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A FAIR POWER DOMAIN FOR ACTOR COMPUTATIONS

Will Clingerl

1. Abstract

Actor-based languages feature extreme concurrency, allow side effects,
and specify a form of fairness which permits unbounded nondeterminism. This
makes it difficult to provide a satisfactory mathematical foundation for their
semantics.

Due to the high degree of parallelism, an oracle semantics would be
intractable. A weakest precondition semantics is out of the question because of
the possibility of unbounded nondeterminism. The most attractive approach,
fixed point semantics using power domains, has not been helpful because the
available power domain constructions, although very general, seemed to deal
inadequately with fairness.

By taking advantage of the relatively complex structure of the actor
computation domain C, however, a power domain P(C) can be defined which is
similar to Smyth's weak power domain but richer. Actor systems, which are
collections of mutually recursive primitive actors with side effects, may be
assigned meanings as least fixed points of their associated continuous functions
acting on this power domain. Given a denotation A E P(C), the set of possible
complete computations of the actor system it represents is the set of least upper
bounds of a certain set of "fair" chains in A, and this set of chains is definable
within A itself without recourse to oracles or an auxiliary interpretive semantics.

It should be emphasized that this power domain constructiori is not nearly as
generally applicable as those of Plotkin [Pi] and Smyth [Sm], which can be used
with any complete partial order. Fairness seems to require that the domain
from which the power domain is to be constructed contain sufficient operational
information.

1. MIT AI Lab room 910, 545 Tech Square, Cambridge MA 02139. Address
until September 1979: c/o Control Data Corporation, 2800 East Old Shakopee
Road, P O Box 1249, Minneapolis MN 55440.
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2. Introduction

2.1 FIXED POINT SEMANTICS AND NONDETERMINISM

In a simple application of the now classic Scott-Strachey fixed point
semantics ([Scl,2], [MiSt]) a deterministic program may be taken to denote a
partial function from inputs to outputs. Given a program, the semantics of the
programming language in which it is written defines its associated continuous
functional from partial functions to partial functions, and the meaning of the
program is defined to be the least fixed point of that functional. This abstract
definition is effective because the functional is straightforwardly obtained from
the program syntax, and it effectively enumerates a sequence of approximations
having the least fixed point as limit. Although the least fixed point may be
infinite (considered as a. set of input-output pairs), for a given input there is at
most one output, and if that pair exists it will eventually be enumerated.

More generally, programs may be given meanings as functions from input
streams to output streams, a stream being a (finite or infinite) sequence.
Deterministic programs operating on streams have been given a fixed. point
semantics by Kahn [Ka].

When general parallelism with side effects is allowed, however, timing effects
can 'introduce nondeterminism, so that a single input no longer determines at
most a single output. This leads to considering sets of "possible" outputs, and
to more complex domains involving the power set. These domains have been
investigated by .Plotkin [Pl] and Smyth [Sin]. Again the meaning of a program is
the least fixed pqint of its associated continuous functional. In practice this
least fixed point may be approximated by enumerating a sequence of subsets of
the domain whose limit in the power domain is the least fixed point.
Equivalently, a generating tree may be built having the least fixed point as the,
set of least upper bounds of its maximal paths.

Even for a given input, the set of possible outputs may now be infinite. In
fact, when nondeterministic programs take streams as inputs, the set of possible
output streams (for a fixed input) may even become uncountable, as in the case
of an abstractly specified merge (fair or otherwise). Though the meaning of
such a program may still be defined as the least fixed point of a certain
continuous function, about the only sense in which that fixed point can be given
effectively is by enumerating a countable set of partial output streams, from
which the uncountable set of completed outputs may be obtained by taking all
limimits of sequences satisfying certain properties (for example, the sequences
which lie along maximal paths of a generating tree).

The main shortcoming of this theory has been its inadequate treatment of
fairness. Fairness is an essential feature of some languages, such as the
actor-based languages PLASMA [HeAtk], ACTI [HeAtt], and ETHER [Ko].
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2.2 THE PROBLEM OF FAIRNESS

Roughly. speaking, fairness is a property of programs that take inputs from
two or more "processes" in such a way that each attempt by a process to
provide input is bound to succeed sooner or later.

From a programming point of view, the ability to write fair programs is very
desirable. For example, a fair merge makes possible simple solutions to such
time-dependent nondeterministic systems as airline reservation systems. In some
cases fairness is needed to prove termination or freedom from deadlock.
Nonetheless programming languages which specify fairness or permit a fair
merge are rare. The reason is a phenomenon known as unbounded
nondeterminiism, which, two of the best semantic methods for nondeterministic
languages, those of weakest preconditions and power domains, seem unable to
deal with-at present.

A program has unbounded nondeterminism if it always halts but for some
input the number of states in which it "may" halt is infinite. An example is the
following program written in Communicating Sequential Processes (CSP):

[X :: Z!stop() II
Y :: guard:boolean; guard := true;

*[guard -- Z!go(); Z?.guard] I
Z :: n:iiteger; n := 0;

continue:boolean;. continue := true
*[X?stop() - continue := false

0 Y?go() - .n := n + 1; Y!continue]

As the author of CSP points out, if the repetitive guarded command in the
definition of Z were required to be fair, this program would have unbounded
nondeterminism: it would be guaranteed to halt but there would be no bound
on the final value of n. It is for this reason that he stops short of requiring
fairness, stating only that "an efficient implementation should try to be
reasonably fair and should ensure that an output command is not delayed
unreasonably often after it first becomes executable." [Ho]

This caution is necessary because CSP's semantics uses power domain
techniques with the Egli-Milner ordering, and as a result cannot deal with
unbounded nondeterminism. In short, the above. CSP program cannot be proved
to halt.

Concurrent Processes is a more general abstract proposal also using power
domain semantics but with a weak power domain ordering defined by Smyth
[MiMi]. It cannot specify fairness either.

A proposal which avoids alternative input commands and polling (and thus
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nondeterminism) altogether is that of [KaMcQ]; as a result the "fair merge"
presented therein must assume for its correctness that both of its input streams
are guaranteed to be infinite.

To clear up a possible confusion: even had CSP required fairness, no one
believes the above CSP program when implemented on an actual machine would
exhibit unbounded nondeterminism. On any given machine, its nondeterminism
would be bounded. In the semantics, however, when its meaning is abstracted
away from its possible fair implementations, its nondeterminism would have to
be considered unbounded.

Therefore the presence of unbounded nondeterminismi in the semantics in no
way commits a theory in favor of the idea that a real machine could exhibit
unbounded nondeterminism. When the formal semantics selects a set of possible
computations as a program's denotation, the criterion of correctness for an
implementation is that it guarantee that every physical computation correspond
to a formal computation in that set; it need not and normally would not
guarantee that every formal computation have a corresponding "possible"
physical computation in the implementation. This matter is treated at length in
[BaSi].

The usual way to achieve fairness in a mathematical semantics has been
through the use of fair oracles [CaLe], [Ke], [Mi]. The weakest precondition
approach has been unable to accomodate unbounded nondeterminism because
the correctness condition of (for example) a fair merge would yield a
discontinuous predicate transformer [Di]. On the other hand, all approaches
using generating trees to model nondeterminism have been plagued by a problem
described by Plotkin in [Pl]:

"Now the set of all initial segments of execution sequences of a given
nondeterministic program P, starting from a given state, will form a tree. The
branching points will correspond to the choice points in the program. Since
there are always only finitely many alternatives at each such choice point, the
branching factor of the tree is always finite. That is, the tree is finitary. Now
Konig's lemma says that if every branch of a finitary tree is finite, then so is
the tree itself. In the present case this means that if every execution sequence
of P terminates, then there are only finitely many execution sequences. So if an
output set of P is infinite it must contain [a nonterminating computation]."

As Smyth points out, the solution should lie in considering limits of paths in
the generating tree rather than in defining a limit of cross sections (a set of all
nodes at a particular depth) [Smin]. The idea is to exclude certain paths on the
grounds that they represent unfair execution sequences.

One way to accomplish that might be to specify mathematically which paths
are fair. This is what oracles accomplish; the properties required of the oracles
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correspond to properties required of the valid paths of a certain (usually binary)
generating tree. Since oracles are specified independent of the computations
they control, however, they tend to introduce needless complexity which makes
the semantics intractable. This is because they are oblivious to the common
situation in which nmuch of the indeterminacy they control makes no difference.
This is no small matter for actor-based languages; since the number of actors
"wanting to send" is unbounded and the number of mnessages an individual actor
"wants to send" may be infinite, it would seem most natural to take oracles as
sequences in (wXw)W instead of the usual 2W, which is clearly undesirable. 1 It
would be better to build the generating tree first, and then specify the fair
paths, than to specify in advance the set of all possible fair paths and then find
that most do not appear in the generating tree anyway.

In actor semantics the main actor computation domain is a slightly
unconventional history domain which is a complete partial order (cpo) under the
initial segment ordering. Fairness is achieved without oracles by using the
incomplete subdomain of finite computations to construct the complete power
domain, and then taking advantage of the operational information available in
the computation domain. Programs are given meanings as least fixed points of a
continuous function on the power domain. From such a fixed point the set of
possible complete computations may be obtained by taking least upper bounds
of all "fair" chains. This contrasts with the finitely generable sets obtained by
taking least upper bounds of all "maximal" chains.

2.3 PREVIOUS WORK

Power domain constructions began with the papers of Plotkin [P1] and Smyth
[Sm]n Their constructions have been extended and simplified in [Le] and [SmPI].

Hoare's Communicating Sequential Processes is an outstanding example of a
programming language that faces up to the problems of concurrency and side
effects [Ho]. Its semantics has been given by Francez et al [Fr].

The mathematical -model given by Milne and Milner as a precise notion of
"processes" [MiMi] is very much the sort of thing we are here attempting to
give for actors.

The style of semantics used in this paper, behavioral semantics, was
developed by Irene Greif [Grl,2]. Akinori Yonezawa suggested behavioral

1. By inventing the notion, of an instantaneous schedule, Henry Baker was
able to reduce this to w w [Ba].
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equations in his thesis [Yo]. The behaviors of individual actors were defined by
IIewitt and Attardi while giving the semantics of ACT1 [HeAtt]. The actor
computation domain was defined by Greif [Grl], while the ordering.laws were
refined through a sequence of papers [HeBal,2], [CI]. The fairness problem was
attacked by Baker, who incorporated oracles into a behavioral semantics for
actor systems [Ba].

3. ,The Actor Model

3.1 INFORMALLY SPEAKING

The actor model is perhaps best motivated by the prospect of highly parallel
computing machines consisting of dozens or even hundreds of independent
monoprocessors, each with its own local memory and communications processor,
conmmunicating via a packet-switched network in a system similar to some of
todly's distributed computer networks [Ha], [He3].

In the model, actors1 are deterministic computational agents which
conmmunicate by sending messages. Each message sent is guaranteed to arrive
at its target actor, at which time it is placed in a queue associated with the
tarjet to await processing. The model assumes nothing else about the
me{.hanism of message transmission, so that the order of arrival is
noideterministic.2  When an actor accepts3 the next message in its queue for
pros essing, it locks and accepts no. more messages from the queue until (if ever)
it finishes with that message.

Messages are processed in the order in which they arrive. The processing of
a message may involve (1) sending out a (possibly infinite) set of (immediately)
actrvated messages and (2) a change of local state within the actor. When (if)
an actor finishes processing a message, it unlocks and accepts the next message
in its queue. If there are none, it waits until there are.

1. Actually primitive serialized actors. Unserialized actors may be
constructed using serialized actors and actor creation [HeAtk].
2. Unboundedly so.
3. "Receives" in the terminology of [He2]. I find "accepts" less confusing.
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3.2 THE BEHAVIOR DOMAIN

Let A be the set of actors, and M the set of messages.
An abstract actor is described by its behavior [HeAtt]. The behavior

specifies what the actor does whenever it receives a message: it may change
state, and it may send out messages to other actors. This suggests that the
behavior of an actor a is a function

ba: la -- (M -t (Za X multisets(AXM)))

where ya is the set of local states of a. Since the only purpose of local states
is to index the next behavior, though, the behavior domain is defined recursively
as

B = [M -. (B X multisets(A X M))].

B may be thought of as the set of trees of height w, with an unlabelled root
node, non-root nodes labelled by multisets in A X M, and such that each node
has exactly one outgoing are labelled by in for each message m.

Let next and events be the natural projections

next: (B X multisets(A X M)) -4 B
events: (B X multisets(A X M)) -- multisets(A X M).

For example, a pure actor never changes state and so next(ba(m)) = ba for all
messages m.

Behaviors are normally specified using a programming language. Different
languages allow different subsets of the behavior domain. In ACTI, for
example, events(b(m)) is always finite [HeAtt], while in ETHER it is can be
infinite [Ko]. The laws of locality [HeBal,2], which are abstract counterparts of
scoping rules,. are examples of the sort of restrictions a language may reasonably
place on behaviors.

The simplest behavior is the pure passive behavior

dead: [?msg] "-- (dead, 0)

which means the actor is good only for absorbing messages. When an actoi"
system is being modelled, all actors outside the system are given the passive
behavior dead so that the histories produced show 'for them only the stream of
messages they receive. These should be thought of as outputs.

A programming language, given a program written in the language, provides
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a behavior for each actor. That is, a programming language (L, 3) consists of a
description language L and a map 3: L -+ [A -+ B]. This means a program
specifies behaviors for all actors that could possibly be required for its
execution, whether existing initially or created in the course of computation; it
thereby sidesteps the actor creation issue by assuming that all actors exist
initially with defined behaviors.
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3.3 'THE COMPUTATION DOMAIN

A (partial) computation is a labelled graph as below. Simple examples may
be found in sections 5.3-5.5.

Definition. The set C of (partial) computations is the set of structures

c = (E, T, M, -act-+, Arr)
where

1.' E is the set of event nodes of c.

2. T: E -+ A gives the target of each event.

3. M: E -+ M gives the message of. each event.

4. -act-4 is the activation ordering: a strict partial order on E such that
(e1 -act-+ e A e2 -act-+ e

A -, 3 e' (el -act-- e' -act-, e V e2 -act- e' -act-b e))
D el = e2.

(That is, an .event e has at most one immediate activator, which is written
activator(e) if it exists. If activator(e) does not exist, then e is said to be
external.)

5. Arr = {-arra-+ I a E A) is the set of arrival orderings:
V a E A -arra-+ is a strict total order on {e E E [ T(e) = a).

(-arra-+ is the arrival ordering of a.)

and the following ordering laws hold, where -- is the combined ordering
defined as the transitive closure of -act-ýU(UArr):

Law of Strict Causality (LSC). V e E E -, e --4 e.

Law of Countability (LC). E is countable.

Law of Finite Predecessors (LFP). V e E E (e' E E e' -- e) is finite.

(Computations cl = (El, T1, M1, -act- 1 , Arrl = (-arra-1 I a E A)) and
c2 = (E2, T2, M 2, -act+ 2, Arr 2 = {-arra 2 a E A)) are isomorphic if
there exists a one-one correspondence a: E 1 -+ E2 such that T1(e) = T2(ae),
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M 1(e) = M2(ae), e -act-- 1  e' +- ae -act - 2  ae', and
e -arra,-1 e' +* ae -arra~ 2 ae' for all e, e' E E1, a E A. This isomorphism
is unique if it exists. We assume that isomorphic computations are identified in
C.)

Each event node e represents a specific arrival instance of the message M(e)
at the target T(e). The messages with a given target a are totally ordered by
its arrival ordering. If e is not external, then it is a direct result of its activator
event so that (T(e), M(e)) E events(b(M(activator(e)))), where b is the
behavior of T(activator(e)) at the time of the event activator(e) (or more
correctly, when it accepts M(activator(e)) for processing). External events
model the arrival of messages originating outside the actor system under
consideration; they should be thought of as inputs.

Note that there are no "sending events". Since messages are processed in
the order of their arrival, all necessary information about senders may be
obtained from the activation ordering and the arrival orderings of senders.

The three ordering laws are equivalent to an axiom of realizability in global
time [CI].

For a given computation, let ei (i E w) be the ith event in the arrival
ordering of a, provided it exists. The local history of a is the (finite or
infinite) sequence {M(e)}iE. 1 Given computations x, y E C and events ex of

x and ey of y such that the two events. have the same target a, and ex = ea in

x and e = ea in y, a has the same initial local history up through ex = e in
both x and y iff

(M(ea) .ei = it h event in x with target a)i<I_

= M(eq) e = ith event in y with target a})i_.

That is, the sequence of messages arriving at the actor a is the same in both
computations at least up to and including the events ex and ey.

Let c1,  c2  E . C, c1  = (E1, T1, M 1, -act-. 1 , Arrl),

c2 = (E 2, T2 , M 2, -act-' 2 , Arr2). The following defines what it means for cl
to be a finite initial segment of c2.

1. { },i and { iEw denote sequences, while { 1 i i n) and { * I i E w)
denote multisets.
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Definition. cl <I c2 iff
1. El is finite.
2. E 1  E2 (More precisely, the events of cI can be identified with a

subset of the events of c2 in such a way that 3-7 hold; this identification is
unique if it exists.)

3. Targets and messages are the same-in cl and c2.
(That is, Ve E E 1 Ti(e) = T2 (e) and M1(e) = M 2 (e).)

4. The activation ordering of cl is a full subordering of that of c2.
(Formally V el , e2 E El e1 -act~ 1 e2  - el -act-- 2 e2.)

5. Immediate activators in c1 are the same as in c2.
(V el E E l V e2 E E2 e2 -act l 2 el e2 E E1.)

6. The arrival orderings of cl are full suborderings of those of c2.
(V a E A, -arra-+1 E Arr 1, -arra,2 E Arr 2

el -arra4 1 e2 4 el -arra, 2 e2.)
7. Local histories in cl are initial segments of those of c2.

(V el E El V e2 E E2 e2 -arra-2 el D e2 EEl1.)

cl. I c2 means cl can be extended to c2 by adding events, the idea being
that c1 is a possible "snapshot" of c2 on the way to being complete. In 'other
words, c2 can be constructed from cl by adding external events and events
activated by events in cl. Condition 5 states that all activation predecessors of
an event e in c2 are in c1 if e is, and is illustrated by

o-a-Clt-+•I o--act-o--act1o

e0  el e0  e2  el

Just as conditions 4 and 5 ensure that the activation orderings match, conditions
6 and 7 ensure that all the arrival orderings match.

(C, <I) is a complete partial order (cpo), meaning that every directed set
(having pairwise least upper bounds) has a least upper bound. The least
element of C, 1i, has no event nodes. Rather than representing a- computation
which has not yet terminated, lI represents a computation not yet. started.
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4. The Power Domain

Readers may wish to refer to the simplified examples in sections 5.3-5.5
while reading this chapter.

4.1 DEFINITION

An element of C is finite iff its set of event nodes is finite. Let Cfin be
the set of finite elements of C. C is the w-completion of Cfin, and Cfin is a
basis for C, in that C is the set of least upper bounds of chains in Cfin. An
element of C may be identified with the set of its finite initial segments.

A finite partial computation c may be interpreted as providing a finite
amount of partial information about the complete computation. -Specifically, c
codes the fact that the computation when complete will have c as an initial
segment. In Smyth's weak power domain construction, a finite set F of finite
partial computations would code the knowledge that the computation when
complete will have (at least) one of the elements of F as an initial segment
[Sinm]. With this interpetation, only the minimal elements of F make any
difference, so that F may as well be supposed to consist solely of elements
which are both minimal and maximal in F.

For reasons soon to become clear, we instead require F to be closed under
_i-predecessor. We lose no information by so doing, since we may interpret F

so that the completed computation must extend a maximal element of F. 1

We now define the power domain P(C) as the order completion of Cfin
([HeSt], page 180).

Definition. P(C) is the set of all subsets A of Cfin such that A is closed
under <I-predecessor; that is, if y E A and x <I y then x E A.

Definition. Let A, B E P(C). A c B if and only if A C B.

1. Milne and Milner use the right closure of the finite sets such as F as
canonical elements from which they obtain their power domain (though in
[MiMi] they go directly to the power domain). This is more convenient for
their purposes. In effect we use the left closures of finite sets containing only
minimal elements to form our power domain. This is more convenient for
defining fair chains.
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(P(C), c) is a complete lattice.

The interpretation of A E P(C) is that it is the set of all possible finite
initial histories of any actor system it may represent. This does not completely
determine the interpretation, however, since this set is the same for both fair
and unfair interpretations. - In other words, fairness and unfairness differ only
"at infinity", so that a choice between faiiness and unfairness can only be made
when the set of "completed computations" generated by A is defined.

This set may be defined in two ways. In the first way, which permits unfair
implementations in which some messages sent out may never be received, the set
of "completed computations" is a finitely generable (fg) set, which implies that
if it is infinite then it contains nonterminating computations. 1  Fg sets are
usually the only sets considered [deB), [Fr], [MiMi], [PI], [Sinm], so that specifying
fairness is impossible from the outset. Actor theory requires that all messages
sent be received (which is a form of fairness), so we. use a second definition.

The unfair definition is presented first, both to relate actor semantics to
other approaches and to introduce. the definitions adopted by actor theory.

Definition. Let A E P(C). A chain x0 _I x l <I x2 -I x3 <I * * * in A is
maximal iff for all (partial) computations y in A, if y is related to all of
the x i (that is, V i E w xi 5I y v y 51 xi) and for some i xi has all the
external events of y, then there exists an n such that y :I xn.

The idea is to .ensure that the chain does not "settle down" with

xi = xi+1 = xi+2 = xi+ 3 =* * * unless xi is a completed computation.
Primitive actors are deterministic, so there cannot exist a y E A bigger than all
elements of the chain unless y has more inputs or the chain "settles down"
before the computation is complete.

Definition. If A E P(C), then
fg-complete(A) = ujxi)iEew ] (xi igw is a maximal chain in A).

fg-complete(A) is a finitely generable subset of C. It differs from the
correct set of completed computations only because it can contain the limits of
unfair chains, in which some messages are sent but never received.

1. The term "finitely generable" refers to the fact that such a set is defined as
the set of limits of chains along infinite paths of some finitary generating tree;
see the quotation from Plotkin in section 2.2.
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Now to state the definitions giving the fair interpretation of A E P(C),
which is the interpretation adopted for actor semantics. Recall that A E P(C)
is interpreted to be the set of all possible finite initial histories of any actor
system it may represent. Not all elements of P(C) are possible denotations of
actor systems, however, because nothing in the definition enforces determinism
of actor behavior.

Definition. A E P(C) has the .determinism property iff, for all computations
x, y E A and events ex of x and ey of y such that ex and e have the same
target a and a has the same initial local history up through ex = ey iri both
x and y, there exists z E A such that x <S z and

I(T(e), M(e)) ( e is an event of y and activator(e) = ey)
C ((T(e), M(e)) I e is an event of z and activator(e) = ex}

(as multisets).

Definition. A chain x0 <I xl <I x 2 <I x 3  I ' * * in A is fair iff for all
computations y in A and events ey of y giving the same initial local history
as an event ex of xi having the same target as ey there exists an n such that

{(T(e), M(e)) I e is an event of y and activator(e) = e y
C ((T(e), M(e)) I e is an event of xn and activator(e) = ex)

(as multisets).

Definition. If A E P(C) has the determinism property, then
complete(A) = [(Uxi iEw )ie is a fair chain in A).

The idea is that primitive actors are deterministic, so if on one occasion an
actor sends out a certain set of messages to targets upon receiving a given
message in a certain state, then on all other occasions it must send out that
same set when in the same state it receives the same message. All messages sent
out arrive at their targets, by actor fairness.

When the question of fairness does not arise, complete(A) =
fg-complete(A).

The following theorem shows that the denotation of an actor system may be
recovered from the set of completed computations constructed from it, so that
A and complete(A) contain the same information.

Theorem. Suppose A has the determinism property, and
A' = {(X E Cfi n 3 c E complete(A) x <I c). Then A' = A.
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Sketch of proof: A' _C A is trivial. Let x E A. Must construct a fair chain in A
beginning with x. Order the events of x, and, for each event ei, order the
elements of the multiset

UyEA{(T(e'), M(e')) I activator(e') = e, T(e) = a, and a has the same initial

local history up through e = eia iti both x and y)

- {(T(e'), M(e')) j activator(e') = e }

(where ea is the ith event in the arrival ordering of a). Call this set the set of
pending events for the event e. Fix its order for all time. Build new elements
of the chain by adding, in order, the first pending event for each event in x.
When that has been done, order the set of pending events for each new event
(defined using the above definition but with x replaced by the last computation
yet produced). Add the new events to the old order on "already happened"
events. Do the round robin again, adding the next pending event for each
event. Continuing in this manner produces a fair chain. 0

4.2 INTERPRETING ELEMENTS OF P(C) AS FUNCTIONS

This section and the next are far more tentative than the rest of this paper.
Most methods given have been worked out only informally.

Suppose an actor system is given, with meaning A E P(C). An input event
is an external event whose target is an actor in the actor system. An output
event is an event whose target is not in the actor system. An input stream is
the sequence of input events in the arrival ordering of some actor in the system.
The actor system defines a function from the input streams of its actors to sets
of possible multisets of output events. This function is definable from A.

If the actor system takes a single input, modelled by a single external event
e, then the set of all possible finite initial segments of computations on that
input may be obtained by restricting A to those partial computations which have
e as the sole external event or have no external events at all (ie lI). The set of
possible completed computations may be had by applying complete to this
restriction. Examples are found in sections 5.3-5.5.

For the actor system to have streams as output rather than multisets, there
must be synchronization b.etween the actor system and its environment. This
leads to rules for combining actor systems.

-15- A fair power domain
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4.3 COMBINING ELEMENTS OF P(C)

Brock, and Ackerman have described a technique for combining modules
described by sets of partial orders representing histories ([BrAc], appendix). A
variant of their technique may be used to combine actor systems with meanings
A, B E P(C) either by applying the variant directly to A and B to form C E
P(C) or to complete(A) and complete(B) to form complete(C).

The main reason their technique is not usable directly is that they assume
that each communication port of a module can be connected to at most one
other module. It is possible for two actor systems to send messages to the same
actor, so this assumption fails for the actor model. As a result, the actor
version of their technique must match subsequences of input events with
subsequences of output events in all possible ways, while their version simply
matches port histories. The simplification gained by their restriction on ports
suggests that it may be useful for building structured programs.

Briefly, the technique consists of forming all ordered pairs (x, y) E A X B
and rejecting immediately those pairs for which arrival orderings in x are
incompatible with those in y. For those ordered pairs that remain, output
events of x must be identified with input events of y in all possible ways, and
vice versa. The two partial computations are then merged into one.

Several special cases simplify this procedure.
If an actor system contains only one actor, then the denotation of the actor

system in P(C) contains exactly the same information as the behavior of the
actor. In theory we could do without the behavior domain and use P(C)
instead. That would be a step in the wrong direction, of course, since we want
simplicity rather than complexity.

Barber and Simi suggest that actor systems should be constructed modularly
wilh a receptionist for each actor system [BaSi]. The receptionist is a
designated actor which is the target of all inputs to the module, and which
sends all outputs from the module. The other actors in the system are
protected from external events, so the receptionist serves as the sole link
between the module and other actor systems. The protection would be
expressed by scoping rules in a programming language. In the formal semantics
scoping would be reflected by additional axioms such as the laws of locality
stated by Hewitt and Baker [HeDal,2].

When an actor system with a receptionist has a deterministic input-output
behavior, the actor system may be considered to be a single actor. The precise
transformation of its meaning in P(C) to its behavioral specification in B has
not yet been worked out.

This cannot be done in the present semantics when the actor system is
nondetermuinistic, so that the meanings of such systems must remain in P(C).

-16- A fair power domain
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Note that the receptionist is available to all modules, contrary to the
suggestion that ports be used only for communication between two fixed
modules. We do not know very much yet about writing parallel programs, and
it is far too early to define the best ways of structuring such programs.

5. Meanings as fixed points

5.1 TERMINOLOGY

Let P be a prograln. 3(P) is then an assignment of behaviors to actors. For

a E A, let ba  = (3(P))(a) be the behavior of a. Let
c = (E, T, M, -act-+, Arr = (-arra- I a E A}) be a computation in C. Let

er -arr'-+ e -arra- el -arr,-+ * * *

be the successive events in the arrival ordering of a. The successive behaviors
of a are then given by

b8 = ba

bn+1 = next(bna(M(ea ))).

The event ea is unexpanded iff it has no activation successors and

events(ba(M(ea))) is nonempty. An event is expanded iff it is not
unexpanded.

The event ea  is expanded consistently iff it is expanded and
eacrtivatorQ)\ = eRa C events(ba(M(e))). Iff equality holds, it is expanded{e I ae-tivator(e ) = ell __

completely. Events which are expanded but not consistently are expanded
inconsistently.

A computation is consistent if none of its events are expanded inconsistently.
It is complete if all its events are expanded completely. Note that these
definitions are functions of the behavior assignment specified by the actor
system.

Already the meaning of the actor system could be defined simply as the set
of complete computations of C. The next section shows how to go about
constructing this set.
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5.2 DEFINITION OF T*: P(C) -+ P(C)

This section defines a continuous function r,: P(C) -* P(C) whose least
fixed point is a suitable denotation for the actor system. r• is defined pointwise
from a function r- Cfin -* P(C).

First to define 7: Cfin - P(C).
Let c E Cfin ivith notation as in the last section. T will produce a set of

(finite initial segments of) coinputations which are like c except one new event
has been added. If c is complete, the new events will all be external.

Let H be the set of events of c which are not expanded completely. For
ea E H define the multiset of pending events with activator ea as

Pa = events(ba(M(ea))) - ((T(e), M(e)) I activator(e) = ea in c)

and the multiset of pending events with activator tags as

P =Ue~EH((a', m'), ea) I (a', in') E Pa l

U (((a', m'), 1) I (a', m') E A AX M)

where the second term represents the external events that could be added.

-18- A fair power domain
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Let c((a', in'), e) be the computation obtained from c by adding one new
event node with target a', message in', and activator e (or no activator if e = .L).
Formally

c((a', in'), e) = (E U (e'J, T', M', -act-*', Art')

where e' is a new event node and

T'(el) = T(el) if el E E
a' ifel = e

M'(el) = M(el) if el E E
m' if el = e

el -act-+' e2
< (el, e2 E E el -act-. e2 )

v (e2 = e' A (el = e v e1 -act-+ e))

el -arra-e' e2
++ (el, e2 E E A e1 -arra- e2 )

v (e2 = e' A ce E E' A T(e1)= a = a').

Define r by

T(c) = (x E Cf in  3 ((a', in'), e) E P such that x <I c((a', m'), e)).

If c is consistent, every element of r(c) is also consistent.
r: Cfin - P(C) is monotonic and continuous; note, however, that continuity

is vacuous because Cfin has the discrete topology.

Define 7*: P(C) -+ P(C) by

r*(A) = UxEAr(x).

The following facts are immediate.

Fact. r* is monotonic and continuous.

It therefore has a least fixed point, since P(C) is a complete lattice.

Fact. The least fixed point of r* has only consistent elements.

-19- A fair power domain
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Fact. The least fixed point of 7r has the determinism property.

Theorem. If A is the least fixed point of r7, then complete(A) is the set of
all complete computations in C relative to the given behaviors.

Sketch of proof. Every element of complete(A) is consistent since every
element of A is consistent. Every element of complete(A) is complete by the
definitions of fair sequence, 7, and T*.

If c E C is complete, let E be the events of c and let g: E -- w be a
one-to-one function onto an initial portion of the integers (in other words, onto
w itself if E is infinite, or onto n if c has n events) which preserves the
combined ordering -* of c. (The existence of such a function is proved in [CI].)
For n e 'w, let c, be the initial segment of c having events (g-l(i) I i < n).

Then co = -II and ci+1 E r(ci ) so, for all i, ci e A; furthermore (cdiiEw is a

fair sequence in A, and so uc(ci iEw E complete(A). o

5.3 EXAMPLE 1: INFINITE LOOP

This trivial example is included for comparison with the next example, and
to introduce notation used in all three examples.

As in the next two examples, the actor system being considered contains
only one actor a. All other actors, such as user, have the passive behavior dead
defined in section 3.2. That is, they simply ignore all incoming messages:

dead: [?msg] - (dead, 0)

To review the notation for behaviors, this means that upon receiving any
message, the new behavior is dead and the set of messages sent out to targets is
empty.

For clarity, if m is a message sent to a target actor t, we usually write
I(t ~nj m to indicate the ordered pair (t, m).

In this first example, a initializes itself to a state 0 when it receives a go
instruction, and sends itself an increment instruction. When it receives an
increment instruction in state n, it enters state n+1 and sends itself another
increment instruction. Were it ever to receive a halt instruction, it would tell
user its current state. Its initial behavior is b given by
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b: [go] " (b0, {la - [addl] 1j)

bi (iEw): [addl] '-4 (bi+1, {I[Ea [addl]]])

[halt] H (dead, ([user (- [i]]})

When behaviors are given in this manner, it is intended that all messages not
provided for are simply ignored.

It is now an easy matter to compute the function T* associated with this

very simple actor system. We will only discuss computations having exactly one
external event, of the form [a +- [go]], for which we need only i. and the

partial computations having this one external event. We therefore pretend that
the least fixed point of T* contains only such computa.tions. We will similarly

simplify the examples in the next two sections.
When computations are represented graphically, activation links will be

indicated by solid arrows. The activation order is the transitive closure of such
links. Arrival orderings will be indicated by dashed vertical lines, labelled by
the name of the actor which is target of all events in the arrival ordering.
Higher events precede lower events in these arrival orderings, which is to say
time flows downward on the page. Events may then be labelled simply by their
messages, since the targets are clear from the labels of the arrival ordering in
which they appear.

The least fixed point of rT (ignoring the computations having more external

events, than we care about) is then A as given below. In none of the
computations we are considering does a halt instruction ever arrive, so the
infinite loop is the only completed computation. The unfair definition of the
set of completed computations gives the same result for this example.

In the next example, the unfair definition gives a different result from the
fair definition. In fact, if B E P(C) has A as a subset, then fg-complete(B)
must contain this infinite loop. This is not true of complete(B), as shown by
the following section.
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5.4 EXAMPLE 2: TERMINATING UNBOUNDED CHOICE

The notation used for behaviors and computations was explained in the
previous section.

Again the actor system contains only one actor a, but with a slightly
different initial behavior b given by

b: [go] H-4 (bO, {~a +- [addl]]], [a +- [halt]]})

bi (iEw): [addl] 4 (bi+ 1, f[a *- [addl]]})
[halt] ý (dead, ([Iuser +- [i]}))

That is, upon initialization a sends itself a halt instruction as well as the
increment instruction. Since all messages sent eventually arrive at their targets,
a will eventually receive this halt instruction and terminate. Unlike example 1,
then, there will be no infinite computations in the set of completed
computations. (except for those which have infinitely many external events).

Again it is a simple matter to compute the associated function 7*: P(C) --
P(C). As in the previous example we only care about what happens when the
initialization event is the only external event, so we again pretend the least fixed
point of rT contains only such computations. The least fixed point is B as given
below.

The set of completed computations is also given below. This actor system
has unbounded nondeterminism, yet it always halts. It is clear that the longer
computations are not very likely to happen in any reasonable implementation.
Unreasonable implementations which -favor the longer computations are still
correct, provided they can guarantee fairness and thus termination; they are
merely inefficient. It is difficult to see how an implementation could guarantee
termination without putting a bound on the nondeterminism, but
implemrientations are not required to preserve all the nondeterminacy present in
the semantics.

The set of completed computations is not a finitely generable set. The
corresponding finitely generable set fg-complete(B) contains a computation in
which the halt message never arrives. This shows that approaches which only
consider finitely generable sets cannot provide a reasonable semantics for actors,
and explains why actor semantics uses complete to define the set of completed
computations instead of fg-complete.
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5.5 EXAMPLE 3: POSSIBLY NONTERMINATING UNBOUNDED
CHOICE

Sometimes parallelism is modeled by sequential programs with
nondeterministic choice, usually called or [deB], [Ke], [Mi], [PI], [Sin]. Actor
computations cannot be modeled in this way. For example, unbounded choice
cannot be programmed using or without allowing the possibility of
nontermination.

This is not to imply that terminating unbounded choice can be implemented
in any way, but we distinguish between implementations and programs. If
unbounded choice is programmed, each implementation is free to place a bound
on the program's choice but that bound is in no way fixed by the program's
semantics. In contrast, to actually implement unbounded choice would be to
guarantee that infinitely many choices are physically possible.

The example in this section shows how or may be modeled in an actor
system using an "arrives-first" choice. There is one actor a which initializes
itself to 0, and then decides whether to return an answer or to increment
according to which of two messages that it sends itself arrives first. More
precisely, its initial behavior is given by

b: [go] .-4 (bO, ([[a - [addl], [[a -- [stop]l))

bi (i E w): [addl] - (waiti, 0)
[stop] H-4 (dead, (i[user - [i]]J))

waiti (i E w): [stop] H (bi+ , (Ea - [addl]], [Ea *- [stop]]))

The notation was explained in section 5.3.
Considering as before only computations which have the single external

event [Ea +- [go]], and pretending that the least fixed point C of the r*
associated with this simple actor system contains only such computations, the
least fixed point is as given on the next page.

The set of completed computations is infinite, but contains a nonterminating
computation. It is a finitely generable set, and for this example the unfair
interpretation of the fixed point gives the same set as the fair interpretation
adopted by actor semantics. That is, complete(C) = fg-complete(C).
complete(C) is given below.
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Fig. 7. complete(C)
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6. Final Remarks

6.1 CONCLUSIONS

The semantics presented *in this paper is not yet practical for proving
programs correct; it will have to be simplified to eliminate irrelevant operational
details. The challenge lies in finding simplifications that do not restrict
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generality. The semantics should also be generalized to apply to.
nondeterininistic actors.

To be useful, a general theory such as actors must be able not only to deal
with general parallelism but also to recognize and exploit the useful special cases
that can be dealt with by simpler methods (such as applicative functions,
determinate operators on streams, actor systems with receptionists).
Programming languages must encourage these more tractable ways of structuring
parallel programs.

In its present state, the semantics is most useful as a precise account of the
actor model of parallel processing. It will be used to justify proof rules
currently under development.

Its solution to the fairness problem is of theoretical interest. Instead of
quantifying over sequences of integers as is done with oracles, completed
computations are defined by quantifying over a set of partial computations.
This set can be large and complex, but on the other hand it can be simple. Its
complexity mirrors the complexity of the computer programs it denotes in an
intuitive way, due to the operational definition of meanings as sets of possible
initial histories. This kind of semantics naturally supports proofs by symbolic
evaluation [BaSil, [HeAtt], [Yo].

The exact relation between this semantics and the more conventional power
domain semantics remains to be investigated.
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