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ABSTRACT

Circuit theory of linear time-invariant systems and the
study of propagation of noise through such systems is a well-
established discipline. Very little, however, is known about
the noise performance of devices like harmonic multipliers,
dividers, limiters, and systems consisting of such devices.

In this thesis, we deal with the narrow-band noise performance
of pumped nonlinear systems like this,

Penfield has developed a circuit theory for the study of
propagation of small perturbations through such pumped non-
linear systems. These perturbations can be desired or un-
desired modulation, noise, or hum. In this thesis, it has
been assumed that these perturbations are entirely due to the
noise. Assumption is also made that the noise is narrow-band,
and the signal-to-noise ratio at any point in the system is
high. With these assumptions, circuit theory of small pertur-
bations has been used in this thesis.

It has been shown that a noisy pumped nonlinear system
can be considered as a multiport network, with each port
exchanging power at only one frequency, and no two ports
exchanging power at the same frequency. This multiport net-
work describes only the terminal noise behavior of the device.
Several methods of representing physical sources of noise in
pumped nonlinear systems have been given. The concepts of
exchangeable amplitude and phase noise powers have been
developed, and a set of figures of merit for the system has
been defined in terms of these exchangeable noise powers.

Two other ways of characterizing the noise performance of
pumped. nonlinear systems have also been suggested, Some
details of the analysis of noise performance of abrupt-junction
varactor frequency multipliers and dividers have also been
given.



The idea of lossless parametric imbeddings for multi-
- frequency noisy networks has been introduced.

Finally, for multifrequency noisy networks, a set of
matrices the eigenvalues of which remain invariant when the
networks are subjected to linear transformations of different
kinds has been presented.
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Title: Associate Professor of Electrical Engineering
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CHAPTER 1

INTRODUCTION

The quality of performance of any transducer is affected
by the physical sources of noise within the transducer, and
the sources of noise present in the source and load termina-
tions. The noise performance of two-terminal-pair amplifiers
has been studied and the concept of s?ot noise figure introduced
by Friis and Frdnz has playéd an essential role in communica-
tion practice [1]. There have been also many studies of noise
in linear noisy networks [1], énd statistical properties of
noise through nonlinear devices [2].

The problem with which we shall be concerned is the noise
performance of pumped nonlinear devices containing internal
noise sources. The systems we have in miﬁd are nonlinear,
but operated in a periodic steady state, which is assumed to
be known a priori. Examples of such systems are oscillators,
frequency multipliers, dividers, limiters, modulators, and all
linear networks.

Three major assumptions are made for such systems. The
first is that the system is driven periodically by known
voltages and currents which henceforth we shall call the carrier.

Second, we assume that the noise is bandlimited in a frequency

1In some systems (such as frequency multipliers) the
carrier may be at different frequencies at different parts of
the system.
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band surrounding the carrier. Third, we assume that the
signal-to-noise fratio at any point in the system is high.

" We have to mention here that a great deal is unknown about
the noise performénce of pumped nonlinear systems. Since the
noise is assumed to be narrow-band; the noise performance of
pumped nonlinear systems considered in this thesis will be
called the "spot noise performance'' of these systems.

A circuit theory for the study of propagation of small
perturbations through pumped nonlinear systems has been
developed by Penfield [3]. We start with a brief summary of
this theory in Chapter 2. Several forms of representations
have been developed for the modelling of physical sources of
noise in pumped nonlinear systems in the remainder of this
chapter.

Exchangeable noise power has Been defined for linear
systems [1], and the noise performance of these systems is
usually characterized in terms of a noise figure defined in
terms of these exchangeable noise powers. To characterize
the noise performance of pumped nonlinear systems, we develop
the concept of exchangeable amplitude and phase noise powers
in Chapter 3. The values of these exchangeable noise powers
are invariant to any linear lossless transformations. 1In
this chapter we also define a set of figures of merit for

these pumped nonlinear systems in terms of exchangeable noise
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powers. Two other ways of characterizing the noise perform-
ance of pumped nonlinear systems have also been described in
Chapter 3.

In Chapters 4 and 5 we discuss in some detail the analysis
of noise performance of abrupt-junction varactor frequency
‘multipliers and dividers. The theory developed in Chapters
2 and 3 has been used in this chapter to investigate the
noise performance of these devices. The figures of merit as
defined in Chapter 3 have been evaluated and illustrated in
Chapters 4 and 5 for the devices we have analyzed. Methods
to analyse noise performance of parametric amplifiers driven
by noisy pumps have also been given in this chapter.

Now most of the lossless nonlinear systems obey the
Manley-Rowe relations. We start with a discussion of these
relations in Chapter 6. A characteristic noise matrix has
been defined for these pumped nonlinear systems in this
chapter. The eigenvalues of this characteristic noise matrix
have the dimensions of energy. In this chapter we also inves-
tigate a canonical form that can be obtained for these systems
by lossless parametric imbedding.

It was shown by Haus and Adler that the eigenvalues of
the characteristic noise matrix defined for linear noisy net-
works remain invariant when the network is imbedded in a linear

lossless system. As far as terminal noise behavior is concerned,
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a pumped nonlinear system can be considered as a multiport
multifrequency noisy network, with each port exchanging power
at only one frequency, and no two ports exchanging power at
the same freqﬁency. In Chapter 7, we deal with the invariants
that can be obtained by cascading a multifrequency noisy net-
work with linear systems of different kinds. Typical examples
of cascading networks are linear noiseless networks, linear
and lossless networks, and linear lossless reciprocal networks.

As mentioned earlier in this chapter, very little is
known about the noise performance of nonlinear systems. This

thesis is expected to be a modest contribution to the study of

noise performance of pumped nonlinear systems.
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CHAPTER 2
REPRESENTATION OF NOISE SOURCES

IN PUMPED NONLINEAR SYSTEMS

Spurious undesired signals are always present in systems
and their components. These undesired signals are usually
called noise. Since noise reduces the amount of information
that can be transmitted with a specific signal power, quanti-
tative measures of noise are 6ften indispensable to engineering
evaluation of systems.

Transducers performing signal processing such as ampli-
fication, frequency mixing, frequency multiplying, frequency
shifting, etc., can be classified as two-ports for theoretical
analysis. Several schemes have been used to represent noise
at a given frequency o  in a linear two-port [1]. 1In this
chapter such schemes will be developed for the representation
of noise sources in pumped nonlinear systems. It will be shown
that at each port, for each frequency of the carrier, it is
necessary to have two equivalent internal noise sources rather
than the one that is required in linear circuit theory. Fre-
quency of the carrier is supposed to mean the freqﬁency of the
signal. It has also been shown that Rothe-Dahlke and Bauer-
Rothe types of representations can be used for the character-

ization of noise sources in pumped nonlinear systems.
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2.1. SOME CONSIDERATIONS OF PERIODICALLY DRIVEN NONLINEAR
SYSTEMSt

Circuit theory ;f pumped nonlinear systems has been
developed by Penfield [2]. The systems under consideration
are nonlinear, but driven by a strong periodic signal.
Examples of such systems are oscillators, frequency multipliers,
limiters, discriminators, modulators, and systems consisting
of such devices. It is of interest to enquire how small per-
turbations on the periodic driving are propagated through
such systems, and to this end development of a circuit theory
for these perturbations is desirable. 1In diffefent contexts
these perturbations could be desired or undesired modulation,
noise, hum, or synchronizing signals. In this chapter we shall
assume that the perturbations are entirely due to the noise
present in the system. In general the random noise processes
in such systems will, because of the periodic driving, be non-
stationary, but various representations can be developed that
are stationary, and hence can be described by spectral densities.
Consider a nonlinear system. Let us assume that the large
signal voltages and currents at various points within the system
are, by design, periodic with some frequencylwb. Thus the
voltage at some specific point within the network or across

one of its terminal pairs, v(t), is of the form

Frhis is a summary of Ref. [2].
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T Sk t
b v, e (2.1)

k=-co
where the Vk are the half-amplitude1 Fourier coefficients,
with V_k = V:. However, the actual voltage may deviate from

(2.1) because of noise. Thus

o jko t

v(t) = kf-m v, e ° 4+ sv(v). (2.2)

The circuit theory to be set up is one which describes the
perturbations év(t) and relates it to similar perturbations
of voltages and currents in other parts of the system.

The major restrictions of the theory are that the driving
is periodic, that the perturbations are at frequencies close~
to the carrier, and that these perturbations are small. .

In most systems of the type we are interested in, the
carrier is a sine wave. It is convenient then to assume that
the voltages ahd currents of the carrier are, at each port,

sinusoidalz. Thus

v(t) =V, e + v; e + &v(t) (2.3)

for some positive integer k.

1Note the use of half-amplitudes, rather than amplitudes
or r.m.s. values.

This assumption is no restriction on generality [2].
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4

We now assume that the noise perturbations év(t) contain
frequencies that are located in a band of width 20)c centered
about frequency kwo where ch < @ The perturbations are,
therefore, bandlimited. Similar expressions can be written for
currents and voléages at various places in the network. The |
various voltages like v(t) obey Kirchhoff's voltage law(KVL),
and the various currents in the network obey Kirchhoff's
current law(KCL). Furthermore, the carrier voltages and
currents at various parts of the network obey KCL and KVL, and
therefore the perturbations like &év(t) and 6i(t) obey KCL and
KVL.

Let us write 6v(t) as

dv(t) =2 vc(t) cos kwot + 2 vs(t) sin kmot. (2.4)

We can show that vc(t) and vs(t) are bandlimited about d.c.

In Eq. (2.4) we have represented the perturbations 6v(t) in
terms of two real slowly varying functions of time, vc(t) and
vs(t), which are defined without regard to phase of the carrier.
A similar decomposition can be done for the current perturba-
tion 6i(t) in terms of-two slowly varying currents ic(t) and
is(t). Similar decompositions can be done for all voltages

and currents in the network. The voltages vc(t) so defined

at various points in the network obey KVL, and the various
voltages vs(t) also obey KVL. Similarly, the currents ic(t)

and is(t) obey KCL.
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.

Let us write v(t) as
kaot * ~jko t

e + V., e °

vit) =V X

+ 2 vc(t) cos k mot

+ 2 v (t) sin kw t
s o

2Re |[V. | 3% + v (£) - 4v (v) Tt (2.5)
| Kl e v, - v (e e : .

and rewrite this in the form

j (ke t+0)

_I‘;kl +v (8) - jvp(i‘ e (2.6)

where va(t) and Vp(t) are slowly varying functions of time3,

v(t) = 2 Re

also bandlimited around d.c. The voltage va(t) can be inter-
preted, since it is small, as a perturbations on the amplitude
lel of the carrier. Similarly, since vp(t) is small, Eq. (2.6)

can be rewritten in the form

v(t) = 2 Re [ngl + va(EE} e

where the phase perturbations ¢v(t) is also slowly varying.

j [k t+d+0 (t))
7% v (2.7)

As pointed out earlier, it will be assumed in this chapter
that the small perturbation voltage 4v(t) is actually a noise
voltage. Let us call this vn(t), a sample function of a random
process. We assume that each sample function vn(t) is band-
limited and small. We now assume that even though the sample

functions vn(t) may not be stationary, the physical source of

3The relationship between va(t) and v,(t), and the pre-
viously defined vc(t) and vs(t), can be worked out easily [2].
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i

the nonstationary properties of the noise is the periodic
driving of the nonlinear system. With these assumptions, we
can show that the random processes vc(t) and vs(t) are
stationary in the wide sense.

Let us now investigate the "spot" frequency noise perform-
ance of these pumped nonlinear systems. In that case we may
write

vc(t) =V, eIVt 4 V: e JOt (2.8)
v (£) = v_ el 4 y¥ TI0E (2.9)

where Vc and Vs are random complex numbers,
The actual voltage v(t), then, is
jkow t
o

v(£) = 2 Re [V, + (V_ - 3V )l + (v¥ - V) e~30t] o

(2.10)
In Eqs. (2.8) and (2.9) it is assumed that the power
spectrum of the noise associated with the carrier at frequency
kwo may be nonzero only at the four frequencies + kmo + w.
We shall call w the frequency deviation. A typical spectrum
of v(t) is shown in Fig. 2.1,

Equation (2.10) may be rewritten as

ket 3 (koo +o) £ 3 Cke_to) €
.v(t) = 2 Re Vke + Vake -FVBke (2.11)
where ‘
Vg = Vg - 3V, (2.12)
Vo = Vo * 3V, (2.13)



s,(£)
AL T
..... |
—t f—e—
o~ £

Figure 2.1.

Spectrum of v(t)
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Equation (2.11) shows explicitly the three frequencies kmo,
ko _+w and ~ko_tw. The two sidebands here are both higher in
frequency than kwo and —kwo, respectively, and therefore these
representations are referred to as '"uppersideband'" representationms.
We will use representation of the form 2.11 in the rest of this
work. Various other kind of representations can be used for
v(t). All these and the mutual relations between them are given
in Ref. [2].

It has also been shown [2] that the terminal noise behavior

of a noiseless pumped nonlinear system may be written as

\ Z Z I
a aa af ‘ a
= (2.14)
VB. ZBa ZB& IB
or
V=21 (2.15)
~ -~

The matrix Z is a function of the operating point of the

nonlinear system.

2.2, PHYSICAL SOURCES OF NOISE IN PUMPED NONLINEAR SYSTEMS

For the nonlinear systems that we shall consider in this
chapter, we shall assume that the total voltage v(t) across the
nonlinear element is related to the current i(t) through it by

the equation

v(t) = F{1(©)} +n(t) (2.16)

where F {i(t)} is a functional of i(t), and n(t) is a noise
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voltage. For the pumped nonlinear systems we will also assume

:

that the noise power in a frequency band surrounding the carrier
at any particular frequency kmo is small. Let us also assume
that nonzero carrier currents flow in the nonlinear system only

at a finite number of frequencies4 0, + @yttt Hw, o

:

+ws, where

— —_— —
® %
o, = iwb o (2.17)
w Sw
s 2 |

According to Sec. 2.1 and Eq. (2.16), the "spot" frequency
terminal noise behavior of this system at a frequency deviation

w is given by an equation of the form

“A11 these frequencies can be expressed in the form +Hao ,

k an integer.
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where vaj and V_,. are the terminal noise voltages at fre-

Bj
quencies on+w and -on+w{ respectively; and Iaj and Iﬁj are
the corresponding terminal noise currents. naj and nBj are

the Fourier coefficients of n(t) at frequencies jwb+w and -jwo+w,
respectively.

Let us assume that the signal frequency at the input port
of the transducer using the pumped nonlinear system is mo and
that at pth port is pwo5 (see Fig. 2.2). Let us also assume
that the terminal constraints at the other frequencies present
in the nonlinear system are such that

Vi=-2"1'+N' (2.19)

where z' is a terminal noise voltage column matrix given by

(2.20)




T‘am T
Y
ap
o =
T VA
dm — T
im )
L N <P
7
g

Figure 2.2. Pumped noisefree nonlinear two-port.
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5' and E' are terminal current and noise matrices of the form
similar to Eq. (2.20). 2" is the impedance matrix determined
by the terminal constraints imposed on the systen.
It may now be seen that by using Eqs. (2.18) and (2.19),

I , 1 v ,V

we may obtain a relation between V_ , V_ , , ,
am Bm am fm ap ep
I , and I_ . In particular we can write
ap PP
v [ v v N I P ]
Vom C— Zamsm zamap zamﬁp. Lom Tam
V zI Z! ZC zl I "
Bm prom “fmpm “gmop “Smgp | | Tm | em .21
= v v ' v T o
Vap | |%apom Zapem Zapap Zapep | |Tap ap
\'4 z! z' A Z' I "
Bp ppom “pppm “gpap “Bpep | |“ep | | "Bp

2.3. REPRESENTATION OF NOISE IN PUMPED NONLINEAR SYSTEMS

It is the purpose of this section to develop different kind
of representations for the internal noise sources present in a
pumped nonlinear system.

Voltage Generator Type Model. It was shown in Sec. 2.2

that the terminal noise behavior of a pumped nonlinear system
may be described by the Eq. (2.21).

An equivalent network to describe the terminal noise
behavior of pumped nonlinear systems may, therefore, berbtained
from Eq. (2.21) (see Fig. 2.3). This shows that, for the purpose
of analysis, a pumped nonlinear system with internal noise

sources may be separated into a noisefree four-port and four



28

(1) (1)
n -
I ain “gp I
am 4+ - . ap
b S —— @ ~——_&N)—-'—-1~—° +
vam ' Vap
-° Noisefree ° -
(1) transducer % (1)
I - Pm ; »
+ okl “:’(:}———““ | : +
v v
fm ; PP
- O £ -

Figure 2.3. Separation of a pumped nonlinear four-port with
internal noise sources into a noisefree four-port

and external noise voltage generators.
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external noise voltage generators. This representation is
very similar to that obtained for linear noisy networks [1].

In the linear case, we can separate a two-port with internal
noise sources into a noisefree two-port and two external noise
voltage generators (see Fig. 2.4). The impedance matrix repre-

sentation of such a device is given by

— —
1 ‘11t Iy By
- + . (2.22)
V2 | |21 % I By

Current Generator Type Model. Equation (2.21) can be

written aslo in the form

vV =2 1 +N ., (2.23)
~mp  Tmp ~AmMp Amp

If the matrix gmp is nonsingular, we can write Eq. (2.23) as

I =zYty 4N (2.24)
where
(Nam)i
-1 (nﬁm)i
N =-Z "N = (2.25)
~mp “mp ~mp (a
ap)i
 Pept |

The equivalent circuit whose terminal noise behavior is
given by Eq. (2.24) is shown in Fig. 2.5.

It must be mentioned here that the statistical properties
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Figure 2.5. Separation of pumped nonlinear four-port with
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port and external noise current generators.
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of the external noise voltage generators in Fig. 2.3 and those
of the extermal current generators in Fig. 2.5 may be estimated
by knowing the statistical properties of the noise voltage in
Eq. (2.16). The statistical properties of n(t) may be estimated
by knowing the physical sources of noise in the pumped nonlinear

Y

system.

2.4, ROTHE-DAHLKE TYPE MODEL FOR PUMPED NONLINEAR SYSTEMS

Consider a two-port linear noisy network with noise sources
of unspecified origin. This two-port network can be represented
by a number of different equivalent circuits [1]. An equivalent
circuit of particular importance is that of Rothe-Dahlke [3].
This circuit, shown in Fig. 2.6, has both of the required noise
generators at the input. For many purposes, especially calcu-
lating noise figure, this is convenient.

The question arises whether such a representation can be
obtained for a pumped nonlinear system. The answer is in the
affirmative.

From Eq. (2.21), we can write

— - . — —
% YA A I "

~m “mm ¢ —mp ~m ~m

—_——— = -—-—:——— -—— - + _—- (2»26)
Xp é[')m l 'z'[;p I"P "';

] I N ]

where



1
,_‘v%--# +
Noisefree
linear : V2
system

Figure 2.6. Rothe-Dahlke noise model for

a noisy two-port network,
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2.27)
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(2.33)

(2.34)
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(2.35)

(2.36)

Equation (2.26) can be shown to be equivalent to the equation

v
Am
I
i Aam
[ —
where
B
¢
D
n
B%Y 4
and
n.
~]

The system of Eq.

circuit of Fig. 2.7.

=" - 2!

Zl'l nn

Al Tmm ~pm ~p

- z"l
—pm

n".
~p

(2.37)

(2.38)

- (2.39)

(2.40)

(2.41)

(2.42)

(2.43)

(2.35) can be represented by the equivalent

In this representation the noise sources
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Figure 2.7. Equivalent circuit with two noise voltage sources

and two noise current sources at the input.
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appear only at the input of the transducer. For this represen-
tation two voltage and two current sources have been used.

By premultiplying by matrix S where

—_— =1
A ' B
I
S = — =, (2.44)
c¢ | D
we can write Eq. (2.35) as
\'J \YJ n
~p ~AN g
—_—— = §|--- - s —
1:, ;Em ~L
| P ] M M
—_V ] ——n”—_
~m ANV
= S |--- + - (2.45)
I n!
~n ~1
I pa— - PR

The equivalent circuit corresponding to Eq. (2.43) is given
in Fig. 2.8. In this case the two noise current generators
and two noise voltage generators follow the noisefree transducer.

Because of the apparent similarity of Fig. 2.7 to Fig. 2.6,
representation of the form given in Fig. 2.7 will be called
Rothe-Dahlke type model for pumped nonlinear systems. This model
consists of a noisefree four-port preceded by two noise voltage
and two current generators.

Let us write
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n n' - 2° =1 _n
v A~ -mm —pm ~p
M= = . . (2.46)
8 L
~1 Z-pm ~p

The statistical properties of (Q)1 may, therefore, be estimated

from the knowledge of statistical properties of 2& and n

n
o
~p

This statement is also true for the estimation of statistical

?

properties of equivalent noise sources given in Fig. 2.8.

2.5. BAUER-ROTHE TYPE MODEL FOR PUMPED NONLINEAR SYSTEMS

The Rothe-Kahlke noise model for a linear noisy two-port
transducer has two noise generators that may be correlated at
the input. An alternate equivalent circuit, proposed by Bauer
and Rothe [4], also has two noise generators at the input, but
they are made to be uncorrelated. Because of this, the expression
for noise figures for a linear transducer has a particularly
simple form. This new model uses wave, or scattering variables
[5]. The incoming and outgoing waves at the input of the

linear system are

vV, + 2 1
a = B S }c (2.47)
V ZV + Zv
and
V, - 21
b = L__ v i (2.48)
Z + 2
v v

where V1 and I1 are the input voltage and current amplitudes,
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and Zv is a complex number with positive real part, the normal-
ization impedance. In a similar way, the incoming and outgoing
wave amplitudes at the output are a, and b2’ defined with a
normalization impedance that is; in general, different from Zv’
which was used at the input.

Wave noise generators are defined at the input, in terms

of the generators in the Rothe-Dahlke model, Fig. 2.6, as

e + Zvin
a4 = - ——— (2.49)
n 2/Re Z
and
' eq = %yl
b = —m— . (2.50)
n 2 VRe Zv
Thus, the linear system equations, including noise, are in
terms of the two-port scattering matrix S,
_ — S — I _
b1 - Py S S22 At ey
= (2.51)
b S S a
L2 _] "1tz ) | T2

An equivalent circuit of this representation is shown in Fig.
2.9. The wave generators are represented by directional
couplers and ordinary sources.

We can also develop a Bauer-Rothe model for the represen-
tation of noise in pumped systems.

From Eq. (2.37) we have
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Baure-Rothe wave model of a
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74



42

\'J
~p Ny
-+ - (2.37)
~p R4
_ — —_ = — — -
\/ A ' B v n
am =, = ap av
v , '/
fm = _ = Pp + nﬁv (2.52)
Lin 1 Iap Tai
C "D I
Tom = = Bp Tpi
Let Za and Zs be the normalization impedances at ports
1-1' and 2-2', respectively (see Fig., 2.7). Z, and ZB are

complex numbers with positive real parts.
The incoming and outgoing waves at the input of the pumped

system are

'
a =-20__0 om (2.53)
om s/za + z;"

aBm = — (2.54)

\')
b = (2.55)
am ‘/ *
Za + Za

and

b = -BB_B pm (2.56)
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In a similar way, we can define the incoming and outgoing

wave amplitudes at the output of the pumped systém. The nor-
malization impedances used in this case, will in general, be

different from Za. and ZB. |

Let us now define wave noise generators at the input, in

terms of the generators in the Rothe-Dahlke type model (see

Fig. 2.7). These are

vo a ia
a4 = e ——— 2 (2.57)
an 2 YRe Z,
n + Z ni
a =.-NB___ B 1B (2.58
pn 2 /Re Z
B
n -2z*n
ia
b = 22 : (2.59)
an 2 ‘/E;TB 4
and
nv - z* ni :
b, = BB 18 (2.60)
fn 2 |fRe Zy
We now write |
an
Ea = | (2.61)
a
an
and
b‘3n
gﬁ = ° (2.62)
a



44

We may now show that by properly choosing Za and ZB we

QZ and N_ Nt diagonal. These

can make the two matrices N
w ~f ~B

values of Za and Z_ are given by

g

5 5 }1/2
* - 2
7 = Pav®ai ~ av ai {k v’ a1 : avnal) + 4 'navl lnail
a
1/2
%* - 2
z ““i {( 51 ?‘ni)*"’l“l I“ei'}
B
Thus, the pumped system terminal equations, including
noise, can be written as
bam - ban Samam Samﬁm Samap Samﬁp aamf+ aan
b, -b S S S +
Bm ~ pn pmom  “pmm  “pmop  “pmep | | *pm "~ %pn
b T s S S s a
ap apam apfm apap appp ap
S S S S
| PP | | _Ppam " PGpPm  Ppap  APPP “ep L
(2.65)
a + a
om an
a + a
-s | Pm P (2.66)
a
ap
a
n——Bp —

The elements of the matrix S are functions of the matrices

A, B, G, D.

Since the values of elements of S are not needed in our

discussion, these relations are not given.
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From Eq. (2.66), we can write an equivalent circuit as
shown in Fig. 2.10. The wave generators are represented by
directional couplers and ordinary sources. The values of
these sources can be estimated by knowing the values of the

sources shown in Rothe-Dahlke model in Fig. 2.7.

2.6. EXAMPLE

Let us now consider a nominally driven abrupt=-junction
varactor frequency doubler [6]. The model assumed for the
varactor is given in Fig. 2.11. We will assume that the only
physical source of noise within tﬁe varactor is the parasitic
series resistance RS. If the temperature of the diode is Td,
then the thermal noise due to Rs can be represented [2] at

spot frequencies by

2
ENREER - WAN: (2.67)
where /\ f is the frequency range of interest.

We shall now develop a voltage genefator type model for
the abrupt-junction varactor frequency doubler.
1f Zb is the bias loop impedance and n, is the noise

voltage source present in the bias loop, we may write the

following equations for the doubler
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Bauer-Rothe type wave model

of a noisy pumped system.
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Figure 2.11.

Equivalent circuit of a varactor.
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Sk is the kth Fourier coefficient of the elastance S(t).
is the frequency deviation and mo,is the angular frequency
of the input sigqél (see Fig. 2.12). Since the physical
source of noise within the varactor is assumed to be the

parasitic series resistance RS we have

g1 |% = 3| = | ngo =’ln32|? - 2 R KT AE. (2.70)

Also the correlation between any two of noqs nBl’ noos n52’

and n is zero.

Let us now write (see Fig. 2.11)

fai

n, = (2.71)
nBi
Pao

n = . (2.72)

If m, Wy, and m, are the modulation ratios of the
doubler and @, is its cutoff frequency [6], we can show from

Eqs. (2.68) and (2.69) that
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Nk |my |°
1+ D 1+ b
2R kT Af 2R kT .Af
s d s d
2120=2R1<'1‘Af 5 - 3
m j(Z, 4R ) m j(Z,4R )
o) b [o)
+ : +
1% \ym 22 R /™1 m.m Sg R
1m2 w s 172 s
2 2
LY I
2R kIdZ&f 2R deZXf
) 2 2
m . J(Zb+RS) m . J(Zb+R )
|/m w Vm w
1 1r_—_- c 1™ —— C
m1m2 w Rs m1m2 w Rs
(2.75)

The methods of obtaining any other kind of model from

this model are given in the preceding sections of this chapter.
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CHAPTER 3
CHARACTERIZATION OF NOISE PERFORMANCE

OF PUMPED NONLINEAR SYSTEMS

4

This chapter deals with the study of noise performance
of pumped nonliﬁear systems. Méthods have been developed to
characterize the noise performance of linear noisy systems
[1,2]. 1In linear transducers one very significant question
is the extent to which the transducer influences the signal-
to-noise ratio over a narrbw-band (essentially at one
frequency) in tﬁe system of which it is a part. The term
"spot-néise<performance" has been used to refer to the effect
of the transducer upon the single-frequency signal-to-noise
ratio [1]. The concept of exchangeable powers has been
developed for these devices, and meaningful definitions of
noise figure, noise measuré, and exchangeable poﬁers have also
Been given.

In this chapter an attempt'has'been made to define
meaningfully exchangeable amplitude and phase noise powers
- for the pumped nonlinear systems we are considering. The idea
of linear lossless imbeddings has been used for this purpdse.
Meaningful noise figures have been defined by comparing output
parameters with source parameﬁers. This definition of noise
figures has the advantage that the figures thus defined are
invariant to any further linear lossless imbeddings one may

wish to use,
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Alternatively, a noise figure matrix has also been defined
for theée devices in terms of the noise Qoltage matrices and a
gain matrix. A cascade formula has been obtained for the noise
figure matrix thus defined.

Finally, the noise performance of pumped nonlinear systems
has been characterized in terms of variances of input and output
parameters. The figures defined in terms of these variances
seem to have a lot of physical significance. It has, however,
been shown that they are functions not only of the source
impedance but also of the load impedance. This does not seem
to be a very desirable feature.

It may be pointed out here that this set of characteriza-
tion of noise performance of pumped nonlinear systems is by no
means complete. It is, however, felt that these characteriza-

tions are adequate for our purpose.

3.1. DEFINITION OF EXCHANGEABLE AMPLITUDE AND PHASE NOISE POWERS

At a frequency @, of the carrier, an appropriate represen-

tationl'of the terminal noise behavior of a pumped nonlinear

system is
[ 7] [ T 7] [ ]
Va Zaa zaB Ia “a
= + (3.1)
el e %ee) [Te] [T

1In th1s chapter we shall use half-amplitudes, ‘rather than
amplitudes or r.m.s. values.
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or
V=214+N - (3.2)
~

~ ~
as shown in Fig. 3.1 [3]. The rioise is assumed to be band-
limited and the signal-to-noise ratio is assumed to be high.
Vs is the carriér‘voltage;:and Is is the Larrier current. In
this sectionlwe are_going}to.consider only the terminal noise
behavior of the device. The frequency deviation is assumed
to be w. |

A linear losslessinetwork whose impedance matrix.at each
"spot":frequency of interest is nonsingular is defined to be a
nonsingular Iinear'lossless netﬁbnk.z

Let the.pumped noniinear system be cascaded with‘a linear
lossless network as shown in Fig. 3.2. Let also fhe system of
Fig. 3.1 be described by

V' =2"T' +N' (3.3)

in the amplitude-phase representation. The_relations between

amplitude-phase and o - B representations are given by [3]

’ =

4 AV (3.4)
oy z ATl - (3.5)
LI C

I AL (3.6)
L = y

N AN (3.7)

where
2

All linear lossless networks considered in this chaﬁter
will be assumed to be nonsingular. '
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Signal port is not shown in the figure.
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-3¢
1 1| ]e VY 0
Av - % (3.8)
8,
k| -j 0 e
S PR |
and
-30.
1 1{le 1 0
A =3 - c (3.9)
i8y
j -j 0 e

¢v and ¢i are the phase angles of carrier voltage and carrier
current at the frequency @ It will be assumed that the load
impedance for the carrier at frequency @ is purely resistive?

In that case, we have

¢v = ¢i (3.10)
and
;v‘= A (3.11)

We can also show easily that

+ _ 1
A, =3

-1

Av . (3.12)
The pumped nonlinear system in the amplitude-phase

representation is shown in Fig. 3.3. This system cascaded

with a linear lossless network is shown in Fig. 3.4. Its

terminal relations are given by Eq. (3.3); or we may write

3This assumption will also be made for the terminations
at frequencies of the form kwo, where k is an integer.
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60

'
| n ' I
| e /" a !
o—— e oV = !
| |
1 {
| {
: |
o ;Mw__ Linear n {
A N [
[ lossless n; z" |
|
N - !
°=m%w*r network a <§D ;
1 | i
i [ i
| | '
! i
e—-!—-—‘ e |
f |
I I
J

Figure 3.4.

Pumped nonlinear system in the amplitude-phase
representation cascaded with a linear lossless

network. Signal port is not shown in the figure.
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— — —_ — — -
|._
1 7" " ] 1]
Va zaa zap Ia N3
= + . (3.13)
Vl le ‘z" ID nl
| P | | Ppa PP| | P P_|

n;, n; are complex random variables, the physical signif-
icance of which usually appears in their self- and cross-power
spectral densities. A convenient summary of the power spectral

densities is the matrix

4]
m-

¥ o
N' N . | (3.14)

nélz

Since the voltages of §' §"+ are noise voltages it can be argued
on physical grounds that the matrix N' §'+ is positive definite

[1].

When the pumped nonlinear system is cascaded with a linear
lossless network, a new noise column matrix ﬂé, and a new
‘impedance matrix g; are obtained. It is assumed that the
1inear lossless network does not affect the carrier.

We 'shall first find the new_Z_t and §t matrices for the
syStem in thé a - B representation.

The analytical relation between the voltages and currents

applied to the 4-port linear lossless network (it will be
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called the "transformation'" network) of Fig. 3.2 can be

written in the form

Xa B Zaa Ea + Z'ab zb (3.15)
Yo = Zpa Lot Epp Ly (3.16)

The column vectors Xa and Xb comprise the terminal volt-
ages applied to the transformation network on its two sides,
and the column vectors %a and %b comprise the currents ET |
flowing into it. The four Z matrices in Eqs. (3.15) and (3.16)
are each square and of second order. They make up the square
fourth order matrix gT of the lossless transformation network.
The condition of losslessness can be summarized in the following
relations, which express the fact that the total time-average

power P into the transformation network must be zero for all

choices of the terminal currents:

+ + | ‘
P = ET (ZT + gT) ET = 0, for all ET’ (3.17)
therefore
z, + 5; =0 (3.18)
or
+27 =0 (3.19)
——aa -—aa
+
Z,+2_ =0 (3.20)
and
z.. +7zF =0 (3.21)
Zop T Zpp . .

The original 2-port network, with impedance matrix Z
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and noise column matrix N, impose the following relation
between the column matrices v and £ of the voltages across,
and the currents into, its terminals:

V=21+N. (3.2)

~
The currents 2 into the 2-port network are, according to Fig.
3.2, equal and opposite to the currents Ea into one side of
the 4-port network. The voltages X are equal to the voltages
V_. We thus have

~na

,X = !a (3.22)

I=- Ea’ (3.23)

Introduction of Eqs. (3.22) and (3.23) into Eq. (3.2)

and application of the latter to Eq. (3.15) give

- -1. -1
fa=-E+Z)) +E+z) N

Zab Eb
When this equation is substituted in Eq. (3.16), the final

relation between V, and I, is determined:
~b ~b

Vo =& Lt N, (3.24)
where
- -1
Bom Lyt By, EHE)T 2, (3.25)
and
- -1
Ne = Zpa @+ Zp) N (3.26)

Equation (3.24) is the matrix relation for the new pumped
nonlinear system obtained by cascading the original one with

a linear lossless system. Here ZT is the new impedance
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matrix, and Et is the column matrix of the new open-circuit
noise voltages in the a-p representation. By Eqs. (3.5) and
(3.7), the new impedance matrix g; and the new open-circuit
noise voltage matrix §é in the-amplitude-phase representation

1

are given by

Z -2,z 0] .27

where Av an& Ai are as given in Eqs. (3.8) and (3.9).
Let us now assume that the phase noise port in Fig. 3.4
is open-circuited (or short-circuited). The terminal relation
at the amplitude noise port can now be written as (phase noise
port open-circuited)
(V;) = (Z;a)t (Ié)b + (n;)t, (3.29)
The amplitude noise power that can be obtained from the

system for an arbitrary amplitude noise terminal current (I;)b

is given by

Po= - [OVDE (I)y + @D (vh,]
- |fapy + e, - agn™ }t(l" + Y]

{} F ), + @) :%

{}n°> ), + (z;a)t] (“Q)Q}J : (3.30)
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The stationary value of Pa when (I;)b is arbitrarily

varied is clearly

. ), () . (3.31)
"oy~ TR °
©8 (Zaa)t + (Zaa)t

We shall call this Pe a exchangeable amplitude noise power.
b4

This power can be obtained from the system by arbitrary varia-

tion of the terminal amplitude current.

This exchangeable amplitude noise power can be written in

matrix form as

&L AN 1\%* + T i+
P (na)t (na)t _ »% E.t 'I\q,t é
e,a h (z" ) + H(Z" )* - €+ " + zh"i') ¢
. aa aa‘t ~ -t -t ~

where the (real) columm matrix % may be represented as

e=1| |. (3.33)

Let us now see whether there exists any stationary values
of Pe,a when the linear lossless network is arbitrarily varied.
The variation of the linear lossless network in Fig. 3.4 now
corresponds to variation of the transformation network through
all possible forms. We wish to find the stationary values of
Pe,a corresponding to variation of the transformation network.

To render explicit this variation, Et is first expressed in
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terms of the original ﬁ' and Z'". Accordingly,
UL R . +
Ne Noo= 2, NoNP A

]

+
" 1] -1 8 0o " " " “1}
Zp @'+ 2,070 NUNF gzp @+ 2z))

= NN g (3.34)
where
+ - 1" " 1 "1
o=z, @ +z ). (3.35)
Let us now express g; in terms of Z'". We have
" V"+ - "1 +"1 + +
gt az e g

4
— " " " -1 1] n+ " 1] " -1
- Zba(g + Z'aa) @' +z") Zba(é + Z='a:=1) j}

= :f.=+ 2" + _Z_"+) T. (3.36)

It follows that

(%+I%) ﬂ' E'+ (I %) 357
P = 3
e,a (.% 1+) (;ll + én"') (1 '%)

in which matrix 1 is to be varied through all possible values
consistent with the lossless requirements upon the transforma-

tion network.

A new column matrix s may be defined as
~

s=1¢& = : (3.38)
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We may also write

+ _ " 1 noy -1
st =1 0] {jgba(g_ £z :} , (3.39)

~

Case I:

Let us now assume that w/aoo is not arbitrarily small. 1In

this case we can show easily that

and

TR +
Zba 2 Av Zba Av
m1+jn1 0
=22 ar (3.40)
=v =v :
0 m2+jn2
z' =227 Z A
“aa v “aa v
ixg 0
=2 2 N (3.41)
v =v 4
0 | 'sz

where Xys Xy, Wy, My, Ty, and n, are arbitrary real numbers.

We can now write

1 1 f3xy o | 1 -5
noo_ 1 1
Zaa 2 2 2
i oo-3 0 ix, 13
j(xl+x2) Xy =Xy
- % : (3.42)
i =Xy K, j(x1+x21_
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and
- . . -1
" L " . —_ -
Zaa ¥ 7 I(xytxy) Zap ¥ 7 (xy7%5)
" w o s~1 _ ‘
@' +zh )7 =
" l - (1] l °
Zpa + > (x2 xl) . pr + > J(x1+x2)
7"+ L (xo4x) Z" o+ L (x -x)
pp 2 I%F17% _fap T2 ¥17%
A A
70+ L (x -x) 20+ L ox4x)
_fpa T2 V™™ aa ~ 2 IV*T%)
A N
£ )
= (3.43)
t3 t4
where
z" +-1-'(x+x) z" +-]-"(x -X,)
aa @ 2 3V ap © 2 ‘*17%2
/N =
z" + 1 (x,~-x Z" o+ 1 j(x,+x,)
pa 2 W2 71 PP 2 172

We can show that we can always make £\ nonzero by properly
choosing Xy and X,

From Eq. (3.40)
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ml"l-jn1 0
+
" o
Zpa = 2 1, 2,
0 m2+jn2
(my+jng) + (m,+jn,) -] (mlﬂ"nl) + §(m,+jin,)
- % - (3.46)
’j(m1+jn1) - j(m2+jn2) (m1+jn1) + (m2+jn2)
It, theréfore, follows that
+ _ ot t = " " noy-1
S = % I (1 0] Zba(g + g'aa)

% [tl'{km1+jn1) + (m2+jn2€} +'t3'{:j(m1+jn1) +»j(nb+jn2i}

+ t2<{j(m1+jn1) - j(m2+jn2i} + tA‘{km1+jn1) + (m2+jn2{E] .
O (3.47)
By looking at Eq. (3.47) we may conclude that the elements
1 and sz_of the matrix gttake on all possible complex values
asltheblossless network is varied through all its allowe&
forms. Consequently, the stationary values of Pe,a in Eq. (3.37)

may be found by determining the stationary values of the expres-

sion

P = T (3.48)
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as the complex column matrix s is varied quite érbitrarily°
The solution of this problem is well-known in matrix
theory [4]. The stationary values of the exchangeable ampli-
tude noise power Pe a caﬁ be shown to be given by the eigen-

s

" values of the matrix

I
M.a = (Z" +_Z_"+) | Eq §v+° (3.49)

In general there are two eigenvalues of matrix y%a The
maximum of ﬁhese eigenvalues will be defined by us to be the
exchangeable émplitude noise power of the system. The exchange-
able amplitude noise power of the system, therefore, is given
by the maximum of the eigenvalues of the matrix ga. In this
ﬁay we can meaningfully define exchangeable amplitude noise
power, |

In a similar way, it may be shown6 that the stationary
values of the exchangeable phase noise power Pe q are given

’

by the eigenvalues of the matrix
_ ' -1 ——
M= " + z'h N' N'F, (3.50)

The maximum of the eigenvalues of Mp will be defined as
the exchangeable phase noise power of the system.
Also, Ma and gp will be called the characteristic-noise

matrices of the system.

6In this case we open-circuit (or short-circuit) the
amplitude noise port in Fig. 3.4.
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Case 1II:

If w/wo is arbitrarily small, it may be shown that
m, +jn; =m, + iny; X = Xy (3.51)

in Eqs. (3.40) and (3.41).

Accordingly, Y
m1+jn1 0
Zga = . (3.52)
0 m1+jni
and
—_;l [ - " T
Z +Jx1 Za
AN A
(z" + -Z-Qa)-l = (3.53)
- 2" 2" +jx
pa aa -1
a AN
where
" 2 "
Zaa+Jx1 Zap
A\ = . (3.54)
" " 3
;pa ‘pr+jx1

We may now write

+ — " 1] " -1
s =1 0] Zya " + Z-aa)



- ' on _ot
A (m1+3n1) Fl xl] pr Zap

‘

. ] 9
(m1+3n1) [x1 X1%y A

|
IH

>
>’
g

1 .

T2 et by oyl oA
. +

- 2w Gt g7 A

where

VAL AL
PP ap

and xi is an arbitrary real number.

Equation (3.48) may now be expressed as

t )\ ST F
L AN T Aty

P = -
e,a Yt é(_z_" + Z."+)é+ v
~ . ~

72

(3.55)

(3.56)

(3.57)

It can be shown that the matrices A N' §'+ éf and A(Z" + §P+)éf

are Hermitian matrices. 1It, therefore, follows that
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*
+ t A 2‘,'?3,"" A+ +{:A. E'§'+ A‘l‘}] y (3.58)
and

*
gt AZ" + 2"t y = 5F E_@'.' + 2ot +{a@ + 298"} |y,

?‘4‘_’
1>
ez
oz
3
>
o<
"
o<

~

(3.59)
Accordingly,
t +, +,*
vy AN'N'F ATH[AN'N'TAT] [ y
P = — ~= ~ (3.60)
2 a2t s e szt

The column matrix y in Eq. (3.60) is a real arbitrary
vector the elements of which take on all possible values as
the lossless network is varied. The stationary values of Pe a

are, therefore, given by eigenvalues of the matrix

-1
Ma ={A(Z." + Z"+)é+ + [A(Z." + _Z-n"")é"']*}

{é. NNt AT+ ;g'ﬂ*} (3.61)

[}

In this case also the maximum of the eigenvalues of ua
will be defined as the exchgngeable amplitude noise power of
the system., . |

Similarly, it can be shown that the stationary values of
the exchangeable phase noise power are given by eigenvalues of

the matrix
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-1
X ={§(§.. + 2B + B + E"+)§+J*}

where -
gn .
pa aa
B = (3.63)
. 0 3
L _ |

We shall, therefore, define the maximum of the eigen-
values of Mp as the exchangeable phase noise power of the
system.

In this section we haﬁe developed the concepts of exchange-
able amplitude and phase noise powers for pumped nonlinear
systems. These exchangeable noise powers are defined as the
maximum of the powers that can be obtained from the systemlby
cascading it with a linear lossless network. The values of
these powers can not, therefore, be changed by the use of any
further linear lossless networks. We have also showed that
exchangeable amplitude and phase noise powers are the same
fo; the system if w/a)o is not arbitrarily small. 1If m/wo is
arbitrarily small, the two exchangeable noise powers need not
be the same as shown by Eqs. (3.61) and (3.62). We shall
denote by Aa the exchangeable amplitude noise power of the

system, and by xp the exchangeable phase noise power.
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Physical intuition requires that the values of A, and kp
must be invariant to a linear lossless transformation that
preserves the number of terminal pairs. This is indeed-the
case may be proved as follows. Suppose that the original system
with characteristic-noise matrices ga and Mp is cascaded with
a 4-port linear lossless network as shown in Fig. 3.4. A new
system is obtained with characteristic-noise matrices M; and
gé. The eigenvalues ofvgé and Mé are the stationary values of
the exchangeable amplitude and phase noise powers of the system
obtained in a subsequent cascading of the type shown in Fig.
3.4. This second cascading network is completely variable.
One possible variation removes the first 4-port cascading net-
work. Accordingly, the stationary values of the exchangeable
~amplitude and phase noise powers do not change when a 4-port
linear lossless network is cascaded with the system.

The results of this section can be summarized in the
following three theorems.

Theorem 3.1. The stationary values of the exchangeable

amplitude noise power that can be obtained from a pumped non-
 linear system by cascading the system with a linear lossless

network are given by the eigenvalues of the matrix

(1 v =@ +2zh T FNT (3.49)

when w/w_  is not arbitrarily small; and they are given by the

eigenvalues of the matrix
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-1
(2) b_f]'_a ={é‘(-z-n + _Z_"+)é+ + (_A_(Z'." + Z."+) é"‘]*}

{é EDEU-{- é_++ [é §t§v+ é+]*} (3,61)

A

when w/w_ is arbitrarily small. The matrix A is represented as

1>
0

(3.56)

Theorem 3.2. The stationary values of the exchangeable

phase noise power that can be obtained from a pumped nonlinear
system by cascading the system with a linear lossless network

are given by the eigenvalues of the matrix
D o=@+ NN (3.50)

when cn/w0 is not arbitrarily small; and they are given by the

eigenvalues of the matrix

@ M ={§(_Z_" +zHe" + B + zHeh*

{2 777 3+ 10 777 o'} (3.62)

when w/wo is arbitrarily small. The matrix B is represented as

7N ]
zpa Zaa

B = . (3.63)
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Theorem 3.3. The eigenvalues. of the characteristic-ﬁoise
matrices Ea’ and ﬂp associated v}th a pgmped nonlinear system
are invariant to a linear lossless transformation of the form
shown in Fig. 3.4.

As mentioned earlier, the exchangeable amplitude noise
power of the system will be denoted by Ay and the exchangeable
phase noise power by kp. The}values of Ay and xp do not change
when the system is subjected to a linear lossless transforma-

tion of the type shown in Fig. 3.4.

3.2. CHARACTERIZATION OF NOISE PERFORMANCE OF PUMPED NONLINEAR
SYSTEMS

For a linear transducer, the noise figure, at a specified
output frequency, is defined as the ratio of the total noise
power per unit bandwidth exchangeable at the output port when
the only source of noise in the source network is thermal noise
at standard temperature (To = 290° K) to that portion of the
total noise power engendered at this frequency by the thermal
noise of the source [1].

In this chapter, three sets of figures of merit have been
proposed for pumped nonlinear systems. Tﬁese seem to be
adequate for our purpose.

Part 1.

For a pumped nonlinear system, the concepts of exchange-
able amplitude and phase noise powers have been developed in

the previous section. We now propose the following definition
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for the noise figure matrix in terms of these exchangeable noise

powers.

The noise figure matrix F for a pumped nonlinear system

is defined as

Fzs/x ).

a” in

TP

=
(]

(3.64)
(s/A )in
(s/2)

p’out

where (S)in’ (xa)in’ ()\p)in are the signal power, the exchange-
able amplitude noise power and the exchangeable phase noise
()

and (7\p)out are the corresponding quantities at the output port.7

power at the input port of the transducer, and (S)

out’ out’

Let us now write F as

|
]

(3.65)

We can now make the following observations. The values
of FA and FP do not change when linear lossless networks are
interposed between the system and the source or between the
system and the load. This is a very desirable feature. It

can also be shown that FA and FP are equal for a linear

7It is assumed that the output signal frequency is
different from the input signal frequency. If they are the
same, we can treat the system as a linear transducer.
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transducer when the only source of noise in the source network
is thermal noise. Also the value of FA or FP in this case is
identically equal to the noise figure defined for these trans-
ducers.

Part II.
The terminal noise behavior of a pumped nonlinear system,
as shown in Fig. 3.3, is given by ’

vi=2z"1I' +N'. (3.3)

~
Let us assume that this is a source network. If this

source network is used to drive another pumped nonlinear

system (see Figs, 3.5, 3.6) the terminal noise relations of

which are given by

VU le | ZH Il—— nl

~0 —oo | —oi ~O ~O
S U R -+ | --- (3.66)
Vv Z" I le Il n'
~i =jio | —ii ~1 ~1

the terminal noise relations at the output of the resulting

system are:

Vo il Tt 1
ZO Zt zo + ﬁt (3.67)
where
1" = 1" " " -1 "
! Zp = Zoo " Zoy 2T Zy) 724
and

-1
o= n " " v e
Ne =80 * %5 @' +2y)) {R‘, Ri}

We shall now define a gain matrix T for the system as

[P
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T

Tzt T (3.68)

If the driven nonlinear system does not contain any

internal noise generators, Eq. (3.66) may be written as
1 - 71t T 0
vi=2z!L'+TN. (3.69)

We now propose the following definition of the noise figuré
matrix for the transducer we:are cohsidering° The noise figure
matrix F' is defined as

-1

pr =71 §'nF tHl oy onTF . (3.70)
— - ~t At — N~

We can show that Eq. (3.70) can be written as8

"+ (3.71)

F' =T'1‘T NN 1T+ N N"+' 1 ¥ n
- - Rl VI VI - Al oAd - N~
where
N =l'l' - T n!o
~l - ~o = ad

Qi will be called the noise matrix of the transﬂucef.
According to Eq. (3.71)

- I |
Fr=1+7t mmF ot Nt (3.72)

The matrix F' is a unity matrix if the pumped nonlinear

system of Fig. 3.5 does not contain any internal noise

81t is assumed that there is no correlation between the
noise sources in the source network and those shown in Fig. 3.5.
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generators. Let us now assume that the source is purely

thermal.9 In that case10
RinkToésf 0
N' N'+ = .

0 Rink?OAXf

We may then write
F' =1+ — (3.73)
RinkTozﬁsf
1

N' N+ TTl is a positive definite

We can show that T H
o ~ ~1

matrix in all but cases of trivial interest. In that case the

L nnt If-l are always positive.

diagonal elements of T PN

The diagonal elements of F' will always be greater than unity;
and the magnitudes of these elements will exhibit the noisy
character of the device. This is another advantage of defining
F' as in Eq. (3.70). It is also clear from Eq. (3.72) that F’
will be a unity maﬁrix if the pumped nonlinear system does not
contain any internal noise generators.

Example. We showed iﬁ Chapter 2 that an equivalent circuit

for a noisy pumped nonlinear system can be written as in Fig. 3.7.

9This assumption is made in, K defining the noise figure‘for
linear transducers. '

1ORin is the real part of the internal impedance of the

source, and To is the standard termperature.
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Figure 3.7. Pumped nonlinear transducer.
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for this representation are given

These relations are given in ao-pB representation.

source network of Fig. 3.1 is

Fig. 3.8), the terminal noise

n
~Q ~V
T (3.74)
I n,
~O ~L
If the

used to drive this transducer (see

-

behavior at the output of the

resulting system is given by an equation of the form

Xo = Zt £o + Et' (3.75)
Equation (3.2) can be written as
[ X_
|
[1'-z]1|"""| =N (3.76)
x
According to Fig. 3.8
X = Vl; E = - £i' (3.77)
Accordingly
I ~i
(11 -2]) |-—-—| =N.
] ~
_—'\'i—

Using Eq. (3.74), we now have
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Figure 3.8. Pumped nonlinear transducer driven by a noisy source.



Let us write
M=A+2ZC,

Equation (3.79) can be shown to be equivalent to

\'
| ~0 1
-1 _——— = - - -
!.1.:‘1'1_ {E’*‘Z.Q}l =M~ (N-n -Zn).

_ -1 }
Z = M ij§_+ ZD
N = Mt (N -n -2Zn.)
~t - V) NV _'\:]...

Let us assume that

P — —

-j¢Vo
1 1 e 0
\ =1 |
Vo +J¢VO
j -] 0 e
- ,—] S PRNS—S
'j¢v-
1 1 e - 0
1
A ==
-V 2 .
1 ‘J¢vi
3 -] 0 e
L B |
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(3.78)

(3.79)

(3.80)

(3.81)

(3.82)

(3.83) .

(3.84)
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where @y, and @y; are the carrier voltage phase angles at the
input and'output of the transducer respectively.

Using Eq. (3.28), we have

(- -1 - -
Ne =2vo 87 B -1, - Z1y) (3.83)
N' = 2ay; N (3.86)

Also, according to Eq. (3.68),

T = Mo yg Mg - (3.87)
F' may now be written as
Pl mwE ool R R
-— -— ~nt At ~o~
= M"lxv MY NN + [n +Zn)ln +2n 17
Z\'VI—A’O—O_ VY] ~V = Al tAv = ~i
_-1
+-1 + _+-1 4+ + _+-1 Nt -1
1 vy vy M Ay Ay AR 2vs
+ Lo
=I+4+xA [n +Zn,]lln +Zn,] NN A
- i ~ - ~oA ""Vi
(3.88)

Equation (3.88) shows that F' is only a function of noise
sources, Ay;, and Z. This agrees very well with our physical
intuition.

Cascade Formula. Let a source network whose terminal

noise relations are given by Eq. (3.3) drive a transducer of the

form shown in Fig. 3.6. The noise figure matrix Ei is given by
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—_— -1
SRR S TETAR A T @.72)

If this same source were driving a second transducer with
gain matrix 11 and a noise matrix Qgi)l, the noise figure

matrix Eé is given by

| 4
1 o -1 'R I\t ° +-1 9 14
=i+ @, @7 L, N X : (3.89)

If the two transducers are put in cascade (it is assumed that
the operating point of either'bf the transducers does not
change due to this operation), and the combination is driven
by the same source (see Fig. 3.9), the gain matrix of the

combination is given by 11 T and the noise matrix by

' J
I Nt @y
The noise figure matrix EiZ of this combination can be

written as
-1

v = -1 T qt+ mt T T +-1 5 it
Fp-1=@GD L N N L+ @), (§1)1}(11 D NN

= -l—l—-—_l-l: +-1 ] 14 -1 =ilm-1 ] 1y+ +-1
I NI NN +I UL, M)y BPT T

-1
i+ . (3.90)

=2
2

Using Eqs. (3.72) and (3.90),

-1

& -DNN*ION Nt L (.9

Fj -L=Fj -L+17

This is the cascade formula we get when we put two



90

—OeT Transduceg 0= Transducer | °
1 2

‘() Gain matrix *C? Gain matrix
=T o =T, —

yA Noise matrix‘ Noise matrix
YTt - ﬁig. FE= - Q\‘{.{)l s

i 9

o o

Figure 3.9. Two pumped nonlinear systems driven by a noisy source.



91
transducers in cascade as shown in Fig, 3,9. The noise figure
matrix F,, is expressed in terms of F,, Eé, T, and the noise
power matrix of the source.

This expression is very similar to that obtained for
linear transducers. If Fi and Fé are the noise figures of two
linear two-port transducers and they are connected as shown
in Fig. 3.10, we can show [1] that the noise figure FiZ of

the resulting transducer is given by

!
Fl l_1+2—:—.}.
1 G

12 - 1=F

(3.92)

where G is the exchangeable gain of the first transducer.

The noise figure matrix has been defined in this section
with the aid of impedance formalism. If a different matrix
representation (such as admittance matrix representation,
chain matrix representatibn) is used it is easy to see that
this noise figure matrix can be redefined in terms of these
representations.

Part III.

It was mentioned in Chapter 2 that the total voltage v(t)
around any frequency + kwo may be represented as

jka)ot j (k(uo-lw') t j (-kwo+w) t
e +V _e +V_ .e .

v(t) =2 Re |V ok Bk

K (3.93)

We now write v(t) as

’ . . ll j (ko _t+p)
- . Jwt T . g* -jw o
v(t) = 2 Re !vkl + (V,, +] vpk)e + (Vak+3 Vpk)e e

(3.94)
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Figure 3.10.

Combination of two linear transducers

driven by a single source.
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where
v, = |vk| 39 (3.95)
-39 i@
v ) Vak e + VBk e
ak -2
vV . ewJ¢ =V ej¢
Vo = ak 73 Bl (3.97)
Here, Vk is the carrier voltage component, and Vak and VBk

are the noise voltage components located at a frequency w from
the carrier.

Equation (3.94) can be written

j (kw_t+P)
v(t) = 2 Re [I%k‘ + Va(t) + j VP(éE] e ° (3.98)
where
v () = vakeJ“’t + V:k e Jot (3.99)
Vp(t) = Vpkejwt + V:k e-jwt. (3.100)

Because of our assumption of high signal-to-noise ratio,

v(t) can be written [5] as

v(t) = 2 [[Vk|’+ Va(éi] cos :E%ot + Vp(t)/’Vkl + é] . (3.101)

We shall, therefore, refer to Va(t) as the amplitude
noise, and to Vp(t) as the phase noise.

The instantaneous amplitude of v(t) is given by

R(t) = 2 [[Ykl + va(gij : (3.102)
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and the instantaneous angular frequency of v(t) is

w, (t) = ko + v;(t)/lv (3.103)

el -
The definition of instantaneous frequency adopted here is the
time derivative of the instantaneous phase.

The normalized variance of the instantaneous amplitude
of v(t) is given by

oﬁ - vi (t)/’vk|2, (3.104)

The normalized variance of a stochastic variable is defined
as the variance of the stochastic variable divided by the
square of its mean. Also, the normalized variance of the

instantaneous angular frequency of v(t) is

o = v;)z (t)/le|2 (k). (3.105)

A functional representation of a transducer is given in
Fig. 3.11. This representation assumes meaningful
definitions of input impedance Zin and load impedance ZL for
the transducer we are considering. We shall assume in the
remainder of this section that such is the case for the trans-
ducers we are considering. It must be mentioned here that the
representation given in Fig. 3.11 describes only the signal
behavior of the device. When Re Zin = Re Zl’ we shall say
that the transducer is matched. It may be worthwhile to point

out that Zin can be a function of the input signal voltage V.
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Figure 3.11. Transducer with an input impedance

Z

in'and a load impedance Z
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We define [6] amplitude figure of merit Fx for
transducer as

Normalized variance of instantaneous amplitude
LL B

96

the

of current in ZL

A Normalized variance of instantaneous amplitude

whén the transducer is matched.

»

The frequency figure of merit Fs is defined as

Normalized variance of instantaneous frequency
"

of current in 21

(3.106)

of current in ZL

P Normalized variance of instantaneous frequency

when the transducer is matched.

of current in Z1

(3.107)

It is assumed that the impedances 21 and ZL are linear

impedances. With this assumption, in defining F, and Fp, the

voltages instead of the currents across the impedances ZL and

Z1 may be used. The two results will be the same.

The values of F! and Fg will depend not only on the source

A

and load impedances but also on the operating point. We feel

that a convenient and useful operating point to define FX and

F; is the point of optimum efficiency.

It must be noted that the values of FX and F;

will change

if we interpose a linear lossless network between source and

transducer or between transducer and load. Fx and F; have

been defined in terms of the variances of input and output

parameters. The variances of quantities like amplitude and

frequency have a lot of physical significance. We may
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therefore say that a good transducer is characterized by low

1" 1]
values of FA and FP‘

" 1"
The values of FA and FP

compare and contrast the noise performance of different kinds

may, therefore, enable us to

of transducers; and may indicate the direction in which im-
proved noise performance can be obtained.

Three different characterizations have been suggested
in this chapter for describing the noise performance of pumped
nonlinear systems. We shall mainly use FX and F; for analyzing

and comparing the noise performance of harmonic generators

and dividers considered in Chapters 4 and 5.
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CHAPTER 4

NOISE PERFORMANCE OF VARACTOR FREQUENCY MULTIPLIERS

Varactor frequency multipliers have found considerable
application in the field of generating microwave signals for
receiver local oscillators, parametric amplifier pumps, and
other applications during the last few years.

Penfield, Rafuse, and others have analyzed many harmonic
generators in which varactor diodes are used [1]. They have
not investigated the effect of noise in these multipliers;
the noise analysis of these devices forms the subject matter
of this chapter.

The quality of performance of any transducer such as a
harmonic generator is affected by the physical sources of noise
within the transducer, and sources of noise in the source and
load terminations of the transducer. There may be an operating
point for a transducer at which the noise performance is optimum
in some sense.

There have been made many studies of linear systems to
determine this optimum noise performance [2], and some results
concerning the statistical properties of noise through nonlinear
devices have been published [3]. A great deal is unknown about
the noise performance of nonlinear transducers such as harmonic
generators.,

The first order perturbation analysis developed in Chapter
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2 has been used in this chapter to derive an explicit expres-
sion for the output signal of a harmonic;generator with noise
sources at several locations in the circuit.

In Chapter 3 three sets of figures of merit were defined.
It was also mentioned that one of these sets of figures of
merit defined in terms of variances of input and output param-
eters has the greatest physical significance. These figures
of merit have been evaluated and explicitly expressed in terms
of the known parameters in this chapter. The figures of merit
thus obtained for these devices may enable us to compare and
contrast the noise performance of various types of multipliers
and multiplier chains.

Thus in this chapter, we have made an attempt to find out
the manner in which the noise affects the signal in a harmonic
generator, and to arrive at a sufficiently detailed under-
standing of the controlling parameters to indicate the direction
in which improved noise performance can be obtained.

Only the abrupt-junctien varactor frequency doubler has
been treated in detail. Simplifying assumptions have been
made for higher order abrupt-junction varactor frequency multi-

pliers.

4.1. VARACTOR MODEL AND ASSUMPTIONS

Our varactor model, shown in Fig. 4.1, is a variable

capacitance in series with a constant resistance Rs. We shall
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Figure 4.1.

Varactor model.
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deal only with abrupt-junction varactor diodes that are nom-
inally driven. Let Qmax’ and Qmin be the maximum and minimum
values of the charge between which the diode junction is driven,
and QB and q¢ denote the charge at breakdown voltage and the
charge at contact potential. The drive D is defined as

D= . (4.1)

Now, D = 1 is the nominal drive; and D > 1 is for overdriving
the junction. In this chapter our analysis has been given for
D = 1 and it has been assumed that the varactor diode is of
the abrupt-junction type. The analysis, however, may be easily
extended to other types of junctions, and to other conditions
of driving.

We assume that currents in the diode flow only at the
input, output, and idler frequencies, and suitable external
circuits prevent other currents from flowing.

The most important physical source of noise within the
varactor seems to be the parasitic series resistance [1].
Other sources of noise such as shot noise and 1/f noise seem
to be of secondary importance for many of the applicationms
for which varactors are now used. For simplicity, we shall
ignore all sources of noise within the varactor exéept the
thermal noise associated with the parasitic series resistance

RS of the varactor.
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To account for thermal noise generated in Rs’ we use an

equivalent noise voltage generator e with mean squared value,

!,eniz = 4 R KT AF (4.2)
where T, is the temperature of the diode, k is Boltzmann's
constant, and A\ f is the frequency band of interest.

We assume that the diode is driven periodically by wvolt-
ages and currents that we choose to call the carrier/carriers.
These voltages and currents can be determined by transducer
analysis with no noise sources at any point in the transducer
or in its terminations. This has been done by Penfield and
Rafuse for many of the abrupt-junction varactor frequency
multipliers that we are going to consider in this chapter [1].
We also assume that the noise affecting the signal at any point
in the transducer is bandlimited in a frequency band surrounding
the carrier and that the noise power is very small compared
with the signal power in a band of frequencies surrounding the
carrier. Let us assume that the large voltages and currents
at various points in the transducer are, by design, periodic
with some frequency @, This entails no loss of generality
for a harmonic generator.

There are various ways of characterizing a signal cor-

rupted by narrow-band noise [1]. The characterization given

in Chapter 2 will be used in this chapter. Let the noise
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corrupting the signal at any frequency tkwo have a power
spectruml centered around a frequency located w away from the
carrier. We shall call w the "frequency deviation'.

The total voltage Vk(t) centered around any frequency
fkwo will be represented as
kot 3 (ko_+w)t i (ko 4w)t
Vk(t) = 2 Re LYFE ° 4 Vake ° +V_.e © ‘a] . (4.3)

Bk

Here, Vk is the carrier voltage component, and Vak and
ka are the noise voltage components located at a frequency w

from the carrier.

4.2. ANALYSIS OF THE DQUBLER

If the noise currents are allowed to flow at frequencies
of the form + zmo+w, the small signal equations of motion for

a varactor may be expressed in the form [1]

" So i- Si-k
vl ) Rs + jo w : j e Il Enl
jog ey ooy
S, _. S, S 1
Vo= T R+ =L o] Lo+ E_L| . (4.4)
j joo, jo;  Jay j j
S S, .
vy .. z'l ,Till R+ e I E_
jo; jo, Jay

1The power spectrum of time function f(t) is given by the
Fourier transform of time average of f(t)f(t+1), where -o<T<lm,
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Here, the notation w, refers to the frequency Ewd+wg and
Sk is the Fourier coefficient of elastance S(t) at the fre-

guency kmo, Enz is the noise component attributable to Rs at

the frequency 2wb+w. Note that

2 .
IEM] = 2 R KT A\ £ (4.5)
and
* =
E_EX 0  k# £. (4.6)

Let us now investigate the noise performance of an
abrupt-junction varactor frequency doubler. For an abrupt
junction doubler that is nominally driven, only So’ Sl’ and
52 may be nonzero. It can also be proved that by properly
choosing the time origin we can make jSl, and j82 real and
positive [1].

I1f we denote by the subscripts ays Bl’ Ay, 52, and O

the noise components of the quantities of interest at fre-

quencies w_tw, -wo+w, 2w0+m, -2wo+w, and w, Eq. (4.4) becomes



105

(L°%)

u:

zd

zo.

19

1P

(o4 o) [
H -

(0+°0z+) [

w

A8+08|v ¢
1= C
s
0 Aa._.osv C
g
o
(@ o) | (m+°m)
Om.v A
S
(@0=)f () s
> —= + ¥
S s
(04+°m-) (>’ of
g s °s

3
™

n

N|a
v A

3
)

wn

3
—

Lag
wn

z9

rAS

19

1°

h

TR e—pe



where nal is the Fourier coefficient of the thermal noise

voltage resulting from Rs at the frequency mo+w, etc.

Let the input, output, and bias terminations of the

doubler be such that

)
Here, 045 and nBl

r— - -
‘Val R1+3Xa1
Va1 R 3%y
VaZ =T R2+jx'c.2
VﬁZ
\Y 0
Lo

Ry+iXg,

w
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are the noise voltages associated with

the input termination at frequencies ab+w, and -wb*w, respec-

tively; and né is the noise source present in the bias loop.

The statistical properties of these noise sources are either

known or can be estimated by physical measurements.

Penfield and Rafuse [1] have shown that tuning the output

circuit gives near optimum efficiency for the nominally driven

abrupt-junction doubler.

In that case

(4.9)

(4.10)

(4.8)
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S
o )

va = Zwo 1+ 2w° (4.11)
So w

X52 = m -1+ ﬁ: . (4.12)

'We assume that w/wo < < 1. Let us neglect the terms in w/mo

and its higher powers. Let us also assume that

S
o
Rs < < s o (4.13)
, o o

Since the input and output are tuned, the output amplitude
noise current Ia2 and the output phase noise current Ip2 are

given by | (4]

(4.14)

L
]

(IaZ + Iaz)

]
N
N N

Ip2 =

Using Eqs. (4.7), (4.8), (4.14), and (4.15), we can show

3 (T, - IBZ)' (4.15)

that
1 |5, |54
lag =2 -(Rl +R, 4+ ® > (naZ + n62) + w
@', +nl) - (o + )/;R+R)R+R+|SZI
Tal ¥ M1 Tal nﬁl 2 s’\ 1 s w
I -
84]
+ (4.16)

2(1)2
o



o \ o
s, o | s S S
L, Bl % |1'+|szl (R1+R_ z) I
wo w 4—_w0 l 1 s o/ |
EIAWEN
(R2 + Rs) (Rl + RS - + > (4.17)
o Zwo
where
I =|nl -n_ - ‘SII R, + R_+ Iszl (n', +n',) (n, +n_)
o o Dwo 2 2w 1 Bl 1 Bl

S
. o’
R+ Rs -ig (4.18)

Equations (4.16-4.19) explicitly express the output noise
current of the doubler in terms of the input noise voltage and
other sources of noise that may be present at several locations

in doubler circuit.

4.3. FIGURES OF MERIT FOR THE DOUBLER

It was shown in Chapter 3 that there are various ways of

characterizing the noise performance of pumped nonlinear systems.
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For the harmonic generators, the figures of merit defined in
terms of the variances seems to have the greatest physical
significance, The reason is that the smaller is the variance
of output amplitude or frequency the better is the frequency
multiplier. Therefore; a good frequency multiplier is charac-
terized by small values of FX and Fgo

Let us assume that the statistics of the noise sources

associated with the input termination of the doubler are given

by
n'. + 0l |* = 4 Rk AF (4.20)
al gl 1 a °
R '2=4RkTAf (4.21)
al Bl 17p ‘
5
) 0 0 RN R B ' r |2
(nyy - mgp) (g + 1gy) pl/7|‘“<11 ngp|” |mer t “all  (4.22)
Using the results of Section 4.2, we can show that
2 2
®  Tg Do m) 1 %
34bm, =+ b (ltm = |{1l+4-F [1+—=
w T 2 W 2 m2 w
o a o m c
F,-1 = L
A wc
1+ 2m2 5‘;
(4.23)
T w
Fo1e—20b | dly 4 (-9- ; 16
P w | T 2 \w 2
1+m —| P s B R 2
2 b1+ 2 (Q“) +1
w
S c
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2 12
1 2+2 :&’__ %o +'£§_
2 (M7 M % 4R KT_/NF
m1 c s P P
"_— 2 2 ]
2 2 4 2 2
ml + 2m2 W .4 ?&B - 2m2 - my fg
Zm1 Q) 4 2m w
(o} m1 2 o
1+
® 2
c
fom]
o
2 2 2 2 2
w m, + 2 [ m, + 2 o \w
( (o 2R 656 em 2)2
w 2m1 w 2 w /o
b -2 o _ o o)
Tp i) 2 2 %c “c
(1+2m2'—-> <2‘“2+“‘1‘w-1+2'“2m_
N o o
|/ Ro W 1 Pe N Ta ‘
1+-R-,— (a)-—) Rep+§' o Imp T (4.24)
s o o P

where my and m, are the modulation ratios of the doubler
corresponding to the point of optimum efficiency, and @, is
the cutoff frequency of the varactor [1].

FAy therefore, is only a function of Ta’ T, and the operating

d
point of the transducer. There is, therefore, no phase-to-
amplitude conversion in a doubler, at least to the first degree

of approximation. Note also that the bias noise does not add

anything to the output amplitude noise.
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Now FP-I may also be written

F,-1 = C E“iﬁ-auc -—-B—‘-’f-—--frc ’Eias-c ~a (4.25)
P 1T 2 GRKT_AE W "3 T 4 7T .
P s P P P

where Glp Czy 039 and 04 are constants. The source of each
term in FP may now be identified.
The first term, Cl Td/Tp, is contributed by the internal

noise caused by Rg and the action of the varactor as a doubler.

The term C, |né|2/4Rsdezkf is due to the noise source present
in the bias network. The third term C, Ta/Tp’ is due to
amplitude-to-phase conversion thrbugh the bias loop of the
network. The fourth term, 04

of amplitude-phase crosspower at the input to phase noise

Ta/Tp, is due to the conversion

power at the output,

It is worth pointing out that as bias impedance goes to
infinity C2~04 go to zero; and the constant C1 reduces to some
other constant C%u

Sometimes it is desirable to have the low-frequency values

of F, and F,. By "low frequency' we mean

wo/wc << 1. (4.26)

These can be shown to be

_°
T w
(o4

_ Td w
F, - 1=112.50 + 19.87 +— (4.27)
a

and
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R w T
11,20 Zo o \(w_ 17 _a
- 2 2 mc(ll'+Rs>(m>Rep+2w Im p Tp

Ro o o o
41+ == (F) + 1 — —
s c
2
34.6 0, [ng] 4.28)
®, 4kTPRst ° _ °

The modulation ratios of the doubler can be obtained for
the case of optimum efficiency by using a digital computer.

We assumed that

Ta/Td = 'I‘p/'].‘d =1 (4.29)
Ro = o (4»30)
p=20

With these assumptions, the values of FX and Fi; have been
obtained for the doubler. These are illustrated in Figs. 4.2

and 4.3,
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4,4, ANAYLSIS OF HIGHER ORDER ABRUPT-JUNCTION VARACTOR
FREQUENCY MULTIPLIERS

The analysis of noise performance of abrupt-junction
varactor frequency multipliers is very similar to that given
for the doubler. In analyzing the noise performance of these
multipliers;, in addition to the assumptions made in Secs. 4.2
and 4.3, the following assumptions are also made. All the
idler terminations are assumed to be tuned and lossless. The
bias source impedance Ro is assumed to be infinity. This

very much simplifies the analysis.

4,5, FIGURES OF MERIT FOR THE HIGHER ORDER VARACTOR FREQUENCY
MULTIPLIERS

For the 1-2-3 tripler, 1-2-4 quadrupler, 1-2-4-5 quitupler,
1-2-3-6, and 1-2-4-6 sextupler, and 1-2-4-8 octupler, the
figures of merit can be expressed in terms of the modulation
ratios of the varactor. These modulation ratios for the case
of optimum efficiency can be obtained by using a digital
computer.,2 These modulation ratios can then be used to evalu-
ate amplitude and frequency figures of merit.

The results obtained for the 1-2-3 tripler, 1-2-4 quad-
rupler, 1-2-3-6, and 1-2-4-6 sextupler, and 1-2-4-8 octupler

are illustrated in Figs. 4.4 and 4.5. The figures of merit

2We are very grateful to Mr. Bliss L. Diamond of the M.I.T.
Lincoln Laboratory for making available to us the values of
these modulation ratios [5].
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for the 1-2-4-5 quintupler are shown in Figs. 4.6 and 4.7.

By looking at Figs. 4.2-4.7, the follbwing conclusions
may be drawn about the noise performance of the doubler,
and higher order multipliers, we have considered in this chapter.

1. The minimum values of amplitude and frequency figures
of merit are unity for a varactor frequency multiplier.

2. Finite bias source impedance leads to amplitude-to-
phase but not phase-to-amplitude conversion, at least to the
first degree of approximation.

3. Finite bias source impedance also leads to conversion
of amplitude-phase cross noise power at the input into phase
noise power (but not amplitude noise power) at the output,
to the first degree of approximation.

4. In case we retain higher order terms in m/wo, there is

amplitude-to-phase and phase-to-amplitude conversion, as well .

as the conversion of amplitude-phase cross noise power at the

input into amplitude and phase noise power at the output.

4. The higher the value of wo/wc, the poorer is the noise
performance of the multiplier. For values of wo/a)c < 10-3, the
values of FA and FP are very near to unity in case of lossless
idler terminations.

We may note here that it is possible to find the point of

optimum noise performance for these multipliers by using a

digital computer., This has not been done by us in this chapter.
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CHAPTER 5
NOISE PERFORMANCE OF VARACTOR FREQUENCY

DIVIDERS AND PARAMETRIC AMPLIFIERS

In this chapter we sfart with the analysis of noise per-
formance of a divide-by-two circuit using a varactor diode.
The methods are very similar to those outlined in Chapter 4.

The techniques developed in Chapter 2 and Chapter 4 are
then used to evaluate the noise performance of parametric
amplifiers which are driven by noisy pumps. It has been shown
for such amplifiers that only the amplitude noise present in
the pump affects the amplifier noise perfofmance, the phase

noise does not.

5.1. NOISE PERFORMANCE OF DIVIDE-BY-TWO CIRCUIT

The noise analysis of a divide-by-two circuit using a
varactor diode can be done in a manner similar to that out-
lined in Section 4.2. It was assumed that the bias source
impedance R, is infinite while calculating the values of FK
and Fg for this circuit. Let m, and m, be the modulation

ratios of the divide-by-two circuit for the case of optimum

efficiency. We can show that FX and F; are given by
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These figures of merit are illustrated in Figs. 5.1 and

5.2,

5.2. NOISE PERFORMANCE OF VARACTOR PARAMETRIC AMPLIFIERS

It is usually assumed in the analysis of noise performance
of parametric amplifiers that the pump is noiseless. This
condition is usually not satisfied in practice. Let us now
assume that the pump is noisy; and S1 is the first elastance
coefficient of the varactor at frequency @, of the pump. Let

us also assume that Sa and S, are the o and B components [1]

p

of the elastance noise associated with S Let VS, IS, v.,

1° i

and Ii be the signal voltages and currents at the signal
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frequency @y and idler frequency ®wy = O Let us also assume
that these voltages are large compared to the noise voltages
at the corresponding frequencies.

.5 V

Let V__, V
as’ ‘ai

Bs’ Vﬁi be the a-B voltage components

associated with Vs’ and Vi‘ Under our assumptions, it can be

shown that
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E , . 3 I3 -
where as’ EBS’ Ealg and Eal are the noise voltage contribu
tions due to the varactor series resistance.

Let us assume that the idler termination is tuned and

that this termination is such that

ai ai
+ . (5.4)

' '
i EBi EBi

ai

VBi

E&i and Eéi are the noise voltage sources present in the
idler termination.
By using Eqs. (4.67) and (4.68), and assuming that we

may choose the time origin so that jS1 is purely real, we can

show that
2
as s ws(wo-ws)(Ri+Rs) as ws(wo-ws)(Ri+Rs)
|s,| E., -E
o 121 “pi ~ “pi
(JSB jsa)Is + Eas w - R. + R (5.5)
o s i s
and
2
D I L1 . 4] 4S. - 15.)
Bs s ms(wo-ws)(Ri+RS) Bs ws(mo-ws)(Ri+Rs) a B
S E - E'
* ' 1| ai ai
Is*Bs "o o, R, +R_° (5.6
o s i s

It is easy to see that (jS_ - jSa) is the amplitude noise

p

associated with the elastance coefficient Sla
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Equations (5.5) and (5.6), therefore, show that only the
amplitude noise associated with the pump affects the noise
performance of the varactor parametric amplifier. The phase
noise does not. This is an important observation we can make

from the analysis of parametric amplifiers given in this sectionm.
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CHAPTER 6
MULTIFREQUENCY NETWORKS COUPLED WITH LOSSLESS

PARAMETRIC DEVICES

Signal and noise voltages may be present at more than
one frequency in a system., Systems of this form are noisy
oscillators, frequency multipliers, limiters, discriminators,
and systems consisting of such devices. In this chapter we
shall consider different results that can be achieved by
imbedding such a system in a device that obeys the Manley-
Rowe relationms.

We shall assume that the frequency of the signal present
at each of these terminal pairs may be different, but all of
these frequencies will be expressible in the form mo + nt
where m and n are integers. It is our purpose in this chapter
to develop a noise theory for such multifrequency noisy net-
works when the latter are coupled with a lossless device that
satisfies the Manley-Rowe relations.

We shall begin this chapter by a discussion of the Manley-
Rowe relations and the constraints that are thereby imposed
upon the coupling network we are considering. We shall then
show that if we choose current and voltage variables in a
particular way the constraints imposed on these new variables
are the same as those imposed.upon the currents and voltages

present in a linear lossless network. This of course does not
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mean that the parametric coupling network is lossless. 1In
general we extract more power from_this network than we supply
to it; the difference in powers is supplied by a pump.

In the remainder of this chapter we extend many of the
results obtained for linear noisy networks when they are
imbedded in linear lossless networks to multifrequency noisy
networks when the latter are imbedded in M~R1 deyices, As in
the theory of linear noisy netwcrké, we have found some
invariants associated with a multifrequency noisy network
when it is imbedded in an M-R device. These invariants have
been shown to have the dimensions of energy.

In the last part of this chapter it has been shown how
to define the general characteristic-noise matrix when the
multifrequency noisy network has been represented in other

than impedance formalism.

6.1. MANLEY-ROWE FORMULAS AND CONSTRAINTS

For a linear lossless network the conservation of power
requires that the net power delivered to the network at each
frequency of interest must be zero. On the other hand, for a
nonlinear lossless system power that is supplied to the network
at one frequency can be extracted at another frequency. It
has been shown [1] that if a nonlinear lossless capacitor is so

excited that its current and voltage have components at a

1 device that obeys the Manley-Rowe relations will be

referred to for brevity as an M-R device.
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number of frequencies of the form o + nw_, where m and n are

B

integers, then

5 ozo-—ni‘“—‘—=o (6.1)

m=-0 n=1 mQa + an )
and

; ;——:ni"‘—‘—=o (6.2)

n=-w m=1 o ¥t ndg o

where Pmn is the poﬁer input at frequency mo + an. Equa-
tions (6.1) and (6.2) are the Manley-Rowe formulas. They were
originally proved for a nonlinear capacitor; but it has been
shown [2] that they are also applicable to many types of non-
linear lossless systems.

It is customary to operate such a device by '"pumping" it
at one of the given frequency or frequencies. We drive it very
hard and well into its nonlinear range with a source, known as

the pump. In this chapter we will assume that the large pump

voltages and currents present at various points within the

 system are, by design, periodic with some frequency ® . Thus

the pump voltage or current at a specific point within the

network or across one of its terminal pairs is of the form

) jkwot
v(t) = = Ve (6.3)
k==
and A
© jkmot
i(t) = = Ike . (6.4)

k=~
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The voltages and currents at other frequencies, known as the
sideband frequencies, are assumed to be much smaller than the
corresponding pump frequency. In this case the device behaves
at the sideband frequencies, as a time-variant linear element
instead of a nonlinear element. Consequently, if we represent2
the device at the sideband frequencies as shown in Fig. 6.1,
with power at only one frequency flowing at each terminal pair,

we may write
E (6.5)

where

V=1V, (6.6)

and

L=11 (6.7)

2Pump frequency terminals are not shown.
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Figure 6.1.

M-R devicge.
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The voltage Vi and current Ii are at one of the sideband fre-
quencies m, wa + nl 5’
Let us now assume that we pump the device which obeys

the Manley-Rowe relations at frequency w and its harmonics.
Usually by design we allow only power to enter and leave the
device at a finite number of frequencies. For linearity we

may limit ourselves to sidebands with n, = 1,

i

In this case, we can obtain a relation among the sideband

powers that is written

= 5= 0 (6.8)
i sideband i
frequencies

where Pi is the power into the device at the terminal pair at

frequency @, , and vi3 is given by

vi =t kmo + o, k an integer, positive or negative. (6.9)
The power into the ith port 154
* e
Pi [Vi Ii + Ii Vi]’ (6.10)

'Let us now define a diagonal matrix K whose ith element
along the diagonal is v;. We may then write Eq. (6.8) as

v ol fl{'lv = 0, (6.11)

— ~, — ~nN

3Note here we put wB = W,
4Note that we have used half-amplitudes for voltage and
current variables.
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5 ,1/2 h

Let us also define a matrix™ K whose 1" element along

its diagonal is the positive square root of the corresponding

element of the matrix K if \ is positive. 1f vy is negative,

h 1/2

the i*™ element of K will be jAJ'vi|, where j is the square

root of =1. We may now define new "current" and "voltage"

variables:
— -
= gV (6.12)
[ ~y
_ _+
v = (V2 . (6.13)
S —

Let us now write Eq. (6.11) as6

B . ., |
¥+ E-l/:z} '_%-1/2‘] I+ £+ [5-1/?] [&-Uﬂ v = 0. (6.14)

We can see that by using Eqs. (6.12) and (6.13), we may write
Eq. (6.14) as v
vrro+ Ty = o, (6.15)

~ N
Equation (6.15) is the constraint imposed by the Manley-

Rowe formulas upon the frequency-no;malized current and voltage

variables £' and V' at the terminals of the equivalent circuit

of a lossless parametric device. This relation is identical

to the constraint that losslessness imposes upon the currents

and voltages at the terminals of a linear lossless network.

The matrix g}(z
trivial interest.

| 6It is to be pointed out that K = gf since v

is nonsingular in all but cases of

;s are real.
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This does not imply that the network of Fig. 6.1 is lossless.

By transforming properly, we may write Eq. (6.5) as

+
v - [:K--l/f! z, [:51/2:] .

=2Z) I (6.16)

2 - [ 5[] @7

In case the device is an M-R device it satisfies Eq. (6.16).

where7

Accordingly,
"o+ = o (6.18)
for any arbitrary I'.

Equation (6.18) shows that a frequency-normalized impedance

matrix Zg of an M-R device satisfies the condition

" wt _
ZP + ZP = 0, (6.19)

This is analogous to the equation

z+2zv =0 (6.20)

satisfied by the impedance matrix of a linear lossless network.

6.2. FORMULATION OF THE OPTIMIZATION PROBLEM

In this section we develop the idea of exchangeable
frequency-normalized power for a multifrequency noisy network.
A characteristic-noise matrix is also derived for such a

7We shall indicate a frequency-normalized impedance
matrix Z by Z'".
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network. The eigenvalues of this matrix may be interpreted
as the stationary values of the exchangeable frequency-

normalized power.

Exchangeable Frequency-Normalized Power. The terminal

voltages of a multifrequency n-port noisy network are related
to the currents through the impedance matrix Z (see Fig. 6.2).

Accordingly,
V=2T1+E. (6.21)

h port; and let K be

Let vy be the frequency at the 1t
the matrix as defined in Section 6.1.
We may now express Eq. (6.21) in terms of X' and £' by

-1/2|*
premulitiplying it by |K . This gives

E’”T v-= l—_é'm:rp z Eﬁ”ﬂ E&'”ﬂ I +E§”ﬂ+ E. (6.22)

Using Eqs. (6.12) and (6.13), we obtain the relation

Y"I = _Z_" }‘! + El (6.23)

2 - [ 2 [ . (6.24)

Equation (6.23) is the equation relating the frequency-

where

normalized source variables.

For a one-port linear network we define ekchangeable power
as the stationary value of the power output obtained by arbi-
trary variation of the terminal current or voltage. 1In

frequency-normalized variables V' and I' the quantity analogous
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Figure 6.2.

Equivalent representation of

multifrequency noisy network.
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to power is 2 Re [V'I'*] which is power divided by the fre-

quency v. This quantity will be called the frequency-
normalized power. If V' and I' are the frequency-normalized
terminal voltage and current of a one-port network (sze Fig.
6.3) whose terminal behavior is given by

V=21 +E (6.25)
or '
V' =2Z"1' + E', (6.26)

it may be shown very easily that the exchangeable frequency-

normalized power outpuf of the network is given by

E-IEG*
e (6.27)

This exchangeable frequency-normalized power is defined as the
stationary value of the frequency-normalized power output of the
network obtained by arbitrary variation of the terminal current
or voltage. |

Parametric Transformations. If the n-port network with the
noise column matrix E and impedance matrix Z is connected
properly to a 2n-port network, a new n-port network may be
obtained. It will have a new noise column matrix Eo and a new
impedance matrix go. This operation, shown in Fig. 6.4, will
be called a transformation or an imbedding of the original net-
work. The analytical felation between the voltages and currents
applied to the 2n-port M-R network (the "transformation network')

of Fig. 6.4 can be written in the form
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Figure 6.3. One~port noisy network.
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Ya = Zaa fa®t Zab b (6.28)
and
Yo = Zpa Lot 4y, I (6.29)

The column vectors Xa and Xb comprise the terminal voltages
applied to the transformation network on its two sides, and the
column vectors Ea and Eb comprise the currents flowing into it.
The frequency variables at different parts of the M-R network
are shown in Fig. 6.4. The condition that the transformation
network is an M-R network can be summarized in the following

relations: .

1a |t 7al [ 4/n |+

where
I | —_
K 0
K = ——-——-: _— (6.31)
0 L Ky
klmdﬁ? 0
gk = kiwo-l-\t.u (6.32)
= ~
0 k o +w
n o
and I —
mlwdﬁ? 0
Km = miwof? . (6.33)
0 m w +w
n o
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; ““““““““ I
: =3 |
o o {0 |
o i l
mlwd%w | » Klwo+w
o ——— Qe [
[ | . o |
» i ;T -] E. I
o | - . *fﬂ%- I
—— 2. —*Q) :
. =aa -ab
m,mdhn | T e kiw0+w zZ '
ur—~————-1»——-—~; | o |
: ; | “hat Epb : :
| f ° En |
i —d()= *
maw+wm | k w +w ’
n o | n o |
a . ,,‘ — c l
| |
e e e e , !
\z £
T, — ~—— 7 I — =0’ ~o
'\-b ~a ~\
7 = T
Yob V'\«a. ~

Figure 6.4. General transformation of an n-port

multifrequency noisy network.
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We may therefore write

E;l/ir - @1/{] +{E&-1/ﬂ+ 2 Bkl/z}-;- .

" T
zr +zit -0 (6.34)
-1/2]* 1/2 21t s Lt
] 2 [ {2 (W3] -
or . : '
Zap * Zyg = O (6.35)
-1/2|* 1/2 2]t o+ L2t
[ e [ ] [ -
or
Zop *Zp =0 (6.36)
and
-1/2|* [o1/2 a2l oy Tt
T a7 {0 2 [0
orx
Zp, + 2z = 0. | (6.37)

The original n-port network, with impedance matrix Z
and noise column matrix §, imposes the following relation
between the column matrices 2 and £ of the voltages across,
and the currents into, its terminals:

V=21I+E. v (6.21)

~ -~
The currents 5 into the n-port network are, according to
Fig. 6.4, equal and opposite to the currents La into one.side
of the 2n-port network. The voltages V are equal to the voltages

za, 'We thus have
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V=V,; I=-15. (6.38)

Introduction of Egs. (6.38) into Eq. (6.21) and applica-

tion of the latter to Eq. (6.28) give

_ -1 , -1
I =« (Z2+2 ) +iz+2z ) E (6.39)

@ Z"&b v:iEb
When this equation is substituted in Eq. (6.29), the final

relation between V. and I, is deterﬁined:

~b ~b
Vo =%, Ly tE; (6.40)
where
_ =1
Zo = Zpy - Zba(§-+ Z-aa) gab (6°41)
and .
~ -1 ,
Eo = %@ %2 " E (6.42)

Equation (6.40) is the matrix relation for the new n-port
network obtained from the original one by imbedding it in a
2n-port network. Here go is the new impedance matrix, and

Eo is the column m;trix of the new open-circuit noise voltages.
Conditions 6f34 through 6.37 must be applied to Eqs. (6.41)

and (6.42) if the transformation network is to be M-R.,

Matrix Formulation of Stationary-Value Problem. We have

defined the exchangeable frequency-normalized power for a one-
port network as the extremum of frequency-normalized power
output obtainable by arbitrary variation of terminal current

or voltage. In an obvious generalization, we may extend this
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definition to n-port networks by considering the extremum of
the frequency-normalized power output of the network obtained
by an arbitrary variation of the terminal currents. In this
case,8 we encounter the possibility of the output frequenc&-
normalized power assuming é stationary value rather than an
extremum. - One may ask whether the stationary value of the
frequency-normalized power for the multiport case could be
achieved in a simpler way. One method to try is that shown in
Fig. 6.5.

The given network is imbedded in a variable (n+l)-port
M-R network. For each choice of the variable M-R network, we
consider first the frequency?normalized power that can be
drawn from the (n+1)th~port for various values of the complex
current In+1' |

The network operation indicated in Fig. 6.5 is conve-
niently acééﬁplished by first imbedding the original n-port
network in an M-R 2n-port network, as indicated in Fig, 6.4,
Oﬁén-circuiting all terminal pairs of the resulting n-port .
network, except the ith, we achieve the n-to-l-port transfor-
mation indicated in Fig. 6.5. The exchangeable frequency-

h

normalized power from the it pbrt of the network can be’

written in matrix form as

8The case is analogbus to that of finding the extremum
of power output of an n-port linear noisy network by an
arbitrary variation of the terminal currents [3].
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' % + 1 i
e,i " ny ¥ + " 7114 ’
(zo)i + (Zo)i s (go + Zo ) é

where the (real) column matrix £ has every element zero except

~

the i™®, which is 1:

L e
€4
. . ﬁj =0, jFi

E=le | =] 1], o (6.44)

: : g4 =1
¢ 0

B L

The variation of the M-R network in Fig, 6.5 now corre-
sponds to variation of the transformation network gT in Fig.
6.4 through all possible forms. We now wish to find the
stationary values of Pé i corresponding to variation of QT.

s’

We can write

+ ‘
~0N0 -m ~0n0 | —m
-2l z+z YlEet|z+z )Yzt k2]
“m “ba*=  “aa ~~ |'= =aa’ [-ba |m

— +
n " " -1 v " " -1 14
g, [z g EE @ ez gt
*tE

=1 E'E'rr - (6.45)

-_— A A —

where



-
o E.
T .. i.
n+i ° -
op=——o»~ Variable o 4}59
7
M=-R -
[ o SURSEE—— Q- -— -
Network

¢ « @ o

q

Figure 6.5./ Imbedding into an (n+l)-port M-R network.
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-1
= 71 " " .
S CAN U (6.46)

'r+
—ba

and expressing Zg in terms of Z" yields

R e Vi [ 1/2] {L 1:' L+1/-J}
=0 o “m |

1
m ||

-1/2 {_bb - Zy, @+ 2" _39 [1/2
{[-1/-[ {"'bb ZpaZ * éaa)- 'z'ab} Eﬁ;/ﬂ}-k

- 5;1/:] 2,.@+2, 07" 2, Esnln/ﬂ

- Ei/_zT 2 ‘z'aa)ir 2, [=]

@" + 2" 1. (6.47)

| é

It follows that

G I ey
e,i' = (g*'i )(Z" + Z"+ (‘l’ e)

(6.48)

in which the matrix T is to be varied through all possible values
consistent with the requirement that the transformation network
must be M-R.

The significant point now is that T is actually any square
matrix of order n because gba is entirely unrestricted. There-

fore, a new column matrix x may be defined as



151

x=1¢=|x | , (6.49)

in which the elements take on all possible complex values as
the M-R network in Fig. 6.4 is varied through all its allowed
forms. Consequently, the stationary values of Pé,i in Eq.
(6.48) may be found most conveniently by determining instead

the stationary values of the (real) expression

x E'E x
B’ = e (6.50)

e,i x' (2" +2") x
~, — - ~

as the complex column matrix X is varied quite arbitrarily.
This is a problem well-known in matrix theory [4]. 1t
may be shown that the stationary values of the exchangeable

frequency-normalized power Pé ; are the eigenvalues of the

s

.. 9
matrix
N= (2" +zt E'E'F (6.51)
where
+
E' = ,:Eélﬂ E (6.52)
and
9

It is assumed that the matrix (2" + Z"%) is nonsingular.
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z" = @1/ﬂ+ Z[&iﬂ . (6.53)

We therefore define:
Characteristic-noise matrix = N = (gﬁ + gﬁ+)'1 E"§"+ (6.54)

and conclude that the stationary values of the exchangeable
frequency-normalized power Pé,i are the (real) eigenvalues of
the characteristic-noise-matrix N.

The physical significance of these eigenvalues will be

pointed out in a later section. It may however be noted that

Pé i has the dimensions of energy.

6.3. INVARIANCE OF THE EIGENVALUES OF THE CHARACTERISTIC-NOISE
MATRIX

One particular property of the eigenvalues of N will be
proved in this section. Suppose that the original network
with the characteristic-noise matrix N is imbedded in a 2n-port
M-R network, as shown in Fig. 6.4. A new n-port network results,
with the characteristic-noise matrix N'. The eigenvalues of
N’ are the stationary values of the exchangeable frequency-
normalized power obtained in a subsequent imbedding of the type
shown in Fig. 6.5.

Theorem 6.1. The eigenvalues of the characteristic-noise

matrix N' are equal to those of N. Alternatively, we may state
that the eigenvalues of the characteristic-noise matrix N are
invariant with respect to M-R imbeddings which preserve the

number of terminal pairs.
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Proof: We showed in Section 6.2 that

" wd . L " 1t
§o+§° = @2"+2") (6.47)
and
E'E™F = T E'E' ¢ (6.45)
~0~0 - N~ -
where
'r+ =2Z" (2" + 2" )"1 (6.46)
- “ba = =aa’ ° e
10

We now write

-1
¥z R ET

= 1"1 (_Z_" + -z_n-l-)'l jrrp—

T
N~ -

=z ly o (6.55)
Equation (6.55) shows that the eigenvalues of N' are equal

to those of N.

6.4. CANONICAL FORM OF A MULTIFREQUENCY NOISY NETWORK

Sometimes additional insight into the meaning of Ithe eigen-

values of the characteristic-noise matrix may be obtained [3]

from the canonical form of the network. The canonical form of

a multifrequency noisy network may be derived from the original
network by imbedding it in an M-R network that ’preserves the
number of terminal pairs. This procedure, as shown in Fig. 6.4,

led to a new network with an impedance matrix _Z_o , with

1O'I‘Tne matrix T is assumed to be nonsingular.
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= - -1
% Zoa & * Za9) Iy t Zop (6.41)
or
— et — /5 — et —1 /5
w _ [o-1/2] /2] _ -1/2 1/2
Zy - [57] Zup |Ba | 2 [
— 5t — /5 — 15T+ — 57) -1
-1/2 1/2 -1/2 1/2
772 [87]+ [ n 87
— —+4 —
5_;11/2 7 I<1/2} .,
| | =ab [Tm_ |
Using Eq. (6.46) and Eqs. (6.34) through (6.37), we can
write
" + "+ ll+ "
-t @ gD sy
or
"_l + 11" "+ _]; + "+ 1A ]
ZO—ZI (Z +Z)1+21(_Z_ Z)
+ 11 11
+ 1 2" T+ 2. (6.56)

From Eq. (6.46) we see that 1 is independent of Z;b and
from Eq. (6.37) we see that the only constraint on g;b is that
it be skew-Hermitian. One possible choice for tﬁe matrix ggb,
then, is

Loy = % e -z - .Z_;Z . (6.57)

This choice satisfies the skew-Hermitian constraint, since
the Hermitian transpose of this matrix is the negative of the
matrix. Introducing Eq. (6.57) into Eq. (6.56), we find that
this choice for Z)', gives

=bb

Z" = % <@+ 2z o« (6.58)
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We have also shown that

B E-IEET s (6.45)

E' E“"‘ = E—kl/] E E"" Bkl/] (6.59)

The matrix E E+ is positive definite in most of the cases of
~n e .

We may write

practical interest [3]. Equation (6.59) shows that the matrix

E’ E”+ is also positive definite if ‘and only if the matrix

E §+ is positive definite, since the matrix [é:l{?] is assumed
to be a nonsingular matrix. It is always possible to diag-
onalize simultaneously two Hermitian matrices one of which is
positive definite by the same conjunctive transformation [4].
Since E' E'*t is related to the positive definite matrix E' E'+
~C O ~N o~
by a conjunctive transformation and g; in Eq. (6.58) is related
to (2" + 2'"%) by the same conjunctive transformation, it is

always possible to find an M-R network that will simultaneously

diagonalize 2" and E' E't,
=0 ~O ~O

1/2]" . [o-1/2
: z! E’“ J (6.60)

—1+
1/2 7 [.1/2
E gg K E' E'* |K . (6.61)

PR—

We may now write

1
~

Z
-o

and

I'El

Since [%1/—] is a diagonal matrix the same conjunctive

transformation will also diagonalize Z and Eo Eg. The
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multifrequency noisy network obtained through this transforma-
tion is the canonical network shown in Fig. 6.6.

Since g;_gi i; diagonal, none of the voltages is corre-
lated with any other voltage, and the canonical form consists
of a set of independent noisy resistors. The characteristic-
noise matrix of the canonical form is diagonal with elements
along the diagonal which are the exchangeable freﬁuency-

normalized powers of each of these resistors.

1 = n< 1 1% ] v 1% " oo e ' ' "
N' = Diag. (Ej E* / 2R},, E5 EJ* / 2R},, , E En* / 2R} ).

(6.62)

Since the eigenvalues of the characteristic-noise matrix

- are invariant under such an M-R imbedding, we see that the

elements of N' are the eigenvalues of the characteristic-noise
matrix of the original network. We may therefore say that thé
exchangeable frequency-normalized powers of n independently
noisy network are the eigenvalues of the characteristic-noise
matrix of the original network.

This shows that the following two theorems are true.

Theorem 6.2. Every n-port multifrequency noisy network
can be reduced by M-R imbedding to a canonical form comnsisting
of n separate (possibly negative) resistances each in series

with an uncorrelated noise voltage generator.

Theorem 6.3. The exchangeable frequency-normalized powers

of the n independent sources of the canonical form of any n-port
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()

Canonical form of a multifrequency noisy network.

Figure 6.6.
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multifrequency noisy network are equal to the n eigenvalues of

the characteristic-noise matrix N of the original network.

6.5. PHYSICAL SIGNIFICANCE OF THE INVARIANTS OF MULTIF UENCY
NOISY NETWORKS

The terminal relagion of a voltage source E in series
with a resistor R (see Fig. 6.7) is given by
V=RIG+E, (6.63)
Let the frequency of the source be kmo + o, where k is
an integer. Let us now terminate this network in a variable
inductor L (see Fig. 6.8).
The value.of the average stored energy in the inductor L

for arbitrary variation of the terminal current I is given by

- 1 * _ gk
2
E
5 I?_I L (6.65)
R™ + L (kmo + w)
One of the possible stationary values of Q when L is

varied over all possible values is given by

Q, = lef? (6.66)
s ~2R(kmo + o) | *
for11

11According to this interpretation L may be positive or
negative. If L is negative, we may terminate the one-port .in .
a capacitor. In that case Qg will be a stationary value of
average stored energy in the capacitor. However, the one-port
is terminated either in a single inductor or' a capacitor, but
not by a combination of both.
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Figure 6.7.

One-port noisy network.
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Figure 6.8. One-port-noisy network

terminated in an inductance L.
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L= R/(Kmo + w). (6.67)

It was shown in Section 6.4 that every n-port multi-
frequency noisy network can be reduced by M-R imbedding to a
canonical form consisting of n separate resistances in series
with uncorrelated noise‘;oltage generators. Also it was shown
that the eigenvalues of the characteristic-noise matrix of the
original network and of the canonical form of the network are
the same.

We may therefore say that the eigenvalues of the
characteristic-noise matrix of a multifrequency noisy network
may be interpreted as the stationary values of the average
stored energy that can be stored by the canonical form of the
network for different terminal constraints. If the first eigen-
value of thé characteristic-noise matrix (see Section 6.4) is

E{ Ei“/ZR{l, then the terminal constraints on the canonical

form of the network is that open-circuit (or short-circuit)
all the ports except the ISt;-and the 15 port is terminated

either in a single inductor or a capacitor.

6.6. MULTIFREQUENCY NETWORKS IN OTHER REPRESENTATIONS

Different matrix representations can be used to describe
the terminal noise behavior of multifrequency noisy networks.
The investigation of invariants in these different kinds of

representations forms the subject matter of this section.
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General Matrix Representation. The impedance matrix

representation (see Eq. (6.21)) is conveniently rewritten in

the form [3)

. N
N

[:lf-z] ——-|=E (6.68)

e

where 1 is the identity matrix of the same order as Z. Any
other matrix representation of a multifrequency noisy network
can be expressed as

v-Tu=25 (6.69)

~
where v is a column matrix of the terminal "response’, u is
the corresponding column matrix of the terminal "excitation',
and s is a column matrix comprising the amplitudes of the
internal (noise) sources as seen at the terminals. The
square matrix T expresses the transformation of the network
in the absence of internal sources.: |

We note now that Eq. (6;69) may also be written in a form

similar to Eq. (6.68).

14 |-

2O

(6.70)
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Transformation from One Matrix Representation to Another,

\Y

~

~

The variables [---| and |- - - | can always be related by a linear

I

v

u
~

transformation of the form

|=

Let us write

|~

M

We may show [3]

1

__X._ —y
—— ] = ==, (6.71)
I
|~ ] |~
R I R.. |
Rt Ryo
= ~-———|— - — (6.72)
Ryr | By
— -1
- B - z B'Z_IJ ) (6.73)

that representation 6.68 may be trans-

formed into the representation

R
B

where

and

-
=
M= |
|

M
-:I ——=] =5 (6.70)

(6.74)

(6.75)

QO
l
=
2
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Frequency-Normalized Power Expression and its Tranéfor-

mation. In any matrix representation, the frequency-normalized

power P' flowing into the network is a real quadratic form of

v
~
the excitation response vector |[—--|. We have
- u
~
+
v v
~ (4"}
P' = | ——— %3 - - (6.76)
' u u
~ ~

where QT is a Hermitian matrix of order twice that of either

v or 2, In the partlcular case of impedance-matrix represen-

tation,
= (X E Ty '
— i — —_— —
AN LIRS Sl B S
= |[— == - = - - ——— (6.77)
I ||gh) o0 1
Comparing Eqs. (6.76) and (6.77), we find that the Q
matrix for the impedance representation is
. (6.78)

A transformation from one matrix representation into

another transforms the Q matrix. We have
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. __+

v v
U -
P’ = QZ

x I3

_ _+
v v
(™) + (a3

i Egz R -0 (6.79)

. .

Comparison with Eq. (6.76) shows that

QT = ngz R (6.80)
where R is the matrix that transforms the general-excitation
v
~s ~
vector |-—— —| into the voltage and current vector |—— —|,
u I
A ) ~

according to Eq. (6.71).

The General Characteristic-Noise Matrix. Let us define a

matrix N, where

U.l{l_i"“gr [‘] Qé 1/:, (6.81)

For the impedance-matrix representation, we obtain

S P
Ellﬂ {5 * é'? [:E” {] . (6.82)

Introducing Eq. (6.82) into Eq. (6.81), we have
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2z
!

-1 + —
- El/ﬂ E‘I/ﬂ {n + Z"+} B'l/il E E+ K'l/ﬂ
=7 i = -— -— ol ry Ay -
=1
{Z_" + Z'u"ﬁj EUEV+

= N, / (6.83)

il

But Eq. (6.83) is identical with the definition Eq. (6.51).
Next, let us relate the general noise matrix ET of Eq.
(6.81) to its particular form in the impedance representation.

For this purpose, we note that according to Eq. (6.75)

56T = MEE* M. (6.84)

~

Then using Egqs. (6.74), (6.80), and (6.82), we find

ir

4=

tfgt [1i-1]
o [T-zagie [1i-7]
--u |10 -z|gt
- -} 7]
7] it [ [+ 2] [ W g o [

Ll

1:-2z| o

Ll

éz
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- {Egl/ﬂ M_+-1E—1/ﬂ} gg.. + 2L E.E,J,} E(_llzl l_4+-1[_’§-1/§} -1

= w N Mt (6.85)

-M-ﬂ == EI/Z] H+-1 &-lﬂ i (6086)

According to Eq. (6.85), the characteristic-noise matrix

where

-

‘ET of the general matrix representation of a multifrequency
noisy network is related by a'similarity transformation to the
charactéristie-noise matrix N, of the impedance matrix repre;
sentation of the same network. Therefore, Ny and N, have the

same eigenvalues.,
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CHAPTER 7
INVARIANTS OF MULTIFREQUENCY NOISY NETWORKS

It may be shown [1] that a nonlinear system driven by a
strong periodic signal and containing internal noise sources
ma§ be considered as a device exchanging power at a number of
frequencies. In general, power at a number of frequencies flows
through each ;hysical port of this device; either by design or
accidentally. However, for theoretical considerations such a
device may be represented [2] as a multiport network, with each
port exchanging power at only one frequency. The study of
terminal-noise behavior of pumped nonlinear systems may, there-
fore, be considered as the study of noise performance of multi-
freéuency noisy networks.

The invariants of linear time-invariant n-ports to non-
singular linear lossless imbeddings of various kinds have been
investigated by Haus and Adler [3], Mason [4], Schaug-Pettersen
and Tonning [5], and Youla [6]. The investigation of invariants

of this type to different kinds of imbeddings of multifrequency

noisy networks forms the subject of this chapter.

7.1. IMPEDANCE-MATRIX REPRESENTATION OF MULTIFREQUENCY NOISY

NETWORKS
At any "frequency deviation" w, the terminal-noise behavior
of a periodically-driven nonlinear system is specified completely

by an impedance matrix Z, and the complex Fourier amplitudes of
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its open-circuit terminal voltages E E ., En1 (see

1’ "2’
Fig. 7.1). In matrix form, Z denotes a square n-by-n array

z oaoz ¢¢az ooaz

11 1i 1k In
Zi1 °7° 244 077 Zgy Zin
Eﬂ ° ° ° ° a ° ° ° ° ° (7.1)
z

kl o0 2 Zki s a0 Zkk 290 an

e L4 o o ] o e o L]

an s 00 zni 200 an 000 znn

The complex amplitudes of the open-circuit terminal voltages
are represented by a column matrix E:

S

(7.2)

The Fourier amplitudes El’ E2’ ces En are complex

random variables, the physical significance of which usually

appears in their self- and cross~-power spectral densities E Ei 2

ik’

11n the study of terminal-noise behavior of pumped non-
linear systems n is an even number. However, the results given

in this paper are true for any n, an integer.

ZThe bar indicates an average over an ensemble of noise
processes with identical statistical properties.
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As in the rest of this work, only frequencies with positive
values of frequency deviation o are retained.
A convenient summary of the power spectral densities is

the matrix

EIE§\ oo ElEi oo EIEﬁ s EIE
*'00 *ono o oo *
EgEf =°° E4EY °o0 E4ER o0 E4E
EF3.=‘ o o ° a L] -] ] ] ° o -] (703)

EkET eaa EkEig °co e EkEﬁ soe EkE;kl

] o o ° L] ° ° [ o ]

EnE?: cao EnEi 000 EnEﬁ ° 00 Ent*l

By examining the quadratic form associated with the matrix

E §+ it may be shown that the matrix E §+'is a positive definite

or positive semi-definite matrix [3]. In general, if the voltages

of E §+ are noise voltages, it can usually be argued from physical
grounds (barring trivial degeneracies and noiseless positive or

negative resistances) that the matrix is positive definite.

7.2. TRANSFORMAT IONS
If the n-port network with the genefator column matrix E

and the impedance matrix Z is connected properly to a 2n-port

3The superscript dagger indicates the two-step operation
composed of forming the complex conjugate of and transposing
the matrix to which it refers. Briefly, At is called the
Hermitian conjugate of any matrix A.



172

network, a new n-port network may be obtained. It will have a
new noise column matrix E' and a new impedance matrix Z'. This
operation, shown in Fig. 7.2, is called a transformation.

The analytical relation between the voltages and currents
applied to the 2n-port network (the '"transformation network')

of Fig. 7.2 can be written in the form

(7.4)

Vo " Zoo Lot 2y Iy
v - 2y, Ty + Zyg Iy (7.5)

Thg column vectors 29 and Vi comprise the tgrminal voltages |

applied to the transformat;;n network on its two sides, and the

column vectors Io and Ii are the corresponding terminal currents.
The origin;1 n-port network, with impedance matrix Z and

noise column matrix E, impose the following relation between

the column matrices V and I of the voltages across, and currents

into, its terminals: ‘

V=21+E. (7.6)

The currents I into the n-port network are, according to

Fig. 7.2, equél and opposite»to the currents Ii into one side

of the 2n-port network. The voltages‘g are e;;al to the

voltages Vi“ We thus have

NS

V=V I=- Ii.' (7.7)

o~

When these relations are used, the final relation between

~J -~

Vo and Io is determined:

—~ ~~

vV, =2'I +E (7.8)
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where 1 .
0 - - o=
Z' = 2o, " LB * Ly %y (7.9)
and .
0 ==
E Zoi(z-+ gii) 'go (7.10)

Here Z' is the new impedance matrix, and E' is the column

matrix of the new open-circuit noise voltages.

7.3. LINEAR TRANSFORMAT IONS

In case the transformation network4 is linear, the matrices
goo, §019 Eii and gio are all diagonal. This is a basic property
of linear networks.

Diagonal Condition. It may be shown (See Appendix A) that
an n-by-n matrix A is diagonal if and only if

(7.11)

Ap-pA=0
wheré i is represented as
1
2 0
L= C ) (7.12)
0 L]
| n

Theorem 7.1. If the transformation network is linear and does

not contain any internal signal/noise generators, its impedance

matrix (see Fig. 7.2)

4It is assumed that all the transformation networks con-
sidered in this chapter do not contain any internal signal/noise
generators.
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Z . .
-00 =oi
gT = (7.13)
Z, '
| =io =ii |
satisfies the condition
A ,.
- - - Z. =0, (7.14)
ZTOH o L =

Proof. Since the transformation network is linear, the matrices
g@oy §019 gii and gio are all diagomal.

These matrices, therefore, satisfy the equations

(7.15)

goo& T Eey, T 9
Zoght = BZy; = 9 (7.16)
Zogh - pZ,, =0 (7.17)
and
Zi = HZ‘]’.O = .Q.° (7.18)
We can write
|g 6_ i& O_
A | -
- Zoo Z@i B O _ kO Zoo Zoi
L0 %34 |0 m 0 u) 1%, 2y
- g@oﬁ - Hgmo Zoi& - Egoi
Zioh = B, Zygh - B2y

by virtue of Eqs. (7.15) through (7.18).

This proves Theorem 7.1.
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Theorem 7.2. Cascading of a noiseless linear reciprocal net-

work with a multifrequency noisy network, described by its
impedance matrix Z and a noise voltage column matrix E does not
change the value of the quantity5

-1 =1
EE  (Z

Q= A@Zp -y 2)EE D (7.19)

-~y N

—_ 6

. . + .
provided the matrix E E is nonsingular.
Proof. Let a multifrequency noisy network have a terminal

relation
g = g,; + go (7.6)

If this multifrequency noisy network is cascaded with a
linear noiseless network (see Fig. 7.2), the new terminal rela-

tions are given by

= 0 8
Vo =2 I +E (7.8)
where
<1
U = -
L0 = oo 7 By (B Z2y5) 724 (7.9)
and
-1
! =
E'=2 .(Z+2,,) " E. (7.10)

The cascading network is linear. It therefore satisfies

the Eqs. (7.15) through (7.18).

>AA is the determinant of matrix A.

61f the matrix E E* is singular, but the matrix (Zu - p2)
is nonsingular, we can show that the quantity

Az - pz) E ET E EY (uzt - !
remains invariant. However, in most of the cases of interest,
the matrix E E¥ is positive definite and hence nonsingular.
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-1 -1
Z'y - pz2' = - .Z_OL(Z. + '%ii) .Z-j_oE'. + &&oi(é + Z‘ii) Z'io
L -1
=t Lo (B4 Zyy) Wyt ZuZtZ) I,
~ -1
-z, @+2,) { E(z+zi)+(z+zi)a}(z+z )

Z,
=i
-1
+2,07 @ - uD) @+ 2

2,1 2, 2o
We now have
-1 -1
=A(Z' - E,..) E'E'zF EOEH: | (Z'E - Egl)

"o {501(5 +2;4) T -we+ Z;9)

+
{&oi@ vz, 07 @- etz ;io} :

The cascading network is assumed to be reciprocal.

impedance matrix ZT is, therefore, symmetrical.

t
Zp - Zp =0
or
z -2z =0
00 “oo =
z . -2 =0

and
By 7%y =0

By ﬁsing Eq. (7.22), we can show that

The

(7.20)

(7.21)

(7.22)

(7.23)

1
-io
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-1 -1
Q' = A\ (zn-p2) EEF EEF (@ -wt-q

This shows that Q' = Q.

In this section we have proved the invariance of a
quantity associated with a multifrequency noisy network when
the latter is cascaded with a noiseless linear reciprocal net-
work. The quantity Q has the same physical dimensions as

those of 1/(power)2,

7.4. LINEAR LOSSLESS TRANSFORMATIONS

In Section 7.3, the transformation network was assumed
to be only linear. Let us now consider the case when the

transformation network is not only linear but also lossless.

Condition of Losslessness and Linearity. In case the

transformation network is lossless, it can be shown [3] that

the impedance matrix ZT satsifies the condition

or
z +7¥ =0 (7.25)
=00 =00 - ’
+
Z.+2, =0 (7.26)
oi =—io -~
and
+

z,, +Z, = 0. (7.27)

Since the transformation network is also linear, it also
satisfies Eqs. (7.15) through (7.18). By using these rela-

tions, Eqs. (7.25) through (7.27) may be written as
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N

Z pwt+pz =0 (7.28)
+

ZoiE-+ &Eio =2 : (7.29)

and

+
Zyg+pZ =0, (7.30)

Part 1.

Theorem 7.3. The eigenvalues of the matrix7

-1

-@e+zH EE (7.31)

5y E
associated with a multifrequency noisy network described by an
impedance matrix Z and a noise voltage columm matrix E are

invariant to a linear lossless transformation.

Proof. Let a multifrequency noisy network be described by an
impedance matrixvg and a noise voltage column matrix E.

| In case this multifrequency noisy network is cascaded
with a linear lossless network, the new impedance and the noise

voltage column matrices of the resulting network are given by

-1
U = -
z -Z-oo -z-oi(-z- + -Z-ii) Z-io (7.9)
. -1
E = Z‘Oi(g + -Z-ii) E. (7.10)

Since the transformation network is lossless, it satis-
fies Eqs. (7.25) through (7.27).

The §i matrix for the resulting network is given by

s1 =@ +2zH T EET (7.32)

"1t is assumed that the matrix (Z + gf) is nonsingular.



We can write

=1 + +

0 I - -

' +2 Zoo Z@i(g-+ gii> Zio + Zoo -z--i.o(Z +
_ -1 + + -1 +

Let us write

Accordingly
' + 2 = otz + ZhA

txi
2=
)

AFEE A
From Eq. (7.32)

st =at@+zHh T EE A

180

(7.33)

(7.34)

(7.35)

(7.36)

Hence, the matrices S, and §i are related by a similarity

1

transformation. The eigenvalues of §i and S, are therefore

1

the same,8

This proves the theorem.

Physical Significance of these Invariants. Let us cascade

the n-port multifrequency noisy network with a linear lossless

2n-port network (see Fig. 7.2). Open-circuiting all terminal

pairs of the resulting n-port network except the i

achieve an n-to-l-port lossless transformation, as indicated

in Fig. 7.3. The exchangeable power from the ith port can be

written in matrix form as

8

The matrix A is nonsingular in all but degenerate cases.
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Figure 7.3. Cascading of a variable lossless network with a

multifrequency noisy network.



E:‘iEj'.; €+E' F g

P . = = ~ o~ N ~

€1 g ¥ +oo0 L ot
23 t25y 5@ +27)8
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(7.37)

where the (real) column matrix € has every element zero except

~

the i™®, which is 1:
il 0
° o ej=09j#i
E =1 ¢ = | 1. _
5 i 6, = 1
¢ 0
| L

Using Egs. (7.34) and (7.35), we can now write

+

A" EET A
P = = -
e, i e“f' £_\_+(_Z__ + _Z_+)__ EJ

A new column matrix x may be defined as

(7.38)

(7.39)

(7.40)
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It may be worth pointing out that x is not an arbitrary
n-dimensional vector if the transformation network is re-
stricted to be linear and lossless.

Equation (7.39) may now be written as

x EE x
P . = (7.41)
€53 +(Z + Z+) X

It may be shown [3] that the stationary values of the

quantity Pe i when the vector X is arbitrarily varied are given

2

by the eigenvalues of the matrix

s, =@z+zH P EE . (7.31)

It is therefore evident that the eigenvalues of the
matrix §1 may be interpreted as the possible stationary values
of the exchangeable power that can be obtained from the multi-
frequency noisy network by cascading the latter with a linear
lossless network.

There is another possible interpretation to these
invariants if the multifrequency noisy network describes only
the terminal-noise behavior of a pumped nonlinear system. In
this case the value of n is equal to two and the two frequencies
of interest are wo+ w and -wd+ @, © is the frequency of the
pump and w is the frequency deviation.

It may be shown [7] that the eigenvalues of the matrix

E = (_Z_" + _Z_"+)“1 EnEnaﬂu (7‘,42)
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may be interpreted as the stationary values of exchangeable
amplitude/phase noise power that we can get from the system
when the lineaf lbssless network cascaded with the system is
arbitrarily varied. The impedance matrix Z" and the noise
voltage column matrikdg" are given in the ampiitude-phase
representation. The transformations between amplitude-phase

and a - B representations are given by

Z‘" = Av_z- A;l (7943)
and
E' =2 E (7.44)
where
_ - — —_
1 1| |3 0
1
\ =l (7.45)
Ly 2 5 -3 0 ej¢v
and _ _ .
1 1 |[ed0L 0
1 -} ol o
j -j 0 ej

@v and @i are the phase angles of carrier voltage and
carrier current at the frequency @ Z.and'g,in Eqs. (7.43)
and (7.44) aré*given in the a - B representation. Let us
assume that the.carrier‘currént and carrier voltage are in
phase. Accordingly,
= A (7.47)

It may be verified that
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-1
A, (7.48)

N =

7\+=
W

We can now write

N = (Z" + Zn“"‘)“’l E"E"+

=Ll z+zhHt EET .
N/ ~ N2 TV
1 + -1 1 _+ .
=== ) S, == A, (7.49)
N2 TV 1oy

The eigenvalues of N and §1 are, therefore, the same.

The eigenvalues of §1 may hence be interpreted as the
stationary values of the exchangeable amplitude/phase noise
power that we can get by a linear lossless transformation
from a nonlinear system pumped at frequency @ when the fre-
quency deviation w is not arbitrarily small.

Part Il

Theorem 7.4. The characteristic values of the matrix9

S, = (Zu + uzh EET (7.50)

remain invariant to a linear lossless transformation.

Matrix p is given by Eq. (7.12).

Proof. The §% matrix for the multifrequency noisy network
obtained by cascading a linear lossless 2n-port network with

an n-port multifrequency noisy network is given by

9It is assumed that the matrix (Zu + ggf) is nonsingular.



S, = (2'n + wz'Ht BB (7.51)

We then have

q+ = - -1 + - + + "1 +
Bz’ = Zou - 2 (Z¥2,4) T2y utZ - w2y (2 + 240) Zoi
Because of Eqs. (7.28) through (7.30)

0 ot _ -1 _+ + -1 .+
Zlwhul’ = 2, (Z42;0) " w2y v ZouZ 4 Zyy)0 2y
-1 + .+ + -1+
- g @z a2 + @] @ vzt 2
= AT(zu +uzh A (7.52)
where
+ -1
At ez vz (7.33)
We also have
E'E" =AY EEF A (7.35)
From Eq. (7.50)
-1 -1 —
si=at@+uwh? EE 4
-1
-als a (7.53)

Again, §£ and S, are related by a similarity transforma-

tion. They therefore have the same eigenvalues.

Part 111,

Theorem 7.5. The matrixlo

1OIt is again assumed that (Zu + ggf) is nonsingular.
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s, = @u+uzh™t @+zH (7.54)

goes through a similarity transformation when the network is
subjected to a linear lossless transformation. The eigenvalues

of §3, therefore, remain invariant.

Proof. According to Eqs. (7.34) and (7.52)

Z' + .Z.'+ - E'(_Z_ + &*) A (7.34)
z'p + pz't = otz + pzh A (7.52)

We can then write

si= @e+uzhH @ +z2h
-2l + Z‘*)‘1 @+zhHa
=ats, A (7.55)

This shows that the matrices §é and §3 possess the same
eigenvalues.

We would like to point out that the eigenvalues of _S__2
have the dimensions of power, and those of _S_,3 are dimensionless

numbers.

7.5. LINEAR LOSSLESS RECIPROCAL TRANSFORMATIONS

In this section we assume that the transformation network

is also reciprocal.

Condition of Reciprocity. If the transformation network is

linear, lossless and reciprocal, its impedance_matrix gT satis-

fies Eqs. (7.25) through (7.30) and also it satisfies the
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conditions:
z -2% =0 (7.21
o0 “o0 -
z . -25 =0 (7.22)
“oi o =
and :
t
gii - gii = 0. (7.23)
Theorem 7.6. The eigenvalues of the matrices11
1, =2-295Te+zhHe -5 @+ zhH” (7.56)
T, =C-29TEE -2 EET (7.57)
- *a %*
T, = 2 - 257 @ +ezhe - 25" @+ uzh (7.58)
- K *
T, = @-291@+zhe - 257 @+ uzh (7.59)
o= @-29T0 @+uzhe -2 e+ zhH” (7.60)
T, =2-2HTEE @-20" @+ zh” (7.61)
T, = @2-29TEE @ -25"T @+ pzh” (7.62)
= 2-2z29te+zhe-z2H" e (7.63)
and
Ty~ @2-291 @+uthe -z EET (7.64)

associated with a multifrequency noisy network remain invariant
when the network is subjected to a linear, lossless, and recip-

rocal transformation.
Proof. We showed in Section 7.4 that

z2+zt=atz+zh a (7.34)

z'p +pz't = at@u +uzh a (7.52)

11We make the assumption that (Z - Qt) is nonsingular.



189

and
E'E'+ =A"E BT A (7.35)
~ ~ - ~N o~ -
where
+ =1
A" = _z_oi(_z_ + gﬁ) . (7.33)
We can now write
2" -2t =z 7z @+z.0Vz, -2zF 4zt (z+z )E 125
= '“ —oo ~oi= —ii =io ~oo —io= —ii

By virtue of Egs. (7.21) through (7.23),

' ot -1 ,t t-1 ,t
z'-z z,z+z, )2k vz @z 2

_ t .t t-1 ot
= Lo (2t Zyy) {' @ +2z;)+ @2+ -Z-ii}(-z- 2y Ly

2t @ - z5 A" (7.65)

Case 1. The I{ matrix for the new multifrequency noisy

network is given by

=@ -zt @ rzhae - 25" ez

Tez-2Hre+He-25"1 @+ zhH* "

= A T. A, (7.66)

This proves that the eigenvalues of 1{ are equal to the eigen-

values of 110

Case 2. We also can write

-1

LI i _ oot vv i1 _ oot t ot
=@ -2 EET @ -2 EE
* - ko] —% %
T e-TEEF @-2H T EE 8
*-1 *

=a"tT A", (7.67)
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This shows the equality of eigenvalues of E& and I,
The proofs of other cases mentioned in Theorem 7.6 are very

similar and they therefore are not given. .

7.6. LINEAR PURELY LOSSY TRANSFORMATION

A transformation network is said to be purely lossylziif
the value of the reactive power stored in the network is iden-

tically zero.

Condition of being Purely Lossy. It is known from circuit

theory that the transformation network is purely lossy if and

only if
z, - g;.’ =0 (7.68)
or
+
z -2z =0 (7.69)
o0 =00 =
+
Z,; ~%4,=2 (7.70)
and
+

A

Ziy - % 0. (7.71)

N
I

Since it is also linear, it also satisfies Eqs. (7.15) through

(7.18).

Theorem 7.7. The ma;ricesl3
y=@-zZHtEE (7.72)
U = (@ -pH P EEF (7.73)

12As in the rest of this chapter, it is assumed that the
transformation network does not contain any internal signal/
noise generators.
13W make the assumption that the matrices (Z - Zf) and
(Zy - pZ ) are nonsingular.
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and

U, = @ -u2H Tt @-2ZH (7.74)
where Z and E are the impedance and noise voltage column matrices
of a multifrequency noisy network go through a similarity trans-
formation whenever the network is subjected to a linear purely
lossy transformation. The eigenvalues of the matrices, there-

fore, remain invariant.

Proof. The matrix yi is given by

Uy = @' - zh-t 'i«::rgﬁ . (7.75)
We can write
2 -2 By Ly @ LT 2y - Lo tE 2 2T T 2y
= -z, 2+ 511)-1 Zoy * 2oy @+ Z-ii)+-1 A
czuarzp Y @t r@r @zt
L@z @Dzt Ey
=at@z - 2 a. (7.76)

Let us now write

=AU A (7.77)

This again shows that the eigenvalues of gi remain invariant.

It may also be shown that

A (7.78)
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and
U.A. (7.79)
Equations (7.78) and (7.79) prove the validity of the rest of

the statements made in Theorem 7.7.

7.7. LINEAR LOSSLESS TRANSFORMATIONS OF TWO-FREQUENCY TWO-PORT

NETWORKS

For two-frequency two-port noisy networks, we have been able
to find two matrices the characteristic values of which remain
invariant when the two-port network is subjected to a linear
lossless transformation. It has also been shown that the eigen-
values of these matrices may be interpreted as stationary values
of exchangeable noise power.

Let the two frequencies present at the two ports of the

network (zee Fig. 7.4) be © + ® and - @, + w. Let also the

terminal-noise behavior of the network be described by14
V=ZI+E (7.80)
or
— —
va Zaa zaﬁ Ia Ea
= + . (7.81
\'4 Z Z 1 E
g __Ba (=12 B g

Let this network be cascaded with a linear lossless net-
work as shown in Fig. 7.5. Let us open-circuit the port at

frequency - @ + o (B - port).

14It is assumed that these representations are given in

the o - B representation.
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Figure 7.4. Two-frequency two-port noisy network.
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Theorem 7.8. The stationary values of the exchangeable noise
ﬁower that we can get at frequency @ + o from a two-frequency

two-port noisy network by a linear lossless transformation are

given by eigenvalues of the matrix15

+y o P
%={y§+§m,+m@+§dzyf

PEE P++[P EF p¥ ]} (7.82)
where
%e8  “Zap
P = i (7.83)
j 0
Proof.

Since the transformation network is linear and lossless,

it satisfies Egs. (7.25) through (7.29). It may also be shown

easily that for a two-port network

jx1 0
2o ™ (7.84)
0 sz
jxi 0
| 24 < _ (7.85)
0 jxi

151t is, of _course, assumed that the matrix {P(Z + 2 )P

+ [B(Z + 2 )P ] } is nonsingular,
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m, + jn 0

z . = (7.86)

0 m, + jn,

] [}
where Xys Xos Xys Xp, By, Ngs My, and n, are real numbers.
The exchangeable noise power from the a-port can be

written in matrix form as

P = S = —= (7.87)

where the matrix € is given by
~4

(7.88)

e
il

0

The variation of the lossless network is Fig. 7.5 now
corresponds to variation of the transformation network gT through
all possible lossless forms. We wish to find the stationary

values of Pe o corresponding to variation of gT,
2

We may write
+

gt o -l TTr 7 -1 +

(7.89)

0 o F : -1 + n1+ +
20 +z2T =z @z )T l@+ZDIE 2 )T 2. (.90

By means of Eqs. (7.83) through (7.85),
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Figure 7.5. Two-frequency two-port noisy network in

cascade with a variable lossless network.




¢
my «=i-_]n1 0 Zaa + jxq
z . (z+z. )t =
=oi = =ii
0 w, + jn2 Zaa
Tz + jxa
Be__-"2
m, + jny 0 . ,
Zea
0 m,, + in, - N
where16
s 0
Zaa + Jxyq ZaB
PO
zBa 266 + sz
Let us write
+ -1
AT -z @z
From Eq. (7.87), .
gPATEEFAG
P ==F ¥

where

16It is assumed that¢£>>is nonzero.

1
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(7.92)

(7.33)

(7.93)

(7.94)



We can write

5} =‘§+ é% - [é

—-A—;—E'l

where ¥y and y, are real numbers, positive or negative.

Let us write

Accordingly

o]

|

|ro

72

Y
v -
72
|72
JEEEE y
y RE+zZhE y
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(7.96)

(7.97)

(7.98)

(7.99)

(7.100)
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It may be shown that P E ET P and B(Z + Z') B are Hermitian

matrices. We may therefore write

Da—y ey *
s eEr e+ @EE Yy
Poy =0 T ——= (7.101)
’ yt<2(£+_z_ BT + (B2 + ZPPH] } y

c=PEERE + @EEED” (7.102)
and .
H=2z+zDe" + 2z + zHPH) (7.103)

are the real symmetric matrices.
As the transformation network is varied through all possible

values, the elements of real column matrix y take on all possible
~J

real values. Consequently, the stationary values of Pe o in
"

Eq. (7.101) may be found most conveniently by determining instead
the stationary values of the (real) expression

t

Pe,a = -E—*—; (7.104)

2

U<
=~ ¥ 1o
i<

as the real column matrix y is varied quite arbitrarily.
~

This is a well-known problem in matrix theory [8]. The
stationary values of Pe q ares therefore, given by eigenvalues
’

of the matrix

N =HG. (7.105)

This proves Theorem 7.8.
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Theorem 7.9, The stationary values of the exchangeable noise
power that we can get at frequency - ®, + o from a two-frequency,
two-port noisy network by a linear lossless transformation are

given by characteristic values of the matrix17

-1 o —_—
N, = {g@ +2zZNhet + e + .Z.+)9.+1"} QEEFQ" + (QEEF g")’}
| (7.106)
where

Proof. The proof of this is very similar to that of Theorem 7.8
and is not given.

Let us call ﬂa.and the characteristic noise macrices of

N
-
the two-frequency, two-port noisy network.

Theorem 7.10. The eigenvalues of the matrices gﬁ and yﬁ are
invariant to a linear lossless transformation that preserves

the number of terminal pairs.

Proof. Suppose that the original two-frequency, two-port net-
~work has characteristic noise matrices gﬁ and yﬁ.

Suppose this network is cascaded with a 4-pcrt linear loss-
less network, as shown in Fig. 7.6. A new 2-port network

results, with the characteristic noise matrices ﬂé and yé. The

*
17Nonsingmplar::i.t:y of the matrix {Q(& + §+)Q+ + [Q(_Z_+_Z_+)_0,+]}
is assumed.
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eigenvalues of g& and gé are the stationary values of the
exchangeable noise power obtained by a further linear lossless
transformation. The second transformation network is completely
variable. One possible variation removes the first 4-port trans-
formation network. In cascade with this, we can use, if we
like, any other linear lossless transformation network. Accord-
.ingly, the stationary values of the exchangeable noise powers
at the two frequencies @ + o and - @ + o do not change when the
two-port noisy network is subjected to a linear lossless trans-
formation so as to get a new two-frequency, two-port noisy

network.

This proves Theorem 7.10.

7.8. CANONICAL FORM OF TWO-FREQUENCY, TWD-PORT.NOLSY NETWORKS
iossless network transformations pérforﬁed on a two-
frequency, two-port noisy network in such a way that the number
of terminal pairs remain unchanged, change the impedance matrix

as well as the noise spectra.

It may be shown [3] that at any particular frequency, every
linear n-port noisy network can be reduced by linear lossless
transformation into a canonical form consisting of n separate
resistances 'in series with uncorrelated noise voltage generatoré.

Investigation of a simple form of Z and E for a two-
frequency, two-port noisy network by a linear lossless transfor-

mation forms the subject of this section.
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One of the simplest forms that we can get for

the impedance and noise voltage column matrices of a two-

frequency, two-port noisy network by linear lossless transfor-

mation is given by

and

Ean-}-

where k1/k2

1 ky
k, 1
1|2 gt
Ea| EaEB
tpok 1|2
EBEa IEBI

(7.107)

(7.108)

= a fixed number determined by the impedance matrix

of the original two-frequency, two-port noisy network.

Proof. Let the terminal-noise behavior of a two-frequency,

two-port noisy network be described by

or

V=Z1+E
o~ ~ s
zaB Ia
+
z I
e | B

(7.80)

. (7.81)

Let us get a new two-frequency, two-port noisy network by

a linear lossless transformation, as shown in Fig. 7.5.
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The terminal-noise behavior of the resulting network is

given by
= 71 0
Xo 2 o}o +E (7.8)
where :
2V =72 +27 . Z+2, )tz (7.109)
= oo “oi™= =i “oi ’
and
, -1 ..
0 =
Eo=z,E+%y E (7.10)

Since the transformation network is linear and lossless,
it satisfies Eqs.(7.84) through (7.86).

We can write

_— —_ — — — —-1
ixy 0 m, + jn,; 0 2.t jx]'_ ZaB
z' = +
0 sz 0 m, + jnz Zﬁa ZBB + jxi
my - imy o ]
0 m, - jn2
+ 3x5 z
(i+n)—§&2y—+3x1 -—&g(ml'*jnl)(mz-jnz)
VA Z + jx!
_ TBa . 2 2 a 1
(:m1 Jnl) (m2 + jnz) (m2 + nz)-—_'_aA + ix,
(7.110)

where /\ is given by Eq. (7.92).
X35 Xys xi, x), my, Ny, Wy, and n, are arbitrary real numbers.

We can therefore choose these numbers in such a way that
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2, .2
Ly + 0y

= (265 + %)) + 4%, =1 (7.111)
+ n,

S (2, + X))+ ix, = 1, (7.112)

By looking at Eq. (7.92) we can see that we can make A\
equal to any arbitrary complex number.

Let us write

iy
A = |p|le (7.113)
8,
- p
zaB 'ZGBI e (7.114)
2 = Izaal e (7.115)
and
8,
(m1 + jnl)(m2 - jnz) = ICI e . (7.116)
Accordingly, |
z z.llc] i@ +6, -9)
B —iﬁ (my + jny)(m, - jn,) = - L%%]f_ e P 2 1% (7.117)
z z C| j@. -9, -9,
- j%% (m; - jny)(m, + jny) = - | ,Dﬂ' | e P2 72 1. (7.118)
Let us choose ¢1 and ¢2 in such a way that
¢aﬁ +0, -0, =0 (7.119)
and
¢Ba -9, -9, =0. (7.120)

Let us also write
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[Zap | I€] =k (7.121)
- |D| B | ’
and
- ,Z al C, =k (7.122)
| 2 )
We can therefore write
1 k1
zZ' = (7.107)
LR
where
ky/k, = |za6| /lzﬁaj. (7.123)
From Eqs. (7.119) and (7.120)
@ a ¢a X
¢, = 22—k (7.124)
and 4
® +
¢, = L2 2B (7.125)

In this case, of course, the noise power matrix E‘E'+ is given by

112 pik
,Ea," EaEﬁ
Eﬁg'+ = (7.126)
E'E'F ,E"Z
B a p
where
' -1
=z @tz E (7.10)

This shows the validity of Theorem 7.11.
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7.9. MULTIFREQUENCY NOISY NETWORKS IN OTHER REPRESENTATIONS

In the foregoing analysis we have found some invariants of
a multifrequenéy noisy nétwork to different kinds of transfor-
matioﬁsithat preserve tﬁe nﬁmber of terminal pairs when the
network is described in terms of its impedance represéﬁtation°
Other kinds of representations can also be used; and for each
new kind of representation results analogous to those obtained
with the aid of impedance formalism can be derived. The
invariants obtained in these different kinds of representations

are, of course, the same.

7.10. SEPARATE IMBEDDINGS OF LINEAR NOISY NETWORKS

At any frequency, a linear n-port containing internal
signal or noise generators is specified completely with respect
to its terminal pairg by its impedance matrix Z and the complex
Fourier amplitudes of its open-circuit terminal“vdltages
El,sz, coe En (see Fig. 7.7). 1In case this n-port network
is connected as shown in Fig. 7.8 to another 2n-port network,

a new n-port network may be obtained. This operation will be
called separate imbedding of the original network. The trans-
formation network, in this case, is said to be separate.

The results we have obtained in Sectiomns 7.3, 7.4, 7.5, 7.6,
and 7.7 may be easily extended to linear noisy networks when an
additional constraint is put on the transformation network. This

constraint is that the transformation network be separate.

i
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Figure 7.7. Equivalent representation of linear network

with internal noise sources.
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CHAPTER 8

CONCLUSIONS

A great deal of material has been covered in the last
seven chapters.

It was the purpose of this thesis to develop a general
theory applicable to the analysis of noise performance of
pumped nonlinear systems.

In Chapter 2, several forms of characterizations were
given for the representation of internal noise sources in
pumped nonlinear systems. Some of these characterizations
are very similar to those that can be obtained for linear
noisy networks. The difference is that at each frequency of
interest two sources rather than one needed in linear noisy
networks is essential for the representation of noise sources
in pumped nonlinear systems.

Several ways of characterizing the noise performance of
pumped nonlinear systems have been given in Chapter 3. One
of these methods leads to a set of figures of merits which
remain invariant when the system is céscaded with a linear
lossless network. This method of defining a set of figures
of merit is based on the concepts of exchangeable amplitude
and phase noise powers. These concepts have also been developed
in this chapter. However, this method does not enable us to

get a cascade formula for a combination of two or more
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transducers; in other words, if a set of pumped nonlinear
systems are connected in cascade, and the combination is
driven by a single source, we have not been able to express
the set of figures of merit for the combination in terms of
the sets of figures of merit for each of the pumped nonlinear
systems when they are individually driven by the same source.
In Chapter 3, an attempt is also made to define a set of
figures of merit for the pumped nonlinear system in terms of
the open-circuit noise voltage matrices and a gain matrix.

It has also been shown that we can get a cascade formula by
using this definition of set of figures of merit. Finally,
in Chapter 3, a third set of figures of merit have been pro-
posed. This set of figures of merit have been defined in
terms of the variances of input and output parameters. This
set of figures of merit seems to have the greatest physical
significance. The values of these figures of merit, however,
depend not only on the value of the source impedance but also
on the value of the load impedance. This is not a very
desirable feature.

The detailed analysis of noise performance of abrupt-
junction varactor frequency multipliers has been given in
Chapter 4. It has been shown that it is possible to express
output amplitude and phase noise currents in terms of input

amplitude and phase noise sources and in terms of physical
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- sources of noise that may be present at several locations in
the circuit. The set of figures of merit defined for these
multipliers in terms of variances of input and output param-
eters have been expressed in terms of the modulation ratios
of the varactor. They have also been evaluated for some of
the multipliers by using a digital computer. The expressions
for the set of figures of merit can be used to find the point
of optimum noise performance, and to find the direction in
which improved noise performance can be obtained. This has
not been done in our thesis.

.The analysis of noise performance of divide-by-two circuit
using an abrupt-junction varactor diode is taken up next in
the first part of Chapter 5. The values of set of figures of
merit have been obtained for this device, and the values of
these figures of merit have been illustrated in a set of
plots. Optimization techniques can also be used for this
circuit to find out the point of optimum noise performance.
This has not been our aim in this thesis, and it has not been
attempted.

It is certainly possible that the pump used to drive the
nonlinear system can itself be noisy. The techniques developed
in the preceding chapters have been used in Chapter 5 to analyze
the noise performance of parametric amplifiers in which the

pump may be noisy. It has been shown for such amplifiers that
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only the amplitude noise present in the pump affects the
amplifier noise performance, and the phase noise does not.
The case of analysis of noise performance of parametric
amplifiers using a varactor diode has been taken as a typical
case. The same methods can be easily applied to the analysis
of noise perfofmance of devices driven by noisy pumps.
Examples of such systems are discriminators, degenerate
amplifiers, and systems consisting of such devices. Detailed
investigation of spot noise performance of such devices is
possible using the techniques developed in the earlier
chapters. This has not been attempted in this thesis.

In Chapter 6 investigation of imbedding of multifrequency
noisy networks in lossless pérametric devices has been done.
A characteristic noise matrix has been defined for these
multifrequency noisy networks. The eigenvalues of this
characteristic noise matrix remain invariant when the multi-
frequency noisy network is subjected to a lossless parametric
imbedding. An attempt is also made to give physiéalnsignif-
icance to these invariants with some success. A canonic form
is also obtained for these multifrequency noisy networks when
they are imbedded in lossless parametric devices. Most of
the results obtained for these multifrequency noisy networks
are analogous to those obtained for linear noisy networks when

the latter are imbedded in linear lossless networks.
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Chapter 7 deals with the invariants of multifrequency
noisy networks when they are subjected to linear transforma-
tions of different kinds. Physical significance has been
given to some of the invarianﬁs that we ha?e obtained. It is
anticipated that these invariants may become useful to char-
acterize the performance of these devices by comparing output
parameters with input parameters. The concept of separate
imbeddings for linear noisy networks has been introduced in
this chapter; and it has been pointed out that most of the
results obtained for multifrequency noisy networks when they
are imbedded in linear networks of different kinds may be
shown to be valid for linear noisy networks when the latter
are subjected to separate linear transformations of the same
kind. It seems possible to develop a new theory of noise
performance of linear noisy networks by using this idea of
separate imbedding.

In summary, a general framework has been laid for the
analysis of noise performance of pumped nonlinear systems.
Techniques have been developed for the representation of noise
sources in such devices, and for their characterization of
noise performance. Specific problems are not treated in
detail, even though modest attempts have been made to get an
insight into the noise performance of harmonic generators

and dividers.
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8.1. SUGGESTIONS FOR FUTURE WORK

A number of problems of interest have been suggested in
the preceding paragraphs which deserve further investigation.

Even though we have proposed three ways of characterizing
the noise performance of pumped nonlinear systems, each one
of these methods lacks one feature or another possessed by
the noise figure defined fof linear noisy networks. Future
research may be directed in finding such a set of figures of
merit for the pumped nonlinear systems.

As pointed out earlier, specific problems are not treated
in detail in this thesis. Research may also be directed in
analyzing the noise performance of specific devices like dis-
criminators, parametric amplifiers, limiters, modulators, and
systems consisting of such devices.

Our attempts to give physical significance to some of the
invariants obtained in Chapter 7 have only met with partial
success. This is another area in which further investigation
is suggested.

The idea of separate imbeddings has been introduced in
Chapter 7. This concept also needs further refinements and
investigation. It is possible that a whole new theory of
linear noisy networks can be developed by using this idea of
separate imbeddings.

These are only some of the areas which needs further

investigation and research.
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APPENDIX A

DIAGONAL CHARACTER OF A MATRIX

A square n x n matrix [aij] is defined to be a diagonal

matrix if

a;y = 0 i# 3. (A-1)

A diagonal matrix A with diagonal elements a5 8y, °°", Ay

is written as A = diag [al, a5, *°° an].

Theorem A-1. A square n X n matrix A is a diagonal matrix if

and only if
Ap-pA=0 (A-2)

where the matrix p is represented as

L= . (A-3)

Hys Mgs °°° , K are any nonzero real or complex numbers which

satisfy the following condition:

by = By £ 0 unless i = j (A-4)

Proof. Let a square n x n matrix A be represented as
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(A-5)

nn

i
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B ee (gkpdagy oo Geemngdagy coe (psugdag

(hy-pjdagy - 0 v lyemgdag e (upmegdagy
= : : : : (A-6)
(g ooe (ymdag, oo 0 oo ey

] o 2

i"™n’%ni °7° (“k-un)ank te 0

(ul-un)an1 soe (U,-u_da

Let A be a diagonal matrix. The property of a diagonal
matrix is that
a;; = 0 i#j (A-1)
From Eqs. (A-1), (A-5), and (A-6), we have

Ap-pA-=0. (A-2)

Let us now assume that Eq. (A-2) is satisfied.

From Eq. (A-6) we can then write

By virtue of Eq. (A-4), it follows that

a;; =0 i#j. (A-1)

This proves Theorem A-1,
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