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ABSTRACT

Circuit theory of linear time-invariant systems and the
study of propagation of noise through such systems is a well-
established discipline. Very little, however, is known about
the noise performance of devices like harmonic multipliers,
dividers, limiters, and systems consisting of such devices.
In this thesis, we deal with the narrow-band noise performance
of pumped nonlinear systems like this.

Penfield has developed a circuit theory for the study of
propagation of small perturbations through such pumped non-
linear systems. These perturbations can be desired or un-
desired modulation, noise, or hum. In this thesis, it has
been assumed that these perturbations are entirely due to the
noise. Assumption is also made that the noise is narrow-band,
and the signal-to-noise.ratio at any point in the system is
high. With these assumptions, circuit theory of small pertur-
bations has been used in this thesis.

It has been shown that a noisy pumped nonlinear system
can be considered as a multiport network, with each port
exchanging power at only one frequency, and no two ports
exchanging power at the same frequency. This multiport net-
work describes only the terminal noise behavior of the device.
Several methods of representing physical sources of noise in
pumped nonlinear systems have been given. The concepts of
exchangeable amplitude and phase noise powers have been
developed, and a set of figures of merit for the system has
been defined in terms of these exchangeable noise powers.
Two other ways of characterizing the noise performance of
pumped nonlinear systems have also been suggested. Some
details of the analysis of noise performance of abrupt-junction
varactor frequency multipliers and dividers have also been
given.



The idea of lossless parametric imbeddings for multi-
frequency noisy networks has been introduced.

Finally, for multifrequency noisy networks, a set of
matrices the eigenvalues of which remain invariant when the
networks are subjected to linear transformations of different
kinds has been presented.

Thesis Supervisor: Paul L, Penfield, Jr.
Title: Associate Professor of Electrical Engineering
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CHAPTER 1

INTRODUCTION

The quality of performance of any transducer is affected

by the physical sources of noise within the transducer, and

the sources of noise present in the source and load termina-

tions. The noise performance of two-terminal-pair amplifiers

has been studied and the concept of spot noise figure introduced

by Friis and Franz has played an essential role in communica-

tion practice [1]. There have been also many studies of noise

in linear noisy networks [1], and statistical properties of

noise through nonlinear devices [2].

The problem with which we shall be concerned is the noise

performance of pumped nonlinear devices containing internal

noise sources. The systems we have in mind are nonlinear,

but operated in a periodic steady state, which is assumed to

be known a priori. Examples of such systems are oscillators,

frequency multipliers, dividers, limiters, modulators, and all

linear networks.

Three major assumptions are made for such systems. The

first is that the system is driven periodically by known

voltages and currents which henceforth we shall call the carrier.1

Second, we assume that the noise is bandlimited in a frequency

1In some systems (such as frequency multipliers) the
carrier may be at different frequencies at different parts of
the system.



band surrounding the carrier. Third, we assume that the

signal-to-noise katio at any point in the system is high.

We have to mention here that a-great deal is unknown about

the noise performance of pumped nonlinear systems. Since the

noise is assumed to be narrow-band, the noise performance of

pumped nonlinear systems considered in this thesis will be

called the "spot noise performance" of these systems.

A circuit theory for the study of propagation of small

perturbations through pumped nonlinear systems has been

developed by Penfield [3]. We start with a brief summary of

this theory in Chapter 2. Several forms of representations

have been developed for the modelling of physical sources of

noise in pumped nonlinear systems in the remainder of this

chapter.

Exchangeable noise power has been defined for linear

systems [11, and the noise performance of these systems is

usually characterized in terms of a noise figure defined in

terms of these exchangeable noise powers. To characterize

the noise performance of pumped nonlinear systems, we develop

the concept of exchangeable amplitude and phase noise powers

in Chapter 3. The values of these exchangeable noise powers

are invariant to any linear lossless transformations. In

this chapter we also define a set of figures of merit for

these pumped nonlinear systems in terms of exchangeable noise
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powers. Two other ways of characterizing the noise perform-

ance of pumped nonlinear systems have also been described in

Chapter 3.

In Chapters 4 and 5 we discuss in some detail the analysis

of noise performance of abrupt-junction varactor frequency

multipliers and dividers. The theory developed in Chapters

2 and 3 has been used in this chapter to investigate the

noise performance of these devices. The figures of merit as

defined in Chapter 3 have been evaluated and illustrated in

Chapters 4 and 5 for the devices we have analyzed. Methods

to analyse noise performance of parametric amplifiers driven

by noisy pumps have also been given in this chapter.

Now most of the lossless nonlinear systems obey the

Manley-Rowe relations. We start with a discussion of these

relations in Chapter 6. A characteristic noise matrix has

been defined for these pumped nonlinear systems in this

chapter. The eigenvalues of this characteristic noise matrix

have the dimensions of energy. In this chapter we also inves-

tigate a canonical form that can be obtained for these systems

by lossless parametric imbedding.

It was shown by Haus and Adler that the eigenvalues of

the characteristic noise matrix defined for linear noisy net-

works remain invariant when the network is imbedded in a linear

lossless system. As far as terminal noise behavior is concerned,
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a pumped nonlinear system can be considered as a multiport

multifrequency noisy network, with each port exchanging power

at only one frequency, and no two ports exchanging power at

the same frequency. In Chapter 7, we deal with the invariants

that can be obtained by cascading a multifrequency noisy net-

work with linear systems of different kinds. Typical examples

of cascading networks are linear noiseless networks, linear

and lossless networks, and linear lossless reciprocal networks.

As mentioned earlier in this chapter, very little is

known about the noise performance of nonlinear systems. This

thesis is expected to be a modest contribution to the study of

noise performance of pumped nonlinear systems.



CHAPTER 2

REPRESENTATION OF NOISE SOURCES

IN PUMPED NONLINEAR SYSTEMS

Spurious undesired signals are always present in systems

and their components. These undesired signals are usually

called noise. Since noise reduces the amount of information

that can be transmitted with a specific signal power, quanti-

tative measures of noise are often indispensable to engineering

evaluation of systems.

Transducers performing signal processing such as ampli-

fication, frequency mixing, frequency multiplying, frequency

shifting, etc., can be classified as two-ports for theoretical

analysis. Several schemes have been used to represent noise

at a given frequency wo in a linear two-port [1]. In this

chapter such schemes will be developed for the representation

of noise sources in pumped nonlinear systems. It will be shown

that at each port, for each frequency of the carrier, it is

necessary to have two equivalent internal noise sources rather

than the one that is required in linear circuit theory. Fre-

quency of the carrier is supposed to mean the frequency of the

signal. It has also been shown that Rothe-Dahlke and Bauer-

Rothe types of representations can be used for the character-

ization of noise sources in pumped nonlinear systems.



2.1. SOME CONSIDERATIONS OF PERIODICALLY DRIVEN NONLINEAR
SYSTEMS+

Circuit theory of pumped nonlinear systems has been

developed by Penfield [2]. The systems under consideration

are nonlinear, but driven by a strong periodic signal.

Examples of such systems are oscillators, frequency multipliers,

limiters, discriminators, modulators, and systems consisting

of such devices. It is of interest to enquire how small per-

turbations on the periodic driving are propagated through

such systems, and to this end development of a circuit theory

for these perturbations is desirable. In different contexts

these perturbations could be desired or undesired modulation,

noise, hum, or synchronizing signals. In this chapter we shall

assume that the perturbations are entirely due to the noise

present in the system. In general the random noise processes

in such systems will, because of the periodic driving, be non-

stationary, but various representations can be developed that

are stationary, and hence can be described by spectral densities.

Consider a nonlinear system. Let us assume that the large

signal voltages and currents at various points within the system

are, by design, periodic with some frequencyco . Thus the

voltage at some specific point within the network or across

one of its terminal pairs, v(t), is of the form

This is a summary of Ref. [21.
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O jkw t
S Vk e o (2.1)

k=_1CO

where the Vk are the half-amplitude Fourier coefficients,

with V_k V. However, the actual voltage may deviate from

(2.1) because of noise. Thus

W jk 0 t
v(t)- Z V e + 6v(t). (2.2)

k=--0 k

The circuit theory to be set up is one which describes the

perturbations 6v(t) and relates it to similar perturbations

of voltages and currents in other parts of the system.

The major restrictions of the theory are that the driving

is periodic, that the perturbations are at frequencies close

to the carrier, and that these perturbations are small.

In most systems of the type we are interested in, the

carrier is a sine wave. It is convenient then to assume that

the voltages and currents of the carrier are, at each port,

sinusoidal2. Thus

jkcot jkcnt
v(t) = Vk e +Vk e + 6v(t) (2.3)

for some positive integer k.

1Note the use of half-amplitudes, rather than amplitudes
or r.m.s. values.

2This assumption is no restriction on generality [2].
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We now assume that the noise perturbations 6v(t) contain

frequencies that are located in a band of width 2w centered
c

about frequency kw where 2w < wo The perturbations are,

therefore, bandlimited. Similar expressions can be written for

currents and voltages at various places in the network. The

various voltages like v(t) obey Kirchhoff's voltage law(KVL),

and the various currents in the network obey Kirchhoff's

current law(KCL). Furthermore, the carrier voltages and

currents at various parts of the network obey KCL and KVL, and

therefore the perturbations like 6v(t) and 6i(t) obey KCL and

KVL.

Let us write 6v(t) as

6v(t) = 2 v (t) cos kw t + 2 v (t) sin kw t. (2.4)c .o s o

We can show that v (t) and v (t) are bandlimited about d.c.

In Eq. (2.4) we have represented the perturbations 6v(t) in

terms of two real slowly varying functions of time, v (t) and

vs(t), which are defined without regard to phase of the carrier.

A similar decomposition can be done for the current perturba-

tion 6i(t) in terms of two slowly varying currents i c(t) and

is(t). Similar decompositions can be done for all voltages

and currents in the network. The voltages v (t) so defined

at various points in the network obey KVL, and the various

voltages v s(t) also obey KVL. Similarly, the currents i (t)

and i s(t) obey KCL.S5
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Let us write v(t) as

jknt * -jkm t
v(t) = Vk e + Vk e + 2 v (t) cos kot

+ 2 v (t) sin kw t
s o

= 2 Re VkI ej + v(t) - jv(t) oe t (2.5)

and rewrite this in the form

v(t) = 2 Re Vl + va(t) - jv (t) e( (2.6)

3
where v (t) and v (t) are slowly varying functions of timea p
also bandlimited around d.c. The voltage v a(t) can be inter-

preted, since it is small, as a perturbations on the amplitude

I Vkl of the carrier, Similarly, since v p(t) is small, Eq. (2.6)

can be rewritten in the form

v(t) = 2 Re k + va e0 v (2.7)

where the phase perturbations 0 (t) is also slowly varying.

As pointed out earlier, it will be assumed in this chapter

that the small perturbation voltage 6v(t) is actually a noise

voltage. Let us call this v (t), a sample function of a random
n

process. We assume that each sample function v (t) is band-

limited and small, We now assume that even though the sample

functions v (t) may not be stationary, the physical source of
n

3The relationship between va(t) and vp(t), and the pre-
viously defined v (t) and v (t), can be worked out easily [2].

c s
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the nonstationary properties of the noise is the periodic

driving of the nonlinear system. With these assumptions, we

can show that the random processes v (t) and v s(t) are

stationary in the wide sense.

Let us now investigate the "spot" frequency noise perform-

ance of these pumped nonlinear systems. In that case we may

write

v (t) = Vc ejMt + V e-jVt (2.8)

v (t) = V5 eJWt + V* e. j wt  (2.9)
s s S

where V and V5 are random complex numbers,

The actual voltage v(t), then, is

*jkcit
v(t) - 2 Re [V + (V - jV )ejr + (V* - JV*) e - jo t ] ele 0o

k c s c s
(2.10)

In Eqs. (2.8) and (2.9) it is assumed that the power

spectrum of the noise associated with the carrier at frequency

kw° may be nonzero only at the four frequencies + kwo + w.

We shall call w the frequency deviation. A typical spectrum

of v(t) is shown in Fig. 2.1.

Equation (2.10) may be rewritten as

jkw 0t j(kn0 +w)t j(-km +w)
v(t) = 2 Re Ve o + V ke o +Vke ? (2.11)

where

Vak = Vc - jVs (2.12)

V k = Vc + jV . (2.13)
Sk 0 s
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Equation (2.11) shows explicitly the three frequencies kmo,

kw +w and -kw +-, The'two sidebands here are both higher in
o o

frequency than km 0and -kWc , respectively, and therefore these

representations are referred to as "uppersideband" representations.

We will use representation of the form 2.11 in the rest of this

work. Various other kind of representations can be used for

v(t). All these and the mutual relations between them are given

in Ref. [2].

It has also been shown [2] that the terminal noise behavior

of a noiseless pumped nonlinear system may be written as

V p Z0 I= (2.14)

or

V = Z I. (2.15)

The matrix Z is a function of the operating point of the

nonlinear system.

2.2. PHYSICAL SOURCES OF NOISE IN PUMPED NONLINEAR SYSTEMS

For the nonlinear systems that we shall consider in this

chapter, we shall assume that the total voltage v(t) across the

nonlinear element is related to the current i(t) through it by

the equation

v(t) = F fi(t)ý + n(t) (2.16)

where F {i(t)1 is a functional of i(t), and n(t) is a noise
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voltage. For the pumped nonlinear systems we will also assume

that the noise power in a frequency band surrounding the carrier

at any particular frequency k °m is small. Let us also assume

that nonzero carrier currents flow in the nonlinear system only

at a finite number of frequencies 0, + W m go ,I +2' '"

-+s , where

m.
01

sC

ma 0

iCR
0

o
0

(2.17)

According to Sec. 2.1 and Eq. (2.16), the "spot" frequency

terminal noise behavior of this system at a frequency deviation

w is given by an equation of the form

4All these frequencies can be expressed in the form +km
k an integer.
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where Vaj and V j are the terminal noise voltages at fre-

quencies jwo +  and -jw +w, respectively; and I j and I.j are

the corresponding terminal noise currents. n j and n j are

the Fourier coefficients of n(t) at frequencies jcno+0 and -joo +,

respectively.

Let us assume that the signal frequency at the input port

of the transducer using the pumped nonlinear system is mw0 and

th 5
that at p port is pm5 (see Fig. 2.2). Let us also assume

that the terminal constraints at the other frequencies present

in the nonlinear system are such that

V' = - Z" I' + N' (2.19)

where V' is a terminal noise voltage column matrix given by

V-oao

VBo

Vai
VBi

Va(m-1)
V

V' = V (2.20)a(m+l)

B(m+l)

a(p-1)Va(p-l)

Va(p+l)

vB(p+l)

Vas
VBs
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I' and N' are terminal current and noise matrices of the form

similar to Eq. (2.20). Z" is the impedance matrix determined

by the terminal constraints imposed on the system.

It may now be seen that by using Eqs. (2.18) and (2.19),

we may obtain a relation between Vam, Vm Iam Im' V , V Op

Iap' and I O. In particular we can write

Vam

V m

Vap

BPP

=

amam amnm anmp amBp

pmam Zmam mM ump Zmap

apam appm apap apAp

13pam pppm Opap ZpOp

Iam
am

+

ap

Pp

n
i t
am

n" a
ap

n
i

Pp

(2.21)

2.3. REPRESENTATION OF NOISE IN PUMPED NONLINEAR SYSTEMS

It is the purpose of this section to develop different kind

of representations for the internal noise sources present in a

pumped nonlinear system.

Voltage Generator Type Model. It was shown in Sec. 2.2

that the terminal noise behavior of a pumped nonlinear system

may be described by the Eq. (2.21).

An equivalent network to describe the terminal noise

behavior of pumped nonlinear systems may, therefore, be obtained

from Eq. (2.21) (see Fig. 2.3). This shows that, for the purpose

of analysis, a pumped nonlinear system with internal noise

sources may be separated into a noisefree four-port and four

I
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Figure 2.3. Separation of a pumped nonlinear four-port with

internal noise sources into a noisefree four-port
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external noise voltage generators, This representation is

very similar to that obtained for linear noisy networks [11,

In the linear case, we can separate a two-port with internal

noise sources into a noisefree two-port and two external noise

voltage generators (see Fig. 2.4). The impedance matrix repre-

sentation of such a device is given by

V 1 11 12. II  E1
+ o (2.22)

V2  21 Z22 2 E

Current Generator Type Model. Equation (2.21) can be

written aslo in the form

V =Z I + N (2.23)
'ampp -mp 'mp 'mp

If the matrix Z is nonsingular, we can write Eq. (2.23) as

-1
I = Z V + N' (2.24)
'%mp -mp ~mp 'mp

where

-1N - - Z" N
-p -mp "amp

(N~m
am)i

(nPm)

(nap)
(nap)i

(n p

(2.25)

The equivalent circuit whose terminal noise behavior is

given by Eq. (2.24) is shown in Fig. 2.5.

It must be mentioned here that the statistical properties
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Figure 2.5. Separation of pumped nonlinear four-port with

internal noise sources into a noisefree four-

port and external noise current generators.
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of the external noise voltage generators in Fig. 2.3 and those

of the external current generators in Fig. 2.5 may be estimated

by knowing the statistical properties of the noise voltage in

Eq. (2.16). The statistical properties of n(t) may be estimated

by knowing the physical sources of noise in the pumped nonlinear

system.

2.4. ROTHE-DAHLKE TYPE MODEL FOR PUMPED NONLINEAR SYSTEMS

Consider a two-port linear noisy network with noise sources

of unspecified origin. This two-port network can be represented

by a number of different equivalent circuits [1]. An equivalent

circuit of particular importance is that of Rothe-Dahlke [3].

This circuit, shown in Fig. 2.6, has both of the required noise

generators at the input. For many purposes, especially calcu-

lating noise figure, this is convenient.

The question arises whether such a representation can be

obtained for a pumped nonlinear system. The answer is in the

affirmative.

From Eq. (2.21), we can write

Z' Z' I n",
a -mm --mp _m mm

- --- + --- (2.26)

V Z' Z' I n"
~p --prm -pp -p mp

where



Figure 2.6. Rothe-Dahlke noise model for

a noisy two-port network,

VV1
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V
V = (2.27)

V-JBm

Vap
V = (2.28)

-v-p

I am
I = (2.29)

IM

I - P (2.30)
ppp

nit
Sn" m (2.31)

I

BP

I,

S'marm am3m
nZ = (2.33)-'Z

Z' Z

amap amp.pZ' (2.34)
-WBP ZI Z

amap Zmp
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Z' Z
apam apBm

Z -= (2,35)
-pm

ZV Z
Ppam Oppm

and

Z' Z'
apap apop

Z' = (2.36)
-pp

ppap ZBppP

Equation (2.26) can be shown to be equivalent to the equation

V A B V n

-- I-= --- - + -- (2.37)

where

A = Z' Z ' -1 (2.38)
- -mm -pm

B = Z' - Z' ZV-1 Z' (2.39)
- -Mp -mm -pm "pp

C = Z'11 (2.40)
--pm

D = - Z'-1 Z' (2.41)
- -pm -pp

n = n" - Z' Z '  n" (2.42)
Wv Im -mm -pm 1p

and

n. = - Z"-I n". (2.43)
,1 --pmr "p

The system of Eq. (2.35) can be represented by the equivalent

circuit of Fig. 2.7. In this representation the noise sources
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appear only at the input of the transducer, For this represen-

tation two voltage and two current sources have been used.

By premultiplying by matrix S where

A B

5= (2.44)

we can write Eq. (2.35) as

V V n

--- = S - S -

I I nI

V n'

= S +- --- (2.45)

Inn!

The equivalent circuit corresponding to Eq, (2.43) is given

in Fig. 2.8. In this case the two noise current generators

and two noise voltage generators follow the noisefree transducer.

Because of the apparent similarity of Fig. 2.7 to Fig. 2.6,

representation of the form given in Fig. 2.7 will be called

Rothe-Dahlke type model for pumped nonlinear systems. This model

consists of a noisefree four-port preceded by two noise voltage

and two current generators.

Let us write
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n n Z _ Z ZV-1 n"
V m -mmm -pm -p

(N)1 = - - - • (2.46)

n-1 nn. - Z- n
S-pm ap

The statistical properties of (N) may, therefore, be estimated

from the knowledge of statistical properties of n" and n".

This statement is also true for the estimation of statistical

properties of equivalent noise sources given in Fig. 2o8°

2.5. BAUER-ROTHE TYPE MODEL FOR PUMPED NONLINEAR SYSTEMS

The Rothe-Kahlke noise model for a linear noisy two-port

transducer has two noise generators that may be correlated at

the input. An alternate equivalent circuit, proposed by Bauer

and Rothe [4], also has two noise generators at the input, but

they are made to be uncorrelated. Because of this, the expression

for noise figures for a linear transducer has a particularly

simple form. This new model uses wave, or scattering variables

[5]. The incoming and outgoing waves at the input of the

linear system are

a VI + vll (2.47)1 " z +Z*
V v

and

V1 -ZIv
b - (2.48)1

l Z + Z*
V V

where V1 and I are the input voltage and current amplitudes,
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and Z is a complex number with positive real part, the normal-

ization impedance. In a similar way, the incoming and outgoing

wave amplitudes at the output are a2 and b2 , defined with a

normalization impedance that is, in general, different from Zv ,

which was used at the input.

Wave noise generators are defined at the input, in terms

of the generators in the Rothe-Dahlke model, Fig. 2.6, as

e + Zi
a n n v n (2.49)
n 2TRe Z

V

and

(2.50)
e -Z i

b n v n

n 2 VRe Z
V

Thus, the linear system equations, including

terms of the two-port scattering matrix S,

b -b S S a i +

S S ab2  S21 S22 a 2

An equivalent circuit of this representation

2.9. The wave generators are represented by

couplers and ordinary sources.

We can also develop a Bauer-Rothe model

tation of noise in pumped systems.

From Eq. (2.37) we have

noise, are in

an
(2.51)

is shown in Fig.

directional

for the represen-

L
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This

V A V nIm 1 1-p
S -- 1-- -- + -.I+IŽ C D T n

may be rewritten as

V A ' B V n
am ap av

Vm ,. V n

am ap ai
I m C D n

Lm _-- L BP

(2.37)

(2.52)

Let Z and Z be the normalization impedances at ports

1-1' and 2-2', respectively (see Fig. 2.7). Za and Z are

complex numbers with positive real parts.

The incoming and outgoing waves at the input of the pu

system are

V +Z Iam a am
a am Vz + Z*

a a

a V + Z Im

aOm Vz + z•

V - Z*Ib =am a am
am aam [/Z + Z*

a a

V - z I
b = gm p pm

zP+z

and

mped

(2.53)

(2.54)

(2.55)

(2.56)

42
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In a similar way, we can define the incoming and outgoing

wave amplitudes at the output of the pumped system. The nor-

malization impedances used in this case, will in general, be

different from Za and Z .

Let us now define wave noise generators at the input, in

terms of the generators in the Rothe-Dahlke type model (see

Fig. 2.7). These are

n +Zn
a - - (2.57)an 2 VRe Z

a + -v§ z3 1p (2.58
n 2 ý2ReZ.

nva Za nia
b - (2.59)
an 2 VRe A

and

n•- z n
b - .--- (2.60)bn 2 /R2 e Z2

We now write

b
an

N = (2.61)
a
an

and

N -I . (2.62)

"'p LOn
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We may now show that by properly choosing Za and Z we

can make the two matrices N N+ and N N+ diagonal. These

values of Za and Z are given by

n n*. - n* n * + (n n * n 2 In
av ai av ava3 aai avai aa I

a 2

n n ni - n* 13 + (n 13i - n ) + 4 1In IneiI2

Thus, the pumped system terminal equations, including

noise, can be written as

b - b S S S S a +am an amam amPm amap amPp am +
b - b S S S S aSm +

b S S S S a
ap apam apOm apap apOp ap

b Spr Spp S S aB

aan

an

(2.65)

=S

aam

a mP
a
ap

a P

+ aan

+ aon
(2.66)

The elements of the matrix S are functions of the matrices

A, B, C, D.

Since the values of elements of S are not needed in our

discussion, these relations are not given.

I

I



From Eq. (2.66), we can write an equivalent circuit as

shown in Fig. 2.10. The wave generators are represented by

directional couplers and ordinary sources. The values of

these sources can be estimated by knowing the values of the

sources shown in Rothe-Dahlke model in Fig. 2.7.

2.6. EXAMPLE

Let us now consider a nominally driven abrupt-junction

varactor frequency doubler [6]. The model assumed for the

varactor is given in Fig. 2.11. We will assume that the only

physical source of noise within the varactor is the parasitic

series resistance R s. If the temperature of the diode is Td,

then the thermal noise due to Rs can be represented [2] at

spot frequencies by

Ien 2 = 2 kTd Rs sf (2.67)

where /\ f is the frequency range of interest.

We shall now develop a voltage generator type model for

the abrupt-junction varactor frequency doubler.

If Zb is the bias loop impedance and nb is the noise

voltage source present in the bias loop, we may write the

following equations for the doubler
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Figure 2.10. Bauer-Rothe type wave model

of a noisy pumped system.
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Figure 2.11. Equivalent circuit of a varactor.
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Sk is the kt h Fourier coefficient of the elastance S(t). w

is the frequency deviation and 0ois the angular frequency

of the input signal (see Fig. 2.12). Since the physical

source of noise within the varactor is assumed to be the

parasitic series resistance R we have

In 112 = Ini12 = I na2 n 22 1 2 Rs kTd 1f. (2.70)

Also the correlation between any two of nl, "Bl1 na2 , n 2,
and n is zero.

o

Let us now write (see Fig. 2.11)

n i(2.71)

n = h (2.72)

L o
If to, ml, and m2 are the modulation ratios of the

doubler and we is its cutoff frequency [6], we can show from

Eqs. (2.68) and (2.69) that



Figure 2.12. Voltage generator type model for

varactor frequency doubler.
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n.n + = 2R kT L•fnd n s d

n n = 2R kT Z1f0%o^o s d

1+

1 + 2nbl2
2RskT d f

s d

+ nb12
2R kT Af

m j(Zb+Rs) 2 i j(Zb+Rs)
0+ +

mI  R mI  R1ms 1~ ) s

2 R kTd Af
o  b s

m a3m j(Zb- R)1 sR

1 nbl 2
2R kT dAf=, S d

1 +

1+

1+
m
0+

m2

m
o

mI

j (Zb+R S)

m )R
at s-~-I---

I+ bl21 +
2R kT dfs df

m
o
0+

M2

1+ 1
2 R kT Afs, d

m2 m + (Zb+R s
2 m2 ) Rs

1+

j(Zb+Rs)

m2 R

22Inb2S+ 2 R kTdAf

+ 0 -(Zb+R) 2

m2 m() R

(2.73)

(2.74)

and

_ ~

- -



n.no = 2R kT Afvlnjo s d
S+ I + s

2R kT Zf 2R kT dLf

m j(Zb+R )

m bm 2 s)+M 2 W- R

I%12
2R kT dAfs ,d

m o  j(Zb+R )

-m2R R

(2.75)

The methods of obtaining any other kind of model from

this model are given in the preceding sections of this chapter.
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CHAPTER 3

CHARACTERIZATION OF NOISE PERFORMANCE

OF PUMPED NONLINEAR SYSTEMS

This chapter deals with the study of noise performance

of pumped nonlinear systems. Methods have been developed to

characterize the noise performance of linear noisy systems

[1,2]. In linear transducers one very significant question

is the extent to which the transducer influences the signal-

to-noise ratio over a narrow-band (essentially at one

frequency) in the system of which it is a part. The term

"spot-noise performance" has been used to refer to the effect

of the transducer upon the single-frequency signal-to-noise

ratio [1]. The concept of exchangeable powers has been

developed for these devices, and meaningful definitions of

noise figure, noise measure, and exchangeable powers have also

been given.

In this chapter an attempt has been made to define

meaningfully exchangeable amplitude and phase noise powers

for the pumped nonlinear systems we are considering. The idea

of linear lossless imbeddings has been used for this purpose.

Meaningful noise figures have been defined by comparing output

parameters with source parameters. This definition of noise

figures has the advantage that the figures thus defined are

invariant to any further linear lossless imbeddings one may

wish to use.
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Alternatively, a noise figure matrix has also been defined

for these devices in terms of the noise voltage matrices and a

gain matrix. A cascade formula has been obtained for the noise

figure matrix thus defined.

Finally, the noise performance of pumped nonlinear systems

has been characterized in terms of variances of input and output

parameters. The figures defined in terms of these variances

seem to have a lot of physical significance. It has, however,

been shown that they are functions not only of the source

impedance but also of the load impedance. This does not seem

to be a very desirable feature.

It may be pointed out here that this set of characteriza-

tion of noise performance of pumped nonlinear systems is by no

means complete. It is, however, felt that these characteriza-

tions are adequate for our purpose.

3.1. DEFINITION OF EXCHANGEABLE AMPLITUDE AND PHASE NOISE POWERS

At a frequency w o of the carrier, an appropriate represen-

tation1 of the terminal noise behavior of a pumped nonlinear

system is

Vdý

V

Zaa Z

Z Z

a

+ (3.1)

1In this chapter we shall use half-amplitudes, rather than
amplitudes or r.m.s., values.

n a

n



or

V =.Z I + N (3.2)

as shown in Fig. 3.1 [3]. The noise is assumed to be band-

limited and the signal-to-noise ratio is assumed to be high.

V is the carrier voltage, and I is the carrier current. In
s s

this section we are going to consider only the terminal noise

behavior of the device. The frequency deviation is assumed

to be w.

A linear lossless network whose impedance matrix at each

"spot" frequency of interest is nonsingular is defined to be a

nonsingular linear lossless network.2

Let the pumped nonlinear system be cascaded with a linear

lossless network as shown in Fig. 3.2. Let also the system of

Fig. 3.1 be described by

V' - Z"I' + N' (3.3)

in the amplitude-phase representation. The relations between

amplitude-phase and a - p representations are given by [3]

V' = X V (3.4)

-1Z" = XA ZA. (3.5)

I' = M I (3.6)

N' = X N (3.7)

where

All linear lossless networks considered in this chapter
will be assumed to be nonsingular.
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Figure 3.1. Equivalent representation of a pumped nonlinear

system with internal noise sources.
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Figure 3.2. Pumped nonlinear system cascaded

with a linear lossless network.

Signal port is not shown in the figure.

I

t



1 1

j -j

1 1

j -j

-jOv
e 0

jvy
0 e

e

30 iJ i
0 e

0 and 0i are the phase angles of carrier voltage and carrier

current at the frequency wo. It will be assumed that the load

3
impedance for the carrier at frequency w is purely resistiveo

In that case, we have

v = 0i (3.10)

and

V= .. (3.11)

We can also show easily that

+ 1-1 (3.12)
-v 2 -v

The pumped nonlinear system in the amplitude-phase

representation is shown in Fig. 3.3. This system cascaded

with a linear lossless network is shown in Fig. 3.4. Its

terminal relations are given by Eq. (3.3); or we may write

3This assumption will also be made for the terminations
at frequencies of the form kmo, where k i's an integer.

1
2
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and

1
-- l 2

(368)

(3.9)

58

and
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V'a

V'
p

Z" Z"Iaa ap

Z" .Z"pa pp

I'a

I'
p__

+·

na

n'
p I

(3.13)

na , np are complex random variables, the physical signif-

icance of which usually appears in their self- and cross-power

spectral densities. A convenient summary of the power spectral

densities is the matrix

N' N'+ =
11j ^4

n, 2 "n np

n' na* 1n1 22p a p

Since the voltages of N' N o+ are noise voltages it can be argued

on physical grounds that the matrix N' N'+ is positive definite

[1].

When the pumped nonlinear system is cascaded with a linear

lossless network, a new noise column matrix N', and a new
t at

impedance matrix Z" are obtained. It is assumed that the
-t

linear lossless network does not affect the carrier.

We 'shall first find the new Z and N matrices for the
-t "t

system in the a - B representation.

The analytical relation between the voltages and currents

applied to the 4-port linear lossless network (it will be

(3.14)

-- m I
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called the "transformation" network) of Fig. 3.2 can be

written in the form

V =Z I + Z I (3.15)Vma -aa Za -ab I b

V Z I + Z Ib . (3.16)ab -baa a bb b

The column vectors V and V comprise the terminal volt-#a Lb
ages applied to the transformation network on its two sides,

and the column vectors I and I comprise the currents I

flowing into it. The four Z matrices in Eqs. (3.15) and (3.16)

are each square and of second order. They make up the square

fourth order matrix Z of the lossless transformation network.

The condition of losslessness can be summarized in the following

relations, which express the fact that the total time-average

power P into the transformation network must be zero for all

choices of the terminal currents:

P +T • + ZT) T = 0, for all T; (3.17)

therefore

Z + +Z =0 (3.18)

or

S Z+ Z+  - 0 (3.19)-aa -aa

Z + Z + 0 (3.20)-ab -ba

and

Zb +  b = 0. (3.21)

The original 2-port network, with impedance matrix Z
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and noise column matrix N, impose the following relation

between the column matrices V and I of the voltages across,

and the currents into, its terminals:

V = Z I + N. (3.2)

The currents I into the 2-port network are, according to Fig.

3.2, equal and opposite to the currents I into one side of
,a

the 4-port network. The voltages V are equal to the voltages

V o We thus have

V = V (3.22)

I= - I. (3.23)

Introduction of Eqs. (3.22) and (3.23) into Eq. (3.2)

and application of the latter to Eq. (3.15) give

I = - (Z + Z )'l Z b Ib + (Z + Z )'l N.Saaaa -ab -b Z-a

When this equation is substituted in Eq. (3.16), the final

relation between V and I is determined:ab a;.b
Vb Z Ib + N (3.24)

where
-1Z = Z - z (Z+Z ) Z (3.25)-t -bb -ba - aa -ab (3.25)

and
-1N = Z (Z + aa) N. (3.26)

st -ba - -aa.

Equation (3.24) is the matrix relation for the new pumped

nonlinear system obtained by cascading the original one with

a linear lossless system. Here Z is the new impedance
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matrix, and N is the column matrix of the new open-circuit
Vt

noise voltages in the c-p representation. By Eqs. (3.5) and

(3.7), the new impedance matrix Z" and the new open-circuit
-t

noise voltage matrix N' in the -amplitude-phase representation"t

are given by

-1Z" = A Z A1 (3.27)-t -v -t -1

where A and ". are as given in Eqs. (3.8) and (3.9).-v -1

Let us now assume that the phase noise port in Fig. 3.4

is open-circuited (or short-circuited). The terminal relation

at the amplitude noise port can now be written as (phase noise

port open-circuited)

(V)b = (Za)t (1)b + (n')t (3.29)

The amplitude noise power that can be obtained from the

system for an arbitrary amplitude noise terminal current (I')b

is given by

P = - [(V )* (1a) + (I,)* (Va)b]a ab ab ab ab

-1
S- + [(ZV ) + (Z" )*] (n') [(Z" ) + (Z" )*]

b aa t aa t a)t aa t aa t

(a)b + [(Za") + (Zaa" )*] - (n)t

(n ')  [ ) + )]-(n (330)t a) t (Zaa t a



The stationary value of Pa when (la)b is arbitrarily

varied is clearly

(n') (na)*
P (3.31)
e,a (Z" )_ + MI3l

aa t aa t

We shall call this P exchangeable amplitude noise power.
e,a

This power can be obtained from the system by arbitrary varia-

tion of the terminal amplitude current.

This exchangeable amplitude noise power can be written in

matrix form as

(n') (n)* + N N' N+
= a t a t t -t t

e,a (Z" ) + (Z" ) ( + + z'+)
aa aa t -t --t -

where the (real) column matrix , may be represented as

- . (3.33)

Let us now see whether there exists any stationary values

of Pe,a when the linear lossless network is arbitrarily varied.

The variation of the linear lossless network in Fig. 3.4 now

corresponds to variation of the transformation network through

all possible forms. We wish to find the stationary values of

P a corresponding to variation of the transformation network.

To render explicit this variation, N is first expressed in
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terms of the original N' and Z". Accordingly,

N' N'+ = N N +
't -"t -V -t vVt -

= Z" (Z" + z N' No Z" (Z" + ZZ")-ba- -aa ba- -aa

+ N' N' +  7 (3.34)

where

+ = Z" (Z" + Z 1 (3.35)- -ba - -aa

Let us now express Z" in terms of Z". We have
-t

n Z , -1 +- + +Z + Z = Z .+ . ?-t -t _v 't -1 -1 -t -v

= z" (z" + z" ) 1 ( " + Z" ) f (z" + z" )
-ba - -aa a -a

= (Z" + Z ) It. (3,36)

It follows that

¶+ + N' N'+ (_ 4)
eea =(++ (Z" + ZI+ (3 37)

in which matrix T is to be varied through all possible values

consistent with the lossless requirements upon the transforma-

tion network.

A new column matrix s may be defined as

Sl

s = _ = (3.38)

s2



We may also write

S = [ 0] a -(Z" + Z" )-1f 4a (- -aa
Case I:

Let us now assume that wu/o is not arbitrarily small. In

this case we can show easily that

Z" = 2 ? Z -v
-ba -v -ba -v

=2 1

0

m2+jn 2

(3.40)+-V

and

Z" =Z Z A--aa -v -aa -v

jx I

=2 X

0-
0

0

jx
2

+
-v

(3.41)

where xl, x 2 , ml, m2 , nI , and n2 are arbitrary real numbers.

We can now write

Z" 2 1
-aa 2

1  1 jx1

j -j 0
1 x

J (xl+x2 )

-Xl+ 2

1
2

x1-x 2

j(x 1 +x 2 )

(3.39)

0 -j

2
jx 2 1 j

(3.42)

m 1+ nl



Za1 + j (x1 +x 2 )

Zpa + (x2 -x1

pp + j (x +x2)

ZI1 +
. pa

t

t3

1I (x2-x )

t2

t4

,1  1 1
ap + (x1-x2 )

pp •J(X+X 2 )

Zap + (x 1 -x 2)

Z"a + j(x 1+x 2

where

Z" + 1 j(x +x2 )

pa + (x2 -x1)

Z"ap + (x -x2 )

Z"1 + Ij(1+
pp 2 j (x1 +x2)

We can show that we can always make /\ nonzero by properly

choosing x l and x2o

From Eq. (3o40)

and

(Z" + Z" )-aa

(3.43)



Z" = 2 A
ba -v

1
2

mml+jn 1

0

0

m2+jn 2

-V

(ml+jn I ) + (m2+jn 2 ) -j(ml+jn) + j(m 2 +jn 2)

j (ml+jnl) - j (m2 +jn 2 ) (ml+jnl) + (m2 +jn 2)

It, therefore, follows that

+ ++ -1s+ ~~= [ 0] z" ( + Z" iS -- -ba - -aa

St, f(ml+jnl) + (m2+jn2)3 + t3 I-(ml+jn l) + j(m2+jn2)

+ t2  j(ml+jn l) - j(m2+jn2)} + t 4 (ml+jnl) + (m2+jn2)

(3.47)

By looking at Eq. (3.47) we may conclude that the elements

s1 and s2 of the matrix s take on all possible complex values

as the lossless network is varied through all its allowed

forms. Consequently, the stationary values of P in Eq. (3.37)e,a

may be found by determining the stationary values of the expres-

sion

s N' N '+ s
P s (Pz" + Z ^+ ) sea -s (ZI + z11+) s (3.48)

69

(3.46) (3° 46)
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as the complex column matrix s is varied quite arbitrarily.

The solution of this problem is well-known in matrix

theory [4]. The stationary values of the exchangeable ampli-

tude noise power P can be shown to be given by the eigen-
e, a

values of the matrix

M = (Z" + Z"+ ) NO No+  (3.49)-a&

In general there are two eigenvalues of matrix M . The-a

maximum of these eigenvalues will be defined by us to be the

exchangeable amplitude noise power of the system. The exchange-

able amplitude noise power of the system, therefore, is given

by the maximum of the eigenvalues of the matrix M . In this
-a

way we can meaningfully define exchangeable amplitude noise

power .

In a similar way, it may be shown6 that the stationary

values of the exchangeable phase noise power P,a are given

by the eigenvalues of the matrix

-1
M = (Z" + Z"+) N' N'+. (3.50)

The maximum of the eigenvalues of M will be defined as-p

the exchangeable phase noise power of the system.

Also, M and M will be called the characteristic-noise--a -p

matrices of the system.

In this case we open-circuit (or short-circuit) the
amplitude noise port in Fig. 3.4.
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Case II:

If w/ow is arbitrarily small, it may be shown that

mi + jn1 = m2 + jn2 ; x l = x2  (3.51)

in Eqs. (3.40) and (3.41).

Accordingly,

Zba
=h'ba

ml +jn 1  0

(3,52)

0 ml+jn1

-1
(Z" + Z"-aa

Z p+jX - Zap

pap ap

- ZI ZI +jx
pa aa 1

46k

A-
Z" +jx Z"
aa 1ap

Z"pa Z" +jxpa pp
We may now write

S= [1 0] Z (z" + Z1"-ba - -aa

and

where

(3.53)

(3.54)

s

I



= -- (ml+jn 1 ) [1

1

" ";

1

1.A

(ml+jnl )

x1] Z"x13 P·

[x I xlxI]

(ml+jnl) [y1

(m1+jn,)
+

y
"I

t
P =[yl y2 ]

Z"

1

-ZI"
ap

(3.55)

(3.56)

and x' is an arbitrary real number.

Equation (3.48) may now be expressed as

p =

yt A N' N' A+ y
0%0 #% 1 *

,a A(Z" + Z)A y (3.57)

It can be shown that the matrices A N' N '+ A+ and A(Z" + Z"+)A+

are Hermitian matrices. It, therefore, follows that

L

-_Z1

where
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t + t+ &++}y A N'N+ A y= y N'N'+ A+ N'N '+  y (3.58)

and

Yt A(Z" + Z"I)A+ y y ytA(Z + Z"+)A + A(Z" + Z'+ )  y,

(3.59)
Accordingly,

yt A N'N'+ A+[A N'+ A:+] yP + (3.60)e, A + ) + [A(Z"( + Z"+)A+]

The column matrix y in Eq. (3.60) is a real arbitrary

vector the elements of which take on all possible values as

the lossless network is varied. The stationary values of Pe,a

are, therefore, given by eigenvalues of the matrix

M (Z" + Z" +)A+ + [A(Z" + Z"+)A+ ]

A N' N' A+  + [A N' N'+] (3.61)

In this case also the maximum of the eigenvalues of M-a

will be defined as the exchangeable amplitude noise power of

the system.

Similarly, it can be shown that the stationary values of

the exchangeable phase noise power are given by eigenvalues of

the matrix



M = B(Z" + ZI+)B + [B(z" + Z"+)B +

B N'N'+ B+ + [B N'N'+ B (3.62)

where

-Z" Z"
pa aa

B (3.63)

0 j

We shall, therefore, define the maximum of the eigen-

values of M as the exchangeable phase noise power of the-p

system.

In this section we have developed the concepts of exchange-

able amplitude and phase noise powers for pumped nonlinear

systems. These exchangeable noise powers are defined as the

maximum of the powers that can be obtained from the system by

cascading it with a linear lossless network. The values of

these powers can not, therefore, be changed by the use of any

further linear lossless networks. We have also showed that

exchangeable amplitude and phase noise powers are the same

for the system if co/wo is not arbitrarily small. If cm/co is

arbitrarily small, the two exchangeable noise powers need not

be the same as shown by Eqs. (3.61) and (3.62). We shall

denote by ha the exchangeable amplitude noise power of the

system, and by ?p the exchangeable phase noise power.



Physical intuition requires that the values of ha and h

must be invariant to a linear lossless transformation that

preserves the number of terminal pairs. This is indeed-the

case may be proved as follows. Suppose that the original system

with characteristic-noise matrices M and M is cascaded with
-a -p

a 4-port linear lossless network as shown in Fig. 3.4. A new

system is obtained with characteristic-noise matrices M' and-a

M'. The eigenvalues of M' and M' are the stationary values of-p -a -p

the exchangeable amplitude and phase noise powers of the system

obtained in a subsequent cascading of the type shown in Fig.

3.4. This second cascading network is completely variable.

One possible variation removes the first 4-port cascading net-

work. Accordingly, the stationary values of the exchangeable

amplitude and phase noise powers do not change when a 4-port

linear lossless network is cascaded with the system.

The results of this section can be summarized in the

following three theorems.

Theorem 3.1. The stationary values of the exchangeable

amplitude noise power that can be obtained from a pumped non-

linear system by cascading the system with a linear lossless

network are given by the eigenvalues of the matrix

(1) M~ (Z"+z Z"+) " -1
(1) M + +) N'N' (3.49)

when /w0 is not arbitrarily small; and they are given by the

eigenvalues of the matrix



76

(2) Ma =((Z" + Z+)A + [IA(" + ZVI+) +A-a'N+ A +

A N'N '  A+ + [A N'N '+ A+• (3.61)

when w/w is arbitrarily small. The matrix A is represented as

Z" -Z"
pp ap

A= (3.56)

j 0

Theorem 3.2. The stationary values of the exchangeable

phase noise power that can be obtained from a pumped nonlinear

system by cascading the system with a linear lossless network

are given by the eigenvalues of the matrix

(1) M = (Z" + Z+)1 N'N'+ (3.50)

when w/wo is not arbitrarily small; and they are given by the

eigenvalues of the matrix

(2) M = (Z" + ZI+)B + [B(Z_" + Z+ )B]

B N'N'+  B + [B N'N '+  B+]*  (3.62)

when Wm/ is arbitrarily small. The matrix B is represented as

-Z" Z"
pa aa

B = (3.63)

0 j
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Theorem 3.3. The eigenvalues of the characteristic-noise

matrices Ma, and M associated with a pumped nonlinear system-p

are invariant to a linear lossless transformation of the form

shown in Fig. 3.4.

As mentioned earlier, the exchangeable amplitude noise

power of the system will be denoted by Aa, and the exchangeable

phase noise power by X P. The values of XA and XA do not change
p a p

when the system is subjected to a linear lossless transforma-

tion of the type shown in Fig. 3.4.

3.2. CHARACTERIZATION OF NOISE PERFORMANCE OF PUMPED NONLINEAR
SYSTEMS

For a linear transducer, the noise figure, at a specified

output frequency, is defined as the ratio of the total noise

power per unit bandwidth exchangeable at the output port when

the only source of noise in the source network is thermal noise

at standard temperature (TO = 2900 K) to that portion of the

total noise power engendered at this frequency by the thermal

noise of the source [1].

In this chapter, three sets of figures of merit have been

proposed for pumped nonlinear systems. These seem to be

adequate for our purpose.

Part I.

For a pumped nonlinear system, the concepts of exchange-

able amplitude and phase noise powers have been developed in

the previous section. We now propose the following definition
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for the noise figure matrix in terms of these exchangeable noise

powers.

The noise figure matrix F for a pumped nonlinear system

is defined as

F-

(S/a) in
(S/A )a out

(S/h )p in
p out

(3.64)

where (S)in, (?a)in, (p)in are the signal power, the exchange-

able amplitude noise power and the exchangeable phase noise

power at the input port of the transducer, and (S)out, (Xa)out'

and (A )out are the corresponding quantities at the output port.7

Let us now write F as

FA

F_ = . (3.65)
Fp

We can now make the following observations. The values

of FA and Fp do not change when linear lossless networks are

interposed between the system and the source or between the

system and the load. This is a very desirable feature. It

can also be shown that FA and Fp are equal for a linear

It is assumed that the output signal frequency is
different from the input signal frequency. If they are the
same, we can treat the system as a linear transducer.
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transducer when the only source of noise in the source network

is thermal noise. Also the value of FA or Fp in this case is

identically equal to the noise figure defined for these trans-

ducers.

Part II.

The terminal noise behavior of a pumped nonlinear system,

as shown in Fig. 3.3, is given by

V' = Z" IV + N'.
Oi j V

Let us assume that this is a source network. If this

source network is used to drive another pumped nonlinear

system (see Figs. 3.5, 3.6) the terminal noise relations of

which are given by

V " I Z". I'' n'
o..0 01 'o .o

+ -

V! ". Z".. I! n'!
.1 - -3o.0 I -i1 i

the terminal noise relations at the output of the resulting

system are:

V' = Z" I' + N'JO -t to O t

where

(3.3)

(3.66)

(3,67)

Z"I = ZII
-t -o00

- Z". (Z" + Z) Z"
-o0 -11 -10

and

N' = ng + Z" (Z" + Z'.'.)-1 N' - n!'t -.o -oi - -11 ni

We shall now define a gain matrix T for the system as

L
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Vgr -u-- '
Vi. V'

Figure 3.5. Pumped nonlinear system.

L



~---- T I t --

VI' = V

Figure 3.6. Pumped nonlinear system driven by a noisy source.

I

r

43--r
VI



)-1 (3.68)- .· LJ I .q J
- -u --0i

If the driven nonlinear system does not contain any

internal noise generators, Eq. (3.66) may be written as

V' = Z" I' +T N'.
Vo -t -o - (3.69)

We now propose the following definition of the noise figure

matrix for the transducer we'are considering. The noise figure

matrix F' is defined as

F' = T-1 N' N'+ T+ -  N' NI+-- -- ^t 0t - (3.70)

8We can show that Eq. (3.70) can be written as

F' = T-1 T N'N'I T ++ N•N-i T+l- N' N'+-1dr

where

N = n' - T n!.

N! will be called the noise matrix of the transducer.

According to Eq. (3.71)

-1
F' = I + T 1 N! N!+ T+-1 N' N'+-- 2 -- 02 ^.P 0*1 - (3.72)

The matrix F' is a unity matrix if the pumped nonlinear

system of Fig. 3.5 does not contain any internal noise

881t is assumed that there is no correlation between the
noise sources in the source network and those shown in Fig. 3.5.

'F

(3.71)
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generators. Let us now assume that the source is purely

9 10
thermal. In that case

N' N'+ =
"Is q~

R. kTo Z f 0

0 R.inkT A f
in o

We may then write

T N-1 N!+ T1+ '

F' = I + I - (3.73)
R. kT f
in o

We can show that T "o N! N+ T +-  is a positive definite

matrix in all but cases of trivial interest. In that case the

diagonal elements of T N! N!+  T+  are always positive.

The diagonal elements of F' will always be greater than unity;

and the magnitudes of these elements will exhibit the noisy

character of the device. This is another advantage of defining

F' as in Eq. (3.70). It is also clear from Eq. (3.72) that F'

will be a unity matrix if the pumped nonlinear system does not

contain any internal noise generators.

Example. We showed in Chapter 2 that an equivalent circuit

for a noisy pumped nonlinear system can be written as in Fig. 3.7.

9This assumption is made in defining the noise figure for
linear transducers.

10Rin is the real part of the internal impedance of the
in I

source, and T• is the standard termperatureo

o
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V. V

Figure 3.7. Pumped nonlinear transducer.

r



The terminal noise relations for this representation are given

by

V. A Bn
1- -" o nv

--- = -- + (3.74)

Ii C D I n.

These relations are given in a-B representation. If the

source network of Fig. 3.1 is used to drive this transducer (see

Fig. 3.8), the terminal noise behavior at the output of the

resulting system is given by an equation of the form

V = Z I + N. (3q75)4o -t -,o ^,to
Equation (3.2) can be written as

V

1 -Z ] = N. (3,76)

I

According to Fig. 3.8

V V.; I =- I.. (3.77)

Accordingly

V.

[1 -Z ] = N.

Using Eq. (3.74), we now have



86

Figure 3.8.

Si ~o

V = V. V

Pumped nonlinear transducer driven by a noisy source.



1 I -z ]
-- --

A B- I -

-- -

V
mO

N - n - Z n..0%0 %I - .,

Let us write

M= A + Z Co

Equation (3.79) can be shown to be equivalent to

VP'o

SM B + Z = M (N - n - Zn.).

I
-o

Comparing Eqs. (3.75) and (3.80),

-1Z = - M B + Z DN = M (N- n - Z n.).

Let us assume that

o 2
--V2

-vi
2
2

j -j

-jvo
0

+j0vo
e

e

0

0

j 0 vi
e
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(3.78)

(3.79)

(3.80)

(3.81)

(3.82)

(3.83)

(3.84)
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where 0vo and Ovi are the carrier voltage phase angles at the

input and output of the transducer respectively.

Using Eq. (3.28), we have

NO -1N' = V M (N - n - Z n.) (3.85)

N' = A2v N. (3,86)

Also, according to Eq. (3.68),

-1 -1
T = -hV o (3,87)

F' may now be written as

-l -1
FV = T-1 N N~+  T+-1 NT No+

- - t mt -r +

= V M M '_M N N+  + [n + Z n.][n + Z n. ]
1o 1 L v 0 ^.0V -f J

-1
+- + +- + + +-1 +  -M_ _oo M iVi N N+ vi

I + + Z n +Z + Z n.]+ N N+  -
--vi [nv  n i  1i  N IV

(3.88)

Equation (3.88) shows that F' is only a function of noise

sources, _vi , and Z. This agrees very well with our physical

intuition.

Cascade Formula. Let a source network whose terminal

noise relations are given by Eq. (3.3) drive a transducer of the

form shown in Fig. 3.6. The noise figure matrix F' is given by

-



89

-1
F' = I + T N! N'+ T+- N N+ N (3.72)

If this same source were driving a second transducer with

gain matrix T and a noise matrix (Ni)1, the noise figure

matrix F' is given by=-2

F' = I + T (N)I (N) T+ N' N'+ (3.89)-2 -1- N %i1 1 -1 ^ ^

If the two transducers are put in cascade (it is assumed that

the operating point of either of the transducers does not

change due to this operation), and the combination is driven

by the same source (see Fig. 3.9), the gain matrix of the

combination is given by T T and the noise matrix by

T N! + (N!).

The noise figure matrix F' of this combination can be
-12

written as

' - = (T T)ýT N' N + T + (N))1 (N J (T T)+ - N' N + -=F12 -1 +- -,I ('• )-•+ ̂]

= T N! N!+ T N-1' N '+ + T (N!)_ (N T

______-1

T+ -1 N' N'+  (3.90)

Using Eqs. (3.72) and (3.90),

1, -1
F' - I + T (F' - I) N NN'+ T+- N' N'+ (3.91)
=12 #% ' - 1 ^.

This is the cascade formula we get when we put two
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Figure 3.9. Two pumped nonlinear systems driven by a noisy source.
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transducers in cascade as shown in Fig. 3.9. The noise figure

matrix F' is expressed in terms of F', F', T, and the noise12
power matrix of the source.

This expression is very similar to that obtained for

linear transducers. If F' and F' are the noise figures of two

linear two-port transducers and they are connected as shown

in Fig. 3.10, we can show [1] that the noise figure F 2' of

the resulting transducer is given by

F' - 1
F' - 1 = F' - 1 + G (3.92)12 1 G

where G is the exchangeable gain of the first transducer.

The noise figure matrix has been defined in this section

with the aid of impedance formalism. If a different matrix

representation (such as admittance matrix representation,

chain matrix representation) is used it is easy to see that

this noise figure matrix can be redefined in terms of these

representations.

Part III.

It was mentioned in Chapter 2 that the total voltage v(t)

around any frequency + kw may be represented as
- O

v(t)2Re jk 0 t j(kw + t j(-kw0 +w)t
v(t) = 2 Re Ve o + V ke +Vke . (3.93)

We now write v(t) as

v(t) = 2 Re lk + (Vak+j Vpk)ejwt + (Vk+ k)e e(kt+
(394ak+j

(3.94)



Figure 3.10. Combination of two linear transducers

driven by a single source.



where

Vk = VkI ej  (3.95)

V e e V e j o
V k ke k

ak 2

V e - V1 ej0
V pa k 2(3.97)

pk 2j

Here, Vk is the carrier voltage component, and Vak and VBk

are the noise voltage components located at a frequency c from

the carrier.

Equation (3.94) can be written

v(t) = 2 Re Vk + Va(t) + j V (t) e j(kt+) (398)

where

V (t) = V kejat + V* eJwt (3.99)
a ak ak

V (t) = Vpkeet + V e-jt (3.100)

Because of our assumption of high signal-to-noise ratio,

v(t) can be written [5] as

v(t) = 2 iVkI + Va(t)j cos kw t + Vp (t)/ Vkl + k. (3.101)

We shall, therefore, refer to V (t) as the amplitude

noise, and to V (t) as the phase noise.

The instantaneous amplitude of v(t) is given by

R(t) = 2 lV k
+ Va(t) ; (3.102)
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and the instantaneous angular frequency of v(t) is

m(t) = k + V'(t)/ IVk . (3o103)

The definition of instantaneous frequency adopted here is the

time derivative of the instantaneous phase.

The normalized variance of the instantaneous amplitude

of v(t) is given by

2 = V2 (t)/IVk 2 (3ol04)

The normalized variance of a stochastic variable is defined

as the variance of the stochastic variable divided by the

square of its mean. Also, the normalized variance of the

instantaneous angular frequency of v(t) is

2a = V2 (t)/IVkl 2 (k0) 2 (3.105)

A functional representation of a transducer is given in

Fig. 3.11. This representation assumes meaningful

definitions of input impedance Zin and load impedance ZL for

the transducer we are considering. We shall assume in the

remainder of this section that such is the case for the trans-

ducers we are considering. It must be mentioned here that the

representation given in Fig. 3.11 describes only the signal

behavior of the device. When Re Z. = Re Z, we shall sayin 1

that the transducer is matched. It may be worthwhile to point

out that Z. can be a function of the input signal voltage V.in

L
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r7

V SL

7
"in

Figure 3.11. Transducer with an input impedance

Zin and a load impedance ZL.
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We define [6] amplitude figure of merit F" for the

transducer as

Normalized variance of instantaneous amplitude of current in ZL
A Normalized variance of instantaneous amplitude of current in Z1

(3.106)

when the transducer is matched.

The frequency figure of merit F" is defined as

Normalized variance of instantaneous frequency of current in ZL
P Normalized variance of instantaneous frequency of current in Z

(3.107)

when the transducer is matched.

It is assumed that the impedances Z1 and ZL are linear

impedances. With this assumption, in defining F" and F", the

voltages instead of the currents across the impedances ZL and

ZI may be used. The two results will be the same.

The values of F" and F" will depend not only on the source

and load impedances but also on the operating point. We feel

that a convenient and useful operating point to define F" and

F" is the point of optimum efficiency.

It must be noted that the values of F" and F" will changeA P

if we interpose a linear lossless network between source and

transducer or between transducer and load. F" and F" haveA P

been defined in terms of the variances of input and output

parameters. The variances of quantities like amplitude and

frequency have a lot of physical significance. We may



therefore say that a good transducer is characterized by low

values of F" and F".A P

The values of F" and F" may, therefore, enable us to

compare and contrast the noise performance of different kinds

of transducers; and may indicate the direction in which im-

proved noise performance can be obtained.

Three different characterizations have been suggested

in this chapter for describing the noise performance of pumped

nonlinear systems. We shall mainly use F" and F" for analyzing

and comparing the noise performance of harmonic generators

and dividers considered in Chapters 4 and 5.
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CHAPTER 4

NOISE PERFORMANCE OF VARACTOR FREQUENCY MULTIPLIERS

Varactor frequency multipliers have found considerable

application in the field of generating microwave signals for

receiver local oscillators, parametric amplifier pumps, and

other applications during the last few years.

Penfield, Rafuse, and others have analyzed many harmonic

generators in which varactor diodes are used [1]. They have

not investigated the effect of noise in these multipliers;

the noise analysis of these devices forms the subject matter

of this chapter.

The quality of performance of any transducer such as a

harmonic generator is affected by the physical sources of noise

within the transducer, and sources of noise in the source and

load terminations of the transducer. There may be an operating

point for a transducer at which the noise performance is optimum

in some sense.

There have been made many studies of linear systems to

determine this optimum noise performance [2], and some results

concerning the statistical properties of noise through nonlinear

devices have been published [3]. A great deal is unknown about

the noise performance of nonlinear transducers such as harmonic

generators.

The first order perturbation analysis developed in Chapter
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2 has been used in this chapter to derive an explicit expres-

sion for the output signal of a harmonic generator with noise

sources at several locations in the circuit.

In Chapter 3 three sets of figures of merit were defined.

It was also mentioned that one of these sets of figures of

merit defined in terms of variances of input and output param-

eters has the greatest physical significance. These figures

of merit have been evaluated and explicitly expressed in terms

of the known parameters in this chapter. The figures of merit

thus obtained for these devices may enable us to compare and

contrast the noise performance of various types of multipliers

and multiplier chains.

Thus in this chapter, we have made an attempt to find out

the manner in which the noise affects the signal in a harmonic

generator, and to arrive at a sufficiently detailed under-

standing of the controlling parameters to indicate the direction

in which improved noise performance can be obtained.

Only the abrupt-junction varactor frequency doubler has

been treated in detail. Simplifying assumptions have been

made for higher order abrupt-junction varactor frequency multi-

pliers.

4.1. VARACTOR MODEL AND ASSUMPTIONS

Our varactor model, shown in Fig. 4.1, is a variable

capacitance in series with a constant resistance R . We shall
s
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Figure 4.1. Varactor model.

S (t)



101

deal only with abrupt-junction varactor diodes that are nom-

inally driven. Let Qmax' and Qmin be the maximum and minimum

values of the charge between which the diode junction is driven,

and QB and q0 denote the charge at breakdown voltage and the

charge at contact potential. The drive D is defined as

(Q Q )
max min
(QB q0) (4)

Now, D = 1 is the nominal drive; and D > I is for overdriving

the junction. In this chapter our analysis has been given for

D = 1 and it has been assumed that the varactor diode is of

the abrupt-junction type. The analysis, however, may be easily

extended to other types of junctions, and to other conditions

of driving.

We assume that currents in the diode flow only at the

input, output, and idler frequencies, and suitable external

circuits prevent other currents from flowing.

The most important physical source of noise within the

varactor seems to be the parasitic series resistance [1].

Other sources of noise such as shot noise and 1/f noise seem

to be of secondary importance for many of the applications

for which varactors are now used. For simplicity, we shall

ignore all sources of noise within the varactor except the

thermal noise associated with the parasitic series resistance

R of the varactor.s
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To account for thermal noise generated in Rs, we use an

equivalent noise voltage generator en with mean squared value,

2
e =n 4 R kT dLf (4.2)

where Td is the temperature of the diode, k is Boltzmann's

constant, and Z\f is the frequency band of interest.

We assume that the diode is driven periodically by volt-

ages and currents that we choose to call the carrier/carriers.

These voltages and currents can be determined by transducer

analysis with no noise sources at any point in the transducer

or in its terminations. This has been done by Penfield and

Rafuse for many of the abrupt-junction varactor frequency

multipliers that we are going to consider in this chapter [1].

We also assume that the noise affecting the signal at any point

in the transducer is bandlimited in a frequency band surrounding

the carrier and that the noise power is very small compared

with the signal power in a band of frequencies surrounding the

carrier. Let us assume that the large voltages and currents

at various points in the transducer are, by design, periodic

with some frequency o . This entails no loss of generality

for a harmonic generator.

There are various ways of characterizing a signal cor-

rupted by narrow-band noise [1]. The characterization given

in Chapter 2 will be used in this chapter, Let the noise
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corrupting the signal at any frequency t+k have a power

spectrumI centered around a frequency located w away from the

carrier. We shall call w the "frequency deviation".

The total voltage Vk(t) centered around any frequency

+kw will be represented as

jkw t j(k )t j(-k+
Vk(t) = 2 Re Vke o + V ke o + V e (-w (4.3)

Here, Vk is the carrier voltage component, and Vak and

Vgk are the noise voltage components located at a frequency w

from the carrier.

2. ANALYSIS OF THE DOUBLER

If the noise currents are

the form +t ao -tin, the smaall
- 0

varactor may be expressed in

. S S.
.. R + - - "

s 30oi j3j

S.
j :3-

ja

Sk-i

o

S
R + 0--
s 3( j

S

].

allowed to flow at frequencies

signal equations of motion for

the form [1]

Si.k

S

jSk

S
R + -
s j3

0i

+

Enk

1The power spectrum of time function f(t) is given by the
Fourier transform of time average of f(t)f(t+f), where -<'<•(.
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Here, the notation wQI refers to the frequency w0 +w, and

S is the Fourier coefficient of elastance S(t) at the fre-

quency k o , En is the noise component attributable to Rs at

the frequency aw +w. Note that

2
E = 2 R kT id f (4,5)

and

E E* = 0 k # . (4.6)

Let us now investigate the noise performance of an

abrupt-junction varactor frequency doubler. For an abrupt

junction doubler that is nominally driven, only S , S, and

S2 may be nonzero. It can also be proved that by properly

choosing the time origin we can make jS1, and jS2 real and

positive [1].

If we denote by the subscripts al, 81, a2 ' 02' and 0

the noise components of the quantities of interest at fre-

quencies w o+o, -o +w, 2w0 +w, -2w +w, and w, Eq, (4.4) becomes
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where n is the Fourier coefficient of the thermal noise

voltage resulting from Rs at the frequency wo+0, etc.

Let the input, output, and bias terminations of the

doubler be such that

V l

Vl1

Va2

VB
2

V
o0

R +jXIRl+jX1 al al

R +jX 1  0 01

R2+JXc 2  1a2

R2+jXP2 I 2

0 R I
o o

+b

Fn I --
al

n 9

0
0

0
o

(4.8)

Here, n11 , and n'l are the noise voltages associated with

the input termination at frequencies wo+% , and -% +4o, respec-

tively; and n' is the noise source present in the bias loop.
0

The statistical properties of these noise sources are either

known or can be estimated by physical measurements.

Penfield and Rafuse [1] have shown that tuning the output

circuit gives near optimum efficiency for the nominally driven

abrupt-junction doubler.

In that case

X 0 + o (4.9)

X = - 1 + C (4.10)
Pi , 70 0

m I
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S
x = +
d2 2w 2w

X 2 o - 1 + 2 (4.12)

We assume that w/w < < 1. Let us neglect the terms in w/o0

and its higher powers. Let us also assume that

S
R < < . (4.13)s W W

0 0

Since the input and output are tuned, the output amplitude

noise current Ia2 and the output phase noise current Ip2 are

given by [4]

a2 = (I + i12) (4.14)

Ip2 j (I2 - IB2)1 (4.15)

Using Eqs. (4.7), (4.8), (4.14), and (4.15), we can show

that

= R + R + (n + n ) + Sa2 2 1 s a 2 P2 W0
(na + n' ) (n al+ n,) (R + R) R, + R + W 0-)

+ (4A86)(4. )
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Ip- J o -n'l) - (n -n) " R+Rs -... (n np2 2 al aP1 lU s U a2 p2

o o+ 2 +i Is R+21R LL I
W1o C ) 11 1 \s o0

(R + R) R + R + (4.17)
2 s I s W 2w2S 0o 2w2

0

where

4,3, Fn'GURES F RI FOR + RHE DO+ (n + BLER(n +no 0 0 Dw 2 s 2w al P1 al Pl

II IS21R + R + IL21 + (n + n )/D

t was shown in Chapters 3 that there are various ways of

harateizing the noise performance of pumped nonlinear systems,

It was shown in Chapter 3 that there are various ways of

characterizing the noise performance of pumped nonlinear systems,
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For the harmonic generators, the figures of merit defined in

terms of the variances seems to have the greatest physical

significance. The reason is that the smaller is the variance

of output amplitude or frequency the better is the frequency

multiplier. Therefore, a good frequency multiplier is charac-

terized by small values of F" and F".

Let us assume that the statistics of the noise sources

associated with the input termination of the doubler are given

by

S+ nl - 4 RlkTaf (4.20)
9 1•

nC - n =2 4 R kTZ Af (4.21)

(na- n' )(n' + n) n ' - n,. 2 n', + n 112 (4.22)

Using the results of Section 4.2, we can show that

1 -I =

1 + 2m 2 -

1) (4.23)

_I d _4 (_o 16F -l = 1 T +? 1P w T 2 m 2P Wc T p m 2 R 2 2l+ m -- 1 o aS2 Q 4 1 +0 + 1
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2 2 2 T d
-2 1 2 ( 4R kT t\f T
I  s p p

N1~ -3 a ;r weT -

4
S+- 4 M2 1 +m 4(
o a

I + I

2 2 2
2m2 - m1
2m2 w)

S+ 2m2 )o/

2
W c I + 222 w Ir + 2m21

I + 2m2 D 1 D+' b 2=42  ] =2 + =1. MoTo o

1 R ( T
R . w 2 w) TI s 0 0o p

m2 O T
a)0

0m )

(4.24)

where ml, and m2 are the modulation ratios of the doubler

corresponding to the point of optimum efficiency, and w is

the cutoff frequency of the varactor [1].

FA, therefore, is only a function of Ta, Td and the operating

point of the transducer. There is, therefore, no phase-to-

amplitude conversion in a doubler, at least to the first degree

of approximation. Note also that the bias noise does not add

anything to the output amplitude noise.

I
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Now Fp-1 may also be written

Td Ino 2  T Tl
Fp - = C -- + + C T- a + C4  a (4.25)
P I T 2 4R kT Af 3 T 4 T

p s p p p

where C~, C2, C39 and C4 are constants. The source of each

term in FF may now be identified.

The first term, C1 Td /Tp is contributed by the internal

noise caused by RS and the action of the varactor as a doubler.

The term C2 In  2/4RkT dAf is due to the noise source present

in the bias network. The third term C3 Ta/Tp, is due to

amplitude-to-phase conversion through the bias loop of the

network, The fourth term, C Ta/T p , is due to the conversion

of amplitude-phase crosspower at the input to phase noise

power at the output.

It is worth pointing out that as bias impedance goes to

infinity C2-C4 go to zero; and the constant C1 reduces to some

other constant C'O

Sometimes it is desirable to have the low-frequency values

of FA and Fp. By "low frequency" we mean

o/Ue < < <1 (4.26)

These can be shown to be

T w
F - = 1250 + 19.87 (4.27)A nT

a) c

and
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2
S) C

T T d
- + - 50 +T T
p p
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50,4 )o

R 2 2 c
4 + 0 +1

R s

11.20 0o

R 2 2 w
4 1+ +/  +

34.6

4)R 2 2

R T1 ac a1" + Re p + I2 P°s0 o op
-i U g 1T~

o I ne 2
ca 4kTp R LSf

c ps

(4.28)

The modulation ratios of the doubler can be obtained for

the case of optimum efficiency by using a digital computer.

We assumed that

Ta / T d
= Tp/Td = 1

R = 00
0

(4.29)

(4.30)

p = 0.

With these assumptions, the values of F" and F" have been

obtained for the doubler. These are illustrated in Figs. 4.2

and 4.3.
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4,4.4. ANAYLSIS OF HIGHER ORDER ABRUPT-JUNCTION VARACTOR
FREQUENCY MULT IPLIERS

The analysis of noise performance of abrupt-junction

varactor frequency multipliers is very similar to that given

for the doubler. In analyzing the noise performance of these

multipliers, in addition to the assumptions made in Secs. 4.2

and 4.3, the following assumptions are also made. All the

idler terminations are assumed to be tuned and lossless. The

bias source impedance Ro is assumed to be infinity. This

very much simplifies the analysis.

4,5, FIGURES OF MERIT FOR THE HIGHER ORDER VARACTOR FREQUENCY
MULTIPLIERS

For the 1-2-3 tripler, 1-2-4 quadrupler, 1-2-4-5 quitupler,

1-2-3-6, and 1-2-4-6 sextupler, and 1-2-4-8 octupler, the

figures of merit can be expressed in terms of the modulation

ratios of the varactor. These modulation ratios for the case

of optimum efficiency can be obtained by using a digital

2
computer. These modulation ratios can then be used to evalu-

ate amplitude and frequency figures of merit.

The results obtained for the 1-2-3 tripler, 1-2-4 quad-

rupler, 1-2-3-6, and 1-2-4-6 sextupler, and 1-2-4-8 octupler

are illustrated in Figs. 4.4 and 4.5. The figures of merit

2We are very grateful to Mr. Bliss L. Diamond of the M.I.T.
Lincoln Laboratory for making available to us the values of
these modulation ratios [5].
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for the 1-2-4-5 quintupler are shown in Figs. 4.6 and 4.7.

By looking at Figs. 4.2-4.7, the following conclusions

may be drawn about the noise performance of the doubler,

and higher order multipliers, we have considered in this chapter.

1. The minimum values of amplitude and frequency figures

of merit are unity for a varactor frequency multiplier.

2. Finite bias source impedance leads to amplitude-to-

phase but not phase-to-amplitude conversion, at least to the

first degree of approximation.

3. Finite bias source impedance also leads to conversion

of amplitude-phase cross noise power at the input into phase

noise power (but not amplitude noise power) at the output,

to the first degree of approximation.

4. In case we retain higher order terms in m/wco, there is

amplitude-to-phase and phase-to-amplitude conversion, as well

as the conversion of amplitude-phase cross noise power at the

input into amplitude and phase noise power at the output.

4. The higher the value of w /wc, the poorer is the noise

performance of the multiplier. For values of w /mc < 103 , the

values of FA and Fp are very near to unity in case of lossless

idler terminations.

We may note here that it is possible to find the point of

optimum noise performance for these multipliers by using a

digital computer. This has not been done by us in this chapter.
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CHAPTER 5

NOISE PERFORMANCE OF VARACTOR FREQUENCY

DIVIDERS AND PARAMETRIC AMPLIFIERS

In this chapter we start with the analysis of noise per-

formance of a divide-by-two circuit using a varactor diode.

The methods are very similar to those outlined in Chapter 4.

The techniques developed in Chapter 2 and Chapter 4 are

then used to evaluate the noise performance of parametric

amplifiers which are driven by noisy pumps. It has been shown

for such amplifiers that only the amplitude noise present in

the pump affects the amplifier noise performance, the phase

noise does not.

5.1. NOISE PERFORMANCE OF DIVIDE-BY-TWO CIRCUIT

The noise analysis of a divide-by-two circuit using a

varactor diode can be done in a manner similar to that out-

lined in Section 4.2. It was assumed that the bias source

impedance Ro is infinite while calculating the values of F"0 A

and F" for this circuit. Let m1 and m2 be the modulation

ratios of the divide-by-two circuit for the case of optimum

efficiency. We can show that F" and Fp are given by
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These figures of merit are illustrated in Figs. 5.1 and

5.2.

5.2. NOISE PERFORMANCE OF VARACTOR PARAMETRIC AMPLIFIERS

It is usually assumed in the analysis of noise performance

of parametric amplifiers that the pump is noiseless. This

condition is usually not satisfied in practice. Let us now

assume that the pump is noisy; and SI is the first elastance

coefficient of the varactor at frequency w" of the pump. Let

us also assume that Sa and S are the a and p components [1]

of the elastance noise associated with SI. Let V , I s , Vi

and II be the signal voltages and currents at the signal1

i+

~
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frequency wa and idler frequency cw0 - w . Let us also assume

that these voltages are large compared to the noise voltages

at the corresponding frequencies.

Let V as, Vai, Vs, Vi be the a-p voltage components

associated with V , and V.. Under our assumptions, it can be

shown that
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where E E EQ •  and E~i are the noise voltage contribu-

tions due to the varactor series resistance.

Let us assume that the idler termination is tuned and

that this termination is such that

aiKUR.
= -

0 1 Ei
+

R. E E'
1 pl Bi

0 (5.4)

E'. and E'. are the noise voltage sources present in the

idler termination.

By using Eqs. (4.67) and (4.68), and assuming that we

may choose the time origin so that jS1 is purely real, we can

show that

a s  s c (co -u)(RM+R)
s o• S . s-

(jS -jS )I + E -
P a s as aO0

and

ps (s W U (W -m )(R.+R s s -

IS11 E . - E'.
I* + E

s Ps - W R. +R
o s 1 S

ISl S
I + ( si
as ) (U) - )(R.+R )s 0 s 1 s

(5.5)
Sl Ei - EV

-u R. + R
s 1 s

SIlos)(RiR) (js - jS )

(5.6)

It is easy to see that (jS - jS ) is the amplitude noise

associated with the elastance coefficient S1.
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Equations (5.5) and (5.6), therefore, show that only the

amplitude noise associated with the pump affects the noise

performance of the varactor parametric amplifier. The phase

noise does not. This is an important observation we can make

from the analysis of parametric amplifiers given in this section.
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CHAPTER 6

MULTIFREQUENCY NETWORKS COUPLED WITH LOSSLESS

PARAMETRIC DEVICES

Signal and noise voltages may be present at more than

one frequency in a system, Systems of this form are noisy

oscillators, frequency multipliers, limiters, discriminators,

and systems consisting of such devices. In this chapter we

shall consider different results that can be achieved by

imbedding such a system in a device that obeys the Manley-

Rowe relations.

We shall assume that the frequency of the signal present

at each of these terminal pairs may be different, but all of

these frequencies will be expressible in the form m a + no

where m and n are integers. It is our purpose in this chapter

to develop a noise theory for such multifrequency noisy net-

works when the latter are coupled with a lossless device that

satisfies the Manley-Rowe relations.

We shall begin this chapter by a discussion of the Manley-

Rowe relations and the constraints that are thereby imposed

upon the coupling network we are considering. We shall then

show that if we choose current and voltage variables in a

particular way the constraints imposed on these new variables

are the same as those imposed upon the currents and voltages

present in a linear lossless network. This of course does not
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mean that the parametric coupling network is lossless. In

general we extract more power from this network than we supply

to it; the difference in powers is supplied by a pump.

In the remainder of this chapter we extend many of the

results obtained for linear noisy networks when they are

imbedded in linear lossless networks to multifrequency noisy

networks when the latter are imbedded in M-R1 devices. As in

the theory of linear noisy networks, we have found some

invariants associated with a multifrequency noisy network

when it is imbedded in an M-R device. These invariants have

been shown to have the dimensions of energy.

In the last part of this chapter it has been shown how

to define the general characteristic-noise matrix when the

multifrequency noisy network has been represented in other

than impedance formalism.

6.1. MANLEY-ROWE FORMULAS AND CONSTRAINTS

For a linear lossless network the conservation of power

requires that the net power delivered to the network at each

frequency of interest must be zero. On the other hand, for a

nonlinear lossless system power that is supplied to the network

at one frequency can be extracted at another frequency. It

has been shown [1] that if a nonlinear lossless capacitor is so

excited that its current and voltage have components at a

A device that obeys the Manley-Rowe relations will be
referred to for brevity as an M-R device.
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number of frequencies of the form mw + n,, where m and n are

integers, then

nPZ n 0 (6.1)
m--O n=i a B

and

00 mP

z n - 0 (6.2)
mW + nM

n=-a m=1 a

where Pn is the power input at frequency mua + nwr. Equa-

tions (6.1) and (6.2) are the Manley-Rowe formulas. They were

originally proved for a nonlinear capacitor; but it has been

shown [2] that they are also applicable .to many types of non-

linear lossless systems.

It is customary to operate such a device by "pumping" it

at one of the given frequency or frequencies. We drive it very

hard and well into its nonlinear range with a source, known as

the pump. In this chapter we will assume that the large pump

voltages and currents present at various points within the

system are, by design, periodic with some frequency W . Thus

the pump voltage or current at a specific point within the

network or across one of its terminal pairs is of the form

0 Jjkw t
v(t) Vke o (6.3)

k kl

and
cc jke t

t) Ike (6.4)k=ýWo
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The voltages and currents at other frequencies, known as the

sideband frequencies, are assumed to be much smaller than the

corresponding pump frequency. In this case the device behaves

at the sideband frequencies, as a time-variant linear element

instead of a nonlinear element. Consequently, if we represent2

the device at the sideband frequencies as shown in Fig. 6.1,

with power at only one frequency flowing at each terminal pair,

we may write

V = Z Iv=, -2 z% (6.5)

where

V f
V·j

V.

Vm
L _

(6.6)

and

I =

I

I.

Qi

I
m

(6.7)

2Pump frequency terminals are not shown.

L
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Figure 6.1. M-R device.
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The voltage V. and current I. are at one of the sideband fre-
1 1

quencies m.w + n.w .

Let us now assume that we pump the device which obeys

the Manley-Rowe relations at frequency w0 and its harmonics.

Usually by design we allow only power to enter and leave the

device at a finite number of frequencies. For linearity we

may limit ourselves to sidebands with ni = 1.

In this case, we can obtain a relation among the sideband

powers that is written

P
S-.- = 0 (6.8)

i sideband i
frequencies

where P. is the power into the device at the terminal pair at

frequency yi, and vi3 is given by

v. = + km + w, k an integer, positive or negative. (6.9)
1 - O

The power into the ith port is

Pi [V* I. + I V]. (6.10)

th
Let us now define a diagonal matrix K whose i element

along the diagonal is vi. We may then write Eq. (6.8) as

V+K'1 +I+K- = 0. (6.11)

3 Note here we put W = m.

Note that-we have used half-amplitudes for voltage and
current variables.
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5 1/2 thLet us also define a matrix K whose i element along

its diagonal is the positive square root of the corresponding

element of the matrix K if vi is positive. If vi is negative,

the ith element of K1/2 will be j vTPj , where j is the square

root of -1. We may now define new "current" and "voltage"

variables:

' 1/2I (6.12)

+

SV' 1 V. (6.13)

6
Let us now write Eq. (6.11) as

+ -1 -1 + -1/2 + 1.-11 2j+v L? K + V = -0. (6.14)

We can see that by using Eqs. (6.12) and (6.13), we may write

Eq. (6.14) as

V'+ I' + I'+V' = 0. (6.15)

Equation (6.15) is the constraint imposed by the Manley-

Rowe formulas upon the frequency-normalized current and voltage

variables I' and V' at the terminals of the equivalent circuit

of a lossless parametric device. This relation is identical

to the constraint that losslessness imposes upon the currents

and voltages at the terminals of a linear lossless network.

The matrix K1 2 is nonsingular in all but cases of
trivial interest.

6t is to be poin+
It is to be pointed out that K = l since v's are real.



138

This does not imply that the network of Fig. 6.1 is lossless,

By transforming properly, we may write Eq. (6.5) as

'= tZ pK ]

Pa
= ZI(6,16)

where7

Z1 = j Z j ./2 (6.17)

In case the device is an M-R device it satisfies Eq. (6.16).

Accordingly,

I '+ (Z" + Zp1)I O (6.18)

for any arbitrary I'.

Equation (6.18) shows that a frequency-normalized impedance

matrix Z" of an M-R device satisfies the conditionP

Z" + Z =+ = 0. (6.19)P P

This is analogous to the equation

Z + Z+ = 0 (6.20)

satisfied by the impedance matrix of a linear lossless network.

6.2. FORMULATION OF THE OPTIMIZATION PROBLEM

In this section we develop the idea of exchangeable

frequency-normalized power for a multifrequency noisy network.

A characteristic-noise matrix is also derived for such a

We shall indicate a frequency-normalized impedance
matrix Z by Z".

L
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network. The eigenvalues of this matrix may be interpreted

as the stationary values of the exchangeable frequency-

normalized power.

Exchangeable Frequency-Normalized Power. The terminal

voltages of a multifrequency n-port noisy network are related

to the currents through the impedance matrix Z (see Fig. 6.2).

Accordingly,

V = Z I + E. (6.21)

Let vi be the frequency at the ith port; and let K be

the matrix as defined in Section 6.1.

We may now express Eq. (6.21) in terms of V' and I' by

premultiplying it by JKl . This gives

-/2 /21/21I V = Z1 2]I [ j E. (6.22)

Using Eqs. (6.12) and (6.13), we obtain the relation

V' 1 Z" I' + E' (6.23)

where

Z = J Z 1/ . (6.24)

Equation (6.23) is the equation relating the frequency-

normalized source variables.

For a one-port linear network we define exchangeable power

as the stationary value of the power output obtained by arbi-

trary variation of the terminal current or voltage. In

frequency-normalized variables V9 and I' the quantity analogous
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Figure 6.2. Equivalent representation of

multifrequency noisy network.
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to power is 2 Re [V'I'*] which is power divided by the fre-

quency v. This quantity will be called the frequency-

normalized power. If V' and I' are the frequency-normalized

terminal voltage and current of a one-port network (see Fig.

6.3) whose terminal behavior is given by

V = ZI + E (6.25)

or

V9 = Z"I' + E', (6.26)

it may be shown very easily that the exchangeable frequency-

normalized power output of the network is given by

P E (6.27)
e Z" + z"*6

This exchangeable frequency-normalized power is defined as the

stationary value of the frequency-normalized power output of the

network obtained by arbitrary variation of the terminal current

or voltage.

Parametric Transformations. If the n-port network with the

noise column matrix E and impedance matrix Z is connected

properly to a 2n-port network; a new n-port network may be

obtained. It will have a new noise column matrix E and a new
%Po

impedance matrix Z . This operation, shown in Fig. 6.4, will

be called a transformation or an imbedding of the original net-

work. The analytical relation between the voltages and currents

applied to the 2n-port M-R network (the "transformation network")

of Fig. 6.4 can be written in the form

i



One-port noisy network.
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V Z I + Z I (6.28)Va -aa a -ab b
and

Vb -ba la + bb lb' (6.29)

The column vectors V and Vb comprise the terminal voltages

applied to the transformation network on its two sides, and the

column vectors I and Ib comprise the currents flowing into it.

The frequency variables at different parts of the M-R network

are shown in Fig. 6.4. The condition that the transformation

network is an M-R network can be summarized in the following

relations:

[1 2 1/ + 4 i/ 0 (6.30)

where

I
K ------- (6.31)

0 KI -. m

1 o

1 0

0 k w +wn o

1 0

0 m W +Wno

(6.32)

(6.33)

and

K

II--
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V =V,%a r

Figure 6.4. General transformation of an n-port

multifrequency noisy network,
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We may therefore write

-aa 1  -1 -a / + 0
or

Z"1 + Z"+ = 0 (6.34)-aa -aa

1/1 Z" + Z+  + (6 = 03)
L; 1 lab LKm1 7L m1' Kba 1j 11

or
Z"ý + Z'9+ 0 (6.35)-ab -ba ([-1/2 1/2 1/2 + 1/2, Z K + KZ0

i- ] bb -m ]m bb i-m
or

4 b + 4+b 0 (6.36)

and

[a /2 + 41/2 + + 0

or

Z'" + Z" - 0. (6.37)-ba -ab (6.37)

The original n-port network, with impedance matrix Z

and noise column matrix E, imposes the following relation

between the column matrices V and I of the voltages across,

and the currents into, its terminals:

V = Z I + E. (6.21)

The currents I into the n-port network are, according to

Fig. 6.4, equal and opposite to the currents I into one side
^a

of the 2n-port network. The voltages V are equal to the voltages

V We thus have,-.a
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V = V ; I = - I . (6.38)a • a

Introduction of Eqs. (6.38) into Eq. (6.21) and applica-

tion of the latter to Eq. (6.28) give

-41 -1
I = (Z + Z ) Z I + (Z + Z ) E. (6.39)
,a -aa -ab -Zb - -aa

When this equation is substituted in Eq. (6.29), the final

relation between Vb and I is determined:

V =Z I + E (6.40)

where

-1.Z = IZ aZ (Z + Za )  Z (6.41)
-o -bb -ba - -aa -ab

and

-1
E Z (Z + Z ) E. (6.42)
&.o -ba - -aa #

Equation (6.40) is the matrix relation for the new n-port

network obtained from the original one by imbedding it in a

2n-port network. Here Z is the new impedance matrix, and-o

E is the column matrix of the new open-circuit noise voltages,

Conditions 6.34 through 6.37 must be applied to Eqs. (6.41)

and (6.42) if the transformation network is to be M-R.

Matrix Formulation of Stationary-Value Problem. We have

defined the exchangeable frequency-normalized power for a one-

port network as the extremum of frequency-normalized power

output obtainable by arbitrary variation of terminal current

or voltage. In an obvious generalization, we may extend this

L
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definition to n-port networks by considering the extremum of

the frequency-normalized power output of the network obtained

by an arbitrary variation of the terminal currents. In this

case, we encounter the possibility of the output frequency-

normalized power assuming a stationary value rather than an

extremum. One may ask whether the stationary value of the

frequency-normalized power for the multiport case could be

achieved in a simpler way. One method to try is that shown in

Fig. 6.5.

The given network is imbedded in a variable (n+l)-port

M-R network. For each choice of the variable M-R network, we

consider first the frequency-normalized power that can be

thdrawn from the (n+l) port for various values of the complex

current In+1 .

The network operation indicated in Fig. 6.5 is conve-

niently accomplished by first imbedding the original n-port

network in an M-R 2n-port network, as indicated in Fig. 6.4.

Open-circuiting all terminal pairs of the resulting n-port

network, except the ith , we achieve the n-to-l-port transfor-

mation indicated in Fig. 6.5. The exchangeable frequency-

normalized power from the ith port of the network can be'

written in matrix folm as

8The case is analogous to that of finding the extresum
of power output of an n-port linear noisy network by an
arbitrary variation of the terminal currents [3].
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(E') (E_ ) + E_ E '+

P .= = 0 0 Eo o (6.43)
e,i (Zo) + (Z") ( +

o oi , -o

where the (real) column matrix ( has every element zero except

the ith, which is 1:

-'

0

0

(6.44)

= 1

•i: f

The variation of the M-R network in Fig, 6.5 now corre-

sponds to variation of the transfqrmation network Z in Fig.

6.4 through all possible forms. We now wish to find the

stationary values of P' corresponding to variation of 2.
e, i

We can write

-1/ + -- [1/2E'E 2 EE EE K'

+ -
. -a + -Za 00 -aa _-ba -m

-z" +Z" + Z" -1 E'E'+ Z + Z1 ) + ,,I
=ba - -a a  -a E-ba

hr EE'+ (6.45)

where

4,
o
e

4,

o

5,
m
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Figure 6.5. Imbedding into an (n+l)-port M-R network.
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+ = Z" (Z" + Z11 ) (6.46)
- -ba - -aa '

and expressing Z" in terms of Z" yields
-o -

Zf + ZV+ -/2 I+ 1/21 ++

= Z K+ K 1
74/jI+ O -l "A"'O"T

-1K-bb (Z aa + - ab71 L m

-12-1 r1/2+C IxK Z -Z + Z ) 1 ++ "M1 -bb -ba --aa --ab 2 m

4a -K(Z +- Z Z) Z ) K zfKmJ-ba -- a) -aab -m]

1/-K-m
+ -1Z -ab + Zaa-ab -aa hba l-

= + (Z" + Z+) .
Z_ + _ ) I.°

(6.47)

It follows that

++
+ Z1

($)) J + z,,)( $)
(6.48)

in which the matrix T is to be varied through all possible values

consistent with the requirement that the transformation network

must be M-R.

The significant point now is that T is actually any square

matrix of order n because 4a is entirely unrestricted. There-

fore, a new column matrix x may be defined as

p9
e9i
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x

XX.

x
n

.9 (6.49)

in which the elements take on all possible complex values as

the M-R network in Fig. 6.4 is varied through all its allowed

forms. Consequently, the stationary values of P' in Eq.

(6.48) may be found most conveniently by determining instead

the stationary values of the (real) expression

+ ~x E xE x
P = , , (6.50)e, i x (Z + Z" ) x

as the complex column matrix x is varied quite arbitrarily.

This is a problem well-known in matrix theory [4]. It

may be shown that the stationary values of the exchangeable

frequency-normalized power P' . are the eigenvalues of thee, 1

matrix

N = (Z" + Z"+) 1 E'E'+ (6.51)

where

E = /i E (6.52)

and

9t is assumed that the matrix (Z" + Z"'+) is nonsingular.
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Z" LZ1/ i (6.53)

We therefore define:

Characteristic-noise matrix (Z" + Z"+) " E'E'+ (6.54)

and conclude that the stationary values of the exchangeable

frequency-normalized power P. are the (real) eigenvalues of
e,1

the characteristic-noise-.matrix N.

The physical significance of these eigenvalues will be

pointed out in a later section. It may however be noted that

Pe has the dimensions of energy.e i

6.3. INVARIANCE OF THE EIGENVALUES OF THE CHARACTERISTIC-NOISE
MATRIX

One particular property of the eigenvalues of N will be

proved in this section. Suppose that the original network

with the characteristic-noise matrix N is imbedded in a 2n-port

M-R network, as shown in Fig. 6.4. A new n-port network results,

with the characteristic-noise matrix N'. The eigenvalues of

N' are the stationary values of the exchangeable frequency-

normalized power obtained in a subsejuent imbedding of the type

shown in Fig. 6.5.

Theorem 6.1. The eigenvalues of the characteristic-noise

matrix N1 are equal to those of N. Alternatively, we may state

that the eigenvalues of the characteristic-noise matrix N are

invariant with respect to M-R imbeddings which preserve the

number of terminal pairs.
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Proof: We showed in Section 6.2 that

Z" + Z"' + = 7 (Z" + Z" '+) 7 (6.47)
-o0 -o --

and

E -E+ = 7+ E'E'+ 7 (6.45)
oO -- 1v --

where

" -1o (6.46)

10
We now write

-1
N' = (Z" + Z" ) E E E+

--0 -o o Vo

-1 " + z)-+ E' Ei T

-1r N d. (6.55)

Equation (6.55) shows that the eigenvalues of N' are equal

to those of N,

6.4. CANONICAL FORM OF A MULTIFREQUENCY NOISY NETWORK

Sometimes additional insight into the meaning of the eigen-

values of the characteristic-noise matrix may be obtained [3]

from the canonical form of the network. The canonical form of

a multifrequency noisy network may be derived from the original

network by imbedding it in an M-R network that preserves the

number of terminal pairs. This procedure, as shown in Fig. 6.4,

led to a new network with an impedance matrix Z , with

10The matrix 'is assumed to be nonsingular.



154

Z (Z + Z )  Z + Z (6.41)
0 ~ba -a -ab •• -b•b

or

z" + /j7

E+1+ + l/ (1/2 / -1/ 1/2

-/2 2 - --aab (5Using Eq. (6.46) and Eqse (6.34) through (6.37), we canwrthite Z" + (Z" + Z1+) + Z '-b _ - -- aa -b

Zthis choice for gives+ )-o 2 2

From Eq. (6.46) we see that T is independent of Z" and

from Eq. (6.37) we see that the only constraint on Zb is that
it be skew-Hermitian. One possible choice for the matrix Z b'
then, is

Z"1+Z1 +1 7 + +T. (6.57)b 2 -aa -

This choice satisfies the skew-Hermitian constraint, since
the Hermitian transpose of this matrix is the negative of the
matrix. Introducing Eq. (6.57) into Eq. (6.56), we find that
this choice for Zb gives

ZV + 1 It l + 1+ (6.58)-0 2 - -
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We have also shown that

EQ E' = E' E'+ r. (6.45)'0o .0 -- , --

We may write

E' EQ+ = E1E+  . (6,59)

The matrix E E+ is positive definite in most of the cases of

practical interest [3] Equation (6.59) shows that the matrix

E E'+ is also positive definite if and only if the matrix

E E is positive definite, since the matrix 1 is assumed

to be a nonsingular matrix. It is always possible to diag-

onalize simultaneously two Hermitian matrices one of which is

positive definite by the same conjunctive transformation [4].

Since EV E'+ is related to the positive definite matrix E' E'+0O 0O "

by a conjunctive transformation and Z" in Eq. (6.58) is related--o

to (Z" + Z"'+ ) by the same conjunctive transformation, it is

always possible to find an M-R network that will simultaneously

diagonalize Z" and E' E' *--O "o 0o

We may now write

1/2 -1/2z f Z (6.60)S--o " -- o -

and

E E+ = L/2 E E'+ (6.61)0O -O -O - O " "m

Since K_•/2 l is a diagonal matrix the same conjunctive

transformation will also diagonalize Z and E E+. The"-O O -oO
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multifrequency noisy network obtained through this transforma-

tion is the canonical network shown in Fig. 6.6.

Since E E+ is diagonal, none of the voltages is corre-
O 'O

lated with any other voltage, and the canonical form consists

of a set of independent noisy resistors. The characteristic-

noise matrix of the canonical form is diagonal with elements

along the diagonal whichare the exchangeable frequency-

normalized powers of each of these resistors.

N' Diag. (E' EI* / E' E' 2R" E2 E' / 2R" ),1 1 11 2 2 22 n n nn

(6.62)

Since the eigenvalues of the characteristic-noise matrix

are invariant under such an M-R imbedding, we see that the

elements of N' are the eigenvalues of the characteristic-noise

matrix of the original network. We may therefore say that the

exchangeable frequency-normalized powers of n independently

noisy network are the eigenvalues of the characteristic-noise

matrix of the original network.

This shows that the following two theorems are true.

Theorem 6.2. Every n-port multifrequency noisy network

can be reduced by M-R imbedding to a canonical form consisting

of n separate (possibly negative) resistances each in series

with an uncorrelated noise voltage generator.

Theorem 6.3. The exchangeable frequency-normalized powers

of the n independent sources of the canonical form of any n-port
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multifrequency noisy network are equal to the n eigenvalues of

the characteristic-noise matrix N_ of the original network.

6.5. PHYSICAL SIGNIFICANCE OF THE INVARIANTS OF MULTIFREQUENCY
NOISY NETWORKS

The terminal relation of a voltage source E in series

with a resistor R (see Fig. 6.7) is given by

V = RI + E. (6,63)

Let the frequency of the source be km° + c, where k is

an integer. Let us now terminate this network in a variable

inductor L (see Fig. 6.8).

The value of the average stored energy in the inductor L

for arbitrary variation of the terminal current I is given by

Q+1V I*- V* (6.64)2j(k + m) - (6.6

IEI2 L
R2 + 2 (k + 2 (6.65)R + L (km 0 + a3)

o

One of the possible stationary values of Q when L is

varied over all possible values is given by

I E12
Q 1 (6.66)Qs 2R(k +) (6.66)

for

1 According to this interpretation L may be positive or
negative. If L is negative, we may terminate the one-port in
a capacitor. In that case Qs will be a stationary value of
average stored energy in the capacitor. However, the one-port
is terminatedeither in a single inductor or'a capacitor, but
not by a combination of both.
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Figure 6.7. One-port noisy network.

÷'



R

Figure 6.8. One-port-noisy network

terminated in an inductance L.
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L = R/(Kw + w). (6,67)

It was shown in Section 6.4 that every n-port multi-

frequency noisy network can be reduced by M-R imbedding to a

canonical form consisting of n separate resistances in series

with uncorrelated noise voltage generators. Also it was shown

that the eigenvalues of the characteristic-noise matrix of the

original network and of the canonical form of the network are

the same.

We may therefore say that the eigenvalues of the

characteristic-noise matrix of a multifrequency noisy network

may be interpreted as the stationary values of the average

stored energy that can be stored by the canonical form of the

network for different terminal constraints. If the first eigen-

value of the characteristic-noise matrix (see Section 6.4) is

EO E'*/2R"", then the terminal constraints on the canonical

form of the network is that open-circuit (or short-circuit)

all the ports except the 1st; and the 1st port is terminated

either in a single inductor or a capacitor.

6.6. MULTIFREQUENCY NETWORKS IN OTHER REPRESENTATIONS

Different matrix representations can be used to describe

the terminal noise behavior of multifrequency noisy networks.

The investigation of invariants in these different kinds of

representations forms the subject matter of this section.
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General Matrix Representation. The impedance matrix

representation (see Eq. (6.21)) is conveniently rewritten in

the form [3]

where I is the identity matrix of the same order as Z. Any

other matrix representation of a multifrequency noisy network

can be expressed as

v - T u = 6 (6.69)

where v is a column matrix of the terminal "response", u is

the corresponding column matrix of the terminal "excitation",

and 6 is a column matrix comprising the amplitudes of the

internal (noise) sources as seen at the terminals. The

square matrix T expresses the transformation of the network

in the absence of internal sources.

We note now that Eq. (6.69) may also be written in a form

similar to Eq. (6.68).

V

I

= E (6.68)

V

u

= 6 (6.70)
elk#

L

1 --
I

T
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Transformation from One Matrix Representation to Another,

V v
The variables - and ---

transformation of the form

v

u

can always be related by a linear

V

I

Let us write

R-11

R2-21

R12-12

R-22

Ml= R Z R .M II "- -2 1

We may show [3] that representation 6.68 may be trans-

(6.73)

formed into the representation

- 6
fcJ

(6.70)

where

I - "M E -Z]R (6.74)

and

6 = M E.

(6.71)

(6.72)

(6.75)

v

u
T~1FV
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Frequency-Normalized Power Expression and its Transfor-

mation. In any matrix representation, the frequency-normalized

power P' flowing into the network is a real quadratic form of

the excitation response vector - . We have

K- u

P' = -3 j - (6.76)
^j1,.%

where 2T

v or u.

tation,

is a Hermitian matrix of order twice that of either

In the particular case of impedance-matrix represen-

V 0 K V

I K 0OU - .IOrI
(6.77)

Comparing

matrix for the

Eqs. (6.76) and (6.77), we find that the q

impedance representation is

-1
L=O

(6.78)

A transformation from one matrix representation into

another transforms the q matrix. We have
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V V

Siv. Iv

+

C-i _R R (6.79)
u u

Comparison with Eq. (6.76) shows that

R + (N 'D R(6.80)

where R is the matrix that transforms the general-excitation

vector into the voltage and current vector ,
uI

according to Eq. (6.71).

The General Characteristic-Noise Matrix. Let us define a

matrix T where

-1 
(6.81)

For the impedance-matrix representation, we obtain

SZ K + ZZ e+-i , - J -1 ZK+ +Z

= E1/ ,,+ K (6.82)

Introducing Eq. (6.82) into Eq. (6.81), we have

i
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N= K1/2 I +K1/2  Z"1 K+/27 E E+ K 1 2
-1

- " + Z" gEE + +

= No (6.83)

But Eq. (6.83) is identical with the definition Eq. (6.51).

Next, let us relate the general noise matrix NT of Eq.

(6.81) to its particular form in the impedance representation.

For this purpose, we note that according to Eq. (6.75)

6 6 = M E E+ M+. (6.84)

Then using Eqs. (6.74), (6.80), and (6.82), we find

+

aý' E1 -1Z

=M ['] + EIz1 + z [ Jl/+ +M

We may then write
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1 + 1+- EE'+1
= M4 N M'1  (6.85)

- -Z

where

M• =a / fj . (6.86)

According to Eq. (6.85), the characteristic-noise matrix

NT of the general matrix representation of a multifrequency

noisy network is related by a similarity transformation to the

characteristic-noise matrix NZ of the impedance matrix repre-

sentation of the same network. Therefore, N and NZ have the

same eigenvalues.
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CHAPTER 7

INVARIANTS OF MULTIFREQUENCY NOISY NETWORKS

It may be shown [1] that a nonlinear system driven by a

strong periodic signal and containing internal noise sources

may be considered as a device exchanging power at a number of

frequencies. In general, power at a number of frequencies flows

through each physical port of this device, either by design or

accidentally. However, for theoretical considerations such a

device may be represented [2] as a multiport network, with each

port exchanging power at only one frequency. The study of

terminal-noise behavior of pumped nonlinear systems may, there-

fore, be considered as the study of noise performance of multi-

frequency noisy networks.

The invariants of linear time-invariant n-ports to non-

singular linear lossless imbeddings of various kinds have been

investigated by Haus and Adler [3], Mason [4], Schaug-Pettersen

and Tonning [5], and Youla [6]. The investigation of invariants

of this type to different kinds of imbeddings of multifrequency

noisy networks forms the subject of this chapter.

7.1. IMPEDANCE-MATRIX REPRESENTATION OF MULTIFREQUENCY NOISY
NETWORKS

At any "frequency deviation" w, the terminal-noise behavior

of a periodically-driven nonlinear system is specified completely

by an impedance matrix Z, and the complex Fourier amplitudes of
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its open-circuit terminal voltages E1, E2 ,... , En (see

Fig. 7.1). In matrix form, Z denotes a square n-by-n array

Z11 Zli 1'Zlk Zln

a 0 0 0 0 0 a a

S 0. 0 0 0 0 0 0 0 0

Zkl Zki Zkk Zkn

* 0 0 0 a a 0 a 0 a

Z ''' Z . 0 Z -o" Z
nl ni nk nn

(7.1)

The complex amplitudes of the open-circuit terminal voltages

are represented by a column matrix E:

E

E.

Em : (7.2)

Ek

E
n

The Fourier amplitudes E1, E2 , •*" , En are complex

random variables, the physical significance of which usually

appears in their self- and cross-power spectral densities E E.2

1In the study of terminal-noise behavior of pumped non-
linear systems n is an even number. However, the results given
in this paper are true for any n, an integer.

2The bar indicates an average over an ensemble of noise
processes with identical statistical properties.

Z
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As in the rest of this work, only frequencies with positive

values of frequency deviation u are retained.

A convenient summary of the power spectral densities is

the matrix

E E* 1 0. E E* 000 E E* *.0 E E*
0 0 0 0 0 0 0 0 0 0 0

E E* * E* ... E E E*
_ . 2. n

E Et (7.3)

EkE* 000 EkEG o* EkEk ' EkE*

0 0 0 0 0 0 0 0 0 0 0

E E* 0 0 E 0 0*~ E R* E* EE
n I n nEt n n

By examining the quadratic form associated with the matrix

E +E it may be shown that the matrix E E is a positive definite

or positive semi-definite matrix [3]. In general, if the voltages

of E E  are noise voltages, it can usually be argued from physical

grounds (barring trivial degeneracies and noiseless positive or

negative resistances) that the matrix is positive definite.

7.2. TRANSFORMATIONS

If the n-port network with the generator column matrix E

and the impedance matrix Z is connected properly to a 2n-port

3The superscript dagger indicates the two-step operation
composed of forming the complex conjugate of and transposing
the matrix to which it refers. Briefly, A+ is called the
Hermitian conjugate of any matrix A.
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network, a new n-port network may be obtained. It will have a

new noise column matrix E~ and a new impedance matrix ZV. This

operation, shown in Fig. 7.2, is called a transformation.

The analytical relation between the voltages and currents

applied to the 2n-port network (the "transformation network")

of Fig. 7.2 can be written in the form

V Z I + Z I (7.4)o -0o o -i i

V. = Z. I + Z I.. (7.5)
3. "1 0 0 ii

The column vectors V and Vi comprise the terminal voltages

applied to the transformation network on its two sides, and the

column vectors I and Ii are the corresponding terminal currents.

The original n-port network, with impedance matrix Z and

noise column matrix E, impose the following relation between

the column matrices V and I of the voltages across, and currents

into, its terminals:

V = Z I + E. (7.6)

The currents I into the n-port network are, according to

Fig. 7.2, equal and opposite to the currents I. into one side
3.

of the 2n-port network. The voltages V are equal to the

voltages V.. We thus have

V = V.; I = - I.. (7.7)

When these relations are used, the final relation between

V and I is determined:o o
V Z' E'(78
V = Z' I + EOo - o0 % (7.8)
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V. =V .02. 0%

General transformation of an n-port noisy network.
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Figure 7.2.
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where
-1

SZ Z .(Z + . )  Z (7,9)
" 00 -0o- -3.0

and

E o= z (Z + Z) . (7.10)
-oi - -ii

Here Z' is the new impedance matrix, and E' is the column

matrix of the new open-circuit noise voltages.

7.3. LINEAR TRANSFORMATIONS

In case the transformation network4 is linear, the matrices

Z , Z i, Z and Z are all diagonal. This is a basic property-oo aa =ii -io

of linear networks.

Diagonal Condition. It may be shown (See Appendix A) that

an n-by-n matrix A is diagonal if and only if

A - A =  (7.11)

where jL is represented as

1
2 0

k
0n

n

(7.12)

Theorem 7.1. If the transformation network is linear and does

not contain any internal signal/noise generators, its impedance

matrix (see Fig. 7.2)

It is assumed that all the transformation networks con-
sidered in this chapter do not contain any internal signal/noise
generators.

iJ·'
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z Z
-- o00 -oi

(7,13)

z. zi_

satisfies the condition

S o= 0. (71a4)
0 4 0 &

Proof. Since the transformation network is linear, the matrices

Z , Z .V Zi and Z are all diagonal.-oo -i1 -ii -io

These matrices, therefore, satisfy the equations

Z o -  - =Z - 0 (7.15)

Z oi - =Zoi = O (7.16)

Zi - KZi I = 0 (7.17)
and

Zio. - ~io = 0. (7.18)

We can write

0 l 1
z z 0

bi.o 1i5 ti (1

by virtue of Eqso (7.15) through (7.18).

This proves Theorem 7,1.
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Theorem 7.2. Cascading of a noiseless linear reciprocal net-

work with a multifrequency noisy network, described by its

impedance matrix Z and a noise voltage column matrix E does not

change the value of the quantity5

-1 -1
+ + + +Q= 1- E (_ - Z ) (7119)

6

provided the matrix E E+ is nonsingular.

Proof. Let a multifrequency noisy network have a terminal

relation

V = Z I + E. (7.6)

If this multifrequency noisy network is cascaded with a

linear noiseless network (see Fig. 7.2), the new terminal rela-

tions are given by

V = Z' I + E' (7.8)0 - 0

where
-1Z -= Z (Z + z-1. (7.9)- -oo oi -ii) -0o

and
-1

E' = Z (Z + Z..) E. (7.10)
S oi -- Ili

The cascading network is linear. It therefore satisfies

the Eqs. (7.15) through (7.18).

5
Z/A is the determinant of matrix A.

6f the matrix A E+ is singular, but the matrix (ZL --Z)
is nonsingular, we can show that the quantity

Z(Z_ - Z_)-1 E E+ E E+ (Z - Z )-1

remains invariant. However, in most of the cases of interest,
the matrix E E is positive definite and hence nonsingular.ov ^V
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z'a - ' - (z + zii) ZL o + Zoi(Z + Z=ii'zo

-oi Aii -io -t -oz'Z+ -1Z. (_ +-1 -1zio

z i ( + 1) •- z+ +z + z +z.)• + Z..

-Z (z + _ ) MtL A) (Z + z d -z .

We now have

-1 -1

Q' -Az'1  - ,) (Z- Z)+

u Ji(Z + Zii) )-1 (a - W+ + Zi) Z"iojj

z i(z + Z) 1i I (z + zii) + -1 z -

~i-1zi(z + z )- O Z..) 1 z+--I - -o0

i(z + • ) 1 (ZA - ) (z + 1 i)  z .

The cascading network is assumed to be reciprocal. The

impedance matrix ZT is, therefore, symmetrical.

t
@ - -O 0 (7.20)

or

Z - Zt  0 (7.21)
-00 -O -

Z Zt  0 (7.22)
-i 1o -0

and

ii. - Zi 0. (7.23)

By using Eq. (7.22), we can show that
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-1 -1
q --_z - z) E E+  E E+  (Z• •Z)) Q

This shows that Q' = Q.

In this section we have proved the invariance of a

quantity associated with a multifrequency noisy network when

the latter is cascaded with a noiseless linear reciprocal net-

work. The quantity Q has the same physical dimensions as

those of 1/(power)2

7.4. LINEAR LOSSLESS TRANSFORMATIONS

In Section 7.3, the transformation network was assumed

to be only linear. Let us now consider the case when the

transformation network is not only linear but also lossless.

Condition of Losslessness and Linearity. In case the

transformation network is lossless, it can be shown [3] that

the impedance matrix ZT satsifies the condition

Z + = 0 (7.24)
T T -

or

Z + Z+  = 0 (7325)
-00 -00 -

Z . +Z = _0 (7.26)

and

Z.. + Z+ .  0. (7.27)

Since the transformation network is also linear, it also

satisfies Eqs. (7.15) through (7.18). By using these rela-

tions, Eqs. (7.25) through (7.27) may be written as

I
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z + o 0= 0 (7.28)

Zi a + ,z+ = 0 (7.29)

and

Zi* + = 0. (7.30)

Part I.

Theorem 7.3. The eigenvalues of the matrix7

+4
S = (Z + Z E (7.31)

associated with a multifrequency noisy network described by an

impedance matrix Z and a noise voltage column matrix E are

invariant to a linear lossless transformation.

Proof. Let a multifrequency noisy network be described by an

impedance matrix Z and a noise voltage column matrix E.

In case this multifrequency noisy network is cascaded

with a linear lossless network, the new impedance and the noise

voltage column matrices of the resulting network are given by

-1S= Zo - Z(Z + z (7.9)E' Z Z+ Z ) E. (7.10)-oi- -ii z

Since the transformation network is lossless, it satis-

fies Eqs. (7.25) through (7.27).

The S' matrix for the resulting network is given by

S = (ZV + ZU+)-1 EE'-•. (7.32)

I t is assumed that the matrix (Z + Z+) is nonsingular.
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We can write

z-1 z+ + -1 +Z + Z = Z - Z .(Z + Zii) Z. + Z - Z. (Z + Z..) Z .-00-c 01- 1i--o_. o -00 -0 -11 -0

Z .(Z+ 1 + z+)(z+ + z + - z+
-o03. - -ii = -ii -oi

Let us write

A Z (Z+ Z-_ 1 i i
(7.33)

Accordingly

Z + Z•'+ = A+(Z + Z+)A

E'E + = A+ F A,
^J4 W - 14 0-we

(7.34)

(7.35)

From Eq. (7.32)

Hence, the

transformation .

the same.

S ' = A-' + Z+) 1 E T- A. (7.36)

matrices S and S' are related by a similarity

The eigenvalues of S' and S are therefore1 1

This proves the theorem.

Physical Significance of these Invariants. Let us cascade

the n-port multifrequency noisy network with a linear lossless

2n-port network (see Fig. 7.2). Open-circuiting all terminal

pairs of the resulting n-port network except the ith , we

achieve an n-to-l-port lossless transformation, as indicated

in Fig. 7.3. The exchangeable power from the ith port can be

written in matrix form as

8The matrix A is nonsingular in all but degenerate cases.
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E'E! * .+E'E' (
P .= = 1 1 "

e,i z + * + (z +)Z!i. + Z! (Z ' Z (
where the (real) column matrix ( has every element zero except

the i th, which is 1:

oi

o

_0

S= 0, j # i

i= 1
i

Using Eqs. (7.34) and (7.35), we can now write

Peie, i
+A+ E E+ A ,

+ A (Z + Z)A +

A new column matrix x may be defined as

rJ -

x.

1

X
n
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(7037)

(7.38)

(7.39)

(7.40)

0

(

•n -- -
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It may be worth pointing out that x is not an arbitrary

n-dimensional vector if the transformation network is re-

stricted to be linear and lossless.

Equation (7.39) may now be written as

x EEx
P (7o41)+ +i x (Z + Z+ ) x(

It may be shown [3] that the stationary values of the

quantity P . when the vector x is arbitrarily varied are given

by the eigenvalues of the matrix

SI = (Z + Z+) EE ̂  (7.31)

It is therefore evident that the eigenvalues of the

matrix SI may be interpreted as the possible stationary values

of the exchangeable power that can be obtained from the multi-

frequency noisy network by cascading the latter with a linear

lossless network.

There is another possible interpretation to these

invariants if the multifrequency noisy network describes only

the terminal-noise behavior of a pumped nonlinear system. In

this case the value of n is equal to two and the two frequencies

of interest are o+ w and -w + w. a is the frequency of the

pump and w is the frequency deviation.

It may be shown [7] that the eigenvalues of the matrix

N = (Z" + Z +) - E"E"•+ (7.42)
I" ^j
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may be interpreted as the stationary values of exchangeable

amplitude/phase noise power that we can get from the system

when the linear lossless network cascaded with the system is

arbitrarily varied. The impedance matrix Z" and the noise

voltage column matrix E" are given in the amplitude-phase

representation. The transformations between amplitude-phase

and a - B representations are given by

-1
Z" A Z A (7.43)- "-v-- -- i

and

E" l A E (7.44)

where

v 2 0-jjv- ± ~ -jj. eL (745)

and

S 1 e-jo i  0

1 =2 L.IL e4IJ (7.46)

Ov and 01i are the phase angles of carrier voltage and

carrier current at the frequency o . Z and E in Eqs. (7.43)

and (7.44) are given in the a - 0 representation. Let us

assume that the carrier current and carrier voltage are in

phase. Accordingly,

A= A.. (7.47)-V -1

It may be verified that
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+ 1 -1k+ - A . (7.48)-V 2 -v

We can now write

N = (Z" + Z"+) -I E"E"+
. .mFJ f

1 + - + z_+)- F 1 X+

I1 .+ -11 X+ (7.49)

J2 v V-21  v

The eigenvalues of N and S1 are, therefore, the same.

The eigenvalues of S1 may hence be interpreted as the

stationary values of the exchangeable amplitude/phase noise

power that we can get by a linear lossless transformation

from a nonlinear system pumped at frequency wo when the fre-

quency deviation c is not arbitrarily small.

Part II

Theorem 7.4. The characteristic values of the matrix9

S2= + EF (7.50)

remain invariant to a linear lossless transformation.

Matrix 4 is given by Eq. (7.12).

Proof. The S' matrix for the multifrequency noisy network

obtained by cascading a linear lossless 2n-port network with

an n-port multifrequency noisy network is given by

It is assumed that the matrix (Z6 + .Z+) is nonsingular.



S2 = (Z'1 + Z,+)-1 E,'E'-2 I ) e

We then have

_Z ZI +  - z o(Z+Zo ) Z. +Zoo__-o - -5i -1-C A o

- o(Z + Z )+ -1 +
o -- -oi

Because of Eqs. (7.28) through (7.30)

Zla+ + = z .(z+z..)- 1z+ i + z i( Z + Z. -1 (z .
Z"~:~.+ -b f

(+. -1 + + + +oi 1+ ZF=i (z + i + -1z +
+--ioi

- A_(ý + +1_ )

+t -1
A = Z (Z +C Z)

(7.52)

(7.33)
_02 -13

We also have

E'E+ = A E E+ A. (7.35)

From Eq. (7.50)

s= 1 (Z, + ) EE A
-2 ^-

-1= A S A. (7.53)

Again, Sa and S2 are related by a similarity transforma-

tion. They therefore have the same eigenvalues.

Part III.

Theorem 7.5. The matrix10

10 +It is again assumed that (Q + Z ) is nonsingular.

186

(7.51)

where

. .1
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3 = (z + z) (z + Z+) (7.54)

goes through a similarity transformation when the network is

subjected to a linear lossless transformation. The eigenvalues

of S3, therefore, remain invariant.

Proof. According to Eqs. (7.34) and (7.52)

Z' + Z '+  A+(Z + ) A (7.34)

1 + + ++  A (Z + ,Z) A. (7.52)

We can then write

-1 + .1 +- (Z'&L + Z,+)l (Z' + ZA+)SA_- + Z+)- (Z+z+)A

-1= A 1 S3 A. (7.55)

This shows that the matrices S' and 3 possess the same

eigenvalues.

We would like to point out that the eigenvalues of S2=2
have the dimensions of power, and those of S3 are dimensionless

numbers.

7.5. LINEAR LOSSLESS RECIPROCAL TRANSFORMATIONS

In this section we assume that the transformation network

is also reciprocal.

Condition of Reciprocity. If the transformation network is

linear, lossless and reciprocal, its impedance matrix @ satis-

fies Eqs. (7.25) through (7.30) and also it satisfies the
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conditions:

Z - Zt  0 (7.21
-00o -o00 -

Z - Zt . 0 (7.22)
--oi0 -o -

and

Z - = o. (7.23)-ii -4ii

Theorem 7.6. The eigenvalues of the matrices11

T =( (Z - Z - I  Z + Z ) (Z - Zt -( + Z+)*  (7.56)

(1 (Z) (Z+

T2  (Z-1 (Z - Z E ) (7.57)

T3 = (Zg+ - )*- (1 + )*  (7.58)

T = (Z - Zt  ( + )( - Z t) l (_ +  Z+)* (7.59)

T - (Z - Zt) (_Z + )( - )*  ( + +)*  (7.60)

T =z- Zt -1 E E+ (- Zt*- + * (7.61)

_ -1 t + *(7.62)
=_7 (z - z) EE + (Z - Z ) (Z + Z) (7.62)

T8  ( - Z)l (Z + Z+ ) (z - z*- EE+* (7.63)

and +
T9 - (Z - Z) (Z + •aZ )(Z - Z )* -1 (7.64)
-9 _ 9- 9-

associated with a multifrequency noisy network remain invariant

when the network is subjected to a linear, lossless, and recip-

rocal transformation.

Proof. We showed in Section 7.4 that

1Z.I + Za+ = A:(Z + Z+) A (7.34)

Z+ aV += A+ (Z6 + I+Z+) A (7.52)

1We make the assumption that (Z - Zt) is nonsingular.
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and

E'E'+ = A+ E E+ A (7,35)

where

A+ = Z ( + Z.) -  (7.33)

We can now write

zo Zt -1 t t t-1 tZ Z Z Z (Z + Z. )- Z Z. Z + t (Z + Z..) Zoi°00-oo -o - -11 -o -oo -o

By virtue of Eqs. (7.21) through (7.23),

t -1 t t-1 tZ-Z - - Z (Z + Z..) + Z .(Z + Z.)
- -- --oi i - 01 i -0oi

- t t t-1 tSZ .(Z+ Z..) - (Z + Z +i) + (Z + Z.. (Z + Z..) -Z.

= + (Z - Z ) A. (7.65)

Case 1. The T'1 matrix for the new multifrequency noisy-1

network is given by

r = (z' - t)-l (Z + ZI+(zQ - Zt)*-1 (z + Z'I-1 -- -

*-1 - + t *-1 +* *= A Z- ) ( + Z)( - Z) (Z + Z+) A

*-1 *
= A T A. (7.66)

This proves that the eigenvalues of To are equal to the eigen-

values of T

Case 2. We also can write

T' = (Z Zt) -1 EmE+E (Z( - Z"t) * - I EIEQ+
-2 V + (*

= A (Z - ) E E+ (Z - Z )*- EE+ A

*-=A *= A T A o (7.67)
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This shows the equality of eigenvalues of T' and T2 .
-2 -2

The proofs of other cases mentioned in Theorem 7.6 are very

similar and they therefore are not given,

7.6. LINEAR PURELY LOSSY TRANSFORMATION

A transformation network is said to be purely lossy12 if

the value of the reactive power stored in the network is iden-

tically zero.

Condition of being Purely Lossy. It is known from circuit

theory that the transformation network is purely lossy if and

only if

M- 0 0 (7.68)
or

Z - Z+  = 0 (7.69)-O -O -

Z - z +  = 0 (7.70)-oi -io -
and

S= + 0. (7.71)

Since it is also linear, it also satisfies Eqs. (7.15) through

(7.18).

Theorem 7.7. The matricesl3

U- (Z - Z +) EE (7.72)

U_2 =+ 1  E+  (7.73)

12As in the rest of this chapter, it is assumed that the
transformation network does not contain any internal signal/
noise generators.

13W make the assumption that the matrices (Z - Z ) and
(jZi - gZ ) are nonsingular.
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and

U3  (Z- Z ) (Z - Z) (7.74)

where Z and E are the impedance and noise voltage column matrices

of a multifrequency noisy network go through a similarity trans-

formation whenever the network is subjected to a linear purely

lossy transformation. The eigenvalues of the matrices, there-

fore, remain invariant.

Proof. The matrix U7 is given by
1

U (z - zo+)1 E'E (7.75)
-1 - ~~ °

We can write

Z' - Z - Z (Z + Z. -Z + (Z + Z ii )  1
0- -- -oi - --i "o -0o -- LO -ii) -o

- o1 + +-1 +=-Z .( + Z..) Z+. + Z .(Z + Z ) Z .-oi 1 z+02. 0 ii 01

Z .(Z+Z.) - (Z+ + z.) + (Z + Z..) (Z + Z +-1 ÷ + +÷ 1+03. - -i -33 ii- Li -oi

z.(Z + Z..) z + )(Z + Z. +1 +03- --o i -1-o -11 -- i -oi

+ += A (Z - Z ) A. (7.76)
Let us now write

U=(Z - Z E'E+ _ A-(Z - Z+ ) - E A

-1
= A U A. (7.77)

This again shows that the eigenvalues of U' remain invariant.

It may also be shown that

- 1
U1 = A U A (7.78)
-2
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and
-1

U1 - A U 3A (7.79)
-3 - -30

Equations (7.78) and (7.79) prove the validity of the rest of

the statements made in Theorem 7.7.

7.7. LINEAR LOSSLESS TRANSFORMATIONS OF TWO-FREQUENCY TWO-PORT
NETWORKS

For two-frequency two-port noisy networks, we have been able

to find two matrices the characteristic values of which remain

invariant when the two-port network is subjected to a linear

lossless transformation. It has also been shown that the eigen-

values of these matrices may be interpreted as stationary values

of exchangeable noise power.

Let the two frequencies present at the two ports of the

network (see Fig. 7.4) be w + w and - o + w. Let also the
o o

terminal-noise behavior of the network be described by14

V = Z I +E (7.80)

or

V Z Z I Eaa a ap I a a
] + . (7.81

V Za Z I E

Let this network be cascaded with a linear lossless net-

work as shown in Fig. 7.5. Let us open-circuit the port at

frequency - Lo + w (B - port).

14It is assumed that these representations are given in
the a - p representation.
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Figure 7.4. Two-frequency two-port noisy network.
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Theorem 7.8. The stationary values of the exchangeable noise

power that we can get at frequency w 0 + w from a two-frequency

two-port noisy network by a linear lossless transformation are

given by eigenvalues of the matrix15

N a P_(Z + Z)P + [P(Z + z+)P+]

P P E + + E. P* (7.82)
where

Z -Z

P - (7.83)

j o

Proof. Since the transformation network is linear and lossless,

it satisfies Eqs. (7.25) through (7.29). It may also be shown

easily that for a two-port network

z
-00

Z =

jx1 0

0 jx2

jx1 0

O X'2

(7.84)

(7.85)

151t is, of course, assumed that the matrix P(Z + Z )P
+ [P (Z + Z+)P ] is nonsingular.
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.oi
mI + jn1

m2 + jn 2

(7.86)

where x1, x2, xU, x2, Il, n1' n2 , and n2 are real numbers.

The exchangeable noise power from the a-port can be

written in matrix form as

a aP = =-
e,a V

Za + Z,aa aa

a+ EE'+ a
+ +a (ZV + ZQ+) a

(7.87)

where the matrix a is given by

(7.88)

The variation of the lossless network is Fig. 7.5 now

corresponds to variation of the transformation network ZT through

all possible lossless forms. We wish to find the stationary

values of Pea corresponding to variation of ZT.

We may write

•~ 1EzE' = Z Z+ Z) EE' [(Z + Z..)#" -o0 -1

Zo + Z = Z.(Z+ [ + z)][(z +
.ii -Ii

By means of Eqs. (7.83) through (7,85),

Z+.
--o

Z+ ..
01

(7.89)

(7.90)

a

41 , d

L
-i-

0 ¸



196

Figure 7.5. Two-frequency two-port noisy network in

cascade with a variable lossless network.
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Z (ZK+Z . b i
01.P

mI + jn

+ jn 2

Z
atC + 0jx

1

-1
ZZ a

z + jx2

mI + jn1

m2+ Jr

a + jx Iaa 1

I1i

Z + jx 2

AZ Z + jix
aa I

(7.91)

(7.92)

ZSap

ffp 2

Let us write

+ -1A = Z . (Z+ Z..)S -o3 - -I3

From Eq.

A+E E+ A

e,cz A A' (Z + Z )A (

x+E E+ x

x (Z+ Z) x

x = A
0%.-

161t is assumed that Z is nonzero.

wher e1 6

(7.87),

(7.33)

where

(7.93)

(7 94)

LO)

--- L - -m--
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We can write

x 0A mI + jn

a2

0

+ j n2

S+ jx

zIns2

_ az

Z + jxlaa 1
A

ml + ijn

m1 + j n1

mI + jn I

m1 + jn1

A

1L

+ jx Z

xT2 ppi

yX P

y2 P

where yl and y2 are real numbers, positive or negative.

Let us write

~1'y

Accordingly

y P E PE+ y=.0 ý ýf4 - %J
e, a + ++

y P(Z +ZP y

-Z0

0

(7.95)

(7.96)

(7.97)

(7.98)

(7.99)

(7,100)

11
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It may be shown that PE E+ P+ and P(Z + Z + ) PP are Hermitian

matrices. We may therefore write

ty P E E+ P + (PEE P)
P = (E +- (7.101)e,a t z+ + + [PZ + Z+)P+]y +_ _ + [P( y

It must be pointed out here that the matrices

G = PE P + (P EE+ P+)* (7.102)

and

H = P(Z + Z )P + [P(Z + Z+)+ ] (7.103)

are the real symmetric matrices.

As the transformation network is varied through all possible

values, the elements of real column matrix y take on all possible

real values. Consequently, the stationary values of Pe, in

Eq. (7.101) may be found most conveniently by determining instead

the stationary values of the (real) expression

t
yt G y

P = y "H (7.104)
e,a t

as the real column matrix y is varied quite arbitrarily.

This is a well-known problem in matrix theory [8]. The

stationary values of Pe,a are, therefore, given by eigenvalues

of the matrix

N = H G. (7.105)

This proves Theorem 7.8.
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Theorem 7.9. The stationary values of the exchangeable noise

power that we can get at frequency - w + w from a two-frequency,

two-port noisy network by a linear lossless transformation are

given by characteristic values of the matrix 17

N= + (z + + ( + Z+)g+] q E E + q + (% E + )
(7,106)

where

-pa Zaa,

L j

Proof. The proof of this is very similar to that of Theorem 7.8

and is not given.

Let us call N and N the characteristic noise matrices of-• -;

the two-frequency, two-port noisy network.

Theorem 7.10. The eigenvalues of the matrices N and N are

invariant to a linear lossless transformation that preserves

the number of terminal pairs.

Proof. Suppose that the original two-frequency, two-port net-

work has characteristic noise matrices N and N.

Suppose this network is cascaded with a 4-port linear loss-

less network, as shown in Fig. 7.6. A new 2-port network

results, with the characteristic noise matrices N' and N'. The
-a

17 Nonsingularity of the matrixQ(Z + Z+)Q + [I(Z+Z+)g ]
is assumed.
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eigenvalues of N' and N' are the stationary values of the

exchangeable noise power obtained by a further linear lossless

transformation. The second transformation network is completely

variable. One possible variation removes the first 4-port trans-

formation network. In cascade with this, we can use, if we

like, any other linear lossless transformation network. Accord-

ingly, the stationary values of the exchangeable noise powers

at the two frequencies w + w and - co0 + w do not change when the

two-port noisy network is subjected to a linear lossless trans-

formation so as to get a new two-frequency, two-port noisy

network.

This proves Theorem 7.10.

7,8. CANONICAL FORM OF TWO-FREQUENCY. TWO-PORT NOISY NETWORKS

Lossless network transformations performed on a two-

frequency, two-port noisy network in such a way that the number

of terminal pairs remain unchanged, change the impedance matrix

as well as the noise spectra.

It may be shown [3] that at any particular frequency, every

linear n-port noisy network can be reduced by linear lossless

transformation into a canonical form consisting of n separate

resistances'in series with uncorrelated noise voltage generators.

Investigation of a simple form of Z and E for a two-

frequency, two-port noisy network by a linear lossless transfor-

mation forms the subject of this section.
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V0 i

+

- J

79 E'
4%

Figure 7.6. Two-frequency, two-port noisy network in cascade

with a linear lossless network.

- I--,
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Theorem 7.11. One of the simplest forms that we can get for

the impedance and noise voltage column matrices of a two-

frequency, two-port noisy network by linear lossless transfor-

mation is given by

Z =

I kI

k2 1

(7.107)

E'EQ+EI' -~

IEl12 E'E'*aI aE

EQEQ* El012

where kl/k2 m a fixed number determined by the impedance matrix

of the original two-frequency, two-port noisy network.

Proof. Let the terminal-noise behavior of a two-frequency,

txWo-port noisy network be described by

V = Z I + E (7.80)

or

Va z aa z

V • ZP Z B

Ia
E
a

+ (7.81)

Let us get a new two-frequency, two-port noisy network by

a linear lossless transformation, as shown in Fig. 7.5.

and

(7.108)



204

The terminal-noise behavior of the resulting network is

given by

V = Z I + E' (7.8)
'o -- "O ,

where
' = Z +Z .(Z Z. ) . z+

00 - o -0 o0l
(7.109)

and

E Z .(Z + Z E. (7.10)

Since the transformation network is linear and lossless,

it satisfies Eqs.(7.84) through (7.86).

We can write

mi + jn 1

m2 + jn 2

z + jx'aa

-1

Za

zB + jx2PO2

ml - jn1

0 m2 - jn 2

2 2 z f3f3Z +
(m + na + jx I

- (m - jn1)(m2 + jn2)

-- (ml + jn1)(m2 - jn2)

2 2 Z + Jxj
S+ n2) A+ + jx2

(7.110)

where A is given by Eq. (7.92).

x1, x 2 , x0, x.9 mQl n1, m2 , and n2 are arbitrary real numbers.

We can therefore choose these numbers in such a way that

jx 1

0

0

jx 2

m

Il



2 2

ZBB j x 2 ) + jx = 1
PO + +j 12

2 2
m2 + n2

' ( Z a a+ jxj) + jx 2 = 1I

By looking at Eq. (7.92) we can see that we can make z

equal to any arbitrary complex number.

Let us write

jO
Z = IZD ez 13= zaf~ oa

ZPa

(7.113)

(7.114)

(7.115)I ZJ e a

and

(ml + jn)(m2 - jn 2 ) = ICI e 2

Accordingly,

- (ml + jn )(m2 - jn 2) - I DICI e( +02
A )=IDI

zZ I CZc1 j(- I- (ml - jn) (m2 + jn2) - D e a

Let us choose 01 and 02 in such a way that

- 02

a + 2 -01 =

and

OPa 2 0 = 0

Let us also write
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(7.111)

(7.112)

(7,116)

- 0i)

- 01)
Is

(7.117)

(7.118)

(7.119)

(7.120)



IDa = k2

D = k2

We can therefore write

1 k
ZI =

k 2 1

kl/k2  IZapI /IZ 1 Z

From Eqs. (7.119) and (7.120)

0 - 0•0
2 2

0 + 0
1 2

In this case, of course, the noise power matrix E'E'+ is given by
f N "

EE'+ -=

I .2al E'E'*aE
(7.126)

Z(Z+ Z)-E-1E' = Z (Z + Z..) E.
-oi - -3. (7,10)

This shows the validity of Theorem 7.11.

and
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(7.121)

(7.122)

where

(7.107)

(7.123)

and

(7.124)

(7.125)

where
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7.9. MULTIFREQUENCY NOISY NETWORKS IN OTHER REPRESENTATIONS

In the foregoing analysis we have found some invariants of

a multifrequency noisy network to different kinds of transfor-

mations that preserve the number of terminal pairs when the

network is described in terms of its impedance representation.

Other kinds of representations can also be used; and for each

new kind of representation results analogous to those obtained

with the aid of impedance formalism can be derived. The

invariants obtained in these different kinds of representations

are, of course, the same.

7.10. SEPARATE IMBEDDINGS OF LINEAR NOISY NETWORKS

At any frequency, a linear n-port containing internal

signal or noise generators is specified completely with respect

to its terminal pairs by its impedance matrix Z and the complex

Fourier amplitudes of its open-circuit terminal voltages

E1 , E2 , *** , En (see Fig. 7.7). In case this n-port network

is connected as shown in Fig. 7.8 to another 2n-port network,

a new n-port network may be obtained. This operation will be

called separate imbedding of the original network. The trans-

formation network, in this case, is said to be separate.

The results we have obtained in Sections 7.3, 7.4, 7.5, 7.6,

and 7.7 may be easily extended to linear noisy networks when an

additional constraint is put on the transformation network. This

constraint is that the transformation network be separate.
i.
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Figure 7.7. Equivalent representation of linear network

with internal noise sources.
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General separate transformation of an n-port network.Figure 7.8.
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CHAPTER 8

CONCLUSIONS

A great deal of material has been covered in the last

seven chapters.

It was the purpose of this thesis to develop a general

theory applicable to the analysis of noise performance of

pumped nonlinear systems.

In Chapter 2, several forms of characterizations were

given for the representation of internal noise sources in

pumped nonlinear systems. Some of these characterizations

are very similar to those that can be obtained for linear

noisy networks. The difference is that at each frequency of

interest two sources rather than one needed in linear noisy

networks is essential for the representation of noise sources

in pumped nonlinear systems.

Several ways of characterizing the noise performance of

pumped nonlinear systems have been given in Chapter 3. One

of these methods leads to a set of figures of merits which

remain invariant when the system is cascaded with a linear

lossless network. This method of defining a set of figures

of merit is based on the concepts of exchangeable amplitude

and phase noise powers. These concepts have also been developed

in this chapter. However, this method does not enable us to

get a cascade formula for a combination of two or more
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transducers; in other words, if a set of pumped nonlinear

systems are connected in cascade, and the combination is

driven by a single source, we have not been able to express

the set of figures of merit for the combination in terms of

the sets of figures of merit for each of the pumped nonlinear

systems when they are individually driven by the same source.

In Chapter 3, an attempt is also made to define a set of

figures of merit for the pumped nonlinear system in terms of

the open-circuit noise voltage matrices and a gain matrix.

It has also been shown that we can get a cascade formula by

using this definition of set of figures of merit. Finally,

in Chapter 3, a third set of figures of merit have been pro-

posed. This set of figures of merit have been defined in

terms of the variances of input and output parameters. This

set of figures of merit seems to have the greatest physical

significance. The values of these figures of merit, however,

depend not only on the value of the source impedance but also

on the value of the load impedance. This is not a very

desirable feature.

The detailed analysis of noise performance of abrupt-

junction varactor frequency multipliers has been given in

Chapter 4. It has been shown that it is possible to express

output amplitude and phase noise currents in terms of input

amplitude and phase noise sources and in terms of physical
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sources of noise that may be present at several locations in

the circuit. The set of figures of merit defined for these

multipliers in terms of variances of input and output param-

eters have been expressed in terms of the modulation ratios

of the varactor. They have also been evaluated for some of

the multipliers by using a digital computer. The expressions

for the set of figures of merit can be used to find the point

of optimum noise performance, and to find the direction in

which improved noise performance can be obtained. This has

not been done in our thesis.

The analysis of noise performance of divide-by-two circuit

using an abrupt-junction varactor diode is taken up next in

the first part of Chapter 5. The values of set of figures of

merit have been obtained for this device, and the values of

these figures of merit have been illustrated in a set of

plots. Optimization techniques can also be used for this

circuit to find out the point of optimum noise performance.

This has not been our aim in this thesis, and it has not been

attempted.

It is certainly possible that the pump used to drive the

nonlinear system can itself be noisy. The techniques developed

in the preceding chapters have been used in Chapter 5 to analyze

the noise performance of parametric amplifiers in which the

pump may be noisy. It has been shown for such amplifiers that
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only the amplitude noise present in the pump affects the

amplifier noise performance, and the phase noise does not.

The case of analysis of noise performance of parametric

amplifiers using a varactor diode has been taken as a typical

case. The same methods can be easily applied to the analysis

of noise performance of devices driven by noisy pumps.

Examples of such systems are discriminators, degenerate

amplifiers, and systems consisting of such devices. Detailed

investigation of spot noise performance of such devices is

possible using the techniques developed in the earlier

chapters. This has not been attempted in this thesis.

In Chapter 6 investigation of imbedding of multifrequency

noisy networks in lossless parametric devices has been done.

A characteristic noise matrix has been defined for these

multifrequency noisy networks. The eigenvalues of this

characteristic noise matrix remain invariant when the multi-

frequency noisy network is subjected to a lossless parametric

imbedding. An attempt is also made to give physical signif-

icance to these invariants with some success. A canonic form

is also obtained for these multifrequency noisy networks when

they are imbedded in lossless parametric devices. Most of

the results obtained for these multifrequency noisy networks

are analogous to those obtained for linear noisy networks when

the latter are imbedded in linear lossless networks.
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Chapter 7 deals with the invariants of multifrequency

noisy networks when they are subjected to linear transforma-

tions of different kinds. Physical significance has been

given to some of the invariants that we have obtained. It is

anticipated that these invariants may become useful to char-

acterize the performance of these devices by comparing output

parameters with input parameters. The concept of separate

imbeddings for linear noisy networks has been introduced in

this chapter; and it has been pointed out that most of the

results obtained for multifrequency noisy networks when they

are imbedded in linear networks of different kinds may be

shown to be valid for linear noisy networks when the latter

are subjected to separate linear transformations of the same

kind. It seems possible to develop a new theory of noise

performance of linear noisy networks by using this idea of

separate imbedding.

In summary, a general framework has been laid for the

analysis of noise performance of pumped nonlinear systems.

Techniques have been developed for the representation of noise

sources in such devices, and for their characterization of

noise performance. Specific problems are not treated in

detail, even though modest attempts have been made to get an

insight into the noise performance of harmonic generators

and dividers.
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8.1. SUGGESTIONS FOR FUTURE WORK

A number of problems of interest have been suggested in

the preceding paragraphs which deserve further investigation.

Even though we have proposed three ways of characterizing

the noise performance of pumped nonlinear systems, each one

of these methods lacks one feature or another possessed by

the noise figure defined for linear noisy networks. Future

research may be directed in finding such a set of figures of

merit for the pumped nonlinear systems.

As pointed out earlier, specific problems are not treated

in detail in this thesis. Research may also be directed in

analyzing the noise performance of specific devices like dis-

criminators, parametric amplifiers, limiters, modulators, and

systems consisting of such devices.

Our attempts to give physical significance to some of the

invariants obtained in Chapter 7 have only met with partial

success. This is another area in which further investigation

is suggested.

The idea of separate imbeddings has been introduced in

Chapter 7. This concept also needs further refinements and

investigation. It is possible that a whole new theory of

linear noisy networks can be developed by using this idea of

separate imbeddings.

These are only some of the areas which needs further

investigation and research.
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APPENDIX A

DIAGONAL CHARACTER OF A MATRIX

A square n x n matrix [aij] is defined to be a diagonal

matrix if

a..lj =0 i # j.

A diagonal matrix A with diagonal elements al, a2,

(A-1)

a n

is written as A = diag [al, a2 , ag- , an]I

Theorem A-1. A square n x n matrix A is a diagonal matrix if

and only if

A - A = 0 (A

where the matrix j. is represented as

CL-

-2)

(A-3)

' pn are any nonzero real or complex numbers which

satisfy the following condition:

1i - "j i 0 unless i = j (A-4)

Proof. Let a square n x n matrix A be represented as

4L1 , 2' P

0 o

I



a 11 ali . alk o aln
a 4 o o

o 0 0

a1 11 ik ain

akl **' aki *a akk o o o akn
0 0 0
o o o oo o o o

o o o o

an 000 a . .o ank 00 an1 nt nk nfl

We can write

al I  o, ali ,.o alk o0o aln
a o. a . 000 a 00 a

11 11 ik ainS0 0 0
* 0 0 0

o o o o

n ni ank 0o inn

n1 ni nk nn

1 0

Lk
0

I-n

al ... ali .- o a lk* aln

a kki aki s0 akk .. akn

o oa o

a 1 00 ani .oo ank *. ann

A =m

218

(A-5)

A4-pA =

P1 0

o
o

e

n



.... (i 1 )ali

(41-pi) ail

(W1 kýak )a i ( -k )aki

(4i-%n)ani

ooo0

(Lk- n)ank

o (p.n-Ll)aln
o

n I in

o

0oo ( k)ak
033 Q

Let A be a diagonal matrix. The property of a diagonal

matrix is that

a..ij =0 i #j

From Eqs. (A-1), (A-5), and (A-6), we have

A -jA= 0.

Let us now assume that Eq.

From Eq.

(A-2) is satisfied.

(A-6) we can then write

(pi - .j )a i j
i- . iJ

= 0

By virtue of Eq. (A-4), it follows that

a. =0 i # j.

This proves Theorem A-1.

219

(A-6)

(A-l)

(A-2)

i #j (A-7)

(A-1)

S(•k-31)alk

0 0 *
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