydrate (45.2 mg, 0.226 mmol) and 10 mL of ethanol was added. The

mixture was heated to reflux for 1 hour, during which the solution turned rose red with

precipitate. The reaction was then cooled to 0 'C, filtered, and the solid washed with cold

ethanol and deionized water. The precipitate was taken up in dichloromethane and

filtered through a 0.45 ýtm polypropylene syringe filter. The solvent was removed from

the filtrate using rotary evaporation to give the dark purple product (139 mg, 87% yield).

HRESI-MS ([M + H] ) C86H 93CU2N 40 6 m/z, Calcd. 1403.5682 Found 1403.5598. UV-vis
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(CH 2C12) kax, nm (c): 310 (96,170), 379 (26,210), 553 (2178). Anal. Calcd for

C86H92 Cu2N406: C, 73.48; H, 6.67; N, 3.99. Found: C, 73.41; H, 6.68; N, 3.87.

7.5.3.5. Cu2(DSX ^) (8)

The ligand 7 (50.0 mg, 0.047 mmol) was added to copper(II) acetate monohydrate (19.0

mg, 0.095 mmol) and 4 mL of ethanol was added. The mixture was heated to reflux for 1

hour and then cooled to 0 'C and filtered. The precipitate was taken up in

dichloromethane and filtered. The solvent was removed from the filtrate under reduced

pressure to reveal the light reddish-purple product (20 mg, 36% yield). HRESI-MS ([M +

H]+) C70H61Cu2N40 6 m/z, Calcd. 1179.3178 Found 1179.3153.

7.5.3.6. Cu 2(DSD) (9)

The disalen dibenzofuran (DSD) ligand (13) (50.0 mg, 0.051 mmol) was added to

copper(II) acetate monohydrate (20.4 mg, 0.102 mmol) and 4 mL of ethanol was added.

The mixture was heated to reflux for 2 hours, during which the solution turned into a rust

brown suspension. Upon cooling to 0 'C, the mixture was filtered, and washed with cold

ethanol. The precipitate was taken up in dichloromethane and filtered through a 0.45 tm

polypropylene syringe filter. The solvent was removed by rotary evaporation to give the

dark red product (35 mg, 62% yield). HRESI-MS ([M + H]+) C 64H 49Cu 2N4 0 6 m/z, Calcd.

1095.2444 Found 1095.1977. UV-vis (CH2CI 2) Xax, nm (F): 330 (55,960), 387 (20,130),

474 (sh, 2,667).

7.5.4.7. Cu(5-phsalen) (10)

The ligand (R,R)-N,N'-bis(5-phenylsalicylidene)-1,2-cyclohexanediamine (50.0 mg,

0.105 mmol) was added to 5 mL of ethanol and 0.211 mL of an aqueous sodium

hydroxide solution (0.9967 M). This was stirred until the ligand dissolved completely,

about 5 minutes. Copper(II) nitrate trihydrate was then added, and the solution heated to

reflux for 2 hours, during which the solution turned rust colored with precipitate. Upon

cooling to 0 'C, the solution was filtered and the precipitate was washed with cold

ethanol. The precipitate was then taken up in dichloromethane and filtered. The solvent

was removed from the filtrate under vacuum to give the dark purple product (53.0 mg,

93% yield). This compound can also be synthesized using copper(II) acetate hydrate as

the precursor, analogous to the procedure described above for the copper Pacman
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complexes. IR (KBr) vmax : 1540 cmn- (C-N). HRESI-MS ([M + H] +) C32H2 9CuN20 2 m/z,

Calcd. 536.1520 Found 536.1539. UV-vis (CH 2C12) max, nm (E): 381 (20,075), 564

(1,098). Anal. Caled for C32H2sCuN 20 2: C, 71.69; H, 5.26; N, 5.23. Found: C, 71.66; H,

5.38; N, 5.17.

7.5.3.8. Mn 2(DSX)CI 2 (12)

The ligand DSX (8) (50.0 mg, 0.039 mmol) was added to manganese(II) acetate

tetrahydrate (28.7 mg, 0.117 mmol) in 4 mL of ethanol and heated to reflux for 2 hours

and cooled to room temperature. 1 mL of aqueous saturated sodium chloride solution was

added and stirred for 1 minute. The mixture was extracted with 3 x 4 mL of

dichloromethane, and the organic layers were combined and washed with 10 mL of

deionized water, followed by drying using MgSO 4. The solvent was removed by rotary

evaporation to leave the brown product in quantitative yield (57 mg). ESI-MS ([M -

Cl] ) C86H92C1Mn 2N40 6 m/z, Calcd. 1421.55 Found 1421.57.

7.5.3.9. Mn 2(DSD)CI2 (13)

The ligand DSD (13) (50.0 mg, 0.051 mmol) was added to manganese(II) acetate

tetrahydrate (37.8 mg, 0.154 mmol) in 4 mL of ethanol and then heated to reflux for 2

hours. Upon cooling, 1 mL of aqueous saturated sodium chloride solution was added and

stirred for 1 minute. The mixture was extracted with 3 x 25 mL of dichloromethane, and

the organic layers were combined and washed with 10 mL of deionized water, followed

by drying using MgSO 4. The solvent was removed by rotary evaporation to leave the

brown product (48 mg, 81% yield). HRESI-MS ([M - Cl] ) C64 H4 8C1Mn 2N40 6 m/z,

Calcd. 1113.20 Found 1113.20.

7.5.3.10. Co 2DSX (14)

Under nitrogen, the ligand DSX (8) (60.0 mg, 0.047 mmol) was dissolved in 8 mL of

degassed dichloromethane. Cobalt(II) acetate tetrahydrate (28.0 mg, 0.112 mmol) was

dissolved in 6 mL of degassed methanol and this solution was added dropwise to the

dichloromethane DSX solution, which turned orange. After stirring for about 1 hour

under nitrogen, the solution turned red with precipitate. The solvent was removed under

reduced pressure, and the residue was washed with cold methanol to leave the bright red
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product (21 mg, 78% yield). HRESI-MS ([M] +) C86H 92Co 2N 406 m/z, Calcd. 1394.5675

Found 1394.5668. Anal. Calcd for C86H92Co 2N4 0 6 : C, 74.04; H, 6.61; N, 4.02. Found: C,

73.88; H, 6.73; N, 3.88.

7.5.3.11. Co 2DSD (15)

Under nitrogen, the ligand DSD (60.0 mg, 0.062 mmol) was dissolved in 8 mL of

degassed dichloromethane. Cobalt(II) acetate tetrahydrate was dissolved in 8 mL of

degassed methanol, which was added dropwise to the dichloromethane DSD solution.

After stirring for about 1 hour, the solution was reddish-brown with precipitate. The

solvent was removed under reduced pressure, and the residue was washed with cold

methanol to give the brown crude product (63 mg). HRESI-MS ([M + H]')

C64H49Co 2N4 06 m/z, Calcd. 1087.2311 Found 1087.2322. Anal. Calcd for

C64H48Co 2N4 0 6-(H20) 5: C, 65.31; H, 4.93; N, 4.76. Found: C, 65.04; H, 4.87; N, 4.36.

7.5.3.12. Zn 2DSX (16)

The ligand DSX (8) (50.0 mg, 0.039 mmol) was added to zinc(II) acetate dihydrate (17.2

mg, 0.078 mmol) and 8 mL of ethanol and refluxed for 6 hours. Upon cooling, the

solvent was removed by rotary evaporation, and the residue was washed with deionized

water to leave the bright yellow crude product (48 mg). IR (KBr) Vmax : 1540 cm - 1 (C=N).

ESI-MS ([M + H] ) C86H93Zn2 N40 6 m/z, Calcd. 1405.57 Found 1409.58.

7.5.3.13. Zn(5-phsalen) (17)

(R,R)-N,N'-Bis(5-phenylsalicylidene)-1,2-cyclohexanediamine (50.0 mg, 0.105 mmol)

was added to zinc(II) acetate dihydrate (23.1 mg, 0.105 mmol) in 8 mL of ethanol and

refluxed for 8 hours. Upon cooling, the solvent was removed by rotary evaporation, and

the residue was washed with deionized water to leave the bright yellow crude product (52

mg). ESI-MS ([M + H]+) C32H29ZnN20 2 m/z, Calcd. 537.15 Found 537.15.

7.5.4. Epoxide Ring Opening Studies

The following procedures were used to study the catalytic ring-opening of an epoxide by

Cr 2DSXCI2 (5) and Cr(salen)C1. A solution of Cr2DSXCI 2 (5) (12.0 mg, 0.008 mmol) and
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substrate cyclohexene oxide (95.4 mg, 0.756 mmol), and 1 mL of diethyl ether was

prepared. As the control, a solution of chromium (IR, 2R)-(-)-[1,2-cyclohexanediamino-

N,N'-bis(3,5-di-tert-butylsalicylidene) chloride (5.2 mg, 0.008 mmol), cyclohexene oxide

(96.2 mg, 0.762 mmol), and 1 mL of diethyl ether was also prepared. To each solution,

triemethylsilyl azide (457 gL, 5.6 mmol) and dodecane the internal standard was added.

The solutions were sampled after 26 hours of stirring at room temperature. The

concentration of substrate and product produced was determined using GC/MS and

compared to the initial solutions.
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Appendix A

Figure A.1. Reaction setup for measuring catalase activity.
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Appendix B

Appendix B.1: Alternate Synthetic Pathways from Chapter 3

2,7-Di-tert-butyl-5-(3-formyl-4-hydroxyphenyl)-9,9-dimethyl-9H-xanthene-4-
carboxylic acid methyl ester (4) from (3), as shown in Scheme 3.1

Under nitrogen, 2,7-di-tert-butyl-5-(3-formyl-4-hydroxy-phenyl)-9,9-dimethyl-9H-

xanthene-4-carboxylic acid methyl ester (3) (0.250 g, 0.590 mmol), 5-

bromosalicylaldehyde (0.119 g, 0.590 mmol), sodium carbonate (0.092 g, 0.884 mmol),

dichloro[1,1'-bis(diphenylphosphino)ferrocene]palladium(II) dichloromethane adduct

(0.026 g, 0.035 mmol), 14 mL of 1,2-dimethoxyethane, and 6 mL of deionized water and

heated to 90 'C for 48 hours. Upon cooling, 25 mL of dichloromethane was added and

the solution was washed with 2 x 25 mL of deionized water. The aqueous portions were

extracted with 10 mL of dichloromethane. The combined organic portions were dried

under MgSO4 and the solvent was removed by rotary evaporation; the resulting residue

was purified by column chromatography (silica gel, 99:1 dichloromethane: methanol) to

elute the product as a colorless solid (0.118 g, 40% yield). Characterization data is

provided in Chapter 4.5.3.1.

2,7-Di-tert-butyl-5-(3-formyl-4-hydroxyphenyl)-9,9-dimethyl-9H-xanthene-4-
carboxylic acid (5) via deprotection of (4), as shown in Scheme 3.1

2,7-Di-tert-butyl-5-(3-fonrmyl-4-hydroxyphenyl)-9,9-dimethyl-9H-xanthene-4-carboxylic

acid methyl ester (4) (0.050 g, 0.10 mmol) was added to 8 mL of dichloromethane and

cooled to 0 'C. A solution of boron tribromide (1.2 mL, 1.0 M in dichloromethane) was

added and the reaction was warmed to room temperature and stirred for 4 hours, after

which 4 mL of water was added. The organic layer was separated, washed with 10 mL of

water, and dried over MgSO 4. The solvent was evaporated and the residue was purified

by column chromatography (silica gel, 99:5 dichloromethane: methanol) to elute the

product (0.014 g, 28 % yield). Characterization data is provided in Chapter 3.5.3.6.

2,7-Di-tert-butyl-5-(3-formyl-4-hydroxyphenyl)-9,9-dimethyl-9H-xanthene-4-
carboxylic acid (5) via deprotection of (8), as shown in Scheme 3.2

Under nitrogen, 2,7-di-tert-butyl-5-(3-formyl-4-hydroxyphenyl)-9,9-dimethyl-9H-

xanthene-4-carboxylic acid benzyl ester (8) (0.100 g, 0.174 mmol) was added to 20 mL

of ethyl acetate and palladium (5% on activated carbon, 0.015 g) and placed under a

hydrogen balloon overnight at room temperature. The mixture was then filtered over
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Celite and the filtrate was reduced by rotary evaporation and the residue purified by

column chromatography (silica gel, 95:5 dichloromethane: methanol) to elute the desired

product (0.061 g, 72%) yield. Characterization data is provided in Chapter 3.5.3.6.

4-[2,7-Di-tert-butyl-5-(3-formyl-4-hydroxyphenyl)-9,9-dimethyl-9H-xanthen-4-ylJ]-

benzoic acid methyl ester (17) via (16), as shown in Scheme 3.4.

Under nitrogen, 5-(5-bromo-2,7-di-tert-butyl-9,9-dimethyl-9H-xanthen-4-yl)-2-hydroxy-

benzaldehyde (16) (0.37 g, 0.071 mmol), 4-methoxycarbonylphenylboronic acid (0.013

g, 0.071 mmol), sodium carbonate (0.012 g, 0.112 mmol), and dichloro[1,1'-

bis(diphenylphosphino)ferrocene]palladium(II) dichloromethane adduct (0.002 g, 0.002

mmol), and 6 mL of 1,2-dimethoxyethane and 2 mL of deionized water. This was heated

to 90 'C for 24 hours and upon cooling, the solution was extracted with 2 x 50 mL of

dichloromethane. The organic layers were combined and washed with water and dried

using MgSO 4. The solvent was removed by rotary evaporation and purified by column

chromatography (silica gel, dichloromethane) to give the product (0.025 g, 61% yield).

Characterization data are provided in Chapter 4.5.3.4.
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Appendix B.2: Alternate Synthetic Pathways from Chapter 5.

4,5-Di(5-salicylaldehyde)-2,7-di-tert-butyl-9,9-dimethylxanthene (3) via (1) as shown

in Scheme 6.1

Under nitrogen, 2,7-di-tert-butyl-9,9-dimethyl-4-dihydroxyborane-5-(4,4,5,5-tetramethyl-

[1,3,2]dioxaborolan-2-yl)-9H-xanthene (1) (0.600 g, 1.22 mmol), 5-

bromosalicylaldehyde (0.490 g, 2.44 mmol), sodium carbonate (0.377 g, 3.66 mmol),

dichloro[1,1'-bis(diphenylphosphino)ferrocene]palladium(II) dichloromethane adduct

(0.107 g, 0.146 mmol), 1,2-dimethoxyethane (12 mL), and deionized water (4 mL) was

heated to 90 'C for 48 hours. Upon cooling, the mixture was extracted with 3 x 50 mL of

dichloromethane. The organic portions were combined dried over MgSO 4 and the solvent

removed by rotary evaporation. The residue was purified by column chromatography

(silica gel, dichloromethane) and recrystallized in hot ethanol to obtain the colorless

product (0.310 g, 43%). Characterization data are provided in Chapter 6.5.3.2.

4,6-di(5-salicylaldehyde)-dibenzofuran (8) via (6) as shown in Scheme 6.2

Under nitrogen, 4,6-(4,4,5,5-tetramethyl-[1,3,2]dioxaborolan-2-yl)-dibenzofuran (10)

(0.750 g, 1.78 mmol), 5-iodosalicylaldehyde (0.885 g, 3.57 mmol), sodium carbonate

(0.551 g, 5.35 mmol), dichloro[ 1,1 '-bis(diphenylphosphino)ferrocene]palladium(II)

dichloromethane adduct (0.157 g, 0.214 mmol), dimethoxyethane (9 mL), and deionized

water (3 mL) was heated to 90 'C for 48 hours. Upon cooling, the mixture was extracted

with 3 x 100 mL of dichloromethane. The organic portions were combined dried over

MgSO 4 and the solvent removed by rotary evaporation. The residue was purified by

column chromatography (silica gel, dichloromethane) and recrystallized in hot ethanol to

obtain the colorless product (0.206 g, 28%). Characterization data are provided in

Chapter 6.5.3.5.

Synthetic Procedures as shown in Scheme B2.1

5-(6-Bromo-dibenzofuran-4-yl)-2-methoxy-benzaldehyde (19)

Under nitrogen, 4,6-dibromodibenzofuran (5) (0.500 g, 1.54 mmol), 3-formyl-4-

methoxyphenylboronic acid (0.611 g, 3.40 mmol), sodium carbonate (0.477 g, 4.63

mmol), and dichloro[1,1'-bis(diphenylphosphino)ferrocene]palladium(II) dichloro-

methane adduct (0.226 g, 0.39 mmol) was added to 9 mL of degassed 1,2-
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Scheme B2.1

o -+ o o

19 • R1 = Me0 0

Br-

0 0

Br . Br -

bE19 RI =Me
20 : R =H 21 : R2 = Me

d
22: R2 = H

(a) 3-formyl-4-methoxyphenylboronic acid, Na2CO 3, Pd(dppf)Cl 2, DME: H20 (3: 1),
(b) BBr3, CH 2CI2, (c) 3-formyl-4-methoxyphenylboronic acid, Na2CO3, Pd(PPh3)4,
DMF: H20 (9: 1), (d) BBr3, CH 2C12.

dimethoxyethane and 3 mL of deionized water and heated to 90 'C for 24 hours. Upon

cooling, the reaction mixture was extracted with 3 x 20 mL of dichloromethane. The

organic portions were combined and dried over MgSO 4, the solvent removed by rotary

evaporation and the residue was purified via column chromatography (silica gel, 5: 5

pentane: dichloromethane) to give the product (0.481 g, 82 % yield). 1H NMR (500 MHz,

CDC13, 8): 10.58 (s, 1H), 8.40 (d, J= 2.5 Hz, 1H), 8.34 (dd, J= 9 Hz, 2.5 Hz, 1H), 7.92

(dt, J= 7.5 Hz, 1 Hz, 2H), 7.70 (dd, J= 7.5 Hz, 1 Hz, 1H), 7.64 (dd, J= 7.5 Hz, 1 Hz,

1H), 7.46 (t, J = 8 Hz, 1H), 7.26 (t, J = 8 Hz, 1H), 7.22 (d, J= 9 Hz, 1H), 4.05 (s, 3H).

13C NMR (500 MHz, CDCI3, 8): 189.91, 189.87, 161.67, 153.48, 153.18, 136.41, 130.37,

128.75, 128.72, 127.01, 125.74, 125.22, 124.59, 124.35, 124.09, 120.29, 119.94, 112.28,

104.87, 56.12. HRESI-MS ([M + Na] ) NaC2oH13BrO3 m/z, Calcd. 402.9940 Found

402.9946.

5-(6-Bromodibenzofuran-4-yl)-2-hydroxybenzaldehyde (20)

5-(6-Bromo-dibenzofuran-4-yl)-2-methoxybenzaldehyde (19) (0.481 g, 1.26 mmol) was

added to 30 mL of dry dichloromethane and cooled in an acetone/dry ice bath and boron

tribromide was added via syringe (6.0 mL of 1.0 M in dichloromethane). The reaction

was warmed to room temperature and stirred for 2 hours. 20 mL of deionized water was

added and the mixture extracted with 2 x 30 mL of dichloromethane. The organic

portions were combined dried over MgSO 4 , the solvent removed by rotary evaporation

and the residue eluted via column chromatography (silica gel, 3: 7 hexane:
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dichloromethane) to give the product (0.400 g, 87% yield). 1H NMR (500 MHz, CDCI 3,

8): 11.13 (s, 1H), 10.05 (s, 1H), 8.28 (d,J= 2.5 Hz, 1H), 8.13 (dd, J= 7.5 Hz, 3 Hz, 1H),

7.92 (t, J= 7.5 Hz, 2H), 7.65 (d, J= 8 Hz, 2H), 7.46 (t, J= 7.5 Hz, 1H), 7.28 (t, J= 3 Hz,

1H), 7.18 (d, J = 8 Hz, 1H). 13C NMR (500 MHz, CDCl3, 8): 197.09, 197.03, 161.51,

153.45, 153.09, 137.13, 134.18, 130.49, 128.03, 126.76, 124.47, 124.28, 124.16, 120.40,

120.02, 118.38, 104.85.

(21)

Under nitrogen, 5-(6-bromo-dibenzofuran-4-yl)-2-hydroxybenzaldehyde (15) (0.300 g,

0.82 mmol), 3-formyl-4-methoxyphenylboronic acid (0.176 g, 0.98 mmol), sodium

carbonate (0.126 g, 1.22 mmol), and (triphenylphosphine)palladium (0.057 g, 0.049

mmol) were added to 9 mL of degassed dimethylformamide and 1 mL of deionized water

and heated to 90 'C for 24 hours. Upon cooling, the mixture was extracted with 2 x 30

mL of dichloromethane. The organic portions were combined dried over MgSO 4, the

solvent removed by rotary evaporation and the residue purified via column

chromatography (silica gel, 2: 8 hexane: dichloromethane) to elute the product (0.275 g,

80% yield). 'H NMR (500 MHz, CDCI3, 8): 11.15 (s, IH), 10.59 (s, IH), 10.00, (s, 1H),

8.51 (d, J= 2.5 Hz, 1H), 8.22 (d, J= 2 Hz, I H), 8.15 (dd, J= 9 Hz, 2 Hz, IH), 8.10 (dd, J

= 8.5 Hz, 2.5 Hz, 1H), 7. 99 (dd, J= 2 Hz, 1.5 Hz, 1H), 7.97 (dd, J= 2 Hz, 1.5 Hz, 1H),

7.65 (dd, J= 3.5 Hz, 1 Hz, 1H), 7.63 (dd, J= 3.5 Hz, 1 Hz), 7.47 (m, 2H), 7.19 (d, J= 8.5

Hz, 1H), 7.12 (d, J= 8.5 Hz, 1H).

4,6-di(5-salicylaldehyde)-dibenzofuran (22)

(16) (0.361 g, 0.85 mmol) was dissolved in 50 mL of dry dichloromethane cooled in an

ice water bath. After boron tribromide (2 mL, 1.0 M in dichloromethane) was added via

syringe, the solution was warmed to room temperature and stirred for 3 hours. 20 mL of

deionized water was added and the mixture was extracted with 3 x 25 mL of

dichloromethane. The organic portions were combined dried over MgSO 4, the solvent

removed by rotary evaporation and the residue purified via column chromatography

(silica gel, dichloromethane) to elute the product (0.319 g, 92 %yield). Characterization

data are provided in Chapter 6.5.3.7.
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Appendix C.1. Input File for the hydroperoxide complex of Mn(HSX*)

#! /bin/csh
$ADFBIN/adf-n 12 << eor
TITLE Jenny's DPX pacman MnOOH
MAXMEMORYUSAGE 512
GEOMETRY
GO
Iterations 400

END
OCCUPATIONS KeepOrbitals 100
SCF
Iterations 1000

END
XC
GGA Becke PW9 Ic
END
UNRESTRICTED
CHARGE 04

ATOMS
C 10.581210 -3.430240 -3.355240
C 9.725230 -2.665780 -2.563120
C 8.347830 -2.771270 -2.766220
C 7.812850 -3.638630 -3.738880
C 8.709320 -4.391440 -4.507120
C 10.081570 -4.294210 -4.324620
O 7.457180 -2.031580 -1.994730
C 7.913340 -0.931240 -1.272500
C 9.273180 -0.752590 -1.020600
C 10.266530 -1.786790 -1.470090
C 6.944120 -0.047350 -0.769220
C 7.394000 1.049590 -0.023320
C 8.748170 1.264210 0.214990
C 9.680120 0.361610 -0.283890
C 5.484320 -0.232080 -0.945340
C 4.857720 -0.194750 -2.212370
C 3.485760 -0.247540 -2.349740
C 2.624240 -0.341690 -1.226150
C 3.272009 -0.426770 0.066080
C 4.676359 -0.351890 0.175500
O 1.333210 -0.344740 -1.376430
Mn -0.133390 -0.886810 -0.190950
O -0.614281 -2.577590 0.377280
O -1.999151 -3.001679 0.271980
C 2.450379 -0.582370 1.201720
N 1.129731 -0.796132 1.382537
C 0.403721 -0.811071 2.661647
C -0.697689 0.238309 2.560427
N -1.389039 0.055509 1.275786
C -2.697689 0.316937 1.071853
C -3.483009 0.115707 -0.103617
C -2.894748 -0.293243 -1.347807
C -3.756078 -0.462473 -2.451497
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-5.124598
-5.712188
-4.876199
-1.373512
-7.203888
-7.953678
-9.344938
-10.003459
-9.288049
-7.896759
-7.123790
-7.699340
-9.088591
-9.978600
-6.853641
-7.444852
-8.820092
-9.632971
-5.356401
-4.781290
6.348870
5.432940

-4.735112
6.002080
-3.811620
5.885800
8.277440
10.760480
11.657750
10.540340
11.188020
10.745030
9.073070
6.649400

-6.773132
-9.256953

-10.717101
-11.092839
-9.913147
-7.424587

-10.884540
-10.308460
-3.306667
-5.768888
-5.292579
3.021960
5.476390
5.126119
1.087734

-0.035929
-0.279480
-1.408601
-2.121011
2.897574

-0.300783
0.040578
0.274638
-0.496915
0.116678
0.960398
0.993828
0.178788

-0.665142
-0.688542
-1.506112
-2.538532
-2.612432
-1.520311
-3.525172
-4.576262
-4.667702
-3.685361
-3.606803
-2.548463
-3.856760
-3.261980
-4.565693
-4.555090
-2.741873
-2.725180
-5.054320
-4.892280
-3.349640
-2.418650
-1.291600
0.506400
2.134570
1.754100

-5.327252
-5.499641
-3.739551
0.199259
1.660418
1.605268
-1.967741
-0.880511

-0.705898
-0.475752
0.556648

-0.214450
-0.100201.
-0.403030
-0.600591
-1.813904
1.259101
0.114588
-3.076139
-0.647606

-2.322648
-1.091138
-0.012048
-1.552018
-0.958719
-1.783809
-1.706920
-0.790810
0.061320

-0.032419
0.766422
1.461532
1.624281
1.088290
2.017752
2.729292
2.886251
2.327780
1.908193
1.299633

-4.053790
-3.259950
2.342444

-4.985560
1.209664

-2.569500
-5.256110
-4.932860
-3.192370
-0.603000
-1.813710
-0.092870
0.785910
0.350380
3.143492
3.438901
2.445410

-0.721801
-2.356500
-2.487589

0.648510
1.929340

-3.416220
-3.187218
0.954092

-3.336590
-3.107110
1.168040
3.496055
2.775416
2.593446
3.390619
-0.704260
2.192518
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H -3.180732 0.586810 2.009808
END

BASIS
C $ADFRESOURCES/DZP/C. Is
O $ADFRESOURCES/TZP/O. 1s
N $ADFRESOURCES/TZP/N. Is
H $ADFRESOURCES/DZP/H
Mn $ADFRESOURCES/TZ2P/Mn.2p
END
END INPUT
eor
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Table C.1. Cartesian coordinates from the DFT calculated energy minimized structure of
the hydroperoxide complex of Mn(HSX*). The structure is shown in Figure 4.4.

x y z
1.C 10.54703 -3.38522 -3.3624
2.C 9.68632 -2.64592 -2.55441
3.C 8.311687 -2.76836 -2.75099
4.C 7.783106 -3.63145 -3.72707
5.C 8.682754 -4.36068 -4.51001
6.C 10.05356 -4.24241 -4.33893
7.0 7.416122 -2.0485 -1.96717
8.C 7.862076 -0.94236 -1.24597
9.C 9.218721 -0.75202 -0.9971
10.C 10.21893 -1.77446 -1.45312
11.C 6.884345 -0.0688 -0.7487
12.C 7.324951 1.027343 0.001137
13.C 8.675675 1.254335 0.240083
14.C 9.615952 0.364363 -0.26163
15.C 5.427121 -0.25561 -0.94458
16.C 4.814239 -0.16331 -2.2162
17.C 3.44543 -0.20198 -2.36716
18.C 2.57427 -0.34933 -1.24733
19.C 3.203745 -0.47449 0.049393
20.C 4.608608 -0.41023 0.159554
21.0 1.287077 -0.34475 -1.42562
22.Mn -0.16069 -0.86555 -0.23384
23.0 -0.6646 -2.5896 0.3577
24.0 -2.07419 -2.96625 0.295007
25.C 2.429979 -0.60886 1.24072
26.N 1.137132 -0.75186 1.294269
27.C 0.434907 -0.76124 2.575628
28.C -0.67066 0.304545 2.506114
29.N -1.35727 0.138633 1.233124
30.C -2.63639 0.283297 1.136077
31.C -3.39444 0.07964 -0.06945
32.C -2.80265 -0.30302 -1.316
33.C -3.66507 -0.45679 -2.42489
34.C -5.03447 -0.30466 -2.30187
35.C -5.62856 0.015866 -1.0648
36.C -4.79101 0.222814 0.020031
37.0 -1.51506 -0.5233 -1.49761
38.C -7.09904 0.10156 -0.94635
39.C -7.83231 0.931162 -1.80171
40.C -9.22335 0.979313 -1.7475
41.C -9.90188 0.188831 -0.82458
42.C -9.20428 -0.64331 0.053971
43.C -7.81255 -0.67904 -0.01552
44.0 -7.0592 -1.48972 0.813131
45.C -7.65478 -2.53137 1.48274
46.C 9.04792 -2.58636 1.623098
47.C -9.91558 -1.47852 1.081779
48.C 6.83248 -3.54502 2.033475
49.C -7.45473 -4.59552 2.719975
50.C -8.8336 -4.66286 2.858963
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51.C
52.C
53.0
54.C
55.0
56.0
57.0
58.H
59.H
60.H
61.H
62.H
63.H
64.H
65.H
66.H
67.H
68.H
69.H
70.H
71.H
72.H
73.H
74.H
75.H
76.H
77.H
78.H
79.H
80.H
81.H
82.H
83.H
84.H
85.H
86.H
87.H

88.H

-9.62136
-5.33755
-4.73639

6.320222
5.401275

-4.73514
5.975872

-3.77078
5.849483
8.254883

10.73623
11.62155
10.49567
11.13619
10.67786
8.991218
6.575785

-6.8036
-9.29376

-10.7081
-10.992

-9.77516
-7.28691

-10.8272
-10.2388

-3.2148
-5.6749
-5.22411

2.988855
5.442582
5.059577
1.121107

-0.02263
-0.20891
-1.35302
-2.1853

2.982576

-3.65903
-3.66437
-2.61443
-3.86776
-3.2661
-4.64188
-4.58544
-2.82908
-2.71298
-5.0207
-4.81956
-3.29034
-2.41122
-1.27075

0.520843
2.126241
1.725685

-5.36913
-5.49536
-3.69612

0.218998
1.637244
1.557318

-1.91062
-0.82912
-0.72904
-0.47482

0.485137
-0.11889
-0.03236
-0.49095
-0.55949
-1.75599

1.308071
0.208945

-3.16188
-0.57186

0.563181

2.303248
1.922399
1.329674

-4.03141
-3.24738

2.338189
-4.94947

1.23245
-2.56649
-5.26105
-4.95944
-3.20684
-0.59286
-1.78935
-0.07428

0.809769
0.37136
3.125449
3.391576
2.401853

-0.77225
-2.41979
-2.5098

0.638539
1.918061

-3.38048
-3.1698

0.985485
-3.3517
-3.09736

1.149005
3.414924
2.701444
2.529538
3.369173

-0.66379
2.,192149

2.027737-3.22249
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Appendix C.2. Input File for the hydroperoxide complex of Mn(HphSX*) with
carboxylic acid dimers.

#! /bin/csh
$ADFBIN/adf-n12 << eor
TITLE Jenny's DPX-Ph pacman MnOOH w/ H-bonds to the -OOH
MAXMEMORYUSAGE 512
GEOMETRY
GO
Iterations 400

END
OCCUPATIONS KeepOrbitals 100
SCF
Iterations 1000

END
XC
GGA Becke PW91c
END
UNRESTRICTED
CHARGE 04

ATOMS
C 0.206290 5.777170 15.541860
C -1.104080 5.319360 15.735900
C -1.865980 4.961720 14.618090
C -1.334450 5.073740 13.335840
C -0.026700 5.535250 13.144920
C 0.736430 5.892040 14.262000
C -1.693370 5.327640 17.096570
C -2.154200 4.163720 17.732940
C -2.713520 4.197960 19.011450
C -2.803290 5.425240 19.670840
C -2.353810 6.595120 19.064790
C -1.804320 6.539740 17.785760
C -3.236710 2.925260 19.622910
C -2.596850 1.705240 19.013080
C -2.029390 1.788060 17.742070
O -2.019210 2.979730 17.034940
C -1.488590 0.662590 17.092390
C -1.538190 -0.565770 17.765610
C -2.090929 -0.667250 19.039680
C -2.607310 0.467440 19.658580
C -0.906400 0.750041 15.737530
C 0.051870 1.727791 15.400190
C 0.599670 1.799971 14.133270
C 0.216530 0.901201 13.114170
C -0.745400 -0.113499 13.453780
C -1.273380 -0.165110 14.758590
C -1.164180 -1.084019 12.494760
N -0.935319 -1.115507 11.164673
C -1.442799 -2.138447 10.241113
C -1.850569 -1.427837 8.958562
N -0.709569 -0.573297 8.571822
C 0.000764 -0.668447 7.427762
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1.174154
1.926223
3.053693
3.431333
2.755494
1.613774
3.340704
2.591734
3.202994
4.593584
5.363334
4.738124
2.368355
0.938464
0.431924
1.215234

-0.914536
-1.750396
-1.262276
0.079685
-1.443896
-0.816357
-1.290137
-2.404097
-3.069926
-2.593616
1.619843
-0.001377
0.821803

-2.809707
-2.036198
0.578760
0.112480
-1.622607
-1.550957
-3.694447
1.440020

-2.790946
-1.925426
0.472705
2.397395
2.803275
5.070174
6.449574
5.344194
-1.466590
-2.439230
-3.243860
-3.048020
-2.111569
-1.103090
-3.062550
-4.332660
1.342470

-0.081617
0.733124
1.409224
1.211994
0.322624

-0.295277
0.034794

-0.250637
-0.553176
-0.528146
-0.241576
0.018484
-0.960707
-0.520177
-0.179337
-0.225607
0.176862
0.161952

-0.165968
-0.494777
0.567362
1.570013
1.910373
1.256673
0.291782
-0.049028
0.870374

0.536423
1.002764
1.467073
2.378623
5.747020
4.979680
1.560253
2.714084
0.817203
6.581890
0.456212

-0.155478
-0.756798
-2.061977
-0.548747
-0.758896
-0.240816
0.184514
7.450810
7.551110
5.458840
0.396600
-1.628740
-1.441830
2.934350
2.873080
2.559691

6.933682
7.855342
7.311782
5.992312
5.120842
5.610822
3.792322
2.631332
1.415072
1.331333
2.451163
3.663023
0.231722
0.358292
1.607942
2.747472
1.786582
0.668662
-0.591598
-0.740408
3.109322
3.859202
5.118601
5.650701
4.887051
3.626202
9.112622
10.120382

11.750552
7.067671
7.686791

11.785090
10.770690
10.212212
11.113801
7.616641
11.588970
0.797252
-1.454258
-1.722138
0.139013
-0.689928
0.379363
2.388243
4.550723
17.288990
19.581810
20.669210
20.655170
19.553280
17.283520
20.710270
19.470270
13.888310
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H 0.377160 2.438841 16.159100
H -2.015640 -0.933060 14.977440
H 3.598633 2.094174 7.961962
H 4.282903 1.774524 5.613982
H 1.034104 -0.968577 4.988322
H -2.087217 -2.132363 8.149534
H -2.715443 -0.772082 9.135154
H -0.633719 -2.858757 10.035213
H -2.293609 -2.669127 10.691613
H -1.817437 2.315334 11.973352
H -2.106988 2.223033 8.677811
H -3.090286 -0.829058 3.046482
H -3.943766 -0.201338 5.313341
H 0.062153 2.074203 3.455602
H -0.775078 2.666823 5.708621
H -0.432770 4.220970 11.090030
H -1.970190 4.856350 12.476960
H -2.896740 4.632870 14.755020
H 0.807630 6.055880 16.410440
H 1.743770 6.279520 14.104250
H -1.883381 -1.851984 12.775652
H -0.599671 -1.310130 6.784612
END

BASIS
C $ADFRESOURCES/DZP/C. Is
O SADFRESOURCES/TZP/O. Is
N $ADFRESOURCES/TZPiN. Is
H SADFRESOURCES/DZP/H
Mn $ADFRESOURCES/TZ2P/Mn.2p
END

END INPUT
eor
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Table C.2. Cartesian coordinates from the DFT calculated energy minimized structure of
the hydroperoxide complex of Mn(HphSX*) with the xanthenes oriented so the carboxylic
acids can form a hydrogen bonded dimer. The structure is shown in Figure 4.5.

x y z
1.C -3.75165 4.546489 14.31793
2.C -3.38406 3.626824 15.30982
3.C -2.8434 2.395334 14.92456
4.C -2.68628 2.083854 13.58282
5.C -3.06025 3.004904 12.59827
6.C -3.58758 4.242615 12.97275
7.C -3.60206 3.958867 16.73365
8.C -2.56721 3.891009 17.68142
9.C -2.77102 4.23596 19.01614
10.C -4.04147 4.653395 19.41208
11.C -5.08914 4.71473 18.49963
12.C -4.86443 4.370164 17.17086
13.C -1.63375 4.113736 19.99311
14.C -0.29351 4.125105 19.30752
15.C -0.20586 3.78953 17.95878
16.0 -1.33477 3.477823 17.22283
17.C 1.021914 3.710811 17.27923
18.C 2.176114 3.978908 18.02141
19.C 2.115825 4.326536 19.3671
20.C 0.882194 4.40687 20.00279
21.C 1.11115 3.36242 15.84516
22.C 0.330315 4.025557 14.87198
23.C 0.413865 3.706708 13.53512
24.C 1.281166 2.691984 13.06558
25.C 2.13297 2.065424 14.03725
26.C 2.009736 2.405781 15.40133
27.C 3.137512 1.125374 13.65775
28.N 3.331359 0.699528 12.44032
29.C 4.394219 -0.26124 12.15586
30.C 3.868309 -1.22721 11.08788
31.N 3.242431 -0.423 10.04361
32.C 3.509082 -0.6284 8.784802
33.C 3.007294 0.125546 7.684865
34.C 2.209732 1.311089 7.875835
35.C 1.736861 1.958986 6.698018
36.C 2.071322 1.513461 5.438487
37.C 2.928479 0.399599 5.246521
38.C 3.364036 -0.27635 6.374625
39.C 3.459637 0.040274 3.909948
40.C 2.648788 -0.24499 2.794942
41.C 3.186567 -0.58831 1.553547
42.C 4.57522 -0.60557 1.405997
43.C 5.406733 -0.31751 2.483065
44.C 4.846457 -0.00795 3.720003
45.C 2.279383 -0.99611 0.421165
46.C 0.856353 -0.55775 0.641278
47.C 0.431035 -0.20078 1.921345
48.0 1.284142 -0.19645 3.002532
49.C -0.89868 0.185909 2.177049
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50.C
51.C
52.C
53.C
54.C
55.C
56.C
57.C
58.C
59.0
60.Mn
61.0
62.C
63.0
64.C
65.0
66.0
67.0
68.0
69.0
70.H
71.H
72.H
73.H
74.H
75.H
76.H
76.H
77.H
78.H
79.H
80.H
81.H
82.H
83.H
84.H
85.H
86.H
87.H
88.H
89.H
90.H
91.H
92.H
93.H
94.H
95.H
96.H
97.H
98.H
99.H
100.H
101.H
102.H

-1.79941
-1.39444
-0.07203
-1.31587
-1.92146
-2.25587
-1.98531
-1.41963
-1.09142

1.932871
2.017818
1.273912

-2.24824
-2.774
-2.88906
-2.53684

0.535003
0.250044

-1.96951
-3.06877
-2.83754

-2.11176
0.252183
2.306334
2.655165
5.000639
6.4899
6.4899
5.487723

-5.67994
-6.08157
-4.20853

0.822128
3.03054
3.136077

-1.68326
-1.74167
-0.19761
-0.35209

2.633856
1.111855
1.697964
3.999387
4.684173
3.095807
5.264114
4.711448

-0.41679
-2.88509
-0.6426
-1.23114
-2.0949
-2.70507
-2.34413

0.201045
-0.15816
-0.5304

0.571328
1.812961
2.200459
1.343799
0.086463

-0.29527
1.80829
0.941913
2.407007
1.724205
2.917394
2.675209
1.425547

-0.20666
-0.84851

0.937607
3.51929
0.474442

-0.15753
-0.81884
-2.09848
-0.57658
-0.85511
-0.31843
-0.31843

0.252168
4.39356
5.022087
4.91942
4.681388
4.549584
3.953563
4.932077
3.168577
4.225949
4.813256
1.880058
2.843248
2.051326

-1.15685
-1.8534
-1.88001

0.286524
-0.81151
-0.22796

3.120288
-1.2716
-0.58331

2.494781
3.176113
1.271822

1.107698
-0.17648
-0.40197

3.542132
3.783046
5.077877
6.154086
5.90944
4.619417
9.040583

10.83467
11.78954
7.56468
7.745202

11.16074
10.95134
11.02656
9.744538
8.494387

10.25959
1.302656

-0.99779
-1.40393

0.319297
-0.52584

0.432238
2.358736
2.358736
4.563406

16.44961
18.8235
20.45552
21.05555
19.91288
17.50816
20.72549
20.55642
12.79949
15.18598
16.12387
6.830108
4.565478
6.253866

10.68829
11.53033
11.75112
13.059
9.366585
8.762245
4.439241
6.745625
2.94807
5.260958
9.951154
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13.28726
15.68419
14.61272
12.20067
8.5362

14.46404

103.H
104.H
105.H
106.H
107.H
108.H

-2.26015
-2.54897
-4.15206
-3.86272

4.190518
3.779046

1.128916
1.674658
5.516006
4.958224

-1.45728
0.736605
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Appendix C.3. Input File for the hydroperoxide complex of Mn(HSD*).

#!/bin/csh
$ADFBIN/adf-n 12 << eor
TITLE Jenny's HSD, no phenyl,
MAXMEMORYUSAGE 512
GEOMETRY
GO
Iterations 400

END
OCCUPATIONS KeepOrbitals 100
SCF
Iterations 1000
END
XC
GGA Becke PW9 Ic
END
UNRESTRICTED
CHARGE 04

ATOMS
C 1.372400 4.336910 -12.351861
C 0.975270 5.543420 -11.777121
C 0.567690 6.667260 -12.511201
C 0.532130 6.596010 -13.904851
C 0.913570 5.404000 -14.511341
C 1.326340 4.304700 -13.752591
O 0.945420 5.789520 -10.424451
C 0.509640 7.092370 -10.285101
C 0.265380 7.685390 -11.530611
C -0.180180 9.006830 -11.585691
C -0.375050 9.673530 -10.381911
C -0.137401 9.048520 -9.150501
C 0.318840 7.726990 -9.058711
C 0.635940 7.083380 -7.773371
C -0.179941 7.241030 -6.629171
C 0.179179 6.720770 -5.390821
C 1.415439 6.004579 -5.222381
C 2.206999 5.804839 -6.404410
C 1.793679 6.341259 -7.636741
C 3.454799 5.120939 -6.380580
N 4.050639 4.671469 -5.315729
Mn 3.409979 4.747139 -3.460570
O 3.076319 2.817999 -3.568699
O 3.343189 2.000131 -2.398729
O 1.760019 5.574599 -4.045881
C 1.777750 3.156620 -11.567391
C 5.340839 3.988739 -5.407769
C 6.220399 4.565900 -4.301479
N 5.396789 4.653639 -3.091149
C 5.959439 4.587610 -1.922659
C 5.273419 4.668470 -0.667879
C 3.855269 4.854559 -0.570689
C 3.280229 4.887250 0.727900
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C
C
C
C
C
C
C
C
C
C
C
O
C
C
C
C
C
O
H
H
H
H -
H -
H -
H
H
H
H
H
H
H
H
H
H -
H -
H
H
H
H
H
H
H
H
O
O
H
O
O
H
END

4.058588
5.448508
6.034029
6.215948
5.799538
6.438548
7.592278
8.055988
7.381298
5.648118
4.619978
4.696458
5.711288

4.696580
4.468650
4.485910
4.086770
3.008700
2.586879
3.258950
4.318301
4.726130
1.481569
1.315570
2.238670
0.617419

1.848841
1.759791
0.506841
2.964171
3.747160
4.920030
5.340070
4.564131
3.402781
5.412120
4.474770
3.460650
6.512770

4.742698 -0.378941 6.633270
3.728988 -0.516471 5.676440
3.644478
2.621288
3.060699
1.579650
0.877450
0.207550
0.363470
0.707260
0.268231

0.322610
0.127740
4.961411
3.373460
5.313730
7.445590
9.502280
10.712280
9.616820

4.558040
3.514950
-1.611159

-14.256031
-15.595281
-14.502140
-12.536811
-10.388771
-8.230361

3.004238 -1.326351 5.770749
4.776558 -1.064671 7.480030
6.502468
8.115248
8.951608
7.748477
2.205129
3.587048
7.102089
0.460691
1.127350
2.443949
5.802559
5.166720
6.547309
7.112129
3.027659
7.050279
3.954130
1.788809
1.732898
1.142217
2.114113
2.869011
2.997173

0.716909
2.966560
4.858891
5.584990
5.048429
4.693070
4.276140
6.839110
7.770840
6.200779
4.127500
2.915489
5.583250
3.937909
2.585191
4.450520
4.978459
-0.756036
1.163984
0.878896
2.131625
3.237589
2.397870

7.257370
6.250861
4.872901
2.838421
0.803510
2.832671
0.413171
-4.516481
-6.722301
-8.497001
-6.399519
-5.226419
-4.581539
-4.138859
-1.670199
-1.872159
-7.346879
3.634607
3.203567
2.516310

-12.137168
-10.694125
-10.268749

BASIS
C $ADFRESOURCES/DZP/C. Is
0 $ADFRESOURCES/TZP/O. I s
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N $ADFRESOURCES/TZP/N. Is
H $ADFRESOURCES/DZP/H
Mn SADFRESOURCES/TZ2P/Mn.2p
END
END INPUT
eor

241



Appendix C

Table C.3. Cartesian coordinates from the DFT calculated energy minimized structure of
the hydroperoxide complex of Mn(HSD*). The structure is shown in Figure 4.7.

x y z
1.C 1.3724 4.33691 -12.3519
2.C 0.97527 5.54342 -11.7771
3.C 0.56769 6.66726 -12.5112
4.C 0.53213 6.59601 -13.9049
5.C 0.91357 5.404 -14.5113
6.C 1.32634 4.3047 -13.7526
7.0 0.94542 5.78952 -10.4245
8.C 0.50964 7.09237 -10.2851
9.C 0.26538 7.68539 -11.5306
10.C -0.18018 9.00683 -11.5857
1 l.C -0.37505 9.67353 -10.3819
12.C -0.1374 9.04852 -9.1505
13.C 0.31884 7.72699 -9.05871
14.C 0.63594 7.08338 -7.77337
15.C -0.17994 7.24103 -6.62917
16.C 0.179179 6.72077 -5.39082
17.C 1.415439 6.004579 -5.22238
18.C 2.206999 5.804839 -6.40441
19.C 1.793679 6.341259 -7.63674
20.C 3.454799 5.120939 -6.38058
21.N 4.050639 4.671469 -5.31573
22.Mn 3.409979 4.747139 -3.46057
23.0 3.076319 2.817999 -3.5687
24.0 3.343189 2.000131 -2.39873
25.0 1.760019 5.574599 -4.04588
26.C 1.77775 3.15662 -11.5674
27.C 5.340839 3.988739 -5.40777
28.C 6.220399 4.5659 -4.30148
29.N 5.396789 4.653639 -3.09115
30.C 5.959439 4.58761 -1.92266
31.C 5.273419 4.66847 -0.66788
32.C 3.855269 4.854559 -0.57069
33.C 3.280229 4.88725 0.7279
34.C 4.058588 4.69658 1.848841
35.C 5.448508 4.46865 1.759791
36.C 6.034029 4.48591 0.506841
37.C 6.215948 4.08677 2.964171
38.C 5.799538 3.0087 3.74716
39.C 6.438548 2.586879 4.92003
40.C 7.592278 3.25895 5.34007
41.C 8.055988 4.318301 4.564131
42.C 7.381298 4.72613 3.402781
43.C 5.648118 1.481569 5.41212
44.C 4.619978 1.31557 4.47477
45.0 4.696458 2.23867 3.46065
46.C 5.711288 0.617419 6.51277
47.C 4.742698 -0.37894 6.63327
48.C 3.728988 -0.51647 5.67644
49.C 3.644478 0.32261 4.55804
50.C 2.621288 0.12774 3.51495
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51.0
52.H
53.H
54.H
55.H
56.H
57.H
58.H
59.H
60.H
61.H
62.H
63.H
64.H
65.H
66.H
67.H
68.H
69.H
70.H
71.H
72.H
73.H
74.H
75.H
76.H
77.0
78.0
79.H
80.0
81.0
82.H

3.060699
1.57965
0.87745
0.20755

-0.36347
-0.70726
-0.26823
3.004238
4.776558
6.502468
8.115248
8.951608
7.748477
2.205129
3.587048
7.102089

-0.46069
-1.12735
2.443949
5.802559
5.16672
6.547309
7.112129
3.027659
7.050279
3.95413
1.788809
1.732898
1.142217
2.114113
2.869011
2.997173

4.961411
3.37346
5.31373
7.44559
9.50228

10.71228
9.61682

-1.32635
-1.06467
0.716909
2.96656
4.858891
5.58499
5.048429
4.69307
4.27614
6.83911
7.77084
6.200779
4.1275
2.915489
5.58325
3.937909
2.585191
4.45052
4.978459

-0.75604
1.163984
0.878896
2.131625
3.237589
2.39787

-1.61116
-14.256
-15.5953
-14.5021
-12.5368
-10.3888

-8.23036
5.770749
7.48003
7.25737
6.250861
4.872901
2.838421
0.80351
2.832671
0.413171

-4.51648
-6.7223
-8.497
-6.39952
-5.22642
-4.58154
-4.13886
-1.6702
-1.87216
-7.34688
3.634607
3.203567
2.51631

-12.1372
-10.6941
-10.2687
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Appendix C.4. Input File for the hydroperoxide complex of Mn(HphSD*).
#! /bin/csh
$ADFBIN/adf-nl2 << eor
TITLE Jenny's HSD-phenyl
MAXMEMORYUSAGE 512
GEOMETRY
GO
Iterations 400

END
OCCUPATIONS KeepOrbitals 100
SCF
Iterations 1000
END
XC
GGA Becke PW91c
END
UNRESTRICTED
CHARGE 04

ATOMS
C 2.772680 2.341637 -11.875520
C 1.700776 3.143507 -11.469912
C 0.968351 2.783937 -10.333078
C 1.256879 1.605939 -9.657334
C 2.294132 0.788380 -10.101660
C 3.068625 1.172155 -11.194318
C 1.298681 4.292929 -12.279070
C 0.898427 5.499096 -11.722027
C 0.443153 6.590979 -12.476720
C 0.364369 6.480682 -13.866474
C 0.781361 5.289507 -14.450917
C 1.238532 4.220208 -13.673757
O 0.928713 5.785636 -10.385300
C 0.502843 7.084786 -10.263797
C 0.188083 7.634276 -11.515263
C -0.257046 8.955417 -11.582581
C -0.375004 9.675093 -10.395516
C -0.052161 9.096591 -9.163969
C 0.397850 7.775551 -9.058544
C 0.781332 7.185010 -7.777349
C 0.067199 7.469518 -6.589414
C 0.466381 6.982032 -5.379842
C 1.614825 6.195159 -5.242150
C 2.339450 5.885073 -6.436386
C 1.894614 6.371328 -7.676882
C 3.546784 5.143674 -6.394659
N 4.135893 4.751744 -5.307648
Mn 3.514344 4.879692 -3.492018
O 3.126305 2.993078 -3.636416
O 3.206992 2.240128 -2.442159
O 1.972671 5.775985 -4.068477
C 2.588769 -0.513190 -9.470311
0 3.509677 -1.237816 -9.802316
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5.366884
6.255640
5.419889
5.968316
5.292476
3.898498
3.302241
4.043721
5.423573
6.027011
6.162573
5.713463
6.298710
7.427155
7.922034
7.300473
5.503469
4.527304
4.645901
3.543170
3.550125
4.506678
5.489493
2.603438
1.261449
0.403917
0.883450
2.207488
3.061553

-0.043787
-1.213508
3.135146
1.726388
0.551181
1.502867
0.733903
0.005285

-0.500036
-0.701602
-0.096901
2.813765
4.480444
6.229306
7.917899
8.806830
7.680389
2.233607
3.564387
7.093782

-0.103933
-0.847663
2.468827
5.840460
5.116246

Appendix C

3.990932 -5.388663
4.528230 -4.285478
4.628461 -3.098036
4.461600 -1.939333
4.554108 -0.687374
4.817591 -0.608719
4.859133 0.669181
4.621593 1.804460
4.357628 1.731412
4.338141 0.490142
4.040898 2.955941
3.013718 3.771624
2.656338 4.992567
3.353583 5.417466
4.368538 4.604762
4.712547 3.397462
1.556699 5.486011
1.341079 4.503478
2.221848 3.469161
0.370151 4.581407

-0.411601 5.735401
-0.229118 6.734450
0.755435 6.624989
0.131829 3.491289

-0.145528 3.761738
-0.499319 2.734980
-0.575524 1.428766
-0.251766 1.143935
0.108577 2.172043
-1.031682 0.378116
-1.305295 0.565653
4.959578 -1.668069
-0.822133 -8.506941
-1.138428 -0.828262
3.273077 -14.154098
5.175208 -15.537157
7.314814 -14.477332
9.420945 -12.541718
10.717725 -10.424339
9.703324 -8.253566

-1.214775 5.824825
-0.862295 7.624377
0.896301 7.417384
3.112437 6.364136
4.927507 4.921346
5.548990 2.802351
5.077586 0.720168
4.638246 2.787983
4.095692 0.416439
7.189405 -4.472617
8.068558 -6.657725
6.128270 -8.577976
4.085477 -6.382270
2.934044 -5.177534
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H 6.598291 5.545448 -4.555149
H 7.129489 3.875520 -4.111608
H 3.023492 2.945328 -1.753894
H 2.024401 -1.716263 -8.173067
H 3.383123 2.657563 -12.727341
H 3.892447 0.518518 -11.496886
H 0.138517 3.418734 -10.005155
H 0.660010 1.300357 -8.791693
H -0.175829 -1.447521 -1.438926
H 2.564894 -0.299433 0.111480
H 4.108292 0.346398 1.962759
H 0.893879 -0.056742 4.787997
H -0.651054 -0.727417 2.913311
H 7.047206 4.232872 -1.894439
H 4.019066 4.906830 -7.363068
END

BASIS
C $ADFRESOURCES/DZP/C.1s
O SADFRESOURCES/TZP/O. Is
N $ADFRESOURCES/TZP/N. 1s
H $ADFRESOURCES/DZP/H
Mn $ADFRESOURCES/TZ2P/Mn.2p

END
END INPUT
eor
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Table C.4. Cartesian coordinates from the DFT calculated energy minimized structure of
the hydroperoxide complex of Mn(HphSD*). The structure is shown in Figure 4.8.

x y z
1.C 2.77268 2.341637 -11.8755
2.C 1.700776 3.143507 -11.4699
3.C 0.968351 2.783937 -10.3331
4.C 1.256879 1.605939 -9.65733
5.C 2.294132 0.78838 -10.1017
6.C 3.068625 1.172155 -11.1943
7.C 1.298681 4.292929 -12.2791
8.C 0.898427 5.499096 -11.722
9.C 0.443153 6.590979 -12.4767
10.C 0.364369 6.480682 -13.8665
11.C 0.781361 5.289507 -14.4509
12.C 1.238532 4.220208 -13.6738
13.0 0.928713 5.785636 -10.3853
14.C 0.502843 7.084786 -10.2638
15.C 0.188083 7.634276 -11.5153
16.C -0.25705 8.955417 -11.5826
17.C -0.375 9.675093 -10.3955
18.C -0.05216 9.096591 -9.16397
19.C 0.39785 7.775551 -9.05854
20.C 0.781332 7.18501 -7.77735
21.C 0.067199 7.469518 -6.58941
22.C 0.466381 6.982032 -5.37984
23.C 1.614825 6.195159 -5.24215
24.C 2.33945 5.885073 -6.43639
25.C 1.894614 6.371328 -7.67688
26.C 3.546784 5.143674 -6.39466
27.N 4.135893 4.751744 -5.30765
28.M 3.514344 4.879692 -3.49202
29.0 3.126305 2.993078 -3.63642
30.0 3.206992 2.240128 -2.44216
31.0 1.972671 5.775985 -4.06848
32.C 2.588769 -0.51319 -9.47031
33.0 3.509677 -1.23782 -9.80232
34.C 5.366884 3.990932 -5.38866
35.C 6.25564 4.52823 -4.28548
36.N 5.419889 4.628461 -3.09804
37.C 5.968316 4.4616 -1.93933
38.C 5.292476 4.554108 -0.68737
39.C 3.898498 4.817591 -0.60872
40.C 3.302241 4.859133 0.669181
41.C 4.043721 4.621593 1.80446
42.C 5.423573 4.357628 1.731412
43.C 6.027011 4.338141 0.490142
44.C 6.162573 4.040898 2.955941
45.C 5.713463 3.013718 3.771624
46.C 6.29871 2.656338 4.992567
47.C 7.427155 3.353583 5.417466
48.C 7.922034 4.368538 4.604762
49.C 7.300473 4.712547 3.397462
50.C 5.503469 1.556699 5.486011
51.C 4.527304 1.341079 4.503478
52.0 4.645901 2.221848 3.469161
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53.C
54.C
55.C
56.C
57.C
58.C
59.C
60.C
61.C
62.C
63.C
64.0
65.0
66.0
67.0
68.H
69.H
70.H
71.H
72.H
73.H
74.H
75.H
76.H
77.H
78.H
79.H
80.H
81.H
82.H
83.H
84.H
85.H
86.H
87.H
88.H
89.H
90.H
91.H
92.H
93.H
94.H
95.H
96.H
97.H
98.H
99.H
100.H
101.H
102.H

3.54317
3.550125
4.506678
5.489493
2.603438
1.261449
0.403917
0.88345
2.207488
3.061553

-0.04379
-1.21351
3.135146
1.726388
0.551181
1.502867
0.733903
0.005285

-0.50004
-0.7016
-0.0969
2.813765
4.480444
6.229306
7.917899
8.80683
7.680389
2.233607
3.564387
7.093782

-0.10393
-0.84766
2.468827
5.84046
5.116246
6.598291
7.129489
3.023492
2.024401
3.383123
3.892447
0.138517
0.66001

-0.17583
2.564894
4.108292
0.893879

-0.65105
7.047206
4.019066

0.370151
-0.4116
-0.22912
0.755435
0.131829

-0.14553
-0.49932
-0.57552
-0.25177
0.108577

-1.03168
-1.3053
4.959578

-0.82213
-1.13843
3.273077
5.175208
7.314814
9.420945

10.71773
9.703324

-1.21478
-0.8623
0.896301
3.112437
4.927507
5.54899
5.077586
4.638246
4.095692
7.189405
8.068558
6.12827
4.085477
2.934044
5.545448
3.87552
2.945328

-1.71626
2.657563
0.518518
3.418734
1.300357

-1.44752
-0.29943
0.346398

-0.05674
-0.72742
4.232872
4.90683

4.581407
5.735401
6.73445
6.624989
3.491289
3.761738
2.73498
1.428766
1.143935
2.172043
0.378116
0.565653

-1.66807
-8.50694
-0.82826

-14.1541
-15.5372
-14.4773
-12.5417
-10.4243

-8.25357
5.824825
7.624377
7.417384
6.364136
4.921346
2.802351
0.720168
2.787983
0.416439

-4.47262
-6.65773
-8.57798
-6.38227
-5.17753
-4.55515
-4.11161
-1.75389
-8.17307

-12.7273
-11.4969
-10.0052

-8.79169
-1.43893
0.11148
1.962759
4.787997
2.913311

-1.89444
-7.36307
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