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Abstract

Rapid increases in chip complexity, increasingly faster clocks, and the proliferation
of portable devices have combined to make power dissipation an important design
parameter. The power consumption of a digital system determines its heat dissipation
as well as battery life. For some systems, power has become the most critical design
constraint.

In this thesis we develop a methodology for low power design. We first present
techniques for estimating the average power dissipation of a logic circuit. At the
logic level, power dissipation is directly related to switching activity. We describe a
symbolic simulation method to accurately and efficiently compute the switching activity
in logic circuits. This method is extended to handle sequential logic circuits, namely
by modeling correlation in time and by calculating the probabilities of present state
lines.

In the second part of this thesis we develop methods for the reduction of switching
activity in logic circuits. We present a retiming method for low power. Registers
are re-positioned such that the overall glitching in the circuit is minimized. We then
propose a powerful optimization method that is based on selectively precomputing the
output logic values of a circuit one clock cycle before they are required, and using
the precomputed values to reduce internal switching activity in the succeeding clock
cycle. Finally we describe a scheduling method that maximizes the inactivity period
of the modules in a circuit.

Keywords-- low power design, power estimation, symbolic simulation, precomputa-
tion, retiming, power management, scheduling.
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Chapter 1

Introduction

Digital integrated circuits are ubiquitous in systems that require computation. During

the years of their inception, the use of integrated circuits was confined to traditional

electronic systems such as computers, high-fidelity sound systems, and communication

systems. Today not only do computer and communication systems play an increasingly

important role, but also the use of integrated systems is much more widespread, from

controllers used in washing machines to the automobile industry. As a result, digital

circuits are becoming more application specific.

The shrinking of device sizes due to the improvement of fabrication technology

has increased dramatically the number of transistors available for use in a single chip.

Functions that were performed by several chips can now be done within a single

chip, reducing the physical size of the electronic component of the system. The larger

capacity of the chips is also being used to extend the functionality of the systems. The

overall consequence is a substantial increase in complexity of the integrated circuits.

In order to handle the ever increasing complexity, computer-aided design tools have

been developed. These tools have to be general enough to produce good solutions for

the broad range of applications for which integrated circuits are being designed.

The first generation of computer-aided design tools dealt with automatically gen-

erating the layout masks from the description of the circuit at the logic level. Then
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logic synthesis tools were introduced to obtain optimized logic circuits from some

input/output specification. More recently, tools that can do system-level optimization

given a Register-Transfer Level (RTL) description have been proposed. The trend

towards moving the circuit specification to higher level descriptions continues with

research being conducted at the behavioral synthesis level. At this level, the circuit

description is akin to an algorithmic description and the synthesis tool decides which

registers and functional units to use and assigns each operation to one of these units

on a given clock cycle.

A complete synthesis system is presented in Figure 1-1. Each synthesis tool trans-

lates a description of the circuit into an optimized description at a lower level. At

every description level, area, timing and power dissipation estimates can be obtained

and used to drive the synthesis tool such that the design's constraints are met. If at

some level any of these constraints is violated, the designer needs to go back one

or more description levels and redo the synthesis with different parameters, perhaps

relaxing some constraint.

As shown in Figure 1-1, the logic synthesis process is usually split into two

different phases. First logic optimization is performed on a Boolean description of the

circuit. Technology mapping is then performed on this optimized circuit - this consists

of translating the generic Boolean description to logic gates existing in the chosen

library. This library is specific to the fabrication process that is going to be used and

has precise layout, area and timing information for each gate. Design estimates at this

level are therefore more precise than at higher levels.

Also shown in Figure 1-1 is the automatic test generator module [ABF90]. At the

logic level, this tool generates a set of input patterns that attempts to identify possible

circuit malfunctions after fabrication. These input patterns can then be used to test

the functionality of the fabricated chips and should be small in number to minimize

the test time. Although automatic test generation is seemingly independent from the

synthesis process, testability-aware synthesis algorithms can dramatically improve the

performance of the test generator.
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Figure 1-1 A complete synthesis system.
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1.1 Power as a Design Constraint

Traditionally the constraints in the design of an integrated circuit have been timing

and area [BHMSV84, BRSVW87, BHJ+87, ADN91]. When designing a circuit, there

is usually a performance goal which translates to a maximum duration that any logic

signal can take to stabilize after the inputs have stabilized. The second concern is

that the circuit should take up as little area as possible since die area has a direct

correspondence to cost. Further, this is not a linear relationship as the larger the circuit

the more probable it is that there is a fabrication process error in a circuit, lowering

circuit yield [Wal87, Chapter 2].

However, the importance of low-power dissipative digital circuits is rapidly in-

creasing. For many consumer electronic applications low average power dissipation

is desirable and for certain special applications low power dissipation is of critical

importance. For personal communication applications like hand-held mobile telephones,

low power dissipation may be the tightest constraint in the design. The battery lifetime

may be the decisive factor in the success of the product.

More generally, with the increasing scale of integration and faster clock frequencies,

we believe that power dissipation will assume greater importance, especially in multi-

chip modules where heat dissipation is one of the biggest problems. Even today,

power dissipation is already a significant problem for some circuits. General purpose

processors such as the Intel Pentiuni and DEC AlphaTM consume 16W and 30W,

respectively. Higher temperatures can affect the circuit's reliability and reduce the

lifetime of the system [Chr94]. In order to dissipate the heat that is generated, special

packaging and cooling systems have to be used, leading to higher costs.

Optimization for low power can be applied at many different levels of the design

hierarchy. The average power dissipation of a circuit, like its area or speed, may be

significantly improved by changing the architecture of the circuit [CSB92]. Algorithmic

and architectural transformations can trade-off throughput, circuit area, and power

dissipation. Furthermore, scaling technology parameters such as supply and threshold
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voltages can substantially reduce power dissipation. But once these architectural or

technological improvements have been made, it is the switching of the logic that will

ultimately determine its power dissipation.

The focus of this thesis is a methodology for the optimization of digital circuits

for low power at the logic level. The techniques developed are independent of the

power reduction techniques applied at higher levels and can be used after system-level

decisions are made and high-level transformations applied.

To effectively optimize designs for low power, however, accurate power estimation

methods must be developed and used. Power dissipation is generally considered to be

more difficult to compute than the estimation of other circuit parameters, like area and

delay. The main reason for this difficulty is that power dissipation is dependent on the

activity of the circuit. Therefore, in the first part of this thesis we focus on the power

estimation problem.

1.2 Organization of this Thesis

This thesis is organized in two main parts. The first part addresses the problem of

estimating the average power dissipation of a circuit given its description at the logic

level. We start by describing in Chapter 2 the issues involved in computing the power

dissipation of digital circuit. We show that power is directly related to the switching

activity of the signals in the circuit. We provide a critique of existing power estimation

techniques, namely by pointing out how each technique addresses the issues previously

mentioned.

Chapter 3 presents our approach to power estimation for combinational logic circuits.

We discuss the merits and drawbacks of our approach and provide comparisons with

previous methods.

The power estimation techniques mentioned in Chapters 2 and 3 target combinational

circuits. In general, digital integrated circuits are sequential, i.e., they contain memory

elements. Chapter 4 describes the technique we have developed that extends the method
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of Chapter 3 to the sequential circuit case. However, this technique is general enough

to be used with any other combinational power estimation method.

One other factor that needs to be taken into account in accurate power estimation

is the temporal correlation of primary inputs. Also in Chapter 4, we show how to

model this correlation and obtain an accurate power estimation by making use of a

sequential power estimator.

The second part of the thesis is devoted to optimization methods for low power.

Chapter 5 presents a survey of the most significant techniques that have been proposed

thus far to reduce the power consumption of digital circuits at the logic level. The next

three chapters present original work on sequential logic optimization for low power.

Chapter 6 describes a retiming technique for low power. The main observation is

that the switching activity at the output of a register can be significantly less than that

at the register's input. Any glitching in the input signal is filtered by the register. The

technique we propose repositions the registers in the logic circuit such that the overall

switching activity in the circuit is minimized.

In Chapter 7, a power management optimization technique is presented. The logic

values at the output of a circuit are selectively precomputed one clock cycle before

they are required, and these precomputed values are used to reduce internal switching

activity in the succeeding clock cycle. For a large number of circuits, significant power

reductions can be achieved by this data-dependent circuit power down.

We present another power management optimization technique in Chapter 8. Given a

behavioral description of the system, we propose a scheduling algorithm that maximizes

the potential for power management in the resulting circuit.

Finally, Chapter 9 concludes the thesis with a retrospective examination of what

has been achieved in this thesis, and provides directions for future research.
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Power Estimation

For power to be used as a design parameter, tools are needed that can efficiently

estimate the power consumption of a given design. As in most engineering problems

we have tradeoffs, in this case between the accuracy and run-time of the tool.

Accurate power values can be obtained from circuit-level simulators such as

SPICE [Qua89]. In practice, these simulators cannot be used in circuits with more than

a few thousand transistors, so their applicability in logic design is very limited - they

are essentially used to characterize simple logic cells.

A good compromise between accuracy and complexity is switch-level simulation.

Simulation of entire chips can be done within reasonable amounts of CPU time [Tja89,

SH89]. This property makes switch-level simulators very important power diagnosis

tools. After layout and before fabrication these tools can be used to identify hot spots

in the design, i.e., areas in the circuit where current densities or temperature may

exceed the safety limits during normal operation.

At the logic level, a more simplified power dissipation model is used, leading to

a faster power estimation process. Although detailed circuit behavior is not modeled,

the estimation values can still be reasonably accurate. Obtaining fast power estimates

is critical in order to allow a designer to compare different designs. Further, for the

purpose of directing a designer or a synthesis tool for low power design, rather than
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an absolute measure of how much power a particular circuit consumes, an accurate

relative power measure between two designs will suffice.

This observation is carried out further to justify power estimation schemes at higher

abstraction levels. In [LR94] a power estimation technique at the register-transfer (RT)

level is presented. Power coefficients are computed beforehand for datapath modules

(such as adders, multipliers, etc) and stored in the module library database. The

circuit described at the RT level is simulated for some input vectors and power

values are calculated from the circuit activity and the module coefficients. In [Naj95]

and [MMP95a] the focus is to derive implementation-independent measures of the

signal activity in the circuit. Although with any of these techniques a very crude

power figure is obtained, it may be sufficiently accurate in relative terms to allow the

comparison between different circuit architectures.

In this thesis we focus on power estimation and optimization at the logic level.

This level is perhaps where the best accuracy versus run-time tradeoff is reached. We

first describe the power dissipation model that we use at the logic level in Section 2.1.

We then present in Section 2.2 a survey of the most significant power estimation

techniques at the logic level that have been previously proposed. Both simulation-

based (Section 2.2.1) and probabilistic (Section 2.2.3) techniques are reviewed and the

issues involved in each technique are discussed.

2.1 Power Dissipation Model

The sources of power dissipation in CMOS devices are summarized by the following

expression [WE94, p. 236]:

P = 1-.C.VD.f N + Qsc-VDD'f'N + Ileak'VDD (2.1)

where P denotes the total power, VDD is the supply voltage, and f is the frequency

of operation.

The first term in Equation 2.1 corresponds to the power involved in charging and

discharging circuit nodes. C represents the node capacitances and N is the switching
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activity, i.e., the number of gate output transitions per clock cycle (also known as

transition density [Naj93]). -C V~2D is the energy involved in charging or discharging

a circuit node with capacitance C and f. N is the average number of times per second

that the nodes switches.

The second term in Equation 2.1 represents the power dissipation due to current

flowing directly from the supply to ground during the (hopefully small) period that

the pull-up and pull-down networks of the CMOS gate are both conducting when

the output switches. This current is often called short-circuit current. The factor Qsc

represents the quantity of charge carried by the short-circuit current per transition.

The third term in Equation 2.1 is related to the static power dissipation due to

leakage current l,,eak. The transistor source and drain diffusions in a MOS device

form parasitic diodes with bulk regions. Reverse bias currents in these diodes dissipate

power. Subthreshold transistor currents also dissipate power. I,eak accounts for both

these small currents.

These three factors for power dissipation are often referred to as switching activity

power, short-circuit power and leakage current power respectively.

It has been shown [CSB92] that during normal operation of well designed CMOS

circuits the switching activity power accounts for over 90% of the total power dis-

sipation. Thus power optimization techniques at different levels of abstraction target

minimal switching activity power. The model for power dissipation for a gate i in a

logic circuit is simplified to:

1Pi = .Ci"VD"f" Ni (2.2)

The supply voltage VDD and the clock frequency f are defined prior to logic

design. The capacitive load C; that the gate is driving can be extracted from the

circuit. This capacitance includes the source-drain capacitance of the gate itself, the

input capacitances of the fanout gates and, if available, the wiring capacitance. Therefore

the problem of logic level power estimation reduces to computing an accurate estimate

of the average number of transitions Ni for each gate in the circuit. In the remainder
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of this chapter we present a review and critique of techniques for the computation of

switching activity in logic circuits.

2.2 Switching Activity Estimation

The techniques we present in this section target average switching activity estimation.

This is typically the value used to guide optimization methods for low power.

Some work has been done on identifying and computing conditions which lead

to maximum power dissipation. In [DKW92] a technique is presented that implicitly

determines the two input vector sequence that leads to maximum power dissipation

in a combinational circuit. More recently, in [MPB+95] a method for computing the

multiple vector cycle in a sequential circuit that dissipates maximum average power is

described.

2.2.1 Simulation-Based Techniques

A straightforward approach to obtain an average transition count at every gate in the

circuit is to use a logic or timing simulator and simulate the circuit for a sufficiently

large number of randomly generated input vectors. The main advantage of this approach

is that existing logic simulators can be used directly and issues such as glitching and

internal signal correlation are automatically taken into account by the logic simulator.

The most important aspect of simulation-based switching activity estimation is

deciding how many input vectors to simulate in order to achieve a given accuracy

level. A basic assumption is that under random inputs the power consumed by a circuit

over a period of time T has a Normal distribution. Given a user-specified allowed

percentage error f and confidence level a, the approach described in [BNYT93]

uses the Central Limit Theorem [Pap91, pp. 214-221] to compute the number of

input vectors with which to simulate the circuit with. Witha x 100% confidence,

_p - P1 < erf-'(2) x s/ I , where p and s are the measured average and standard

deviation of the power, P is the true average power dissipation, N the number of
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input vectors and erf- l() is the inverse error function [Pap91, p. 49] obtained from

the Normal distribution. Since we require P < e, it follows that
p

NŽ (erf'(x p ) (2.3)

For a typical logic circuit and reasonable error and confidence levels, the numbers

of vectors needed is usually small, making this approach very efficient.

A limitation of the technique presented in [BNYT93] is that it only guarantees

accuracy for the average switching activity over all the gates. The switching activity

values for individual gates (Ni in Equation 2.2) may have large errors and these values

are important for many optimization techniques.

This method is augmented in [XN94] by allowing the user to specify the percentage

error and confidence level for the switching activity of individual gates. Equation 2.3

is used for each node in the circuit, where instead of power, the average and standard

deviation of the number of transitions in the node is the relevant parameter. The number

of input vectors N is obtained as the minimum N that verifies Equation 2.3 for all

the nodes.

The problem now is that gates which have a low switching probability, low-density

nodes, may require a very large number of input vectors in order for the estimation to

be within the percentage error specified by the user. The authors solve this problem

by being less restrictive for these gates: an absolute error bound is used instead of

the percentage error. The impact of possible larger errors for low-density nodes is

minimized by the fact that these gates have the least effect on power dissipation and

circuit reliability.

Other methods [HK95] try to compute a tighter bound on the number of input

vectors to simulate. Instead of relying on normal distribution properties, the authors

assume that the number of transitions at the output of a gate has a multinomial

distribution. However, this method has to make a number of empirical approximations

in order to obtain the number of input vectors.
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Simulation-based techniques can be very efficient for loose accuracy bounds. In-

creasing the accuracy may require a prohibitively high number of simulation vectors.

Using simulation-based methods in a synthesis scenario, where a circuit is being in-

crementally modified and power estimates have to be obtained repeatedly for subsets

of nodes in the circuit, can be quite inefficient.

2.2.2 Issues in Probabilistic Estimation Techniques

Given some statistical information of the inputs, probabilistic methods propagate this

information through the logic circuit obtaining statistics about the switching activity

at each node in the circuit. Only one pass through the circuit is needed making these

methods potentially very efficient. However, modeling issues like correlation between

signals can make these methods computationally expensive.

Temporal Correlation: Static vs. Transition Probabilities

The static probability of a logic signal x is the probability of x being 0 or 1 at

any instant (we will represent this, respectively, as prob(Y) and prob(x)). Transition

probabilities are the probability of x making a 0 to 1 or 1 to 0 transition, staying at

0 or staying at 1 between two time instants. We will represent these probabilities as

probo1(x), probl0 (x), proboo(x) and prob"(x), respectively. Note that we always have

probo0 (x) = prob'0 (x).

The probability that signal x makes a transition is probo0 (x) + prob0o(x). Relating

to Equation 2.2, Ng = probo1(x) + prob0o(x).

Static probabilities can always be derived from transition probabilities:

prob(x) = prob"(x)+prob0 '(x) (2.4)
prob(Y) = prob00(x)+prob'0(x)

Derivation in the other direction is only possible if we are given the correlation
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Figure 2-1 Dynamic vs. static circuits.

coefficients between successive values of a signal. If we assume these values are

independent then:

prob"(x) = prob(x) x prob(x)

prob1 0(x) = prob(x) x prob(T) (2.5)
probol(x) = prob(Y) x prob(x)
problo(z) = prob(f) x prob(E)

In the case of dynamic precharged circuits, exemplified in Figure 2-1(a), the switch-

ing activity is uniquely determined by the applied input vector. If both x and y are

0, then z stays at 0 and there is no switching activity. If one or both of x and y are

1, then z goes to 1 during the evaluation phase and back to 0 during precharging.

Therefore, the switching activity at z will be twice the static probability of z being 1.

(N. = 2 x prob(z).)

On the other hand, the switching activity in static CMOS circuits is a function of

a two input vector sequence. For instance, consider the circuit shown in Figure 2-1(b).

In order to determine if the output f switches we need to know what value it assumed

for the first input vector and to what value it evaluated after the second input vector.

X-l
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Using static probabilities one can compute the probability that f evaluates to 1 for the

first (probl(f)) and second (prob2 (f)) input vectors. Then:

Nf = probi(f) x prob2(f) + probi(f) x prob2(f)

= prob(f) x (1 - prob(f)) + (1 - prob(f)) x prob(f)

= 2 x prob(f) x (1 - prob(f))

since probl(f) = prob2 (f) = prob(f) and prob(f) = 1 -prob(f).

By using static probabilities in the previous expression we ignored any correlation

between the two vectors in the input sequence. In general ignoring this type of corre-

lation, called temporal correlation, is not a valid assumption. Probabilistic estimation

methods work with transition probabilities at the inputs, thus introducing the necessary

correlation between input vectors. Transition probabilities are propagated and computed

for all the nodes in the circuit.

Spatial Correlation

Another type of signal correlation in logic circuits is spatial correlation. The probability

of two or more signals being 1 may not be independent. Spatial correlation of input

signals, even if known, can be difficult to specify, so most probabilistic techniques

assume the inputs to be spatially independent. In Section 4.5 we propose a method

that takes into account input signal correlation for user-specified input sequences.

Even if spatial independence is assumed for input signals, logic circuits with recon-

vergent fanout introduce spatial correlation between internal signals. Consider the circuit

depicted in Figure 2-2. Assuming that inputs a, b and c are uncorrelated, the static

probability at I is prob(I) = prob(a)prob(b) and at J is prob(J) = prob(b)prob(c).

However, prob(f) $ prob(I)+prob(J)-prob(I)prob(J) because I and J are correlated

(b=O = I= J= 0).

To compute accurate signal probabilities, we need to take into account this internal

spatial correlation. One solution to this problem is to write the Boolean function as
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Figure 2-2 Spatial correlation between internal signals.

i)prob(c)+prob(a)) prob(b)

rob(R)prob(c)+prob(a)

prob(c)

Figure 2-3 Computing static probabilities using BDDs.

a disjoint sum-of-products expression, where each product-term has a null intersection

with any other. For the previous example, we write f as:

f = (aAb) V (bAc)

= (aAb) V (^AbAc)

Then prob(f) = prob(a)prob(b) + prob(') prob(b)prob(c).

A more efficient approach is to use Binary Decision Diagrams (BDDs) [Bry86].

The static probabilities can be computed in time linear in the size of the BDD by

traversing the BDD from leaves to root, since the BDD implements a disjoint cover

with sharing. The BDD for the previous example is illustrated in Figure 2-3.
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Figure 2-4 Glitching due to different input path delays.

Glitching

Yet another issue is spurious transitions (or glitching) at the output of a gate due to

different input path delays. These may cause the gate to switch more than once during

a clock cycle, as exemplified in Figure 2-4. Studies have shown that glitching cannot

be ignored as it can be a significant fraction of the total switching activity [SDGK92,

FB95].

2.2.3 Probabilistic Techniques

There has been a great deal of work in the area of probabilistic power estimation

in the past few years. We describe representative techniques in this section. These

techniques focus on static CMOS circuits since computing transition probabilities is

more complex than computing static probabilities. Static probabilities can be obtained

from the transition probabilities by Equation 2.4.

Early methods to approximate signal probability targeted testability applications

[PM75, Go179, KT89, EFD+92]. These methods are not directly applicable to the

power estimation problem.

The first approach that was concerned with switching activity for power dissipation

was presented in [Cir87]. Static probabilities of the input signals are propagated through

the logic gates in the circuit. In this straightforward approach, a zero delay model is

assumed, thus glitching is not computed. Since static probabilities are used no temporal

signal correlation is taken into account. Further, spatial correlation is also ignored as

signals at the input of each gate are assumed to be independent.
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In [Naj93], a technique is presented that propagates transition densities (D(x))

through the circuit. The author shows that the transition density at the output f of a

logic gate with n uncorrelated inputs xi can be computed as

D(f)= prob (f D(x1). (2.6)

fL are the combinations for which the value of f depends on the value of xi and is

given by
89f

= f, e fy , (2.7)0xi

where E stands for the exclusive-or operator and fi, and fyr are the cofactors of f

with respect to xi and Y7, respectively (the cofactors can be obtained simply by setting

x2 to a 1 or 0 in f).
That is, the switching activity at the output is the sum of the switching activity of

each input weighted by the probability that a transition at this input is propagated to

the output.

Implicit to this technique is also a zero delay model. An attempt to take glitching

into account is suggested by decoupling delays from the logic gate and computing

transition densities at each different time point where inputs may switch.

A major shortcoming of this method is the assumption of spatial independence

of the input signals to each gate. [Kap94] extends the work of [Naj93] by partially

solving this spatial correlation problem. The logic circuit is partitioned in order to

compute accurate transition densities at some nodes in the circuit. For each partition,

spatial correlation is taken into account by using BDDs.

A similar technique, introduced in [NBYH90], uses the notion of transition wave-

form. A transition waveform, illustrated in Figure 2-5, represents an average of all

possible signal waveforms at a given node. The example of Figure 2-5 shows that

there are no transitions between instants 0 and ti and that during this interval half

of the possible waveforms are at 1. At instant t1 a fraction of 0.2 of the waveforms

make a 0 to 1 transition, leaving a quarter of the waveforms at 1 (which implies that

a fraction of 0.45 of the waveforms make a 1 to 0 transition). A transition waveform
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Figure 2-5 Example of a transition waveform.

basically has all the information about static and transition probabilities of signals and

how these probabilities change in time. Their main advantage is to allow an efficient

computation of glitching. Transition waveforms are propagated through the logic circuit

in much the same way as transition densities.

Again, transition waveform techniques are not able to handle spatial correlations.

Another method based on transition waveforms is proposed in [TPD93a] where cor-

relation coefficients between internal signals are computed beforehand and then used

when propagating the transition waveforms. These coefficients are computed for pairs

of signals (from their logic AND) and are based on steady state conditions. This way

some spatial correlation is taken into account.

Recent work [Che95] generalizes the Parker-McCluskey method [PM75] (a proba-

bilistic technique for testability applications) to handle transition probabilities by using

four-valued variables rather than Boolean variables. The Parker-McCluskey method

generates a polynomial that represents the probability that the gate output is a 1, as

a function of the static probabilities of the primary inputs. It follows basic rules for

propagating polynomials through logic gates. The method proposed in [Che95] can be

used to obtain exact (in the sense that temporal and spatial correlation are accurately

modeled) switching activities for the zero delay model, but no generalization to handle

gate delays was made.
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The Boolean Approximation Method [UMMG95] uses Taylor series expansions to

efficiently compute signal probabilities and switching activities. This method is also

restricted to the zero delay model. Given two functions A and B, the value computed

for prob(A A B) by this method may be in error by as much as 50%, if A and B

share more than one input and only the first term in the Taylor series is used. Using

higher order Taylor series terms results in much greater complexity.

In Chapter 3, we propose a switching activity estimation technique that follows

a different approach and which can effectively handle all the issues mentioned in

Section 2.2.2.

2.3 Summary

Power estimation issues and techniques at the logic level have been reviewed. We

focus on the logic level as we believe it to be the abstraction level where the best

compromise between accuracy and run-time is obtained.

The model used at this abstraction level is such that the power dissipated at the out-

put of a gate is directly proportional to the switching probability of the node. Therefore

the problem of power estimation reduces to one of signal probability evaluation.

There are two main approaches for computing the switching activity in a logic

circuit: simulation-based and probabilistic techniques. In both the tradeoff is accuracy

vs. run-time. In simulation-based methods, the higher the accuracy requested by the

user (translated in terms of lower allowed error 6 and/or higher confidence level a)

the more input vectors that have to be simulated. In probabilistic methods, we have

methods such as the transition density propagation method [Naj93] that are very fast but

ignore some important issues like spatial correlation, to methods such as the extension

to Parker-McCluskey [Che95] that model correlation but are much slower and limited

in the size of circuits that can be handled.
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Chapter 3

A Power Estimation Method for

Combinational Circuits

In this chapter we describe a technique for the power estimation of logic circuits. This

technique is based on symbolic simulation and was first presented in [GDKW92]. It

improves upon the state-of-the-art in several ways. We use a variable delay model for

combinational logic in our symbolic simulation method, which correctly computes the

Boolean conditions that cause glitching (multiple transitions at a gate) in the circuit.

In some cases, glitching may account for a significant percentage of the switching

activity [SDGK92, FB95]. For each gate in the circuit, symbolic simulation produces

a set of Boolean functions that represent the conditions for switching at different

time points. Given input switching rates, we can use exact or approximate methods

to compute the probability of each gate switching at any particular time point. We

then sum these probabilities over all the gates to obtain the expected switching activity

in the entire circuit over all the time points corresponding to a clock cycle. Our

method takes into account correlation caused at internal gates in the circuit due to

reconvergence of input signals (reconvergent fanout).

We describe the symbolic simulation algorithm in Section 3.1. In Sections 3.2 and

3.3 we show how the symbolic simulation can be used to handle transmission gates
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ba d

Figure 3-1 Example circuit for symbolic simulation.

and inertial delays, respectively. We present power estimation results for some circuits

in Section 3.4.

3.1 Symbolic Simulation

We build a symbolic network from the symbolic simulation of the original logic circuit

over a two-input vector sequence. The symbolic network is a logic circuit which has

the Boolean conditions for all values that each gate in the original network may assume

at different time instants given this input vector pair.

If a zero delay model is used, each gate in the circuit can only assume two different

values, one corresponding to each input vector. For this simple case, the symbolic

network corresponds to two copies of the original network, one copy evaluated with

the first input vector and the other copy with the second. Then exclusive-or (XOR) gates

are added between each pair of nodes that correspond to the same node in the original

circuit. The output of an XOR evaluating to a 1 indicates that for this input vector pair

the corresponding node in the original circuit makes one transition (it evaluates to a

different value for each of the two input vectors).

To illustrate this process, consider the circuit of Figure 3-1. The symbolic network

for a zero delay model is shown in Figure 3-2. The inputs a(O) and b(O) correspond

to the first input vector and a(t) and b(t) to the second. If the output ec, evaluates to

1, then signal c in the original circuit (cf. Figure 3-1) will make a transition for the

applied vector pair. Similarly for outputs ea, eb and ed.

In the case of unit or general delay models, the gate output nodes of a multilevel

network can have multiple transitions in response to a two-vector input sequence.
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Figure 3-3(a) shows the possible transitions that the output of each gate in the circuit

of Figure 3-1 can make under a unit delay model.

The symbolic simulator is able to simulate circuits with arbitrary gate transport

delays. The symbolic network will have nodes corresponding to all intermediate values

that each gate in the original circuit may assume. The XOR gates will be connected to

nodes corresponding to consecutive time instants and relating to the same node in the

original circuit.

The symbolic network for a unit delay model for the circuit of Figure 3-1 is

presented in Figure 3-3(b). Nodes c(O) and d(O) are the initial values of nodes c and d

respectively. At instant 1, node c will have the value c(t + 1) and d the value d(t + 1).

ec,l = c(O) D c(t + 1) evaluates to 1 only if node c makes a transition at instant 1.

Similarly for node d at instant 1. At instant 2, node d will assume the value d(t + 2).

Again ed,2 = d(t + 1) e d(t + 2) gives the condition for d to switch at instant 2. The

total switching at the output of gate d will be the sum of ed,1 and ed,2.

The pseudo-code for the symbolic simulation algorithm is presented in Figure 3-4.

The simulator processes one gate at a time, moving from the primary inputs to the

primary outputs of the circuit. For each gate gi, an ordered list of the possible transition

times of its inputs is first obtained. Then, possible transitions at the output of the gate

are derived, taking into account transport delays from each input to the gate output.

The processing done is similar to the "time-wheel" in a timing simulator.

Once the symbolic network of a circuit is computed, we use the static probabilities

of the inputs to obtain the static probabilities of the output of the XORs evaluating to

1. This probability is the same as the switching probability of the nodes in the original

circuit.

This method models glitching accurately and if BDDs are used to compute the

static probabilities, exact spatial correlation is implicitly taken into account. Temporal

correlation of the inputs can be handled during the BDD traversal by using the

probabilities of pairs of corresponding inputs, e.g., (a(O), a(t)), which are the transition

probabilities.
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1. Gates = TopologicalSort( Network) ;
2. for each gi in Gates {
3. if gi is a primary input then {
4. TimePoints = { (0, fi(0)), (t, fI(t)) } ;
5. ei,t = fi(0) e fi(t) ;
6. }
7. else {
8. A = delay of gi ;
9. TimePoints = NIL(LIST) ;
10. for each input gj of gi ( gil,"',gim ) {
11. for each time point (k, fj (k)) of gj {
12. TimePoints = InsertInOrder ( TimePoints, (k, fj (k))) ;
13. }
14. }
15. /* gi is the Boolean function of gate gi with respect to
16. its immediate inputs */
17. fi(0) = ;(fi ,(0), , fim (0)) ;
18. 1=0;
19. for each new time point k in TimePoints {
20. fi(k + A) = gi(fi,(k), -- - , fim (k)) ;
21. ei,k+a = fi(1) a fi(k + A) ;
22. l= k+A ;
23. }
24. }
25. }

Figure 3-4 Pseudo-code for the symbolic simulation algorithm.
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Figure 3-6 Disabling inputs in combinational circuits

In some cases, the BDDs for the generated functions may be too large. The signal

probability calculation can be done by a process of random logic simulation. A large

number of randomly generated vectors are simulated on the symbolic network till the

signal probability value converges to within 0.1%. Levelized/event-driven simulation

methods that simulate 32 vectors at a time can be used in an efficient probability

evaluation scheme. The probabilities thus obtained are statistical approximations.

3.2 Transparent Latches

We describe how symbolic simulation handles combinational circuits with embedded

transparent latches or transmission gates.

Transmission gates have an input, an output, and a control line, as depicted in

Figure 3-5. When the control line is high, the output is identical to the input. When

the control line is low, however, the output is given by value stored in the previous
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Figure 3-7 Example of a combinational circuit with latches.

time instant. Examples of a transmission gate and a transparent latch are shown in

Figure 3-6.

It is this feature of having memory that makes transmission gates different from

normal combinational gates like an AND gate. In mathematical terms, if a is the input,

b the control, and x the output, then at any time instant t, the output of a transmission

gate is given as

x(t) = b(t) A a(t) V b(t) A x(t - 1) , (3.1)

where t - 1 refers to the previous time instant.

From the switching activity estimation viewpoint, the symbolic simulation approach

handles transmission gates (or transparent latches) in a straightforward manner. Since

x(t - 1) is computed before x(t) in the simulation, we create functions corresponding

to the different x(t)'s and use them in simulating the fanout gates. We use the symbolic

input b(t) during symbolic simulation of x(t). As the symbolic simulation proceeds,

the known equations for the time points for each input are used and the logic equations

corresponding to the various transitions at the output of the latch are computed. As

a result, in a single pass from inputs to outputs, switching activity estimation can be

carried out for an acyclic circuit.

If the initial value x(-1) (the value of x before the first input vector is applied)

is known it is replaced by the appropriate 0 or 1 value during symbolic simulation. If

the initial value x(-1) is not known, it can be replaced by a Boolean variable with a

signal probability of 0.5.

To illustrate the symbolic simulation process of a transmission gate, consider the

simple circuit depicted in Figure 3-7. The symbolic network for this circuit assuming
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Figure 3-8 Symbolic network for a combinational circuit with latches.

a zero delay model is shown in Figure 3-8 (to simplify the picture, the XOR's for

the primary inputs are not shown). The difference between this symbolic network and

the one for a combinational circuit is that we have a logic signal corresponding to a

previous time instant (x(0)) feeding a gate that generates the same signal for the next

time instant (x(t)).

3.3 Modeling Inertial Delay

Logic gates require energy to switch state. The energy in an input signal to a gate is

a function of its amplitude and duration. If its duration is too small, the signal will

not force the gate to switch. The minimum duration for which an input change must

persist in order for the gate to switch states is called the inertial delay of an element

and is denoted by A (cf. [BF76, p. 187]).

Inertial delay is usually modeled at the inputs to gates. However, for our purposes

it is more convenient to model it at the gate output. We will assign an integer Ai > 0

to each gate i. Ai is obtained from process and device parameters like propagation

delay. We then require that any pair of output transitions at i be separated by at least

a duration A2 .
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The symbolic simulation proceeds as described in the previous sections to compute

fi(t),..., fi(t + 1). If we have Ai > 0, then if there is a transition between time t

and t + 1 we cannot have a transition between t + 1 and t + Ai. Therefore, if we have

three different time points, fi(tl), fi(t2) and fi(t3), within Ai from ti we make sure

there are no transitions by making fi(t 2) = fi(tl) when fi(tl) = fi(t 3). We create

fi(t 2) = fi(t2) A (fi(tl) V fi(t3)) V (fi(ti) A fi(t3)) (3.2)

for every three time points within Ai. We compute f'(t3) using f'(t2 ) and fi(t4) and

so on.

The ff(t) functions are used as the inputs to the XOR gates to compute the switching

activities. Also, we use the ff(t) functions for the next logic level, thus any transitions

eliminated at the output of a gate are not propagated to its transitive fanout.

3.4 Power Estimation Results

Throughout this section, we will be measuring the average power dissipation of the

circuit by using Equation 2.2 summed over all the gates in the circuit. The Ni values

are computed for the gates in the circuit under different delay models. Since the circuits

are technology-mapped circuits, the load capacitance values of the gates are known. A

clock frequency of 20MHz and supply voltage of 5V have been assumed. The power

estimates are given in micro-Watt.

The statistics of the examples used are shown in Table 3.1. All of the examples

except the last two belong to the ISCAS-89 Sequential Benchmark set. Example add16

is a 16-bit adder and max16 is a 16-bit maximum function.

All the circuits considered are technology-mapped static CMOS circuits. For all

the circuits, we assumed uniform static (0.5) and transition (0.25) probabilities for the

primary inputs. Note, however, that user-provided non-uniform probabilities could just

as easily been used.

We focus on estimating switching activity and power dissipation in the combinational

logic of the given circuits. In Table 3.2, the effects of various delay models on the
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CIRCUIT INPUTS OUTPUTS LATCHES GATES
s27 4 1 3 10
s298 3 6 14 119
s349 9 11 15 150
s386 7 7 6 159
s420 19 2 16 196
s510 19 7 6 211
s641 35 24 19 379
s713 35 23 19 393
s838 35 2 32 390
s1238 14 14 18 508
s1494 8 19 6 647
addl6 33 17 16 288
max16 33 16 16 154

Table 3.1 Statistics of examples.

CIRCUIT ZERO DELAY UNIT DELAY VARIABLE DELAY CPU TIME
POWER POWER POWER BDD LOGIC

s27 82 93 93 0.1 0.2
s298 922 1033 1069 5.2 2.3
s349 777 1094 1110 9.7 6.1
s386 1070 1183 1250 9.2 4.9
s420 877 940 958 12.0 5.2
s510 993 1236 1331 11.2 5.5
s641 1228 1594 1665 62.6 36.3
s713 1338 1847 1932 151.6 92.6
s838 1727 1822 1847 52.6 16.9
s1238 2394 3013 3158 115.1 43.7
s1494 3808 4762 5045 68.9 32.2
addl6 1258 1725 1741 10.4 6.1
max16 599 713 713 4.2 1.6

Table 3.2 Power estimation for combinational logic.
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power estimate are illustrated. In the zero delay model, all gates have zero delay and

therefore they switch instantaneously. In the unit delay model, all gates have one unit

delay. Using the zero delay model ignores glitches in the circuit, and therefore power

dissipation due to glitches is not taken into account. The unit delay model takes into

account glitches, but a constant delay value is assumed for all gates. The variable

delay model uses different delays for different gates, thus is the most realistic model.

Only the times required to obtain the power estimate for the variable delay model

are shown in the last column. The variable delay computations are the most complex

and therefore power estimation under this model takes the most time. The CPU times

correspond to a DEC 3000/900 with 256Mb of memory, and are in seconds. The

signal probability calculation was done using two different methods. The column BDD

corresponds to exact signal probability evaluation of the output of the XOR gates of

Section 3.1 using ordered Binary Decision Diagrams.

Using random logic simulation to evaluate signal probabilities required substantially

less CPU time for the large examples as shown in the column LOGIC. Random logic

simulation was carried out until the signal probability of each XOR output converged

to within 0.1%. This required the simulation of between 1000-50,000 vectors for the

different examples. The power measures obtained using the two methods BDD and

LOGIC are identical.

3.5 Summary

We presented an algorithm for probabilistically estimating the switching activity in

combinational logic circuits. Results indicate that this algorithm is applicable to circuits

of moderate size. The most desirable feature of our algorithm is that correlation

between internal signals is implicitly taken into account under a variable delay model.

Additionally, glitching at any node in the circuit is accurately modeled. Given the

delay model chosen, our BDD-based method of estimating switching activity is exact.
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Further, we have extended the symbolic simulation algorithm to model transparent

latches and inertial delays.

In order to perform exact signal probability evaluation, we use ordered Binary

Decision Diagrams. Ordered BDDs cannot be built for large multipliers (> 16 bits)

and for very large circuits. Approximate techniques have to be used in these cases.

Our experience with random logic simulation for signal probability evaluation has been

favorable.

The symbolic simulation package has been implemented within SIS [SSM+92], the

synthesis environment from the CAD group at the University of California at Berkeley,

and is now part of their standard distribution.

Correlation between primary inputs exists when a given combinational circuit is

embedded in a larger sequential circuit. The techniques described have to be augmented

to handle sequential circuits and primary input correlation. These issues are dealt with

in the next chapter.



Chapter 4

Power Estimation for Sequential Circuits

The power estimation methods described in the previous chapters apply to combina-

tional logic blocks. In this chapter we describe techniques that target issues particular

to sequential circuits.

While for combinational circuits the current input vector defines the values of every

node in the circuit, in sequential circuits we have memory elements that make the logic

functions depend on the previous state of the circuit. As a consequence, there exists

a high degree of correlation between the logic values for consecutive clock cycles.

In Section 4.1 we present methods to handle pipelined circuits and in Sections 4.2

and 4.3 methods for Finite State Machines (FSMs).

A different kind of sequential correlation is caused by specific input vector se-

quences. In this case not only do we have significant correlation between clock cycles

(temporal correlation), but also correlation between the input signals for a given clock

cycle (spatial correlation).

We propose a technique to effectively compute the switching activity of a logic

circuit under a user-specified input sequence in Section 4.5.
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Figure 4-1 A k-pipeline.

4.1 Pipelines

Many sequential circuits, such as pipelines, can be acyclic. They correspond to blocks

of combinational logic separated by flip-flops. An example of a 2-stage pipeline, an

acyclic sequential circuit, is given in Figure 4-1. PI corresponds to the primary inputs

to the circuit, PO the primary outputs, and PB and PC the present state lines that

are inputs to blocks B and C, respectively.

It is possible to estimate the power dissipated by acyclic circuits that are k-pipelines,

i.e., those that have exactly k flip-flops on each path from primary inputs to primary

outputs, without making any assumptions about the probabilities of the present state

lines. This is because such circuits are k-definite [Koh78, p. 513], their state and

outputs are a function of primary inputs that occurred at most k clock cycles ago.

Consider the circuit of Figure 4-2. The symbolic simulation equations corresponding

to the switching activities of the logic gates in blocks A, B and C are assumed to

have been computed using the method described in Chapter 3. The symbolic simulation

equations for block A receive inputs from PI(O) and PI(t), since block A receives

inputs from PI alone. The symbolic simulation equations for block B receive inputs

from PB(O) and PB(t). To model the relationship between PB and PI, we generate

PB(O) from PI(O) and the PB(t) from PI(t). Similarly, the symbolic simulation

equations for block C receive inputs from the PC(O) and PC(t) and to model the

relationship between PC and PI we generate PC(O) from PI(O) and the PC(t) from

PI(t).

In the general case, the symbolic simulation equations corresponding to a combi-



Figure 4-2 Taking k levels of correlation into account.

4.1 PIPELINES

PI(O)

PI(t)
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Figure 4-3 A synchronous sequential circuit.

national logic block in stage 1 of the pipeline will receive inputs from the cascade

of the 1 - 1 previous stages, with inputs PI(O) and PI(t). For a correctly designed

pipeline, this models the inputs this logic block will observe I clock cycles later.

The decomposition of Figure 4-2 implies that the gate output switching activity

can be determined given only the vector pair (PI(O), PI(t)) for the primary inputs.

Therefore, to compute gate output transition probabilities, we only require the transition

probabilities for the primary inputs. The use of the logic in the previous pipeline stages

generates Boolean equations which model the relationship between the state of the

circuit and the previously applied input vectors.

4.2 Finite State Machines: Exact Method

In general, sequential circuits are cyclic. A generic sequential circuit is shown in

Figure 4-3. Power estimation for these circuits is significantly more complicated.

We still have the issue of correlation between consecutive clock cycles: the present

state lines for the next clock cycle are completely determined by the primary inputs

and present state lines of the previous clock cycle. Since a new primary input vector is

applied always at the beginning of each clock cycle, correlation between consecutive

clock cycles is equivalent to correlation between two input vectors to the combinational

logic block.

Further, the probability of the present state lines depends on the probability of the
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1/1

Figure 4-4 Example state transition graph.

circuit being in any of its possible states. Given a circuit with K flip-flops, there are

2K possible states. The probability of the circuit being in each state is, in general, not

uniform.

As an example, consider a sequential circuit with the State Transition Graph of

Figure 4-4 and implemented as in Figure 4-3. Assuming that the circuit was in state

R at time 0, and that at each clock cycle random inputs are applied, at time oo (i.e.,

steady state) the probabilities of the circuit being in state R, A, B, C are 1, , j and ,

respectively. These state probabilities have to be taken into account during switching

activity estimation of the combinational logic part of the circuit.

4.2.1 Modeling Temporal Correlation

To model the correlation between the two input vectors corresponding to consecutive

clock cycles, we append the next state logic block to the symbolic network generated

for the combinational logic block using the techniques described in Chapter 3. The

next state logic block is the part of the combinational logic block that computes the

next state lines. This augmentation is summarized in Figure 4-5.

The symbolic network has two sets of inputs, namely PI(O) and PI(t) for the
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PI(O)
PS (0)

PI(t)

Figure 4-5 Generating temporal correlation of present state lines.

primary inputs and PS(O) and PS(t) for the present state lines. However, given PI(O)

and PS(O), PS(t) is uniquely determined by the functionality of the combinational

logic. This is accomplished by the introduction of the next state logic as shown in

Figure 4-5.

The configuration of Figure 4-5 implies that the gate output switching activity can

be determined given the vector pair (PI(O), PI(t)) for the primary inputs, but only

PS(O) for the state lines. Therefore, to compute gate output transition probabilities, we

require the transition probabilities for the primary input lines, and the static probabilities

for the present state lines.

This configuration was originally proposed in [GDKW92].

4.2.2 State Probability Computation

The static probabilities for the present state lines marked PS(O) in Figure 4-5 are

spatially correlated. We therefore require knowledge of the present state probabilities

as opposed to present state line probabilities in order to exactly calculate the switching

activity in the sequential circuit. The state probabilities are dependent on the connectivity

of the State Transition Graph (STG) of the circuit.

For each state si, 1 < i < K, in the STG, we associate a variable prob(si)
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corresponding to the steady-state probability of the circuit being in state si at t = 00.

For each edge e in the STG, we have e.Current signifying the state that the edge fans

out from, e.Next signifying the state that the edge fans in to, and e.Input signifying

the primary input combination corresponding to the edge. Given static probabilities for

the primary inputs' to the circuit, we can compute prob(e.Input), the probability of

the combination e.Input occurring. We can compute the probability of traversing edge

e, prob(e), using

prob(e) = prob(e.Current) x prob(e.Input). (4.1)

For each state si we can write an equation representing the probability that the

machine enters state si

prob(si) = prob(e). (4.2)
Ve: e.Next=si

Given K states, we obtain K equations out of which any one equation can be derived

from the remaining K - 1 equations. We have a final equation
K

prob(si) = 1. (4.3)
i=1

This linear set of K equations can be solved to obtain the different prob(sj)'s.

This system of equations is known as the Chapman-Kolmogorov equations for a

discrete-time discrete-transition Markov process. Indeed, if the Markov process satisfies

the conditions that it has a finite number of states, its essential states form a single-

chain and it contains no periodic-states, then the above system of equations will have

a unique solution [Pap91, pp. 635-654].

For example, for the STG of Figure 4-4 we will obtain the following equations,

assuming a probability of 0.5 for the primary input being a 1,

prob(R) = 0.5 x prob(A).

prob(A) = 0.5 x prob(R) + 0.5 x prob(B) + 0.5 x prob(C).
prob(B) = 0.5 x prob(R) + 0.5 x prob(A).

'Static probabilities can be computed from specified transition probabilities as given by Equation 2.4.
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The final equation is

prob(R) + prob(A) + prob(B) + prob(C) = 1.

Solving this linear system of equations results in the state probabilities, prob(R) = 6,

prob(A) = ½, prob(B) = and prob(C) = a.

4.2.3 Power Estimation given State Probabilities

Each state corresponds to some binary code. Thus the probabilities computed from

the Chapman-Kolmogorov equations are probabilities for each combination of present

state lines. The signal probability calculation procedure (described in Section 2.2.2)

for the augmented symbolic network of Figure 4-5 has to appropriately weight these

combinations according to the given probabilities.

In the case of the BDD-based method, we can still compute signal probabilities

taking into account state probabilities with a linear-time traversal. We constrain the

ordering of the BDD variables such that all present state lines are necessarily on top.

We cannot multiply the probabilities of individual present state lines as we traverse the

BDD. We have to save the combination of present state lines encountered during the

traversal of each path. At the end of each path, we examine which present state codes

are included in the combination of present state lines, add the probabilities computed

for these states and multiply this value with the probability obtained from the primary

inputs.

For instance, the BDD corresponding to the Boolean function that generates the

least significant state line (psl) for the FSM of Figure 4-4 is represented in Figure 4-6.

Starting at the left-most -- , the traversal process will first see the primary input

I, then ps • and finish with p-S2. Therefore the only present state included in this

combination of present state lines is 00. The probability corresponding to this term is

prob(I) x prob(00).

pS2 is the only variable in the path for the right-most [1]. The present states included

in pS2 are 10 and 11, thus the probability for this term is prob(10) + prob(11).
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Figure 4-6 BDD for psl = ps2 V (I A ps-).

Then, the probability of psi computed using present state probabilities is given by

prob(psl) = prob(I) x prob(00) + prob(10) + prob(11)

= prob(I) x prob(R) + prob(B) + prob(C).

4.3 Finite State Machines: Approximate Method

The Chapman-Kolmogorov system of equations (Equations 4.2 and 4.3) requires the

explicit enumeration of all the states in the circuit and this can be very costly. If we

have N registers in the circuit the number of possible states is K = 2N . Therefore

the exact method is only applicable to small sized circuits, typically with no more

than N= 20 registers. However, in [HMPS94] the authors report solving the Chapman-

Kolmogorov system of equations for some large Finite State Machines using Algebraic

Decision Diagrams [BFG+93].

We propose an approximate method that computes the probabilities of the state

lines directly [TMP+95]. This way we need only compute N values instead of 2N .

The approximation error comes from the fact that we ignore the correlation between

the state lines.
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Recently a simulation-based technique to compute state line probabilities has been

presented [NGH95]. N logic simulations of the sequential circuit are done starting

at some initial state So and the value of each state line is checked at time k. N

is determined from the confidence level a and allowed percentage error c. k is the

number of cycles the circuit has to go through in order to be considered in steady

state. In steady state, the probabilities of the state lines are independent from the initial

state, thus N parallel simulations are done starting from some other state S1. k is

determined as the time at which the line probabilities obtained from starting at state

So and from St are within e.

4.3.1 Basis for the Approximation

Consider a machine with two registers whose states are 00, 01, 10 and 11 and have

state probabilities prob(00) = 1, prob(01) = 1, prob(l0) = 1 and prob(ll) = 1. We

can calculate the present state line probabilities as shown below, where psi and ps2

are the first and second present state lines respectively.

prob(ps1 = 0) = prob(00) + prob(10) = 1 + = 1

prob(psi = 1) = prob(01) + prob(ll1) = 1 + = (
12 (4.4)

prob(ps2 = 0) = prob(00) + prob(01) = + 1=

prob(ps2 = 1) = prob(10) + prob(11) = 1 + ~ =

Because psl and ps2 are correlated, prob(psl = 0) x prob(ps2 = 0) = 5 is not equal

to prob(00) = .

We carried out the following experiment on 52 sequential circuit benchmark ex-

amples for which the exact state probabilities could be calculated. These benchmarks

included finite state machine controllers, datapaths as well as pipelines. First, the power

dissipation of the circuit was calculated using the exact state probabilities as described

in Section 4.2.2. Next, given the exact state probabilities, the line probabilities were

determined as exemplified in Equation 4.4. Using the topology of Figure 4-5 and the

computed present state line probabilities for the PS lines, approximate power estimates
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were calculated for each circuit. The average error (caused by ignoring the correlation

between the present state lines) in the power dissipation measures obtained using the

line probability approximation over all the circuits was only 2.8%. The maximum

error for any one example was 7.3%. Assuming uniform line probabilities of 0.5 as

in [GDKW92] results in significant errors of over 40% for some examples.

The above experiment leads us to conclude that if accurate line probabilities can

be determined then using line probabilities rather than state probabilities is a viable

alternative.

4.3.2 Computing Present State Line Probabilities

The approximation framework is based on solving a non-linear system of equations

to compute the state line probabilities. This system of equations is given by the

combinational logic implementing the next state function of the sequential circuit. The

non-linear formulation was developed independently in [MDL94] and [TPD94] and

were combined in [TMP+95].

Consider the set of functions below corresponding to the next state lines.

ns1 = fl(il, i2, " , iM, Psi, PS2, P ", PSN)

nS2 = f 2(i, i2, 5 M, i.S, pa, ps2, "-', PSN)

nSN = fN(il, i 2, ... , iM, pa, ps2, "', PSN)

We can write:

prob(nsl) = prob(f,(il, i2, "", iM, psi, ps2, "", pSN))

prob(ns2) = prob(f2 (il, i2 , "', iM, Ps, PS2, ... , PSN))

prob(nsN) = prob(fN(il, i2, W", iM, PSI, Ps2, PS, N))

where prob(nsi) corresponds to the probability that nsi is a 1, and prob(fi(il, . , iM,

psI, ""*, pSN)) corresponds to the probability that fi(il, --- , iM, ps, ... , pSN) is

a 1, which is of course dependent on the prob(psj) and the prob(ik).
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We are interested in the steady state probabilities of the present and next state lines

implying that:

prob(psi) = prob(nsi) = pi 1 < i < N

The set of equations given the values of prob(ik) becomes:

pi = gi(Pl, P2, "", PN)

P2 = g2(P1, P2, ", PN) (45)

PN = gN(Pl, p2, "", PN)

where the gi's are non-linear functions of the pi's. We will denote the above equations

as P = G(P).

In general the Boolean function fi can be written as a list of minterms over the ik

and psj and the corresponding gi function can be easily derived. For example, given

f 1 = ii A psl A ps2 V il A pF3 A ps2 (4.6)

and prob(ii) = 0.5, we have

gl = 0.5. (pl - (1 - p2) + (1 - p1) - 2) (4.7)

We can solve the equation set P = G(P) to obtain the present state line probabilities.

The uniqueness or the existence of the solution is not guaranteed for an arbitrary system

of non-linear equations. However, since in our application we have a correspondence

between the non-linear system of equations and the State Transition Graph of the

sequential circuit there will exist at least one solution to the non-linear system.

Obtaining a solution for the given non-linear system of equations requires the use

of iterative techniques such as the Picard-Peano or Newton-Raphson methods.

4.3.3 Picard-Peano Method

The Picard-Peano method can be used to find a fixed point of a system of equations

of the form P = G(P), such as Equation 4.5. We start with an initial guess PO,
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and iteratively compute pk+1 = G(pk) until convergence is reached. Convergence is

deemed to be achieved if pk+l _pk is sufficiently small.

We apply the methods described in Section 2.2.2 to compute gi(p1, p2, "', PN),

the static probability that fi(il, i2, "'* iM, psi, PS2, .. , PSN) evaluates to 1 for

given pj = prob(psj)'s and prob(ik)'s.

The use of the Picard-Peano method to solve the system of Equation 4.5 was first

proposed in [TPD94]. The convergence proof given in [TPD94, Theorem 3.3] and

in [TMP+95, Theorem 7.2] is valid only for the single variable case. We present more

general convergence conditions.

Theorem 4.1 [OR70, p. 120] If G is contractive in a closed set Do, i.e.,

IIG(A) - G(B)II < A - BII ,VA, B E Do, and G(Do) C Do then the Picard-Peano

iteration method converges at least linearly to a unique solution P*.

Theorem 4.2 If we have
IN [9gi[I<

k=1

then G is contractive on the domain [0, 1]N.

Proof - First note that 0 < gi 5 1, Vi, therefore G(Do) C Do, where Do = [0, 1]N.

Using the oo-norm,

JJG(A) - G(B)1I[ < |jA - B11. e max ]gi(A) - gi(B)l < max |Aj - Bj .

Let h(t) : R --+ RN such that h(t) = At + (1 - t)B, i.e., as t goes from 0 to 1,

h(t) maps to the line segment connecting points A and B.

Let us define F(t) = gi(h(t)). Then, using the Mean Value theorem [OR70, p. 68]

gi(A) - g,(B) = F(1) - F(O) = dF

for some ý E [0, 1], where
dF dh
dtVF dt
dt dt
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Since = A - B,
dg(At

Then for every i,

Therefore

Ig (A) - ga(B)I
maxj IAj - Bjl

k= -Pk

N ag

= g' (Ak - Bk)*
k=1 Pk

_ = ap(Ak- BAk)
maxj IAj - Bjl

N ag, (Ak - Bk)

k=1 Pk maxj Aj - BRI

igi(A) - gi(B)I < max IAj - B3I3

Theorem 4.3 If each gi is a function of only pj's with j 5 i (i.e., the Jacobian of

G is lower triangular), and each next state line is a nontrivial logic function of at

least two present state lines, then the Picard-Peano iteration method converges at least

linearly to a unique solution P* on the domain (0, 1).

Proof - Choose any pj. In order to perform the evaluation of o_ we cofactor f, with

respect to psj.

fi = ps3 A f;i p V psi IA fi -

fi, j and fit p- are the cofactors of fi with respect to psj, and are Boolean functions

independent of psi. We can write:

gi = pj -prob(fi ,,) + (1 - pi) -prob(f, i',-)

Differentiating with respect to pj gives:

= prob(fi ,, ) - prob(fi p-y) (4.8)
api

gi(A) - gi(B)
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Since we are considering the domain (0, 1), which is not inclusive of 0 and 1, and

the nsi's are nontrivial Boolean functions of at least two present state lines for every

i, this partial differential is strictly less than one, because we are guaranteed that

prob(fi pIs) > 0 and prob(fi p7,) > 0.

Since pl = gl (pl) and I < 1, gi is contractive and Theorem 4.1 can be used

for the single variable case to guarantee that the Picard-Peano iterations on gl will

converge at least linearly to the unique solution pl*.

We can now substitute p1* in g2, making g2 a function of a single variable p2. The

observations of the previous paragraph apply for g2, thus we obtain p2*.

We repeat this process for the remaining gi's to compute P* = (PI*,p2*,"" ,PN*).

We have a somewhat restrictive condition for Theorem 4.2 which is probably not

met for a generic logic circuit. However, the conditions for Theorem 4.3 are met for

many datapath circuits, where the least significant bit is only a function of the least

significant bit of the input and a carry is generated which is only a function of lower

order bits.

We should stress that Theorems 4.2 and 4.3 are sufficient, and not necessary,

conditions for convergence. In practice, we have observed that for most of the circuits,

even those not in the conditions of these theorems, Picard-Peano rapidly converges to

a solution.

4.3.4 Newton-Raphson Method

The Newton-Raphson method can be used to solve a non-linear system of equations

of the form Y(P) = 0. We rewrite the system of Equation 4.5 to be in the form

Y1 = P - g(Plt, P2, "", PN) = 0

Y2 = P2- 2(P1, P2, '", PN) = 0
(4.9)

YN = PN - 9gN(PI, P2, " *, PN) = 0.
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The advantage of the Newton-Raphson method is that it is more robust in terms

of convergence requirements and its rate of convergence is quadratic instead of linear.

However, each iteration is more computationally expensive than the Picard-Peano

method. The use of the Newton-Raphson method to solve the system of equations

above was first proposed in [MDL94].

Given Y(P) = 0 and a column matrix corresponding to an initial guess PO, we

can write the kth Newton iteration as the linear system shown below

j(pk) x pk+1 = j(pk) x pk _ y(pk) , (4.10)

where J is the N x N Jacobian matrix of the system of equations Y. Each entry in

J corresponds to a _ evaluated at Pk. The Pk+1 corresponds to the variables in

the linearized system and after solving the system pk+1 is used as the next guess.

Convergence is deemed to be achieved if each entry in y(pk) is sufficiently small.

Again, the methods of Section 2.2.2 are used to evaluate

gi(Pi, P2, "', PN) = prob(f,(ii, i2 , '., i P, PS1, PS2, "*, PSN)),

for given pj = prob(psj) and prob(ik). The y(pk) of Equation 4.10 can easily be

evaluated using the pjk values and Equation 4.9.

We need to also evaluate J(Pk). As mentioned earlier, each entry of J corresponds

to -8L evaluated at pk. If i Z j, then -' equals -9, and equals equals 1 - -
ipj apj apj' api 9pi"

In order to perform the evaluation of o_ we use the result obtained in Theorem 4.3
ap,

(Equation 4.8)
dy; = prob(f, j-) - prob(fi ,,) (4.11)
Opj

We can evaluate prob(fi p,,) and prob(fi p-.) for a given pk again using the

methods of Section 2.2.2.

As an example, consider the function given in Equation 4.6:

ft = il A psl A s2- V il A p9i A ps 2

= prob(ii A Ps2) - prob(i1 A ps2)Oni
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= 0.5 .(1 - p2) - 0.5 -p2
= 0.5 - p2

which is exactly what we would have obtained had we differentiated Equation 4.7 with

respect to pi.

Theorem 4.4 [OR70, p. 412] The Newton iterates:

pk+1 = pk _ j(pk)-ly(pk), k =, 1, ...

are well-defined and converge to a solution P* of Y(P) = 0 in the domain Do, if the

following conditions are satisfied:

1. Y is F-differentiable.

2. IIJ(A) - J(B)II < -yA - BJI, VA, B E Do

3. There exists Po E Do such that IIJ(Po)-'1 l < f, IIJ(Po)-lY(Po)II !5 and
a = <1.

Condition 1 of the theorem is satisfied in our application because the yi functions

are continuous and differentiable.

To show that Condition 2 is satisfied, we need to prove that the parameter 7 is

finite for all A, B in the domain. In our case the domain is defined by 0 < ai, bi < 1

for 1 < i < N, where N is the dimension of Y.

Theorem 4.5 If Y is given by Equation 4.9, then Condition 2 of Theorem 4.4 is

satisfied for - = 2N.

Proof - We will use the 1-norm to show that

lJJ(A) - J(B) <jj y II1A - BII1, VA, B E Do

is satisfied for 7 = 2N.
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Let h(t) : R --+ RN such that h(t) = At + (1 - t)B, i.e., as t goes from 0 to 1,

h(t) maps to the line segment connecting points A and B.

Recall that each entry in matrix J is given by 0. Let us define F(t)

Again using the Mean Value theorem [OR70, p. 68]

y (A) -8pi y(B)
api

dF
= F(1) - F(O) = d( )dt

for some 4 E [0, 1], where

dF
dt= VFdi

dh
dt E

k=1

a 2yi dhk

dpjipk dt

In order to perform the evaluation of 0_ we use Equation 4.11:opj

Byi
apj

= prob(fi -,,) - prob(fi pSj)

Differentiating with respect to pk we have:

= prob(fi P•-pk) - prob(f,,~j )b(frob(f ,p,,BjP) + prob(f, p,PSj)

Given that the probabilities are between 0 and 1, we have:

aPiaPk
<2

Then

By;
(B)8pi N a82y dhk

k=1 P aPk dta2=1 dh
Ni  a2yi dhk

k=1 aPjPkl dt
N ldhk2 1 dt
k=l

On the other hand, - = A - B. From the definition of 1-norm,

N N dhk
11A - BI 11= lak - bkl=E d -

k=l k=1l

a2yi

8py8Pk

= Y(h(t)).

Ay -(A) -8pi
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therefore

i(A) - ( •(B) 2.IIA-B BI

The 1-norm of a matrix M is defined as

IIM -UII N
j|MIll = max =max Imik l.

e IlellI k i=1

Since each entry in the matrix J(A) - J(B) is bounded by 2. 11A - Bill,

JIJ(A) - J(B)Ih1 = max~ y (A) - (B)
k i=1 8Pk 9Pk

N

< maxE 12. IA- Billh
-- k

i=1

- 2-N.IIA-Bill.

Therefore, 7 = 2N.

If we are in the conditions of Theorem 4.3, we can show some results about the

norm of the inverse of the Jacobian.

Theorem 4.6 If
E: N ,I<I, 1 Vi
k=1 IPk

then [[J(PO)-4 l is finite, for all P O E Do.

Proof - The entries of row i in J are •  1 - and =j -_,L Vj i. IfSOpi -- - pi 8p - pj"IV9il < 1, then J(Po) is diagonally dominant and thus is invertible [OR70, p. 48].

This means that IIJ(PO)II - 0, therefore IIJ-I(Po)II is bounded by some positive P. *
Condition 3 in Theorem 4.4 is a constraint on the initial guess for the Newton

iteration, and this initial guess can be picked appropriately,. provided 7 is finite.

Essentially, we have to choose Po such that /7 < I.

Note that if the condition for Theorem 4.6 is met, not only do we have a bound

for 8 of Theorem 4.4, but also a bound for 77. Since yi < 1, flY(Po)j1 < N. Then

J(PO)-'Y(PO)= IIJ(Po)1 I IY(P)l <5 N. II J(Po)-l 5 N - =
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Figure 4-7 An m-expanded network with m = 2.

4.3.5 Improving Accuracy using m-Expanded Networks

The above formulation does not capture the correlation between the state line proba-

bilities. While the state line probabilities obtained using the above method will result

in switching activity estimates that are close to the exact method, it is worthwhile to

explore ways to increasing the accuracy.

In this section we describe a method models the correlation between m-tuples of

present state lines. The method is pictorially illustrated in Figure 4-7 for m = 2.

The number of equations in the case of m = 2 is 3. We have:

= nsi A nsi+l

=- ns A nsi+1

= fi A fj+j
= f; A ft+j
=f A f+1

We have to solve for prob(nsj,i+ [11]), prob(nsj,i+ [10]), and prob(ns;,j+, [01]) (rather

than prob(nsi) and prob(ns;+l) as in the case of m = 1). We use:

prob(psi A psi+l)

prob(psi A ps+1)

prob(-ps; A psi+1)

= prob(nsj,i+l[ll])

= prob(ns,ji+l[l0])

- prob(ns,i+lj [01])

in the evaluation of the prob(fj)'s.

For m = 3 the number of equations is 7N. For general m, the number of com-

nsi,i+l[ll]

nsi,i+1[10]

nsi,i+l[01]
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binations we have for each m-tuple is 2m - 1 and the number of m-tuples is N/m,

therefore the total number of equations in the non-linear system is

(2m - 1)N

m = 1 corresponds to the approximate method presented in the previous sections. When

rn = N, the number of equations will become 2N - 1 and the method degenerates to

the Chapman-Kolmogorov method.

The choice of the m-tuples of present and next state lines is made by grouping next

state lines that have the maximal amount of shared logic into each m-tuple. Note that

the accuracy of line probability estimation will depend on the choice of the m-tuples.

The signal probability evaluation during the iterations to solve the non-linear system

of equations has to use the probability for each combination of each m-tuple. This

is done in the same way as for the exact power estimation method of Section 4.2.3

where state probabilities are required.

To estimate switching activity given m-tuple present state line probabilities, the

topology of Figure 4-5 is used as before. Again the signal probability has to be

computed using the probabilities of the m-tuples.

4.3.6 Improving Accuracy using k-Unrolled Networks

The topology of Figure 4-5 was proposed as a means of taking into account the corre-

lation between the applied input vector pair when computing the transition probabilities.

This method takes one cycle of correlation into account. It is possible to take multiple

cycles of correlation into account by prepending the symbolic simulation equations

with the k-unrolled network. This is illustrated in Figure 4-8. Instead of connecting

the next state logic network to the symbolic simulation equations, we unroll the next

state logic network k times and connect the next state lines of the kth stage of the

unrolled network, the next state lines of the k - Ith stage, and the primary inputs of

the k - 1th stage to the symbolic simulation equations.
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F-----------

k-unrolled network

IPO Next
I State

PS - Logic

I ----------------

Figure 4-8 Calculation of signal and transition probabilities by network unrolling.

Each next state logic level introduces correlation between present state lines PSj,

thus making the switching activity computed by the symbolic network be closer to the

exact method. In the limiting case, when k - 00oo, the k-unrolled network will compute

the exact switching activity, independently of the value used for PSO.

Recall that the error is introduced by ignoring the correlation between the present

state lines. For the exact method of Section 4.2 where state probabilities are used, one

stage of the next state logic suffices to obtain the exact switching activity.

4.3.7 Redundant State Lines

In this section we make some observations on how the approximate methods behave

in the presence of redundant state lines. Let us consider a case study. The STG of

Figure 4-9(a) describes a system with two outputs, the first output 01 is 1 when the

input I is 0 at even clock cycles and the second output 02 is 1 when the input I is

1 at odd clock cycles. A minimum logic implementation of this circuit is depicted in

Figure 4-9(b).

Assume that for some reason the designer prefers to choose the implementation

of Figure 4-10(a). This circuit has the same input/output behavior as the circuit of

Figure 4-9(b), but we have a redundant present state line.
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Figure 4-9 Example circuit: (a) State transition graph; (b) Logic circuit.
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(a) Circuit with a redundant state line; (b) 1-unrolled symbolic network.

(b)

Figure 4-10
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First note that the exact method will compute the same probabilities for the states

as the STG for the circuit stays the same.

For the approximate method, we get the equations:

ns -= psi

nS2 = PS1

which rewritten in terms of probabilities become

Pi = 1 -Pi

P2 -= l-

The conditions for Theorem 4.2 are not verified since ._ _ = -1. Also8P1 ap1
Theorem 4.3 is not applicable as nsl and ns 2 are a function of a single present state

line. In fact, if we start with pl , 0.5, the Picard-Peano method will oscillate. However,

this is not related to the redundant present state line, the oscillation problem remains

the same for the implementation of Figure 4-9(b).

The Jacobian J for this system of equations is

J= L 20
1 1

so J-1 is well defined and the Newton-Raphson will converge to the right solution.

The symbolic simulation network with one stage of the next state logic (k = 1)

is shown in Figure 4-10(b) (the next state logic block is just an inverter). If we use

the approximate power estimation method on this network, we will be introducing

a large error because the correlation between the present state lines is very large.

Although using Newton-Raphson we will obtain the same probabilities for the two

state lines PSI(0) and PS2(0), the symbolic network does not have enough information

to indicate that these lines are actually the same. Still, the next state logic introduces

this information for PSi(t) and PS2(t).

By unrolling the circuit one more time, as shown in Figure 4-11, we introduce the

necessary correlation between PSI(0) and PS2(0). Thus with k = 2 we can achieve
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1(0)

PS$-1)

1(t)

Figure 4-11 Symbolic network with k = 2.

the exact solution with the approximate method. However, it is not true that for the

general case k = 2 suffices.

Similarly, if we use the m-expand method with m = 2 the exact solution will be

obtained.

4.4 Results on Sequential Power Estimation Techniques

In this section we present experimental results that illustrate the following points:

* Purely combinational logic estimates result in significant inaccuracies.

* Assuming uniform probabilities for the present state line probabilities and state

probabilities as in [GDKW92] can result in significant inaccuracies in power

estimates.

* Exact and explicit computation of state probabilities is possible for controller

type circuits. However, it is not viable for datapath circuits.

* For acyclic datapath circuits, the method described in Section 4.1 produces

exact results and is very efficient since no state or line probabilities need to be

computed.
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CIRCUIT GA STI FF UNIFORM PROB. LINE PROB. PIPELINE STATE PROB
NAME TES P ERR CPU P ERR ICPU P ICPU P CPU

mult4 40 1 14 769 24.4 4s 621 0.5 4s 618 4s 618 286s
1 46 3815 16.4 72s 3290 0.4 76s 3278 234s unable

mult8 176 2 87 4440 20.6 58s 3691 0.3 75s 3680 256s unable
3 136 5145 23.8 65s 4166 0.3 90s 4154 273s unable
1 37 1249 4.7 10s 1194 0.0 12s 1193 14s unable

clal6 150 2 66 1609 5.9 12s 1521 0.1 16s 1520 15s unable
3 102 2050 6.9 13s 1919 0.0 20s 1918 . 18s unable
1 54 2596 4.1 36s 2491 0.1 39s 2494 41s unable

cbp3 2 353 2 111 3290 6.7 37s 3069 0.5 48s 3083 44s unable
3 162 3930 7.8 40s 3628 0.5 63s 3648 52s unable

Table 4.1 Comparison of sequential power estimation methods for pipelined circuits.

* Computing the present state line probabilities using the techniques presented in

the previous sections results in 1) accurate switching activity estimates for all

internal nodes in the network implementing the sequential machine; 2) accurate,

robust and computationally efficient power estimate for the sequential machine.

In Table 4.1, results are presented for pipelined datapath circuits. We present

results for a 4- and a 8-bit multipliers and carry-look-ahead and carry-bypass adders,

for different number of pipeline stages. For each circuit, we give the number of gates

in the combinational logic block (GATES) and the total number of flip-flops (FF) for

each number of pipeline stages (ST).

In the table, UNIFORM PROB corresponds to the sequential estimation method

assuming uniform (0.5) probabilities for the present state lines. The column LINE PROB

corresponds to the approximate technique of Section 4.3 and using the Newton-Raphson

method to solve the non-linear system of Equation 4.9. These equations correspond

to 1-unrolled or 1-expanded networks. PIPELINE corresponds to the power estimation

method for acyclic circuits of Section 4.1. Finally, STATE PROB corresponds to the

exact state probability calculation method of Section 4.2.
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For the power estimates, we used the symbolic simulation method described in

Chapter 3. A zero delay model was assumed, however any other delay model could

have been used instead. Under ERR we give the percentage difference relative to the

exact method, in this case the PIPELINE method. The CPU times in the table correspond

to seconds on a SUN SPARC-2. These are the time required to estimate combinational

switching activity using BDD-based symbolic simulation plus the time required for the

calculation of state/line probabilities.

The first observation is that we are only able to run the exact state probability

calculation method STATE PROB for mult4. For the other circuits, the corresponding

STG is very large. The method of Section 4.1 (PIPELINE) exactly computes the average

switching activity for a pipelined circuit, taking into account the correlation between

the flip-flops. It requires much less CPU time since no state probabilities have to be

computed.

For the remaining circuits, assuming a uniform probability of the present state

lines (UNIFORM PROB) can yield very large errors. We can see that if the approximate

method of Section 4.3 is used (LINE PROB), the power estimates are very close to that

obtained by the exact method (PIPELINE).

Table 4.3 presents results for several cyclic circuits, the statistics for which are given

in Table 4.3. In the table, UNIFORM PROB, LINE PROB and STATE PROB correspond to the

same methods as in Table 4.1. COMBINATIONAL corresponds to the purely combinational

estimation method of Chapter 3, i.e., no next state logic block is appended to the

symbolic network thus there is no correlation between the two input vectors.

The first set of circuits corresponds to finite state machine controllers. These

circuits typically have the characteristic that the state probabilities are highly non-

uniform. Restricting oneself to combinational power dissipation (COMBINATIONAL) or

assuming uniform state probabilities (UNIFORM PROB) results in significant errors.

However, the line probability method of Section 4.3 produces highly accurate estimates

when compared to exact state probability calculation.
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CIRcuTrr GATES FF

cse 132 4
dkl6 180 5
dfile 119 5
keyb 169 5
modl2 25 4
planet 327 6
sand 336 5
sreg 9 3
styr 313 5
tbk 478 5
accum4 45 4
accum8 89 8
accuml6 245 16
count4 19 4
count7 35 7
count8 40 8

s953 418 29
s1196 529 18
s1238 508 18
s1423 657 74
s5378 4212 164
s13207 11241 669
s15850 13659 597
s35932 28269 1728
s38584 32910 1452

Table 4.2 Statistics for cyclic circuits.
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CIRCUIT COMBINATIONAL UNIFORM PROB. LINE PROB. STATE PROB.
NAME P ERR CPU P ERRI CPU P ERR I CPU P ICPU

cse 610 58.7 Is 578 50.3 7s 380 1.0 9s 384 lls
dkl6 1078 3.1 is 1097 5.0 10s 1045 0.0 13s 1045 15s
dfile 923 32.5 is 702 0.6 7s 701 0.6 8s 697 10s
keyb 750 43.3 is 725 38.6 12s 518 1.0 14s 523 15s
modl2 245 21.7 Os 196 2.7 Is 199 1.1 Is 201 Is
planet 1641 2.5 2s 1709 1.5 17s 1686 0.1 24s 1684 28s
sand 1446 33.1 2s 1166 7.2 24s 1078 0.7 27s 1086 34s
sreg 128 1.4 Os 129 0.0 Os 129 0.0 Os 129 Is
styr 1395 45.3 2s 1208 25.8 22s 997 3.8 28s 960 30s
tbk 1958 24.1 4s 1904 20.7 48s 1538 2.4 52s 1577 71s

accum4 361 3.5 Os 374 0.0 2s 374 0.0 2s 374 5s
accum8 721 4.2 Is 753 0.0 7s 753 0.0 8s 753 875s
accuml6 1521 - 2s 1596 - 234s 1596 - 239s unable
count4 256 20.1 Os 213 0.0 is 213 0.0 is 213 2s
count7 474 12.2 Os 423 0.0 2s 423 0.0 3s 423 5s
count8 560 10.2 Os 508 0.0 3s 508 0.0 4s 508 8s
s953 762 76.8 is 673 56.0 10s 439 1.7 12s 431 15s
s1196 2558 - 4s 2538 - 484s 2294 - 488s unable
s1238 2709 - 4s 2688 - 156s 2439 - 151s unable
s1423 6017 - 251s 4734 - 271s 7087 - 289s unable
s5378 12457 - 74s 12415 - 455s 6496 - 478s unable
s13207 37842 - 5m 27186 - 1im 10573 - 338m unable
s15850 40016 - 8m 23850 - 14m 10534 - 167m unable
s35932 122131 - 20m 118475 - 36m 62292 - 152m unable
s38584 112706 - 24m 85842 - 44m 63995 - 922m unable

Table 4.3 Comparison of sequential power estimation methods for cyclic circuits.
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CIRCUIT COMBINATIONAL UNIFORM PROB. LINE PROB.
NAME ERROR ERROR ERROR

cse NA 0.427 0.00788
dkl 6 NA 0.0782 0.0125
df ile NA 0.075 0.047
keyb NA 0.414 0.0133
modl2 NA 0 0.03
planet NA 0.031 0.09
sand NA 0.12 0.044
sreg NA 0 0
styr NA 0.3138 0.0357
tbk NA 0.2614 0.026

accum4 NA 0 0
accum8 NA 0 0
accuml 6 NA 0 0
count4 NA 0 0
count7 NA 0 0
count8 NA 0 0

Table 4.4 Absolute errors in present state
state lines.

line probabilities averaged over all present

The second set of circuits corresponds to datapath circuits, such as counters and

accumulators. The exact state probability evaluation method requires huge amounts

of CPU time for even the medium-sized circuits, and cannot be applied to the large

circuits. For all the circuits that the exact method is viable for, our LINE PROB

method produces identical estimates. The UNIFORM PROB method does better for the

datapath circuits - in the case of counters for instance, it can be shown that the state

probabilities are all uniform, and therefore the UNIFORM PROB method will produce

the right estimates. Of course, this assumption is not always valid.

The third set of circuits corresponds to mixed datapath/control circuits from the

ISCAS-89 benchmark set. Exact state probability evaluation is not possible for these

circuits.
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CIRCUrr COMBINATIONAL UNIFORM PROB. LINE PROB.
NAME ERROR ERROR ERROR

cse 0.402 0.053 0.003
dkl6 0.354 0.020 0.010
dfile 0.268 0.019 0.015
keyb 0.363 0.067 0.009
modl2 0.387 0.149 0.156
planet 0.375 0.034 0.034
sand 0.400 0.015 0.010
sreg 0 0 0
styr 0.415 0.058 0.022
tbk 0.423 0.020 0.008
accum4 0.084 0 0
accum8 0.086 0 0
accuml 6 0.096 0 0
count4 0.169 0 0
count7 0.189 0 0
count8 0.192 0 0

Table 4.5 Absolute errors in switching activity averaged over all circuit lines.

In Table 4.4, present state line probability estimates for the benchmark circuits are

presented. The error value provided in each column shows the absolute error (absolute

value of the difference between exact and approximate value) of the signal probability

values averaged over all present state lines in the circuit. The exact values were

calculated by the method described in Section 4.2. It is evident from these results

that the error for the approximate method of Section 4.3 averaged over all benchmark

circuits is well below 0.05.

We present the switching activity errors for the benchmark circuits in Table 4.5.

Again, the error value provided in each column represents the absolute error averaged

over all internal nodes in the circuit. It can be seen that this error is quite small.

These two tables demonstrate that the approximate procedure provided in Section 4.3
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CIRCUrr PICARD-PEANO NEWTON-RAPHSON
NAME #ITER CPU/ITER TOTAL CPU #ER CPU/ITER TOTAL CPU

cse 5 0.1 0.5 3 1 3
dkl6 4 0.18 0.7 3 1 3
dfile 5 0.12 0.6 2 1.5 3
keyb 10 0.07 0.7 6 0.33 2
modl2 3 0.03 0.1 2 0.1 0.2
planet 11 0.13 1.4 3 2.33 7
sand 6 0.22 1.3 3 1 3
sreg 1 0.1 0.1 1 0.1 0.1
styr 7 0.2 1.4 3 2 6
tbk 4 0.5 2.0 3 1.33 4
accum4 1 0.1 0.1 1 0.1 0.1
accum8 1 0.3 0.3 1 1 1
accuml6 1 1.0 1.0 1 6 6
count4 1 0.1 0.1 1 0.1 0.1
count7 1 0.2 0.2 1 1 1
count8 1 0.2 0.2 1 1 1

s953 30 0.04 1.1 4 0.5 2
s1196 2 1.1 2.2 2 2 4
s1238 2 1.15 2.3 2 2.5 5

Table 4.6 Comparison of Picard-Peano and Newton-Raphson.

leads to very accurate estimates for both the present state line probabilities and for the

switching activity values for all circuit lines.

Next, we present results comparing the Picard-Peano and Newton-Raphson methods

to solve the non-linear equations of Section 4.3. These results are summarized in

Table 4.6. The number of iterations required for the Picard-Peano and Newton-Raphson

methods are given in Table 4.6 under the appropriate columns, as are the CPU times

per iteration and the total CPU time. Newton-Raphson typically takes fewer iterations,

but each iteration requires the evaluation of the Jacobian and is more expensive than
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CIRCUIT INITIAL k-UNROLLED ERROR m-EXPANDED ERROR
NAME ERROR k = 2 k = 3 m = 2 m = 4

ERR CPU ERR CPU ERR CPU ERR CPU
cse 1.06 0.33 18 0.02 51 0.42 10 0.00 10
dfile 0.67 0.20 16 0.20 29 0.23 9 0.17 10
keyb 1.02 0.02 44 0.04 53 1.01 14 0.32 14
modl2 1.13 0.85 2 0.30 3 1.13 1 0.00 2
planet 0.11 0.15 40 1.72 45 0.10 25 0.08 25
sand 0.76 0.61 64 0.29 109 0.64 28 0.43 30
styr 3.85 0.16 67 0.41 113 0.58 29 0.52 29
tbk 2.46 1.52 207 0.12 597 2.17 58 0.12 59

Table 4.7 Results of power estimation using k-unrolled and m-expanded networks.

the Picard iteration. The results obtained by the two methods are identical, since the

convergence criterion used was the same.

The convergence criterion allowed a maximum error of 1% in the line probabilities.

In this case, the Picard-Peano method outperforms the Newton-Raphson method for

virtually all the examples. If the convergence criterion is tightened, e.g., to allow

for a maximum error of 0.01%, the Picard-Peano method requires substantially more

iterations than the Newton-Raphson and in several examples, the Newton-Raphson

method outperforms the Picard-Peano method. However, since the error due to ignoring

correlation (cf. Section 4.3) is more than 1% it does not make sense to tighten the

convergence criterion beyond a 1% allowed error.

In some examples the Picard-Peano method may exhibit oscillatory behavior, and

will not converge. In these cases, the strategy we adopt is to use Picard-Peano for

several iterations, and if oscillation is detected, the Newton-Raphson method is applied.

In Table 4.7, we present results that indicate the improvement in accuracy in power

estimation when k-unrolled or m-expanded networks are used. Results are presented

for the finite state machine circuits of Table 4.3 for k = 1,2, 3 and m = 1,2, 4 (the

initial error for dkl6 and sreg benchmarks is 0, thus there is no need to improve
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CIRCUIT k-UNROLLED ERROR m-EXPANDED ERROR
NAME k= 1 k=2 k = 3 m = 1 m = 2 rm =4

cse 6.79 2.26 0.57 6.79 3.40 0.00
dfile 14.05 5.37 3.10 14.05 4.82 3.56
keyb 7.18 1.68 0.70 7.18 7.09 2.25
modl2 10.24 6.36 5.00 10.24 10.05 0.00
planet 43.08 30.22 28.97 43.08 41.26 35.22
sand 16.65 12.20 11.78 16.65 14.02 9.42
styr 43.51 12.99 6.31 43.51 6.55 5.97
tbk 18.04 4.48 2.95 18.04 15.91 1.88

Table 4.8 Percentage error in switching activity estimates averaged over all nodes in
the circuit.

the accuracy by using larger values of k and m). The percentage differences in power

from the exact power estimate are given. If k --+ oo the error will reduce to 0%,

however, increasing k when k is small is not guaranteed to reduce the error (e.g.,

consider styr). The m-expansion-based method behaves more predictably for this

set of examples, however, no guarantees can be made regarding the improvement in

accuracy on increasing m, except that when m is set to the number of flip-flops in

the machine, the method produces the Chapman-Kolmogorov equations, and therefore

the exact state probabilities are obtained. The CPU times for power estimation are

in seconds on a SUN SPARC-2. These times can be compared with those listed in

Table 4.3 under the LINE PROB column as those times correspond to k = 1 and m = 1.

During the synthesis process, we often want to know the switching activity of

individual nodes instead of a single power consumption figure. Table 4.8 presents the

percentage error for individual node's switching activity from the exact values as a

function of k and m, averaged over all the nodes in the circuit. It is seen that the

accuracy of switching activity estimates consistently increases with the value of k and

m. For example, the error in switching activity estimates for styr decreases from

13% to 6.3% when k increases from 2 to 3. The power estimates, however, do not
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necessarily improve by increasing k or m. This phenomenon can be explained as

follows. The total power estimate is obtained by summing power consumptions of all

nodes in the circuit. The individual power estimates may be under- or over-estimated,

yet when they are added together, the overall error may become small due to error

cancellation. Increasing k improves the accuracy of power estimates for individual

nodes, but does not necessarily improve the accuracy of power estimate for the circuit

due to the unpredictability of the error cancellation during the summing step.

4.5 Modeling Correlation of Input Sequences

One of the limitations of the approaches of the previous sections is that the input

sequences to the sequential circuit are assumed to be uncorrelated. In reality, the

inputs come from other sequential circuits, or are application programs. A high degree

of correlation could exist in the applied input sequence. This correlation could be

temporal, i.e., consecutive vectors could bear some relationship, or could be spatial,

i.e., bits within a vector could bear some relationship.

Recently a technique was proposed in [MMP95b] that tries to introduce some

degree of information about correlation between inputs. This estimation method allows

the user to specify pairwise correlation of inputs as static (SC) and transition (TC)

correlation coefficients. These are defined as:

sc' = prob(x=i A y=i) TCxy, prob(xj-;k A -j)
prob(x=i)prob(y=j) Ti,kl - prob(x.-.k)prob(yj,,)

These coefficients are then propagated through the logic circuit and similar coefficients

for internal signals are obtained. This results in efficient estimation schemes, however,

correlation between triplets of signals is ignored; in many circuits multiple (> 2)

signals reconverging at gates close to the output are strongly correlated.

In this section, we describe an approach to estimate the average power dissipation

in sequential logic circuits under user-specified input sequences or programs [MD95].

Both temporal and spatially correlated sequences can be modeled using a finite state
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machine, termed an Input-Modeling Finite State Machine (IMFSM). Power estimation

can be carried out using the sequential circuit power estimation methods of Section 4.3

on a cascade circuit consisting of the IMFSM and the original sequential circuit.

This technique is applicable to estimating the switching activity, and therefore

power dissipation, of processors running application programs. We do not, however,

model the power dissipated in external memory (e.g., DRAM, SRAM), or caches. Our

approach is useful in the architectural and logical design of programmable controllers

and processors, because it enables the accurate evaluation of power dissipated in a

controller or processor, when specific application programs are run.

Recent work in power analysis of embedded software [TMW94] uses a different

approach to estimate the power dissipated by a processor when a given program is run

on the processor. An instruction-level energy model has been developed, and validated

on the 486DX2. The advantages of this approach are that it is efficient and quite

accurate and can take into account the power dissipated in the entire system, i.e.,

processor + memory + interconnect. A disadvantage is that each different architecture

or different instruction set requires a significant amount of empirical analysis on

implemented hardware to determine the base cost of individual instructions.

4.5.1 Completely- and Incompletely-Specified Input Sequences

Assume that we are given a sequential circuit M. We first consider the problem of

estimating the average power dissipation in M upon the application of a periodic

completely-specified input sequence C. An easy way of doing this is to perform

timing simulation on the circuit for the particular vectors, and measure the activities at

each gate. This, however, will become very time-consuming for incompletely-specified

vector sequences.

Given the input sequence C = {cl, c2, ... , CN}, we specify the State Transition

Graph (STG) of an autonomous Input-Modeling Finite State Machine (IMFSM), call it

A, as follows. A has N states, sl through aN. For 1 < i < N we have a transition from

si to si+1. Additionally we have a transition from SN to s1. A is a Moore machine,
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111 s1
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Figure 4-12 Example of autonomous IMFSM for a four-vector sequence.

and the output associated with each state si is the corresponding completely-specified

vector ci. An example of a four-vector sequence with each vector completely-specified

over three bits is given in Figure 4-12(a), and the STG of the derived IMFSM is

shown in Figure 4-12(b).

A logic-level implementation of A can be obtained by arbitrarily assigning distinct

codes to the states si, 1 < i < N, using [log2 N] bits2. The encoding does not affect

the power estimation step as we will ignore any switching activity or power dissipation

in A.

In order to estimate the average power dissipated in M upon the application

of a given completely-specified input sequence C, the power estimation methods of

Section 4.3 are applied to the cascade A --+ M depicted in Figure 4-13. Since the

cascade A --+ M does not have any external inputs, no assumptions regarding input

probabilities need to be made.

Let us now consider the problem of estimating the average power dissipation in

M upon the application of a periodic incompletely-specified input sequence I. By

2rXz is the smallest integer greater or equal to x.
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Primary Primary

Figure 4-13 Cascade of IMFSM and given sequential circuit.

incompletely-specified we mean that the unspecified inputs can take on either the 0 or

1 value with known probability.

As an example, consider the incompletely-specified sequence

11-
-1-
-01
-11

Completely-specified sequences

applied to M are

110
010
001
011

contained in this sequence and that can possibly be

111

111
101
111

110
110
101
111

110
111
001
011

among many others.

We are given the input sequence D = {dl, d2, ... , dN}, over inputs 1,, 12, .. , IM.

We will assume that the - entries for any Ij are uncorrelated. The - entries for each

Ij have a user-specified probability of being a 1 denoted by prob(Ij).

We specify the STG of the IMFSM, call it B, as follows. B has N states, s, through

sN, M primary inputs I, 12, ... , IM, and M primary outputs ol, 02, ... , OM. For

1 < i < N we have a transition from si to si+j regardless of the values of the Ij's. We

also have a transition from SN to st regardless of the values of the Ij's. However, B is

8
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11-

-1-

-01

-11

(a) (b)

Figure 4-14 Example of Mealy IMFSM for a four-vector sequence.

a Mealy machine, and the output associated with each transition si -+ si+ is a logical

function dependent on the corresponding di. An example of the incompletely-specified

four-vector sequence used above is reproduced in Figure 4-14(a), and the STG of the

derived IMFSM is shown in Figure 4-14(b). Since di = 11-, we have ol = 1, 02 =

1 and o3 = 13 for the transition from sl. Similarly for the other transitions.

As before, a logic-level implementation of B can be obtained by arbitrarily assigning

distinct codes to the states si, 1 < i < N, using [log2 N] bits. The encoding does not

affect the power estimation step.

In order to estimate the average power dissipated in M upon the application of a

given incompletely-specified input sequence C, the strategies of Section 4.3 are applied

to the cascade B --+ M. The given static or transition probabilities prob(Ij) of the

primary inputs I1, 12, . . ., IM to B are used to estimate the power. Note that the

probabilities for all inputs to M are automatically derived.
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FORMAT (31 :26) (25 : 21) (20: 16) (15: 13) (12) (11 :5) (4 :0)
Operate Opcode Ra Rb 000 0 Function Re
Operate Opcode Ra Literal 1 Function Rc

with Literal
Memory Opcode Ra Rb disp.m
Branch Opcode Ra disp.b

Table 4.9 ao instruction set.

4.5.2 Assembly Programs

In many applications, a processor receives a set of instructions as an input. An important

problem is to estimate the power dissipated in the processor when it runs a given

application program or a set of application programs. In this section, we describe

ways of modeling an input assembly program as a IMFSM so conventional sequential

estimation methods can be used.

For this purpose we will focus on a simple instruction set for a RISC processor ao,

which is a subset of the instruction set for the DEC AlphaTM microprocessor. Table 4.9

gives a description of the a0o instruction set.

Given an arbitrary ao program, we will derive a logic-level IMFSM B which is

Instruction II Opcode I Function Operation I
add Oxl0 0x20 Re <-(Ra) + (Rb)lLit
and Oxil 0x00 R, •(Ra) A (Rb) Lit
or Oxil 0x20 Rc,-(Ra) V (Rb) Lit
sll 0x12 0x39 R, 4- (Ra) SLL (Rb)lLits:0
srl 0x12 0x34 Re 4- (Ra) SRL (Rb) Lits:o
sub Oxl0 0x29 Re +- (Ra) - (Rb)lLit
xor Oxil 0x40 Re<--(Ra) $ (Rb)ILit

cmpeq Ox10 Ox2D if (Ra) = (Rb), Rec 1, else R, - 0
cmple Ox10 Ox6D if (Ra) < (Rb), Re 1, else Re +- 0
cmplt Oxl0 Ox4D if (Ra) < (Rb), Re <- 1, else R.e -0

id 0x29 EA <- (Ra) + SEXT(disp.m), Ra~ - MEMORY[EA]
st Ox2D EA <- (Rb) + SEXT(disp.m), MEMORY[EA] -- (Ra)

br 0x30 Ra +- PC, PC - (PC) + 4 SEXT(disp.b)
bf 0x39 Update PC, EA +- (PC) +4 SEXT(disp.b),

if (Ra) = 0, PC +- EA
bt 0x3D Update PC, EA i (PC) + 4. SEXT(disp.b),

if (Ra) #0, PC +- EA
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/

Figure 4-15 Processor model.

cascaded with the processor as illustrated in Figure 4-13 to estimate average power

consumption when the program runs on the processor. Our model for the processor is

illustrated in Figure 4-15. The processor is a sequential circuit consisting of a register

file, arithmetic units, and control logic. It receives as input an instruction stream and

reads and writes an external memory.

A key assumption that we make is that data values loaded from memory are random

and uncorrelated. Therefore, the effect of a sequence of stores to, and loads from the

same location in memory is not modeled. If we did not make this assumption then we

would have to deal with the entire state space of the memory - a very difficult task.

Note that in this approach we are also not concerned with the power dissipated in the

external memory.

We will now describe how to generate a IMFSM given an arbitrary program

comprised of a sequence of assembly instructions. Let the program P be a sequence

of instructions P = {rl, r2, ... , rN}. The STG of the Moore IMFSM Q has N

states. For each of the different classes of instructions in Table 4.9 we show how to

derive the STG of Q.

* Operate: If ri is an Operate instruction (e.g., add, cmplt) we assign ri as the

output of state si. si makes an unconditional transition to si+l.

I
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init: and rO, rO, (
Id rl, rO, Ox'
Id r2, rO, Ox1
add r3, rO, (
add r4, rO, (

loop: cmplt r4, rl
bf done
add r3, r3, r
add r4, r4, 1
br loop

done: st r3, rO, Ox:
br init

(a)

(b)

Example of Mealy IMFSM for an assembly program.Figure 4-16
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* Branch: If ri is a Branch instruction, we determine the branch target instruction,

call it rj. State si makes a transition to state sj if variable vi = 1, and a transition

to state si+1 if vi = 0. The probability of vi being a 1 will be determined by

preprocessing the program P as described later in the section. The output

associated with si is ri.

* Memory: If ri is a Memory instruction, the output associated with si is ri. On

a load instruction (Id), R, is loaded with a random value from memory. The

inputs to the processor from memory will have certain probabilities associated

with 0 or 1 values. Since we are treating the data memory as an external

memory, a store instruction (st) is essentially a null operation.

We now elaborate on the probabilities of the branch variables (vi's). Branch pre-

diction is a problem that has received some attention [PH90, pp. 103-109]. The

probabilities of the branch variable vi. = 1 corresponds to the probability that a branch

is taken on the execution of instruction ri, and this probability can be determined, at

least approximately, by preprocessing the program P.

For example, if we have a constant iteration loop with N iterations, the probability

of staying in the loop is computed as N and the probability of exiting the loop as

If comparisons between data operands are used to determine branch conditions,

the probability of the comparison evaluating to a 1 assuming random data operands

can be calculated. For example, the probability that a > b is 0.5, and the probability

that a + b > c is 0.75.

Additionally, we can run the program P with several different inputs, and obtain

the information regarding the relative frequency with which each conditional branch

is being taken versus not being taken. This relative frequency is easily converted into

the probabilities for the vi's.

As before once the STG of the IMFSM has been derived and encoded, estimation

can be carried out using the topology of Figure 4-13. An example assembly program

for the processor ao is given in Figure 4-16(a) and the STG of its corresponding

Y__CI~_*__IX___I~·II~~-·XI)~BqO~·~--L-II
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IMFSM is shown in Figure 4-16(b). The average power dissipation of the processor

when executing the program is computed using the estimation method of Section 4.3.

4.5.3 Experimental Results

In this section we present some experimental results obtained using the methods of

Sections 4.5.1 and 4.5.2.

We compute the power dissipation of the cascade circuit consisting of the IMFSM

driving the sequential circuit or processor (cf. Figure 4-13) using the techniques of

Section 4.3. However, the method described in this section is not tied to a particular

sequential power estimation strategy. Any strategy used has to be able to:

1. model the correlation between applied vector pairs due to the next state logic

as shown in Figure 4-5, and

2. use present state probabilities or approximate using line probabilities.

In Table 4.10 we present power estimation results on sequential circuits of three

different types, small machines synthesized from State Transition Graph descriptions,

larger controller circuits, and a small processor similar to the ao. We give the number

of gates and flip-flops in the circuit under GATES and FF respectively.

For each given sequential circuit or processor, assuming uniform primary input

probabilities, we compute the power dissipation using the techniques of Section 4.3.

The power estimation values assuming a clock frequency of 20MHz, a supply voltage

of 5V and a unit delay model are given in the column UNIFORM-PROB, together with

the CPU time in seconds required for the computation on a DEC-AXP 3000/500.

For the first type of circuits (for which we have a STG available) we built a

transfer input sequence, i.e., an input sequence that will traverse all states in the STG.

Additionally, for all sequential circuits we generated a random input sequence. Given

these input sequences we construct an IMFSM using the methods of Section 4.5.1. The

corresponding power values and CPU time are given in columns IMFSM-TRANS-SEQ
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CIRCUIT GATE FF UNIFORM-PROB IMFSM-RAND-SEQ IMFSM-TRANs-SEQ
NAME POWER CPU POWER DIFF CPU POWER DIFF CPU

bbtas 26 3 134 0.4 142 6.0 1.4 117 12.7 0.8
cse 136 4 454 13.5 473 4.2 15.5 510 12.3 15.6
keyb 174 5 587 17.5 479 18.4 23.4 577 1.7 21.7
kirkman 171 4 734 6.7 826 12.5 15.5 409 44.3 4.8
planet 333 6 2359 33.7 2158 8.5 129.7 2147 9.0 83.5
styr 318 5 1195 31.5 1175 1.7 46.6 1317 10.2 46.5
tbk 483 5 1835 81.7 1705 7.1 94.1 2084 13.6 101.0
train4 15 2 85 0.3 54 36.5 0.4 52 38.9 0.4

s298 119 14 441 2.5 331 24.9 8.1 N/A
s444 181 21 411 6.7 348 15.3 17.8 N/A
s526 193 21 529 5.3 423 20.0 13.9 N/A
s713 393 19 1176 333.7 1096 6.8 513.0 N/A
s1196 529 18 2674 174.2 2313 13.5 197.3 N/A

ao-progl 144 75 965 4.3 N/A 1 26 97.5 13.4
ao-prog2 N/A 918 4.9 59.1

Table 4.10 Comparison
IMFSM computation.

of power dissipation under uniform input assumption and

and IMFSM-RAND-SEQ respectively. Similarly, we use the techniques of Section 4.5.2

to obtain an IMFSM for 2 different input programs for the a0o processor.

In Table 4.11 we give percentage errors of the present line probabilities. For each

sequential circuit and each random/transfer input sequence we compute the static

probabilities of the present state lines and compare them with the static probabilities

obtained by assuming uniform primary input probabilities. Under MIN/MAX columns we

give the percentage error of the state line with minimum/maximum static probability

error. Under AVG we give the average error over all present state lines.

As we can see from Table 4.10, the CPU time required to compute the power for

the cascaded circuit is not much larger than that for only the original circuit. However,

the power estimation error for the first set of circuits can be as high as 44%, implying

that the uniform probability assumption is unrealistic. Obtaining more accurate line

'~cl~"~~~~~`~ll-~~~~~"~""~~~~"~'--~~----
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CIRCUrr IMFSM-RAND-SEQ IMFSM-TRANS-SEQ
NAME MIN [AVG MAX MIN jAVG MAX

bbtas 8.1 15.7 22.4 7.3 20.3 31.7
cse 9.8 20.3 27.1 9.8 16.3 20.6
keyb 0.0 5.9 10.1 0.9 12.5 20.0
kirkman 26.9 39.6 49.3 27.1 39.7 49.3
planet 0.2 1.7 3.7 0.4 0.9 2.0
styr 8.0 20.2 29.7 13.8 19.0 22.5
tbk 1.3 3.7 5.4 0.4 12.6 17.7
train4 0.0 8.3 16.7 6.9 10.6 14.2

s298 0.0 4.9 9.5 N/A
s444 0.0 1.6 7.4 N/A
s526 0.0 2.9 12.8 N/A
s713 0.0 3.3 18.3 N/A
s1196 0.0 5.7 15.2 N/A
ao-progl N/A 0.0 2.3 49.2
ao-prog2 N/A 0.0 0.2 1.5

Present state line probability errors.Table 4.11
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probabilities allows the final combinational power estimation to be more accurate. Once

accurate present state line probabilities have been computed a variety of methods can

be applied to estimate the power dissipated in the logic.

For the processor example, huge errors occur. The first program is a simple program

which does not cause any activity in the majority of the registers and in a large fraction

of the combinational logic in the processor. The difference between the average power

dissipated when this program is run, and when random inputs are assumed is therefore

very high. The second program is more complex, and it causes greater activity and

greater power dissipation. Note that for the input programs to the processors we have

assumed a random distribution for data values.

4.6 Summary

Average power dissipation estimation for sequential circuits is a difficult problem both

from a standpoint of computational complexity, and from a standpoint of modeling the

correlation due to feedback and correlation in input sequences.

We presented a framework for sequential power estimation in this section. In

this framework, state probabilities can be computed using the Chapman-Kolmogorov

equations (Section 4.2), and present state line probabilities can be computed by solving

a system of non-linear equations (Section 4.3). The results presented in Section 4.4

show that the latter is significantly more efficient for medium to large circuits, and does

not sacrifice accuracy. For acyclic circuits, the computation of switching activity can

be done exactly and more efficiently without calculating state or state line probabilities

(Section 4.1).

This framework for sequential power estimation has been implemented within

SIS [SSM+92], the synthesis environment from the CAD group at the University of

California at Berkeley, and is now part of their standard distribution.

This framework of power estimation for sequential circuits can be used with

any power estimation technique for combinational circuits that can handle transition
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PI(O)

PI(t)

PAt

PBt

PCt

(a)

PI(O) Next State
PS(O) Logic

PS t

(b)

Generation of transition probabilities: (a) pipeline; (b) cyclic circuit.Figure 4-17



4.6 SUMMARY

probabilities at the inputs. In the case of pipelines, the exact transition probabilities

for the inputs to the combinational logic block of each pipeline stage are generated as

shown in Figure 4-17(a). For cyclic circuits, we first use the method of Section 4.3 to

compute the present state line probabilities, and then use the circuit of Figure 4-17(b)

to generate the transition probabilities for the state lines.

We showed how user-specified sequences and programs can be modeled using

a finite state machine, termed an Input-Modeling Finite State Machines or IMFSM

(Section 4.5). Power estimation can be carried out using existing sequential circuit

power estimation methods on a cascade circuit consisting of the IMFSM and the

original sequential circuit.

Given input sequences or programs, we need to keep the IMFSM description

reasonably compact, in order to manage the computational complexity of estimation.

This implies that we need to make certain assumptions, the primary one being that

data values are assumed to be uncorrelated. This assumption can be relaxed by using

empirical data for particular applications such as voice and video, and we are currently

looking at methods to derive this information automatically.
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Chapter 5

Optimization Techniques for Low Power

Circuits

Now that we have developed tools which can efficiently estimate the average power

dissipation of combinational and sequential logic circuits, we have a means of com-

paring different implementations of the same system, and therefore a way to direct

logic synthesis tools for low power optimization.

In this chapter we present a review of previously proposed techniques for the

optimization for low power of circuits described at the logic level. Recall that at this

abstraction level, the model for average power dissipation is given by Equation 2.2,

which we reproduce here:

Pi = • CiVDD ' fNi (5.1)

All optimization techniques described in this thesis assume that the clock frequency

f and power supply voltage VDD have been defined previously. Reducing the clock

frequency is an obvious way to reduce power dissipation. However, many designers

are not willing to accept the associated performance penalty. In fact, the figure of

merit used by many designers is Mops/mW, million of operations per mili-Watt, and

this stays constant for different values of f.
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Even better is to reduce the supply voltage, given the quadratic relationship with

power. However, reducing the supply voltage increases significantly the signal propa-

gation delays, decreasing the maximum operating frequency and thus again reducing

the system's performance. In [CSB92] the authors show that the power-delay product

still reduces if we lower the supply voltage. The loss in performance can be recovered

with the use of parallel processing, i.e., hardware duplication, which in turn translates

higher capacitances C. Taking all these factors into account, it is possible to reach an

optimum voltage level for a particular design style [CSB92].

Given optimal f and VDD, the problem of optimizing a circuit for low power is

to minimize

Cs c- Ni (5.2)

over all the gates in the logic circuit. This expression is often called the switched

capacitance. Therefore we can attempt reducing the global switching activity of the

circuit, reducing the global circuit capacitance or redistributing the switching in the

circuit such that the switching activity of signals driving large capacitances is reduced,

perhaps at the expense of increasing the switching activity of some signal driving a

smaller capacitance.

In Section 5.1 we describe an important optimization method for low power:

transistor sizing. While strictly this is not a gate level optimization technique, its

importance has led to the incorporation of transistor sizing into logic synthesis systems.

Section 5.2 is dedicated to techniques that work on restructuring the combinational

logic circuit and in Section 5.3 we focus on techniques that make use of properties

particular to sequential circuits.

5.1 Power Optimization by Transistor Sizing

Power dissipation is directly related to the capacitance being switched (cf. Equation 5.1).

Low power designs should therefore use minimum sized transistors. However, there

is a performance penalty in using minimum sized devices. The problem of transistor

100
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sizing is computing the sizes of the transistors in the circuit that minimizes power

dissipation while still meeting the delay constraints specified for the design.

Transistor sizing for minimum area is a well established problem [SRVK93]. There

is a subtle difference between this problem and sizing for low power. If the critical

delay of the circuit exceeds the design specifications and thus some transistors need to

be resized, methods for minimum area will focus on minimizing the total enlargement

of the transistors. On the other hand, methods for low power will first resize those

transistors driven by signals with lower switching activity.

A technique for transistor resizing targeting minimum power is described in [TA94].

Initially minimum sized devices are used. Each path whose delay exceeds the maximum

allowed is examined separately. Transistors in the logic gates of these paths are resized

such that the delay constraint is met. Signal transition probabilities are used to measure

the power penalty of each resizing. The option with least power penalty is selected.

A similar method is presented in [BHMS94]. This method is able to take false paths

into account when computing the critical path of the circuit.

In [BOI95] the authors note that the short-circuit currents are proportional to the

transistor sizing. Thus the cost function used in [BOI95] also minimizes short-circuit

power.

These methods work on local optimizations. A global solution for the transistor

sizing problem for low power is proposed in [BJ94]. The problem is modeled as:

TCwire + ZiEfanout(g)Si Cin,i(53)
9 = r (5.3)

T = rg9 + max Ti (5.4)
iEfanin(g)

Pg = Ng ( Cwire + C Si Cin,i ) (5.5)
iEfanout(g)

where Sg,, Ng, Pg and rg are respectively the sizing factor, switching activity, power

dissipation and delay of gate g. rintr and k are constants representing respectively the

intrinsic delay of the gate and ratio between delay and the capacitive load the date is

driving. Tg is the worst case propagation delay from an input to the output of g. C

denotes load capacitances.
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The solution to the optimization problem is achieved using Linear Programming

(LP) [Sch87]. A piecewise linear approximation is obtained for Equation 5.3. The

constraints for the LP problem are:

Tg kl,1 - kl, 2 Sg + kl,3 E••Si Cin,i

(from Equation 5.3)7g > kn,l - kn,2 Sg + kn,3 Ei Si Cin,i

Smin • Sg • Smax

T9  > Ti+-r, ViEfanin(g) (from Equation 5.4)
Tmax > T,

and the objective function to minimize is:

P = P,
over all gates g

where kij are constants computed such that we get a best fit for the linearized model.

As devices shrink in size, the delay and power associated with interconnect grow in

relative importance. In [CK94] the authors propose that wiresizing should be considered

together with transistor sizing. Wider lines present less resistance but have higher

capacitance. A better global solution in terms of power can be achieved if both

transistor and wire sizes are considered simultaneously.

5.2 Combinational Logic Level Optimization

In this section we review techniques that work on restructuring combinational logic

circuits to obtain a less power consuming circuit. The techniques we present in this

section focus on reducing the switched capacitance within traditional design styles.

A different design style targeting specifically low power dissipation is proposed

in [LMSSV95]. It is based on Shannon circuits where for each computation a single

input-output path is active, thus minimizing switching activity. Techniques are presented
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Figure 5-1 Logic restructuring to minimize spurious transitions.

E)D-
Figure 5-2 Buffer insertion for path balancing.

on how to keep the circuit from getting too large, as this would increase the total

switched capacitance.

5.2.1 Path Balancing

Spurious transitions account for a significant fraction of the switching activity power

in typical combinational logic circuits [SDGK92, FB95]. In order to reduce spurious

switching activity, the delay of paths that converge at each gate in the circuit should be

roughly equal. Solutions to this problem, known as path balancing, have been proposed

in the context of wave-pipelining [KBC93]. One technique involves restructuring the

logic circuit, as illustrated in Figure 5-1. Additionally, by selectively inserting unit-

delay buffers to the inputs of gates in a circuit, the delays of all paths in the circuit

can be made equal (Figure 5-2). This addition will not increase the critical delay of

the circuit, and will effectively eliminate spurious transitions. However, the addition of

buffers increases capacitance which may offset the reduction in switching activity.
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Figure 5-3 SDCs and ODCs in a multilevel circuit.

5.2.2 Don't-care Optimization

Multilevel circuits are optimized by repeated two-level minimization with appropriate

don't-care sets. Consider the circuit of Figure 5-3. The structure of the logic circuit may

imply some combinations over nodes A, B and C never occur. These combinations form

the Controllability or Satisfiability Don't-Care Set (SDC) of F. Similarly, there may

be some input combinations for which the value of F is not used in the computation

of the outputs of the circuit. The set of these combinations is called the Observability

Don't-Care Set (ODC) [DGK94, pp. 178-179].

Traditionally don't-care sets have been used for area minimization [BBH+88].

Recently techniques have been proposed (e.g., [SDGK92, IP94]) for the use of don't-

cares to reduce the switching activity at the output of a logic gate. The transition

probability of the output f of a static CMOS gate is given by 2prob(f)(1 - prob(f))

(ignoring temporal correlation). The maximum for this function occurs when prob(f) =

0.5. The authors of [SDGK92] suggest including minterms in the don't-care set in the

ON-set of the function if prob(f) > 0.5 or in the OFF-set if prob(f) < 0.5. In [IP94]

this method is extended to take into account the effect that the optimization of a gate

has in the switching probability of its transitive fanout.
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pr = - -U.U.3J.7

=£ .J5 4

b

c
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P = V.VCS h4 .....

(a) (b)

Figure 5-4 Logic factorization for low power.

5.2.3 Logic Factorization

A primary means of technology-independent optimization (i.e., before technology map-

ping) is the factoring of logical expressions. For example, the expression (a A c) V

(a A d) V (b A c) V (b A d) can be factored into (a V b) A (c V d), reducing transistor

count considerably. Common subexpressions can be found across multiple functions

and reused. Kernel extraction is a commonly used algorithm to perform multilevel logic

optimization for area [BRSVW87]. In this algorithm, the kernels of given expressions

are generated and those kernels that maximally reduce the literal count are selected.

When targeting power dissipation, the cost function is not literal count but switching

activity. Even though transistor count may be reduced by factorization, the total switched

capacitance may increase. Consider the example shown in Figure 5-4 and assume that a

has a low probability prob(a) = 0.1 and b and c have each prob(b) = prob(c) = 0.5. The

total switched capacitance in the circuit of Figure 5-4(a) is 2(2prob(a)(1 - prob(a)) +

prob(b)(1-prob(b))+prob(c)(1-prob(c))+pi(1-pl)+p2(1-p 2)+p 3 (1-p 3))C = 1.52C

and in the circuit of Figure 5-4(b) is 2(prob(a)(1 - prob(a)) + prob(b)(1 - prob(b)) +

prob(c)(1 - prob(c)) + p4(l - p4) ps(l - p5 ))C = 1.61C. Clearly factorization is not

always desirable in terms of power. Further, kernels that lead to minimum literal count

do not necessarily minimize the switched capacitance.

Modified kernel extraction methods that target power are described in [RP93,

MBSV94, IP95, PN95]. The algorithms proposed compute the switching activity asso-

P, = 0.025 n -n ,,

b

a

C
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0.109

179

0.109

Figure 5-5 Circuit to be mapped, with switching activity information.

GATE AREA INTRINSIC
CAPACITANCE

INV 928 0.1029
NAND2 1392 0.1421
AO122 2320 0.3410

Figure 5-6

INPUT LOAD
CAPACITANCE

0.0514
0.0747
0.1033

Information about the technology library.

ciated with the selection of each kernel. Kernel selection is based on the reduction of

both area and switching activity.

5.2.4 Technology Mapping

Technology mapping is the process by which a logic circuit is implemented in terms

of the logic elements available in a particular technology library. Associated with each

logic element is an area and a delay cost. The traditional optimization problem is

to find the implementation that meets some delay constraint and minimizes the total

area cost. Techniques to efficiently find an optimal solution to this problem have been

proposed [Keu87].

As long as the delay constraints are still met, the designer is usually willing to make

some tradeoff between area and power dissipation. Consider the circuit of Figure 5-5.

Mapping this circuit for minimum area using the technology library presented in
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A0122

Area = 2320 + 928 = 3248
Power = 0.179 x (0.3410 + 0.0514) + 0.179 x (0.1029) = 0.0887

Figure 5-7

NAND2

Mapping for minimum area.

0.109

179

Area = 1392 x 3 = 4176
Power = 0.109 x (0.1421 + 0.0747) x 2 + 0.179 x (0.1421) = 0.0726

Figure 5-8 Mapping for minimum power.
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Figure 5-6 yields the circuit presented in Figure 5-7. The designer may prefer to give

up some area in order to obtain the more power efficient design of Figure 5-8.

The graph covering formulation of [Keu87] has been extended to use switched

capacitance as part of the cost function. The main strategy to minimize power dis-

sipation is to hide nodes with high switching activity within complex logic elements

as capacitances internal to gates are generally much smaller. Although using different

models for delay and switching activity estimation, techniques such as those described

in [TAM93, TPD93b, Lin93] all use this approach to minimize power dissipation during

technology mapping.

Most technology libraries include the same logic element with different sizes (i.e.,

drive capability). Thus, in technology mapping for low power, the choice of the size

of each logic element such that the delay constraints are met with minimum power

consumption is made. This problem is the discrete counterpart of the transistor sizing

problem of Section 5.1 and is addressed in [TA94, BCH+94, TMF94].

5.3 Sequential Optimization

We now focus on techniques for low power that are specific to synchronous sequential

logic circuits. A characteristic of this type of circuits is that switching activity is easily

controllable by deciding whether or not to load new values to registers. Further, at the

output of registers we always have a clean transition, free from glitches.

5.3.1 State Encoding

State encoding is the process by which a unique binary code is assigned to each

state in a Finite State Machine (FSM). Although this assignment does not influence

the functionality of the FSM, it determines the complexity of the combinational logic

block in the FSM implementation (cf. Figure 4-3).

State encoding for minimum area is a well-researched problem [ADN91, Chapter 5].

The optimum solution to this problem has been proven to be NP-hard. Heuristics that
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work well assign codes with minimum Hamming distances to states that have edges

connecting them in the State Transition Graph (STG). This potentially enables the

existence of larger kernels or kernels that can be used a larger number of times.

Targeting low power dissipation, the heuristics go one step further: assign minimum

Hamming distance codes to states that are connected by edges that have higher

probability of being traversed. The probability that a given edge in the STG is

traversed is given by the steady-state probability of the STG being in the start state

of the edge times the static probability of the input combination associated with that

edge (cf. Equation 4.1). Whenever this edge is exercised, only a small number of state

lines (ideally one) will change, leading to reduced overall switching activity in the

combinational logic block. This is the cost function used in the techniques proposed

in [RP93, OK94, HHP+94].

In [TPCD94], the technique takes into account not only the power in the state lines

but also in the combinational logic by using in the cost function the savings relative

to cubes possible to obtain for a given state encoding.

5.3.2 Encoding in the Datapath

Encoding to reduce switching activity in datapath logic has also been the subject of

attention. A method to minimize the switching on buses is proposed in [SB94]. Buses

usually correspond to long interconnect lines and therefore have a very high capacitance.

Thus any reduction in the switching activity of a bus may correspond to significant

power savings. In [SB94], an extra line E is added to the bus which indicates if the

value being transferred is the true value or needs to be bitwise complemented upon

receipt. Depending on the value transferred in the previous cycle, a decision is made

to either transfer the true current value or the complemented current value, so as to

minimize the number of transitions in the bus lines. For example, if the previous value

transferred was 0000, and the current value is 1011, then the value 0100 is transferred,

and the line E is asserted to signify that the value 0100 has to be complemented at
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Clock

Figure 5-9 Reducing switching activity in the register file and ALU by gating the
clock.

the other end. The number of lines switching in the bus has been reduced from three

to two. Other methods of bus coding are also proposed in [SB94].

Methods to implement arithmetic units other than in standard two's complement

arithmetic are also being investigated. A method of one-hot residue coding to minimize

switching activity of arithmetic logic is presented in [Chr95].

5.3.3 Gated Clocks

Large VLSI circuits such as processors contain register files, arithmetic units and control

logic. The register file is typically not accessed in each clock cycle. Similarly, in an

arbitrary sequential circuit, the values of particular registers need not be updated in

every clock cycle. If simple conditions that determine the inaction of particular registers

can be computed, then power reduction can be obtained by gating the clocks of these

registers [Cha94] as illustrated in Figure 5-9. When these conditions are satisfied, the

switching activity within the registers is reduced to negligible levels. Detection and shut

down of unused hardware is done automatically in current generations of Pentium and
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PowerPC processors. The Fujitsu SPARCliteTM" processor provides software controls for

shutting down hardware.

The same method can be applied to "turn off" or "power down" arithmetic units

when these units are not in use in a particular clock cycle. For example, when a

branch instruction is being executed by a CPU, a multiply unit may not be used. The

input registers to the multiplier are maintained at their previous values, ensuring that

switching activity power in the multiplier is zero for this clock cycle.

In [BM95] a gated clock scheme applicable to FSMs is proposed. The clock to

the FSM is turned off when the FSM is in a state with a self loop waiting for some

external condition to arrive. Techniques to transform locally a Mealy machine into a

Moore machine are presented so that the opportunity for gating the clock is increased.

As a follow up of the precomputation method that is presented in Chapter 7, a

technique called guarded evaluation [TAM95] achieves data-dependent power down at

the sequential logic level. Instead of adding the precomputation logic to generate the

clock disabling signal, this technique uses signals already existing in the circuit to

prevent transitions from propagating. Disabling signals and subcircuits to be disabled

are determined by using observability don't-care sets.

5.4 Summary

We have reviewed recently proposed optimization methods for low power that work at

the transistor and logic levels.

To reduce the switched capacitance, transistors should be as small as possible. For

most designs we cannot afford to use only minimum sized transistors since we need

to meet some performance constraints. Transistor sizing for low power enlarges first

those transistors driven by signals with lower switching activity.

Combinational techniques such as don't care optimization, logic factorization and

technology mapping try to reduce the switching activity in the circuit or redistribute
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the switching activity such that we have fewer transitions for signals driving large

capacitive loads.

Other techniques that focus on reducing spurious transitions, such as path balancing

are inherently limited as they do not address the zero-delay switching activity. However

these techniques are independent improvements and can be used together with the other

optimization techniques. The technique we describe in Chapter 6 focus on reducing

spurious transitions by repositioning the registers in the circuit.

Shut down techniques applied to sequential circuits such as those described in

Section 5.3.3 have a greater potential for reducing the overall switching activity in

logic circuits. We developed two optimization techniques based on the observations of

Section 5.3.3, which are presented in Chapters 7 and 8.
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Chapter 6

Retiming for Low Power

The operation of retiming consists of repositioning the registers in a sequential

circuit, while maintaining its external functional behavior. Retiming was first proposed

in [LS83] as a technique to improve throughput by moving the registers in a circuit.

In this chapter, we explore the application of retiming techniques to modify the

switching activity in internal signals of a circuit [MDG93] and demonstrate the impact

of these techniques on average power dissipation. The use of retiming to minimize

switching activity is based on the observation that the output of registers have signifi-

cantly fewer transitions than the register inputs. In particular, no glitching is present.

Consider the circuit of Figure 6-1(a). If the average switching activity at the output

of gate g is N, and the load capacitance is CL, then the power dissipated at the output

of this gate is proportional to N. - CL. Now consider the situation when a flip-flop

R is added to the output of g, as illustrated in Figure 6-1(b). The power dissipated

by the circuit is now proportional to Ng - CR + NR - CL, where N, is as before, CR

is the capacitance seen at the input to the flip-flop, and NR is the average switching

activity at the flip-flop output. The main observation here is that NR < Ng, since

the flip-flop output will make at most one transition at the beginning of the clock

cycle. For example, the gate g may glitch and make three transitions as shown in

the figure, but the flip-flop output will make at most one transition when the clock is
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ding a flip-flop to a circuit.
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Figure 6-2 Moving a flip-flop in a circuit.

asserted. This implies that is possible that Ng CR + NR - CL is less than N,- CL if

both Ng and CL are high. Thus, the addition of flip-flops to a circuit may actually

decrease power dissipation. Since adding flip-flops to a circuit is a common way to

improve the performance of a circuit by pipelining it, it is worthwhile to exploit all

the ramifications of this observation.

Next, consider the more complex scenario of altering the position of a flip-flop in

a sequential circuit. Consider the circuit of Figure 6-2(a). The power dissipated by this

circuit is proportional to No CR + N . CB + N2 -Cc. Similarly, the power dissipated
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by the circuit of Figure 6-2(b) is proportional to No CG + N'1 - CR + N'2 - Cc. One

circuit may have significantly lower power dissipation than the other. Due to glitching,

N' 1 may be greater than N1 but by the same token N' 2 may be less than N2. The

capacitances of the logic blocks and the flip-flops along with the switching activities

will determine which of the circuits is more desirable from a power standpoint. The

circuits may also have differing performance.

We use the above observations in a heuristic retiming strategy that targets power

dissipation as its primary cost function. We describe this technique in Section 6.2. We

begin by making a brief review of retiming in Section 6.1. Experimental results are

presented in Section 6.3.

6.1 Review of Retiming

6.1.1 Basic Concepts

For the formulation of the retiming problem, a sequential circuit is generally modeled

as a directed acyclic graph G(V, E, W), where: V is the set of vertices, with one

vertex for each primary input, each primary output and each gate in the circuit; E

is the set of edges, which represent the interconnections between the gates; W is a

set of weights associated with each edge in the graph and it represents the number of

registers in the connection corresponding to each edge. Figures 6-3 and 6-4 show two

different sequential circuits and their respective graphs.

A path between two vertices in the graph v, v2 E V, vI -+ v2 , is defined as the

sequence of edges from vi to v2. The weight of the path is the sum of the weights

of the edges in the path. In the particular case of k-pipelines, the weight of any path

from a primary input to a primary output is always k.

The retiming operation is defined at a vertex level. The retiming of vertex v, r(v),
is the number of registers to be moved from the fanout edges of vertex v to its fanin
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Figure 6-3 Pipelined 2-bit adder: (a) Circuit; (b) Graph.

edges. The weight w'(e) after a retiming operation of an edge e from vl to v2, vl I- v2,

is given by

w'(e) = w(e) + r(v2) - r(vi) (6.1)

It is shown in [LS83] that the input/output behavior of the circuit is preserved

(legal retiming) if the retiming verifies the following conditions:

(i) r(v) = 0, if v is a primary input or primary output.

(ii) w(e) + r(v2) - r(vi) > 0, where e is an edge from vertex vi to vertex v2,
e

V1 --4 2.

Condition (i) implies that if the clock cycle in which inputs/outputs are to arrive/be

available is to be maintained, then no registers should be borrowed from (or lent

to) outside circuitry. Condition (ii) ensures that there are no edges in the graph with

negative weights.

The circuit in Figure 6-4 is a retimed version of that in Figure 6-3. Vertices A and

B were retimed by r(A) = r(B) = -1, the registers at the inputs of the corresponding

gates in the circuit were moved to their outputs. It can be observed that the logic
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Figure 6-4 Retimed 2-bit adder: (a) Circuit; (b) Graph.

function performed by these circuits as seen from the outside is exactly the same.

Although gates A and B are computed one clock cycle earlier in the second circuit,

the outputs of the circuit are available in the same clock cycle as before.

6.1.2 Applications of Retiming

Retiming based algorithms have been used previously in logic design optimization,

both targeting performance [LS83, Mic91, LP95] and area [MSBSV91].

In [LS83, Mic91, LP95], registers are redistributed so as to minimize the delay of

the longest path, thus allowing the circuit to operate at higher clock speeds.

In [MSBSV91], retiming is used to allow optimization methods for combinational

circuits to be applied across register boundaries. The circuit is retimed so that registers

are moved to the border of the circuit, logic minimization methods are applied to the

whole combinational logic block and lastly the registers are again redistributed in the

circuit to maximize throughput.

In the next section we present an algorithm that applies retiming with a different

cost function. We retime sequential circuits so as to minimize the power dissipated

__l·II____I__IY________~ -I--II-I-
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in the circuit by minimizing its switching activity [MDG93]. This work has been

extended in [LP96]. In [LP96] each register is replaced by two level-sensitive latches,

each working on a different clock phase. The retiming is performed only on latches

clocked on one of the clock phases. Since the latches for the other clock phase stay

fixed, the state variables at the output of these latches remain the same. One of the

advantages of this is that the testability characteristics of the original edge-triggered

circuit and of the retimed level-sensitive circuit are the same.

6.2 Retiming for Low Power

Retiming algorithms that minimize clock periods [LS83, Mic91] rely on the fact that

delay varies linearly under retiming. The delay from vl to v2 is the sum of the delays

in the path vl - v2. Unfortunately that is not so for switching activity.

The retiming of a single vertex can dramatically change the switching activity in

the circuit and it is very difficult to predict what this change will be. On the other

hand, re-estimating the switching activity after each retiming operation is not a viable

alternative as the estimation process is itself computationally very expensive.

The algorithm we propose for reducing power dissipation in a pipelined circuit

heuristically selects the set of gates which, by having a flip-flop placed at their

outputs, lead to the minimization of switching activity in the circuit. Gates are selected

based on the amount of glitching that is present at their outputs and on the probability

that this glitching will propagate through their transitive fanouts.

The number of registers in the final circuit can also have a high impact on the

power dissipation. As a second objective, we minimize the number of registers in

the circuit by performing retiming operations provided they maintain the registers

previously placed and do not increase the maximum delay path.
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1--

Figure 6-5 Sensitivity calculation.

6.2.1 Cost Function

We start by estimating the average switching activity in the combinational circuit

(ignoring the flip-flops), both with zero delay (NzeroD) and actual delay (NatD). We

compute the amount of glitching (Nultch) at each gate by taking the difference of the

expected number of transitions in these two cases (Nglitch = NactD - NzeroD).

We then evaluate the probability that a transition at each gate propagates through

its transitive fanout. For each gate g in the transitive fanout of f, as in Figure 6-5,

we calculate the probability of having a transition at gate g caused by a transition at

gate f (sensitivity of gate g relative to gate f, sg,f):

) prob(f f A g )f = prob(g If ) = b(f ) (6.2)
prob(ff )

where prob(f 1) is the probability of a transition at the output of gate f,

prob(f t) = Nf = probo'l(f) + prob'0(f) = prob(f (0) f(t)) + prob(f(0) f(t)) (6.3)

The value of prob(f I A g 1) can be computed by calculating the primary input

conditions under which a transition at f triggers a transition at g:

prob(f I A gI) = prob(f(0) f(t) g(0) g(t)) + prob(f(0) f(t) g(0) g(t))
(6.4)

+ prob(f(0) f(t) g(O) g(t)) + prob(f(0) f(t) g(O) g(t))

Since prob(f(0) g(0)) = prob(f(t) g(t)) = prob(f g), Equation 6.4 becomes:

prob(f A g 1) = 2(p, p4 + p2 3)
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where

Pl = prob(f g), p2 = prob(fg), p3 = prob(f y), p4 = prob(fy)

BDDs that represent all primary input conditions under which f and g make a

transition can be constructed using the methods of Chapter 3. Computing the Boolean

AND of these BDDs gives us the primary input conditions for fI A g 1. The probability

prob(f I A g 1) can be calculated using a bottom-up traversal of the BDD. Also,

calculating signal transition probability at each gate (prob(f 1)) can be calculated using

the zero delay power estimation methods in Chapter 3.

Since the objective is to reduce power, we weight these sensitivities with the

capacitive load of the corresponding gate. The measure of the amount of power

dissipation that is reduced by placing a flip-flop at the output of a gate f is:

powerred(f) = Nalitch(f) X (Cf + (Sg,f x CA)) (6.6)
gEfanout(f)

The transitive fanout of a gate may contain a very large number of elements, so we

restrict the number of levels in the transitive fanout that are taken into account. This not

only reduces computation time, but also can increase the accuracy since glitching can

be filtered out by the inertial delay of combinational logic. From empirical observations,

we have concluded that computing the sensitivity of gates up to two levels down in

the transitive fanout is sufficient.

One other factor that can significantly contribute to power dissipation is the number

of flip-flops in the circuit. We try to minimize this number by giving higher weights

to vertices with larger number of inputs (n;(f)) and outputs (no(f)). A flip-flop placed

at one of these vertices will be in a larger number of paths, reducing the total number

of flip-flops needed. Therefore, the final cost function that we want to maximize is

given by:

weight(f) = powerred(f) x (ni(f) + no(f))
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6.2.2 Verifying a Given Clock Period

Although we aim at the circuit that dissipates the least possible power, we might also

want to set a constraint on performance by specifying the desired clock cycle of the

retimed circuit.

In the retiming algorithm we will be selecting vertices that should have a flip-flop

placed at the output. We restrict the selection process to vertices that still allow the

retimed circuit to be clocked with the given clock period. Since the algorithm works

with pipelines (acyclic circuits), this is accomplished simply by discarding vertices that

have a path longer than the desired clock period, both from any primary input or to

any primary output.

6.2.3 Retiming Constraints

The objective is to select the vertices (from those in the conditions of the previous

section) with the highest weights, as given by Equation 6.7. The retiming constraint

is that the number of selected vertices that share any input-output path should not

surpass a given value (which is the number of flip-flop stages in the pipeline). The set

of vertices that verify this constraint and corresponding to the highest sum of weights

is chosen.

We restrict our algorithm to place one stage of flip-flops at a time. The reason for

this is that, if we allowed two stages, the algorithm could select a gate f and one of

its immediate fanout gates g for a set. Choosing f will eliminate most of the glitching

present at g, possibly changing significantly the weight of g. This new weight of g is

very difficult to predict. Thus, for pipelines with more than one stage, we apply our

algorithm iteratively.

Hence the goal is to find the set of vertices with no more than one vertex per

input-output path and with the highest sum of weights. Our algorithm uses a binary

tree search over all the vertices, keeping record of the best set so far. For large circuits,

we limit the search to the most promising vertices.
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Figure 6-6 Vertex selection: (a) Circuit; (b) Binary tree.

First we check for pairwise compatibility. For each pair of vertices we check if

there is one input-output path to which they both belong. This greatly simplifies the

test at each level of the binary tree as we just verify if the vertex corresponding to

this level is incompatible with any other vertex previously selected.

To exemplify this process, consider the circuit of Figure 6-6(a). We have repre-

sented in Figure 6-6(b) the binary tree for vertex selection. Right branches in the tree

correspond to the vertex being selected having a flip-flop at its output and left branches

to no flip-flop at the output of the vertex. Since vertex x shares input-output paths

with both vertices y and w, selecting z implies that none of the other two vertices

can be selected. After building the binary tree, we are left with valid combinations of

vertices. The one with the highest sum of cost functions is chosen.

6.2.4 Executing the Retiming

Initially we position the flip-flops at the primary inputs of the circuit. To place a

flip-flop at the output of a gate in the selected set, we recursively perform backward

retiming on the vertex, adding a flip-flop at its output and removing a flip-flop from

each input. This operation is repeated for vertices that have negative flip-flops at
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Figure 6-7 Circuit with the gates in the selected set retimed.

their output due to previous retimings. Eventually we reach the primary inputs where

flip-flops are present, thereby ending the recursion.

Once we have placed flip-flops at the output of all the gates in the set, there are

typically some flip-flops that can still be moved without disturbing the flip-flops already

placed. These are flip-flops on paths that do not contain any vertex in the selected set.

For instance, consider the circuit depicted in Figure 6-7 which has been through the

first phase of retiming, where the only vertex in the selected set was vertex B.

The first observation is that although vertex B was retimed (and has a flip-flop at

its output as was the objective), A was not. Thus the flip-flops at the inputs cO, vO

and wO were not removed. In this case it is obvious that it is preferable to retime

vertex A so that we reduce the number of flip-flops in the circuit (one at the output

of A instead of three at the inputs).

The second observation is that the flip-flops at inputs v l and w l were also not

touched. Vertices X and Y can be retimed and this would reduce the levels of

combinational logic in the circuit from two to one. Note that retiming X and Y will

make C and D retimable, but we do not allow this operation since that would remove

the flip-flop from the output of B.

Thus, in the last phase of the algorithm we go through the circuit, from primary
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inputs to primary outputs, performing a backward retiming on retimable vertices so

that:

(i) the delay does not increase over the desired clock period

(ii) the number of flip-flops is reduced

(iii) this retiming operation does not disturb the flip-flops placed at the output of

the vertices in the selected set

6.3 Experimental Results

We present results obtained by using the retiming method of Section 6.2 that directly

targets power dissipation. In Table 6.1 we present the delay, in nano-seconds, and

power, in micro-Watt, dissipated by circuits retimed for minimum delay, and the delay

and power dissipated by circuits retimed for minimum power with no timing constraints.

Under FF we give the number of flip-flops in the pipelined circuit. The first four circuits

are 16- and 32-bit adders (carry-look-ahead, ripple-carry and carry-bypass) and the last

three are multipliers. These are all 1-pipeline circuits.

We were able to achieve significant reductions in power for some of the circuits by a

judicious placement of registers using the strategies described in Section 6.2. However,

the maximum delay of some of the retimed circuits for low power is close to the

delay of the corresponding un-pipelined circuit. Retiming for low power disregarding

timing might give poor results is terms of performance.

In Table 6.2 we present the results obtained for the same circuits but now adding

the constraint of minimum delay. We give results for multi-stage pipelines. The latter

was obtained by applying the algorithm of Section 6.2 first to the original circuit and

then to each of the two combinational parts of the retimed circuit.

We first note that the power dissipated by the pipelined circuits obtained by retiming

for low power disregarding timing (Table 6.1) or by retiming for low power with a

minimum delay constraint (Table 6.2) are very close. Thus it is possible to achieve

important gains in power dissipation without loss of performance. For example rpl-16,
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CIRCUIT RETIME-DELAY RETIME-POWER
NAME FF DELAY POWER FF DELAY POWER % RED

cla_16 48 12 2389 43 12 2147 10.1
rp1_16 33 18 2303 32 32 2074 9.9
cbp-l 6 38 22 2748 34 42 2388 13.1
cbp_32 74 42 5590 61 71 4725 15.5
mult4 14 5 900 11 7 853 5.2
mult6 29 8 2803 22 11 2596 7.4
mult8 46 11 6104 37 15 5834 4.4

Table 6.1 Results of retiming for low power with no timingI constraints.

CIRCUIT ST DELAY RETIME-DELAY RETIME-POWER
NAME FF POWER FF POWER % RED

cla_16 1 12 48 2389 44 2181 8.7
3 6 131 4632 126 4280 7.6

rpl 16 1 18 33 2303 31 2039 11.4
3 9 98 4025 99 3698 8.1

cbpl 6 1 22 38 2748 32 2407 12.4
3 11 115 4569 105 4125 9.7

cbp_32 1 42 74 5590 59 4871 12.9
3 21 223 9234 172 7725 16.3

mult4 1 5 14 900 13 860 4.4
3 3 43 1503 38 1378 8.3

mult6 1 8 29 2803 26 2660 5.1
3 4 76 3581 78 3563 0.5

mult8 1 11 46 6104 43 6003 1.7
3 6 136 7404 128 6975 5.8

Table 6.2 Results of retiming for low power with minimum delay constraint.
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adding the delay constraint actually results in a slightly better power dissipation. This

is due to the heuristic nature of the algorithms used.

Secondly observe that, even though we are using an iterative strategy for the 3-stage

pipelined circuits, the gain in power is greater for these circuits. This means that even

greater savings can be obtained if our algorithm is extended to build k-stage pipelines

in one pass, by taking into account in the cost function of a vertex the reduction of

glitching caused by the selection of another vertex that shares a common path.

6.4 Conclusions and Ongoing Work

We described an optimization technique for low power based on retiming that is

applicable to pipelined circuits. We made use of the observation that the output of

registers have significantly fewer transitions than the register inputs. In particular, no

glitching is present. The registers in the circuit are repositioned such that the switched

capacitance Ei CiNi is minimized. The results presented in Section 6.3 show that up

to 16% power savings can be obtained.

The retiming algorithm for low power presented is limited to 1-stage pipelines. k-

stage pipelines can be handled by iteratively applying the algorithm to the combinational

logic blocks obtained after each retiming. The reason behind this limitation is that if

we consider two registers in the same path, the register that is first in that path changes

the switching activity on all the vertices in its transitive fanout, thus invalidating any

data we have to place the second register. Further, it is very expensive to recompute

the new switching activity every time the first register is moved. The solution we

would obtain from an algorithm that is able to handle k-pipelines would be better than

what we currently achieve with our iterative approach.

For this same reason we are only considering acyclic sequential circuits. Predicting

the switching activity after retiming a register in a cyclic circuit is a very difficult task.

We are currently studying approximate schemes to efficiently perform this prediction
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and thus be able to handle both k-pipelines and cyclic sequential circuits, e.g., finite

state machines.

The retiming method presented in this chapter targets the reduction of, and thus its

power savings are limited by, the amount of power dissipation related to the glitching

in the circuit. In the next chapters we present more powerful techniques in the sense

that these techniques also reduce the power of the zero-delay switched capacitance.
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Chapter 7

Precomputation

Power shut-down techniques, where entire modules in the circuit are "turned off"

when not in use, can have a very high impact in reducing the power consumption

of a circuit (cf. Section 5.3.3). We present a powerful logic optimization method that

achieves data-dependent power down at the sequential or combinational logic levels.

This method is based on selectively precomputing the output logic values of the

circuit one clock cycle before they are required, and using the precomputed values to

reduce internal switching activity in the succeeding clock cycle.

The primary optimization step is the synthesis of the precomputation logic, which

computes the output values for a subset of input conditions. If the output values can

be precomputed, the original logic circuit can be "turned off" in the next clock cycle

and will not have any switching activity. Since the savings in the power dissipation

of the original circuit is offset by the power dissipated in the precomputation phase,

the selection of the subset of input conditions for which the output is precomputed is

critical. The precomputation logic adds to the circuit area and can also result in an

increased clock period. Given a logic-level circuit, we present automatic methods of

synthesizing the precomputation logic so as to achieve a maximal reduction in power

dissipation.

We present results for two precomputation architectures for sequential circuits.
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The first architecture is termed Subset Input Disabling architecture [AMD+94] and is

described in Section 7.1. In this architecture the precomputation logic is determined

from a subset of the primary inputs to the original circuit. For the second sequential

precomputation architecture, the Complete Input Disabling architecture [MRDG95] of

Section 7.2, the precomputation logic can be a function of all the input variables. The

complete input disabling architecture can reduce power dissipation for a larger class

of sequential circuits than the subset input disabling architecture, but the synthesis of

the precomputation logic block is more complex.

We extend the precomputation approach to combinational circuits [MRDG95]. The

reduction in switching activity is achieved by introducing transmission-gates or trans-

parent latches in the circuit which can be disabled when the signal going through them

is not necessary to determine the output values. This architecture is more flexible than

any of the sequential architectures since we are not limited to precomputation over

primary inputs. However, these degrees of freedom make the optimization step much

harder. We present synthesis methods for precomputation of combinational circuits.

Synthesis methods that target this combinational architecture as well as other variants

have been independently developed in [TAM95].

For each of these precomputation architectures, we present experimental results that

show that power savings up to 75 percent can be achieved.

7.1 Subset Input Disabling Precomputation

Consider the circuit of Figure 7-1. We have a combinational logic block A that is

bounded by registers R1 and R2. While R 1 and R2 are shown as distinct set of registers

in Figure 7-1 they could, in fact, be the same registers. We will first assume that block

A has a single output and that it implements the Boolean function f.
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x2

x2

Figure 7-1 Original circuit.

7.1.1 Subset Input Disabling Precomputation Architecture

In Figure 7-2 we show the Subset Input Disabling precomputation architecture. The

inputs to the block A have been partitioned into two sets, corresponding to the registers

R 1 and R2. The output of the logic block A feeds the register R3. The two Boolean

functions gi and g2 are the predictor functions. We require:

gi =1 f =1 (7.1)

92 = 1 • f=0 (7.2)

gi and g2 only depend on the subset of the inputs to f going into R 1. If gi or g2

evaluates to a 1 during clock cycle t, the load enable signal to the register R2 is

turned off. This implies that the outputs of R2 during clock cycle t + 1 do not change.

However, the outputs of register RB are updated and gl or g2 evaluating to 1 indicate

that the subset of inputs feeding RB are enough to compute f, hence the function f

will evaluate to the correct logical value.

A power reduction is achieved because only a subset of the inputs to block A change

implying reduced switching activity. Though, the area of the circuit has increased due

to additional logic corresponding to gl, g2 and the NOR gate. The delay of the circuit

between R 1/R2 and R3 is unchanged. However, gi and 92 add to the delay of paths

that originally ended at R,1 but now pass through gl or g2 and the NOR gate before

ending at the load enable signal of the register R2. Therefore, we would like to apply

this transformation on non-critical logic blocks or choose the input signals to the

precomputation such that they are not in the critical path.
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xl

n

f

Figure 7-2 Subset input disabling precomputation architecture.

The choice of gl and g2 is critical. We wish to include as many input conditions

as we can in gi and g2. In other words, we wish to maximize the probability of gi

or g2 evaluating to a 1. In the extreme case, this probability can be made unity if

gl = f and g2 = f. However, this would imply a duplication of the logic block A and

no reduction in power with a twofold increase in area! To obtain reduction in power

with marginal increases in circuit area and delay, gl and g2 have to be significantly

less complex than f. One way of ensuring this is to make gl and g2 depend on much

fewer inputs than f.

As mentioned before, the sequential precomputation architectures are not restricted

to pipeline circuits. We present in Figure 7-3 an example of precomputation for a finite

state machine using this subset input disabling precomputation architecture.

7.1.2 An Example

We give an example that illustrates the fact that substantial power gains can be achieved

with marginal increases in circuit area and delay. The circuit we are considering is a

n-bit comparator that compares two n-bit numbers C and D and computes the function
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Figure 7-3
machine.

Subset input disabling precomputation architecture applied on a finite state

Ctn-1>

D~n-l>

czn-2>
D<n-2>

c<O>

Figure 7-4 A comparator example.

Ii·_____I________IUil(________lC_____
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C > D. The optimized circuit with precomputation logic is shown in Figure 7-4. The

precomputation logic is as follows.

gi = C(n- 1) - D(n - 1)

g2 = C(n-1) - D(n-1)

Clearly, when gi = 1, C is greater than D, and when g2 = 1, C is less than D. We

have to implement

gl+g2 = C(n - 1) E D (n - 1)

where E stands for the exclusive-or operator.

Assuming a uniform probability for the inputs, i.e., C(i) and D(i) have a 0.5

static probability of being a 0 or a 1, the probability that the XOR gate evaluates

to a 1 is 0.5, regardless of n. For large n, we can neglect the power dissipation

in the XOR gate, and therefore, we can achieve a power reduction of close to 50%.

The reduction will depend upon the relative power dissipated by the vector pairs with

C(n - 1) e D(n - 1) = 1 and the vector pairs with C(n - 1) e D(n - 1) = 0.

If we add the inputs C(n - 2) and D(n - 2) to g, and g2 it is possible to achieve a

power reduction close to 75%.

7.1.3 Synthesis of Precomputation Logic

In this section, we describe exact and approximate methods to determine the function-

ality of the precomputation logic for the subset input disabling architecture, and then

describe methods to efficiently implement the logic.

Precomputation and Observability Don't-Cares

Assume that we have a logic function f(X), with X = {xl, ... , x,}, corresponding

to block A of Figure 7-1. Given that the logic function implemented by block A is

f, then the Observability Don't-care Set (cf. Section 5.2.2) for input xi is given by:

ODC, = fx +fa- + f ,, ( 77
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where f,j and f~y are the cofactors of f with respect to zi, and similarly for f.

If we determine that a given input combination is in ODCi then we can disable

the loading of z; into the register since that means that we do not need the value

of xi in order to know what the value of f is. If we wish to disable the loading of

registers xm, xm+1, *.., z,, we will have to implement the function

g = [ ODC, (7.4)

and use F as the load enable signal for the registers corresponding to ,m, xm+1, , z,.

Precomputation Logic

Let us now consider the subset input disabling architecture of Figure 7-2. Assume that

the inputs 1, ..---, zm, with m < n have been selected as the variables that gl and

g2 depend on. We have to find gi and g2 such that they satisfy the constraints of

Equations 7.1 and 7.2, respectively, and such that prob(gl + g2) is maximum.

We can determine gl and g2 using universal quantification on f. The universal

quantification of a function f with respect to a variable zi is defined as:

Uxf = fX~, fy- (7.5)

This gives all the combinations over the inputs zx, .- , 1zil, z i+ , '., x,, that result

in f = 1 independently of the values of xi.

Given a subset of inputs S = {zx, ... , zm}, let D = X - S. We can define:

UDf = Uxm+ ... Uxnf (7.6)

Theorem 7.1 gi = UDf satisfies Equation 7.1. Further, no function h(xi, *.x, xm)

exists such that prob(h) > prob(gl) and such that h = 1 =\ f = 1.

Proof - If for some input combination al, .-., am we have gi(al, ... , am)= 1,

then by construction for that combination of xz, ., xm and all possible combinations

of variables in xm+1, .--, xs, f(al, ..., am, xm+1, --, z) = 1.
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We cannot add any minterm over Xl, -..- , xm to gl because for any minterm that is

added, there will be some combination of xm+1, - -- , x, for which f(xz, --- , x,) will

evaluate to a 0. Therefore, we cannot find any function h that satisfies Equation 7.1

and such that prob(h) > prob(gi). M

Similarly, given a subset of inputs S, we can obtain a maximal g2 by:

g2 = UDf = m+x...U.n. f (7.7)

We can compute the functionality of the precomputation logic as gl + g2.

Selecting a Subset of Inputs: Exact Method

Given a function f we wish to select the "best" subset of inputs S of cardinality k.

Given S, we have D = X-S and we compute gl = UDf, g2 = UDf. In the sequel, we

assume that the best set of inputs corresponds to the inputs which result in prob(gl +g2)

being maximum for a given k. We know that prob(gl + g2) = prob(gl) + prob(g2) since

gl and g2 cannot both be 1 for the same input vector. The above cost function ignores

the power dissipated in the precomputation logic, but since the number of inputs to

the precomputation logic is significantly smaller than the total number of inputs this

is a good approximation.

We describe a branching algorithm that determines the optimal set of inputs maxi-

mizing the probability of the g, and g2 functions. This algorithm is shown in pseudo-

code in Figure 7-5.

The procedure SELECTINPUTS receives as arguments the function f and the

desired number of inputs k to the precomputation logic. SELECTINPUTS calls the

recursive procedure SELECT RECUR with five arguments. The first two arguments

correspond to the gl and g2 functions, which are initially f and f. A variable is

selected within the recursive procedure and the two functions are universally quantified

with respect to the selected variable. The third argument D corresponds to the set of

variables that gl and g2 do not depend on. The fourth argument Q corresponds to the

set of "active" variables, which may still be selected or discarded. Finally, the argument
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SELECTINPUTS( f, k ):

/* f = function to precompute */
/* k = # of inputs to precompute with */
BEST.PROB = 0;
SELECTED_SET = € ;
SELECTRECUR( f, 7, 0, X, IXI- k );
return( SELECTED-SET ) ;

SELECTRECUR( fa, fb, D, , Q, ):

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.
26.

Figure
logic.

select next xi E Q ;
SELECTJRECUR(
SELECTRECUR(

Uf, fa ,
fa, fb,

Ui fb,
D,Q

DU xi, Q - xi, 1 ) ;
- xi, 1) ;

7-5 Procedure to determine the optimal subset of inputs to the precomputation

if( IDI + IQ < )
return ;

pr = prob(f, = 1) + prob(fb = 1) ;
if( pr < BESTJINPROB )

return ;
else if( IDI == I ) {

BESTJN..PROB = pr ;
SELECTEDSET = X- D ;
return ;

_I__·___I_____IUI^_______CICII~---~···
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1 corresponds to the number of variables that have to be universally quantified in order

to obtain gt and g2 with k or fewer inputs.

If the condition of line 13 (IDI + I QI < 1) is true then we have dropped too many

variables in the earlier recursions and we will not be able to quantify with respect to

enough input variables. The functions gi and g2 will depend on too many variables

(> k).

We calculate the probability of gl + g2 (line 15). If this probability is less than the

maximum probability we have encountered thus far, we can immediately return since

the following invariant

prob(U,,f) = prob(f,, f~-) < prob(f) Vxi, f (7.8)

is true because f contains U,,f. Therefore as we universally quantify variables from

a given fa and fb function pair, the pr quantity monotonically decreases.

We store the selected set corresponding to the maximum probability found.

Selecting a Subset of Inputs: Approximate Method

The worst-case running time of the exact method is exponential in the number of input

variables and although we have a nice pruning condition, there are many examples for

which we cannot apply this method. Thus we have also implemented an approximate

algorithm that looks at each primary input individually and chooses the k most

promising inputs.

For each input we calculate:

pi = prob(Uxf) + prob(Ux,f) (7.9)

pi is the probability that we know the value of f without knowing the value of xi. If

pi is high then most of the time we do not need xi to compute f. We select the k

inputs corresponding to smaller values of pi.
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Implementing the Logic

The Boolean operations of OR and universal quantification required in the input selec-

tion procedure can be carried out efficiently using reduced, ordered Binary Decision

Diagrams (ROBDDs) [Bry86]. We obtain a ROBDD for the gl + g2 function. A

ROBDD can be converted into a multiplexor-based network (see [ADK93]) or into a

sum-of-products cover. The network or cover can then be optimized using standard

combinational logic optimization methods that reduce area [BRSVW87] or those that

target low power dissipation [SDGK92].

7.1.4 Multiple-Output Functions

In general, we have a multiple-output function fl, "", fm that corresponds to the

logic block A in Figure 7-1. All the procedures described thus far can be generalized

to the multiple-output case.

The functions gli and g2i are obtained using the equations below.

gli = UDfi (7.10)

g2i = UDfi (7.11)

where D = X - S is given as before. The function g whose complement drives the

load enable signal is obtained as:

g = IJ (gli + g2i) (7.12)
i=1

The function g corresponds to the set of input conditions where the variables in S

control the values of all the fA's regardless of the values of variables in D = X - S.

Selecting a Subset of Outputs: Exact Method

The probability that g, as defined in Equation 7.12, is 1 may be very low since

the number input combinations that allow precomputation of all outputs may be very

small. We describe an algorithm, which given a multiple-output function, selects a

~-"·-·-'·'~·--l---·U-----"·l~-~-'"-"c*ll -- l·--r--·----··.·
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subset of outputs and a subset of inputs so as to maximize a given cost function that

is dependent on the probability of the precomputation logic and the number of selected

outputs. This algorithm is described in the pseudo-code of Figure 7-6.

The inputs to procedure SELECTOUTPUTS are the multiple-output function F,

and a number k corresponding to the number of inputs to the precomputation logic.

The procedure SELECTORECUR receives as inputs two sets G and H, which

correspond to the current set of outputs that have been selected and the set of

outputs which can be added to the selected set, respectively. Initially, G = 0 and

H = F. The cost of a particular selection of outputs, namely G, is given by

prG x gates(F - H)/totalgates, where prG corresponds to the signal probability of

the precomputation logic, gates(F - H) corresponds to the number of gates in the logic

corresponding to the outputs in G and not shared by any output in H, and totalgates

corresponds to the total number of gates in the network (across all outputs of F).

There are two pruning conditions that are checked for in SELECTORECUR. The

first corresponds to assuming that all the outputs in H can be added to G without

decreasing the probability of the precomputation logic. This is a valid condition because

the quantity proldG in each recursive call can only decrease with the addition of outputs

to G. The second condition is that to be able to precompute G we may need variables

already discarded. Therefore prG will always be 0 for lower recursion levels.

Logic Duplication

Since we are only precomputing a subset of outputs, we may incorrectly evaluate the

outputs that we are not precomputing as we disable certain inputs during particular

clock cycles. If an output that is not being precomputed depends on an input that is

being disabled, then the output will be incorrect.

The support of f, denoted as support(f), is the set of all variables xi that occur

in f as xi or Y7. Once a set of outputs G C F and a set of precomputation logic

inputs S C X have been selected, we need to duplicate the registers corresponding

to (support(G) - S) n support(F - G). The inputs that are being disabled are in
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1. SELECTOUTPUTS( F = {fi, "-, fm }, k ):
2. {
3. /* F = multiple-output function to precompute */
4. /* k = # of inputs to precompute with */
5. BESTOUT_COST = 0 ;
6. SELOPSET = 4 ;
7. SELECTORECUR( 4, F, 1, k ) ;
8. return( SELOPSET );
9. }
10.
11. SELECT-ORECUR( G, H, proldG, k ):
12. {
13. If = gates(G U H)/total-gates x proldG ;
14. if( If <BESTLOUT-COST)
15. return ;
16. if( G 7 )
17. if( SELECTINPUTS( G, k ) == q )
18. return ;
19. prG = BESTINPROB ;
20. cost = prG x gates(F - H)/totalgates ;
21. if( cost > BESTOUTLCOST) {
22. BESTOUTCOST = cost ;
23. SELOPSET = G ;
24. }
25. select next f E H ;
26. SELECTORECUR( G U f2, H - fi, prG, k ) ;
27. SELECTORECUR( G, H - fi, prG, k ) ;
28. }

Procedure to determine the optimal set of outputs.
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Figure 7-7 Logic duplication in a multiple-output function.

support(G) - S. Logic in the F - G outputs that depends on the set of duplicated

inputs has to be duplicated as well. It is precisely for this reason that we maximize

prG x gates(F - H) rather than prGx gates(G) in the output-selection algorithm. This

way we are maximizing the number of gates (logic corresponding to the outputs in

G) that will not switch when precomputation is possible but not taking into account

gates that are shared by the outputs in H, thus reducing the amount of duplication as

much as possible.

An example of a multiple-output function where registers and logic need to be

duplicated is shown in Figure 7-7.

The original network of Figure 7-7(a) has outputs fi and f2 and inputs xl,.-- , x 4.

The function f, depends on inputs xl, X2 and X3 and the function f2 depends on

inputs X3 and X4. Hence, the two outputs are sharing the input X3 . Suppose that the

output-selection procedure determines that f, is the best output to precompute and that

inputs xz and x2 are the best inputs to the precomputation logic. Therefore, just as

in the case of a single-output function, the inputs xz and x2 feed the input register,

whereas X3 feeds the register with the load-enable signal. However, since f2 depends

on X3 and the register with the load-enable signal contains stale values in some clock

cycles. We need to duplicate the register for X3 and the logic from 23 to f2.
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Selecting a Subset of Outputs: Approximate Method

Again the exact algorithm for output selection is worst-case exponential in the number

of inputs plus number of outputs, thus we need an approximate method to handle larger

circuits. We designed an approximate algorithm which is presented in pseudo-code in

Figure 7-8.

In this algorithm we first select the set of outputs that will be precomputed and

then select the inputs that we are going to precompute those outputs with. When we

are selecting the outputs we still do not know which inputs are going to be selected,

thus we select those outputs that seem to be the most precomputable. Universally

quantifying just one of the inputs, we start with one output and compute the same

cost function as in the exact method, prG x gates(F - H)/total-gates. Then we add

outputs that make the cost function increase. We repeat this process for each input.

At the end we keep the set of outputs corresponding to the maximum cost.

Once we have a set of promising outputs to precompute we can use the approximate

algorithm described in Section 7.1.3 to select the inputs. This algorithm runs in

polynomial time in the number outputs times the number of inputs.

7.1.5 Examples of Precomputation Applied to some Datapath Modules

Some datapath modules are particularly well suited for the subset input disable precom-

putation architecture. An example of this are n-bit comparators, as the one depicted

in Figure 7-4. We give examples of two other such circuits.

A MAX function can be implement as shown in Figure 7-9. The input registers

are duplicated so that we can perform precomputation on the comparator just like in

Figure 7-4, where some of the inputs of R2 and R3 are disabled. Further, the enable

signal from the precomputation logic can be used to only enable either R, or R4.

Another datapath module for which significant power savings can be achieved with

this sequential precomputation architecture is a carry-select adder, shown in Figure 7-10.

In order to reduce the time per operation, the addition of the most significant bits
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1. SELECT_OUTPUTSAPPROX( F = {.f, "5, fm }, k ):
2. {
3. BEST_OUTCOST = 0 ;
4. foreach xi E X { /* Output selection */
5. foreach fj E F {
6. gj = Uxfj + Ufj ;
7. }
8. foreach fj E F {
9. G= {fj} ;
10. H=F- fj} ;
11. prG = prob(g) ;
12. currcost = prG x gates(F - H)/totalgates;
13. /* Add any outputs that make the cost increase */
14. g=gj ;
15. foreach fj E F {
16. H = H-f} ;
17. prG = prob(g - gj) ;
18. cost = prG x gates(F - H)/totalgates ;
19. if( cost > currcost ) {
20. currtcost = cost ;
21. g=g g1 ;
22. G=GU{ft} ;
23. } else
24. H=HU{ft} ;
25. }
26. }
27. if( currcost > BEST_OUTCOST ) {
28. BESTOUTLCOST = curr_cost ;
29. SELOPSET = G ;
30. }
31. }
32. foreach zi E X { /* Input selection */
33. g=1 ;
34. foreach fj E SEL_OPSET
35. g = 9 - (Uxifj + UXfj) ;
36. pi = prob(g) ;
37. }
38. select k xi's, corresponding to smaller pi's
39. }

Figure 7-8 Procedure to determine a good subset of outputs.
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K

L

Figure 7-9 Precomputation applied to a maximum circuit.

A<0:7> B<0:7> A<8S15> B<8:15> A<8:15> 3<8:15>

StMcO:7> BU<8:15>

Precomputation applied to a carry-select adder.
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x1

x
2

zn-
f

Figure 7-11 Multiple cycle precomputation.

A(8: 15) and B(8: 15) is done in parallel for the two cases where there is a carry

from the addition of A(0 : 7) and B(0: 7) or there is no carry.

We can make

gi = A(7) - B(7)

be the latch enable for registers R3 and R4 as in this case we know there is going to

be a carry. Similarly

g2 = A(7) - B(7)

can be used as the latch enable for Rs5 and R6. Using this scheme, we will be

eliminating all the switching activity in one of the adders of Figure 7-10 for half of

the input combinations, corresponding to approximately 16% power savings.

7.1.6 Multiple Cycle Precomputation

Basic Strategy

It is possible to precompute output values that are not required in the succeeding clock

cycle, but required 2 or more clock cycles later.
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C

D

Y

Figure 7-12 Adder-comparator circuit.

Consider the topology of Figure 7-11. If the outputs of register R3 are not used

except to compute f, then we can precompute the value of the function f using

a selected set of inputs, namely those corresponding to register R1. If f can be

precomputed to a 1 or a 0 for a set of input conditions, then for these inputs we can

turn off the load enable signal to R2. This will reduce switching activity not only in

logic block A, but also in logic block B, because there will be reduced switching

activity at the outputs of R3 in the clock cycle following the one where the outputs

of R2 do not change.

Examples

We present some examples illustrating multiple-cycle precomputation.

Consider the circuit of Figure 7-12. The function f computes (C + D) > (X + Y)

in two clock cycles. Attempting to precompute C + D or X + Y using the methods
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C

D

x

Y

F

Figure 7-13 Adder-maximum circuit.

of the previous sections does not result in any savings because there are too many

outputs to consider. However, 2-cycle precomputation can reduce switching activity by

close to 12.5% if the functions below are used.

gi = C(n- 1)D(n-1)X(n - 1)Y(n- 1)

g2 = C(n-1)-D(n- 1)X(n- 1)Y(n- 1)

where gi and g2 satisfy the constraints of Equations 7.1 and 7.2, respectively. Since

prob(gl + g2) = .1 = 0.125, we can disable the loading of registers C(n - 2 : 0),

D(n - 2 : 0), X(n - 2 : 0), and Y(n - 2 : 0) 12.5% of the time, which results in

switching activity reduction. This percentage can be increased to over 45% by using

C(n - 2) through Y(n - 2). We can additionally use single-cycle precomputation logic

(as illustrated in Figure 7-4) to further reduce switching activity in the > comparator

of Figure 7-12.

Next, consider the circuit of Figure 7-13. The multiple-output function f computes
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MAX(C + D, X + Y) in two clock cycles. We can use exactly the same gl and g2

functions as those immediately above, but g, is used to disable the loading of registers

X(n - 2: 0) and Y(n - 2: 0), and g2 is used to disable the loading of C(n - 2: 0)

and D(n - 2: 0). We exploit the fact that if we know that C + D > X + Y, there is

no need to compute X + Y, and vice versa.

7.1.7 Experimental Results for the Subset Input Disabling Architecture

We first present results on datapath circuits such as carry-select adders, comparators,

and interconnections of adders and comparators in Table 7.1. In all examples all the

outputs of each circuit were precomputed. For each circuit, we give the number

of literals (Lrrs), levels of logic (LEVS) and power (POWER) of the original circuit

under ORIGINAL, the number of inputs (I), literals (LrTS) and levels (LEVS) of the

precomputation logic under PRECOMPUTE LOGIC, the final power (POWER) and the

percent reduction in power (% RED) under OPTIMIZED. All power estimates are in

micro-Watt and are computed using the techniques described in Chapter 4. A zero

delay model, a clock frequency of 20MHz and a supply voltage of 5V were assumed.

The rugged script of SIS [SSM+92] was used to optimize the precomputation logic.

Power dissipation decreases for almost all cases. For circuit compl6, a 16-bit

parallel comparator, the power savings increase as more inputs are used in the pre-

computation logic, up to 60% when 8 inputs are used for precomputation. When 10

inputs are used, the savings go down to 58% as the size of the precomputation logic

offsets the larger amount of time that we are disabling the other input registers.

Multiple-cycle precomputation results are given for circuits add-compl6 and

add-maxl6, shown in Figures 7-12 and 7-13 respectively. For circuit add-compl6,

for instance, the numbers 4/8 under the fifth column indicate that 4 inputs are used

to precompute the adders in the first cycle and 8 inputs are used to precompute the

comparator in the next cycle.

The number of levels of the precomputation logic is an indication of the performance

penalty in using precomputation. The logic that is driving the input flip-flops to the

I_·I··II~_I···__LIXII__~~-~C·UCW*I*II)IU - --·-Lll--
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CIRCUIT ORIGINAL PRECOMPUTE LOGIC OPTIMIZED
NAME LITS LEVS POWER I LITS LEVS POWER %~ RED

compl6 286 7 1281 2 4 2 965 25
4 8 2 683 47
6 12 2 550 57
8 16 2 518 60
10 20 2 538 58

maxl6 350 9 1744 8 16 2 1281 27
csal6 975 10 2945 2 4 2 2958 0

4 11 4 2775 6
6 18 4 2676 9
8 25 5 2644 10

addcompl6 3026 8 6941 4/0 8 2 6346 9
4/8 24 4 5711 18
8/0 51 4 4781 31
8/8 67 6 3933 43

add-maxl6 3090 9 7370 4/0 8 2 7174 3
4/8 24 4 6751 8
8/0 51 4 6624 10
8/8 67 6 6116 17

Table 7.1 Power reductions for datapath circuits.
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* Precomputation logic calculated using the exact algorithm.

Table 7.2 Power reductions for random logic circuits.

original circuit is increased in depth by the number of levels of the precomputation

logic. In most cases, the increase in the number of levels is small.

Results on random logic circuits are presented in Table 7.2. The random logic

circuits are taken from the MCNC combinational benchmark sets. In our experiments

we assumed that the inputs to the circuits are outputs of flip-flops, and applied sequential

precomputation. We give results for those examples where significant savings in power

was obtained.

Again, the subset input disabling precomputation architecture was used and the

input and output selection algorithms described in Sections 7.1.3 and 7.1.4 were used.

CIRCUIT ORIGINAL PRECOMPUTE LOGIC OPTIMIZED
NAME I O LITS LEVS POWER I O[ LITS LEVS POWER % RED

apex2 39 3 395 11 2387 4 3 4 1 1378 42
cht 47 36 167 3 1835 1 35 1 1 1537 16
cml38* 6 8 35 2 286 3 8 3 1 153 47
cml50* 21 1 61 4 744 1 1 1 1 574 23
cmb* 16 4 62 5 620 5 4 10 1 353 43
comp 32 3 185 6 1352 6 3 13 2 627 54
cordic* 23 2 194 13 1049 10 2 18 2 645 39
cps 24 109 1203 9 3726 7 101 26 3 2191 41
dalu 75 16 3067 24 11048 5 16 12 2 7344 34
duke2 22 29 424 7 1732 9 29 24 3 1328 23
e64 65 65 253 32 2039 5 65 5 1 513 75
i2 201 1 230 3 5606 17 1 42 5 1943 65
majority* 5 1 12 3 173 1 1 1 1 141 19
misex2 25 18 113 5 976 8 18 16 3 828 15
misex3 25 18 626 14 2350 2 14 2 1 1903 19
mux* 21 1 54 5 715 1 1 0 0 557 22
pcle 19 9 71 7 692 3 9 3 1 486 30
pcler8 27 17 95 8 917 3 17 3 1 571 38
sao2* 10 4 270 17 1191 2 4 2 1 422 65
seq 42 35 1724 11 6112 2 35 1 1 2134 65
spla 16 46 634 9 2267 4 46 6 1 1340 41
terml 34 10 625 9 3605 8 10 14 3 2133 41
too-large 38 3 491 11 2718 1 3 1 1 1756 35
unreg 36 16 144 2 1499 2 15 2 1 1234 18
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Due to the size of the circuits, on most examples the approximate algorithm was

used. Circuits for which we were able to run the exact algorithm are marked with

a *. The columns in this table have the same meaning as in Table 7.1, except for the

second and third columns which show the number of inputs (I) and outputs (o) of

each circuit, and the eighth column which shows the number of outputs that are being

precomputed (o). It is noteworthy that in some cases, as much as 75% reduction in

power dissipation is obtained.

The area penalty incurred is indicated by the number of literals in the precomputation

logic and is 3% on the average. The extra delay incurred is proportional to the number

of levels in the precomputation logic and is quite small in most cases.

7.2 Complete Input Disabling Precomputation

The precomputation architecture presented in the previous section suffers from the

limitation that if a logic function is dependent on the values of several inputs for a

large fraction of the applied input combinations, then no reduction in switching activity

can be obtained since we cannot build the precomputation logic from any small subset

of the primary inputs.

In this section we target a general precomputation architecture, termed Complete

Input Disabling, for sequential logic circuits and show that it is significantly more

powerful than the subset input disabling architecture previously described. The very

power of this architecture makes the synthesis of precomputation logic a challenging

problem. We present a method to automatically synthesize precomputation logic for

this architecture.

7.2.1 Complete Input Disabling Precomputation Architecture

In Figure 7-14 the second precomputation architecture for sequential circuits is shown.

We are again assuming that the original circuit is in the form of Figure 7-1. However,

the complete input disabling architecture is also applicable to cyclic sequential circuits.
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Figure 7-14 Complete input disabling precomputation architecture.

The functions gl and g2 satisfy the conditions of Equations 7.1 and 7.2 as before.

During clock cycle t if either gl or g2 evaluates to a 1, we set the load enable signal

of the register R1 to be 0. This means that in clock cycle t + 1 the inputs to the

combinational logic block A do not change implying zero switching activity. If gi

evaluates to a 1 in clock cycle t, the input to register R2 is a 1 in clock cycle t + 1,

and if g2 evaluates to a 1, then the input to register R2 is a 0. Note that gl and

g2 cannot both be 1 during the same clock cycle due to the conditions imposed by

Equations 7.1 and 7.2.

The important difference between this architecture and the subset input disabling

architecture is that the precomputation logic can be a function of all input variables,

allowing us to precompute any input combination. We have additional logic corre-

sponding to the two flip-flops marked FF and the AND-OR gate shown in the figure.

Also the delay between R1 and R2 has increased due to the addition of this gate.

Note that for all input combinations that are included in the precomputation logic

(corresponding to gi + 92) we are not going to use the output of f. Therefore we

can simplify the combinational logic block A by using these input combinations as an

observability don't-care set for f.
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r1

f

Figure 7-15 A modified comparator.

7.2.2 An Example

A simple example that illustrates the effectiveness of the subset input disabling archi-

tecture is a n-bit comparator. The precomputed comparator is shown in Figure 7-4.

Now let us consider a modified comparator, as shown in Figure 7-15. It works

just like a n-bit comparator except that if C is equal to the all O's bit-vector and

D is equal to the all l's bit-vector the result should still be 1 and vice-versa, if C

is equal to the all 1's bit-vector and D is equal to the all O's bit-vector the result

should still be 0. This circuit is not precomputable using the subset input disabling

architecture because knowing that C(n - 1) = 0 and D(n-1) = 1 or C(n-1) = 1

and D(n-1) = 0 is not enough information to infer the value of f. In fact, we need

to know the values of all the inputs in order to determine f. Thus, although the input

combination C equal to the all O's bit-vector and D equal to the all l's, and the input

combination C equal to the all 1's bit-vector and D equal to the all O's bit-vector

have a very low probability of occurrence, they invalidate the use of the subset input

disabling precomputation architecture.

Using the complete input disabling architecture, since we have access to all input

variables for the precomputation logic, we can simply remove these input combinations
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f

Figure 7-16 Modified comparator under the complete input disabling architecture.

from g2 and gl, respectively. This is illustrated in Figure 7-16. This way we will still

be precomputing all other input combinations in C(n- 1) E D(n- 1), meaning that

the fraction of the time that we will precompute the output value is still close to 50%.

7.2.3 Synthesis of Precomputation Logic

The key tradeoff in selecting the precomputation logic is that we want to include in it

as many input combinations as possible but at the same time keep this logic simple.

The subset input disabling precomputation architecture ensures that the precomputation

logic is significantly less complex than the combinational logic block A in the original

circuit by restricting the search space to identifying gl and g2 such that they depend

on a relatively small subset of the inputs to A.

By making the precomputation logic depend on all inputs, the complete input

disabling architecture allows for a greater flexibility but also makes the problem much
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more complex. The algorithm to determine the precomputation logic that we present

in this section extends the algorithm of Section 7.1.3 to exploit this greater flexibility.

We will be searching for the subset of inputs that, for a large fraction of the input

combinations, are necessary to determine what the value of f is. We follow a strategy

of keeping the precomputation logic simple by making the logic depend mostly on a

small subset of inputs. The difference is that now we are not going to restrict ourselves

to those input combinations for which this subset of inputs defines f, we will allow

for some input combinations that need inputs not in the selected set.

Selecting a Subset of Inputs: Exhaustive Method

Given a function f we are going to select the "best" subset of inputs S of cardinality

k such that we minimize the number of times we need to know the value of the other

inputs to evaluate f. For each subset of size k, we compute the cofactors of f with

respect to all combinations of inputs in the subset. If the probability of a cofactor of f

with respect to a cube c is close to 1 (or close to 0), it means that for the combination

of input variables in c the value of f will be 1 (or 0) most of the time.

Let us consider f with inputs X1, X2 ,-.. , x, and assume that we have selected

the subset zx, z2, ---, zk. If the probability of the cofactor of f with respect to

x 1 22 ... Xk being all l's is high (i.e., prob(f,,X2...*k) J 1), then over all combinations

of Xk+l,. - -., , there are only a few for which f is not 1. So we can include

zl•2. .. 'k * .z2**zk in gl. Similarly if the probability of the fx2""...*k is low (i.e.,

prob(fxIX2...Xk) 0), then over all combinations of Zk+1,.. , X,~ there are only a few

for which f is not 0, so we include XZ2'... k.fX, 2...~k in 92. Note that in the subset

input disabling architecture we would only do this if f.,I2""-k = 1 or fx" ... xk = 0.

Since there is no limit to the number of inputs that the precomputation logic is

a function of, we need to monitor its size in order to ensure it does not get very

large. In the sequel we describe a branching algorithm that selects the "best" subset

of inputs. The pseudo-code is shown in Figure 7-17.

The procedure SELECTLOGIC receives as arguments the function f and the
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1. SELECTLOGIC( f, k ):
2. {
3. BESTINCOST = 0 ;
4. SELECTED-SET = ;
5. SELECTRECUR( f, 0, X, k ) ;
6. return( SELECTEDSET) ;
7. }
8. SELECTRECUR( f, D, Q, k ):
9. {
10. if( IDI + IQ < k )
11. return ;
12. if( IDI == k) {
13. exact = approx = 0;
14. ge = ga = 0;
15. foreach combination c over all variables in D {
16. if(prob(fe) == 1 or prob(fc) == 0) {
17. exact = exact + 1;
18. ge = g9 + c;
19. ga = ga + c;
20. continue ;
21. }
22. if(prob(fc) > 1 - a) {
23. approx = approx + 1;
24. ga = g9 + c.fc;
25. }
26. if(prob(fc) < a) {
27. approx = approx + 1;
28. ga = g + C'fc;
29. }
30. }
31. cost = (exact + s xapprox)/21DI ;

32. if( cost > BESTJIN_COST) {
33. BESTJINCOST = cost ;
34. SELECTED-SET = D;
35. }
36. return ;
37. }
38. select next xi E Q ;
39. SELECTJRECUR( f, D U xi, Q - xi, k ) ;
40. SELECTRECUR( f, D, Q - xi, k ) ;
41. }

Figure 7-17 Inputs selection for the complete input disabling architecture.



PRECOMPUTATION

desired number of inputs k to select. SELECT_LOGIC calls the recursive procedure

SELECTRECUR with four arguments. The first is the function to precompute. The

second argument D corresponds to the set of input variables currently selected. The

third argument Q corresponds to the set of "active" variables, which may be selected

or discarded. Finally, the argument k corresponds to the number of variables we want

to select.

If IDI + I Q I < k it means that we have dropped too many variables in the earlier

levels of recursion and we will not be able to select a subset of k input variables.

When k inputs have been selected, we compute the cofactors of f with respect

to all combinations over the input variables currently in D. We want to keep those

cofactors that have a high probability of being 0 or 1. Our cost function is the fraction

of exact cofactors found (exact meaning that the selected inputs determine the value of

f) plus a factor s"(ge) times the fraction of approximate cofactors found (with thesesize(ga)

cofactors we still need variables not in D to be able to precompute f). The factor
size(g) tries to measure how much more complex the precomputation logic will be bysize(ga)

selecting these approximate factors.

We can tune the value of a thus controlling how many approximate cofactors we

select. The more we select, the more input combinations will be in the precomputation

logic therefore increasing the fraction of the time that we will be disabling the input

registers. On the other hand, the logic will be more complex since we will need more

input variables. Note that in the extreme case of a = 0, the input selection will be the

same as in subset input disabling architecture as all the selected input combinations

depend only on the inputs that are in subset D.

We store the selected set corresponding to the maximum value of the cost function.

Selecting a Subset of Inputs: Approximate Method

The previous method is very expensive as it is exponential in the number of primary

inputs. The approximate method we propose to select the "best" subset of inputs is
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the same as for the subset inputs disabling architecture. For every primary input xi,

we compute:

pi = prob(U,, f) + prob(U,-f) (7.13)

and select the k inputs corresponding to smaller values of pi.

The difference now is that given this subset of inputs D, we compute the cofactors

of f with respect to every combination c in D. If prob(f,) > 1 - a we include c - f,

in gl. If prob(f,) < a we include c - f in g2.

Implementing the Logic

The Boolean operations of OR and cofactoring required in the input selection procedure

can be carried out efficiently using ROBDDs. In the pseudo-code of Figure 7-17

we show how to obtain the gi + g2 function. We also need to compute gi and 92

independently. We do this in exactly the same way, by including in gl the cofactors

corresponding to probabilities close to 1 and in g2 the cofactors corresponding to

probabilities close to 0.

Again, given ROBDDs for gi and g2, these can be converted into a multiplexor-

based network or into a sum-of-products cover.

7.2.4 Simplifying the Original Combinational Logic Block

Whenever g, or g2 evaluate to a 1, we will not be using the result produced by the

original combinational logic block A, since the value of f will be set by either gl or

g2. Therefore all input combinations in the precomputation logic are new don't-care

conditions for this circuit and we can use this information to simplify the logic in

block A, thus leading to a reduction in area and consequently to a further reduction

in power dissipation.
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CIRCUrr ORIGINAL 1PRECOMPUTE LOGIC OPTIMIZED
NAME I O LITS DELAY POWER I O LITS DELAY DELAY POWER % RED

9sym 9 1 303 19.6 1828 7 1 53 13.8 20.4 1255 31.3
Z5xpl 7 10 163 34.8 1533 2 1 3 2.8 34.8 1325 13.6
alu2 10 6 501 42.2 2988 5 3 24 8.6 44.0 2648 11.4
apex2 39 3 330 15.6 1978 10 3 23 7.2 27.2 984 50.0
cml 3 8 6 8 34 5.8 232 3 8 4 5.4 7.4 136 41.4
cm152 11 1 30 6.4 427 9 1 26 7.8 9.2 301 29.5
cml 62 14 5 66 9.8 540 9 5 24 4.8 10.8 370 31.5
cmb 16 4 75 7.0 653 8 4 40 5.4 8.8 224 65.7
dalu 75 16 1271 46.0 7003 6 16 68 11.6 46.3 3720 46.9
mux 21 1 65 9.8 806 1 1 1 1.6 11.2 539 33.1
sao2 10 4 181 24.6 1001 2 4 5 2.4 23.6 406 59.3

Table 7.3 Power reductions in
disabling architecture.

sequential precomputation using the complete

7.2.5 Multiple-Output Functions

The extension of the previous algorithms for multiple-output functions is done in

exactly the same way as for the subset input disabling architecture. We use the exact

method of Figure 7-6 and the approximate method of Figure 7-8. When precomputing

a subset of outputs, the problem of logic duplication of Section 7.1.4 remains the same

for this architecture.

7.2.6 Experimental Results for the Complete Input Disabling Archi-

tecture

We present in Table 7.3 power saving results using sequential precomputation under

the complete input disabling architecture. Again we are using circuits taken from the

MCNC benchmark set and have assumed that the inputs to the circuits are outputs of

flip-flops.

In the first columns of Table 7.3, under ORIGINAL, we present for each circuit the

number of inputs (I), outputs (o), literals (Lrrs), the maximum delay in nanoseconds

(DELAY), and power (POWER) of the original circuit. The remaining columns present

input
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CIRCUIT ORIGINAL SUBSET INPUT DISABLE COMPLETE INPUT DISABLE
NAME POWER LITS DELAY POWER % RED LITS DELAY POWER % RED

9sym 1828 40 11.0 1610 11.9 53 13.8 1255 31.3
Z5xpl 1533 3 2.8 1390 9.3 3 2.8 1325 13.6
alu2 2988 8 4.0 2683 10.2 24 8.6 2648 11.4
apex2 1978 15 5.3 1196 39.5 23 7.2 984 50.0
cml3 8 232 3 2.6 146 37.0 4 5.4 136 41.4
cm152 427 5 2.6 395 7.5 26 7.8 301 29.5
cml 62 540 2 1.4 466 13.7 24 4.8 370 31.5
cmb 653 13 3.8 436 33.2 40 5.4 224 65.7
cordic 928 13 5.2 798 14.0 114 12.2 553 40.0
dalu 7003 16 5.6 4292 38.7 68 11.6 3720 46.9
mux 806 0 0 591 26.7 1 1.6 539 33.1
sao2 1001 2 1.4 446 55.4 5 2.0 406 59.3

Table 7.4 Comparison of power reductions between complete and subset input disabling
architectures.

results obtained with the complete input disabling architecture. Under PRECOMPUTE

LOGIC we give the number of inputs in the selected set (I), number of precomputed

outputs (o), literals (LITS) and delay (DELAY) of the precomputation logic. Under OP-

TIMIZED, we give the delay (DELAY) and power (POWER) of the optimized precomputed

network, and the percent reduction (% RED) in power. All power estimates are in

micro-Watt and are computed using the techniques described in Chapter 4. A zero

delay model, a clock frequency of 20MHz and a supply voltage of 5V was assumed.

The rugged script of SIS [SSM+92] was used to optimize the precomputation logic.

Note that the delay of the precomputation logic is added to the delay of the

previous stage in sequential precomputation. The delay numbers in the third to last

column correspond to the critical delay of the optimized circuit which includes the

output AND-OR gate (cf. Figure 7-14). However, the use of don't-care conditions to

optimize the circuit once the precomputation logic has been determined can reduce the

delay of the optimized circuit.

In Table 7.4 we compare the complete and subset input disabling precomputation

architectures. The best results obtained by both methods for each of the examples is

161



162 PRECOMPUTATION

X2

Xn-

f2
2f

Figure 7-18 Original combinational sub-circuit.

given. The precomputation logic in the complete input disabling method is typically

larger than in the subset input disabling method, however the first can achieve larger

power reductions. The reason for this is twofold. First the probability of the precom-

putation logic can be higher for the complete input disabling architecture. Secondly,

the original circuit is simplified due to the don't-care conditions in the complete input

disabling architecture.

7.3 Combinational Precomputation

The architectures described so far apply only to sequential circuits. We now describe

precomputation for combinational circuits.

7.3.1 Combinational Logic Precomputation

Given a combinational circuit, any sub-circuit within the original circuit can be selected

to be precomputed. Assume that we select a sub-circuit with n inputs and m outputs

as shown in Figure 7-18. In an effort to reduce switching activity, the algorithm will

"turn off" a subset of the n inputs using the circuit shown in Figure 7-19. The figure

shows p inputs being "turned off", where 1 < p < n.

The term "turn off" means different things according to the type of circuit style

that is being used. If the circuit is built using static logic gates, then "turn off" means

prevent changes at the inputs from propagating through block L to the sub-circuit

(block A) thus reducing the switching activity of the sub-circuit. In this case block L

A
Combinational
Sub-circuit
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fm
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Figure 7-19 Sub-circuit with input disabling circuit.

may be implemented using one of the transparent latches shown in Figure 3-6. If the

circuit is built using dynamic logic, then "turn off" means prevent the outputs of block

L from evaluating high no matter the value of the inputs. This can be implemented

simply by using 2-input AND gates where one of the inputs is the enable signal.

Blocks gi and g2 determine when it is appropriate to turn off the selected inputs.

The selected inputs may be "turned off" if the static value of all the outputs, fi
through fin, are independent of the selected inputs. To fulfill this requirement, outputs

gi and g2 are required to satisfy Equations 7.1 and 7.2. If either gl or g2 is high, the

inputs may be "turned off". If they are both low, then the selected inputs are needed

to determine the outputs, and the circuit is allowed to work normally.

There are two interesting cases of combinational precomputation that have differing

merits and demerits. We discuss these cases in the next two sections.
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Figure 7-20 Complete input disabling for combinational circuits.

7.3.2 Precomputation at the Inputs

The sub-circuit considered in Figure 7-18 can be precomputed as shown in Figure 7-19.

The algorithms presented in Section 7.1 for the subset input disabling architecture are

directly applicable in this case. A subset of inputs x l,... , can be selected that

achieves maximal power savings.

In order to ensure power savings the x1, .. , x, inputs should be delayed such that

new values arrive at the transparent latches after the new value of the enable signal

arrives. Else, these new values may propagate through to block A causing unnecessary

transitions.

The complete input disabling architecture can also be used for combinational

circuits. This is illustrated in Figure 7-20. The algorithms described in Section 7.2 can

be applied directly to synthesize the precomputation logic.

7.3.3 Precomputation for Arbitrary Sub-Circuits in a Circuit

In the general case we wish to synthesize precomputation logic for arbitrary sub-circuits

as illustrated in Figure 7-21.
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In this case algorithms are needed to accomplish several tasks. First, an algorithm

must divide the circuit into sub-circuits. Then for each sub-circuit, algorithms must:

a) select the subset of inputs to "turn off," and b) given these inputs, produce the

logic for g in Figure 7-21, where g = gl + g2. For each of these steps, the goal is to

maximize the savings function

net savings = C (savings(A) - cost(L) - cost(g)) (7.14)
all subcircuits

We must divide the original circuit into sub-circuits so that Equation 7.14 is

maximized. The original circuit can be divided into a set of maximum-sized, single-

output sub-circuits. A maximum-sized, single-output sub-circuit is a single-output sub-

circuit such that no set of nodes from the original circuit can be added to this sub-circuit

without creating a multiple-output sub-circuit. An equivalent way of saying this is, the

circuit can be divided into a minimum number of single-output sub-circuits. Such a

set exists and is unique for any legal circuit. A linear-time algorithm for determining

this set is given in Figure 7-22.

Next, note that there is no need to analyze any sub-circuit that is composed of only

a part of one of these maximum-sized, single-output sub-circuits. If a part of a single-

output sub-circuit including the output node is in some sub-circuit to be analyzed, then

the rest of the nodes of the single-output sub-circuit can be added to the sub-circuit at

no cost since the outputs remain the same. Adding these nodes can only result in more

savings. Further, if a part of a single-output sub-circuit not including the output node

is in some sub-circuit to be analyzed, then the rest of the nodes of the single-output

sub-circuit can be added to the sub-circuit because the precomputability of the outputs

can only become less restrictive. Therefore, even in the worst case, the disable logic

can be left the same so that there is no additional cost yet additional savings are

achieved because of the additional nodes.

Based upon this theory, an algorithm to synthesize precomputation logic would 1)

create the set of maximum-sized, single-output sub-circuits, 2) try different combina-

tions of these sub-circuits, and 3) determine the combinations that yield the best net
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GETSINGLEOUTPUTSUBCIRCUITS( circuit ):

arrange nodes of circuit in depth-first order outputs to inputs;
foreach node in depth order ( node ) {

if ( node is a primary output ) {
subcircuit = createnew-subcircuit();
mark node as part of subcircuit;

else {
check every fanout of node;
if ( all fanouts are part of the same subcircuit )

subcircuit = subcircuit of the fanouts;
else

subcircuit = create-newsubcircuit();
mark node as part of subcircuit;

Figure 7-22 Procedure to find the minimum set of single-output subcircuits.

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
14.
15.
16.
17.
18.
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savings. Given the maximum-sized single-output sub-circuits, we use the algorithms of

Sections 7.1 or 7.2 to determine a subset of the sub-circuits and a selection of inputs

to each sub-circuit that results in relatively simple precomputation logic and maximal

power savings.

Note that in this strategy the waveforms that appear at the inputs to a latch can

be arbitrary. The arrival time at the input should be later than the arrival time of the

enable signal so that unnecessary transitions are not propagated through the latch. In

the example shown in Figure 7-21, the worst-case delay of the g block plus the arrival

time of inputs X4 or s5 should be less than the best-case delay of logic block A plus

the arrival time of the inputs x1, X2, or X3. The arrival time of an input is defined

as the time at which the input settles to its steady state value [DGK94, p. 229]. If

the delay constraint is not met, then it may be necessary to delay the x1, z2, and

X3 inputs with respect to the Z4 and X5 inputs in order to get the switching activity

reduction in logic block B.

7.3.4 Experimental Results for the Combinational Precomputation Ar-

chitecture

In Table 7.5 we present results on combinational precomputation. The symbolic simula-

tion method of Chapter 3 was used to obtain the power estimates of the combinational

circuits with transparent latches. Again, a zero delay model, a clock frequency of

20MHz and a supply voltage of 5V was assumed.

The same circuits as for the complete input disabling architecture were selected

to provide a comparison between the combinational and sequential architectures. The

number of inputs (I), outputs (0), literal count (LrrS) and delay (DELAY) of the

precomputation logic are given under PRECOMPUTE LOGIC. The critical delay of the

final precomputed network which includes additional delay introduced due to the

transparent latches, the precomputation logic, and any delaying of inputs is given in
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CIRCUrrI ORIGINAL PRECOMPUTE LOGIC OPTIMIZED
NAME DELAY POWER I[ [O LITS DELAY DELAY POWER % RED

9sym 19.6 1625 7 1 53 11.0 32.4 1960 -21.1
Z5xpl 34.8 1375 2 7 3 2.8 36.2 1339 2.6
alu2 42.2 2763 8 6 30 6.8 50.2 2792 -1.0
apex2 15.6 1094 4 3 5 2.6 28.2 948 13.3
cml38 5.8 97 3 8 4 2.6 8.8 68 29.9
cml 52 6.4 179 5 1 4 2.6 11.4 183 -2.2
cm162 9.8 225 1 4 0 0.0 13.6 177 21.3
cmb 7.0 293 5 5 14 2.8 13.6 194 33.8
dalu 46.0 5312 5 16 18 5.4 61.6 4050 23.8
mux 9.8 334 1 1 0 0.0 15.0 168 49.7
sao2 24.6 776 2 4 2 1.4 29.2 545 29.8

Table 7.5 Power reductions using combinational precomputation.

the third to last column. As can be observed from Table 7.5, substantial reductions in

power can be obtained with small increases in delay.

7.4 Multiplexor-Based Precomputation

In this section, we describe an additional precomputation architecture. This Multiplexor-

Based precomputation architecture is applicable to all logic circuits and does not require,

for instance, that the inputs should be in the observability don't-care set in order to

be disabled, which was the case for all the previous architectures.

All logic functions can be written in terms of its Shannon expansion. For a function

f with inputs X = {zx1,- , z,}, we can write:

f = -x fe, + -1 fi- (7.15)

where f 1, and fy~j are the cofactors of f with respect to xz and -j.

Figure 7-23 shows an architecture based on Equation 7.15. We implement the

functions f,, and fFj.. Depending on the value of zl, only one of the cofactors is

computed while the other is disabled by setting the load-enable signal of its input

~-IUY~N~-~·LUUI~-~UI·~··1-·11~···1~11·~-
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x<2::

f

Figure 7-23 Precomputation using the Shannon expansion.

register. The input Xl drives the select line of a multiplexor which chooses the correct

cofactor.

The main advantage of this architecture is that it applies to all logic functions.

The input x, in the example was chosen for the purpose of illustration. In fact, any

input x1,... , x,- could have been selected. Unlike the architectures described earlier,

we do not require that the inputs being disabled should be don't-cares for the input

conditions which we are precomputing. In other words, the inputs being disabled do

not have to be in the observability don't-care set. A disadvantage of this architecture

is that we need to duplicate the registers for the inputs not being used to turn off part

of the logic. On the other hand, no precomputation logic functions have been added

to the circuit.

This precomputation architecture was the subject of one of the problem sets in the

graduate course Computer-Aided Design of Integrated Circuits at MIT (course 6.373)

in the Spring term of 1995. Students were asked to develop an algorithm to select the

best primary input to use for the architecture of Figure 7-23. For half of the eight

two-level benchmark circuits used, power savings of more than 40% were achieved.
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7.5 Conclusions and Ongoing Work

We have presented new synthesis algorithms that can be used to optimize a given

combinational or sequential logic circuit for low power dissipation by adding "precom-

putation logic" which reduces unnecessary transitions in large parts of the given circuit.

The output response of a sequential circuit is precomputed one clock cycle before the

output is required, and this knowledge is exploited to reduce power dissipation in the

succeeding clock cycle. As opposed to power-down techniques applied at the system

level, transition reduction is achieved on a per clock cycle basis.

Several different architectures that utilize precomputation logic were presented.

Precomputation increases circuit area and can adversely impact circuit performance. In

order to keep area and delay increases small, it is best to synthesize precomputation

logic which depends on a small set of inputs.

Precomputation works best when there are a small number of complex functions

corresponding to the logic block A of Figures 7-2 and 7-14. If the logic block has a large

number of outputs, then it may be worthwhile to selectively apply precomputation-based

power optimization to a small number of complex outputs. This selective partitioning

will entail a duplication of combinational logic and registers, and the savings in power

is offset by this duplication.

Other precomputation architectures are being explored, including the architectures

of Section 7.4, and those that rely on a history of previous input vectors. More work

is required in the automation of a logic design methodology that exploits multiplexor-

based, combinational and multiple-cycle precomputation.

In the next chapter we describe techniques to explore data-dependent power-down

at the register-transfer and behavioral levels.

i______·l_·ll·IIIUIA__UI_-·
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Chapter 8

Scheduling Techniques to Enable Power

Management

The methods of Chapter 7 are limited by the predefined logical structure of the circuit.

The technique we propose in this chapter works at a higher abstraction level where

these constraints do not yet exist. We describe an algorithm at the behavioral level that

schedules operations so as to minimize the amount of unused computation [MDAM96].

Behavioral synthesis comprises of the sequence of steps by means of which an

algorithmic specification is translated into hardware. These steps involve breaking

down the algorithm into primitive operations, and associating each operation with

the time interval in which it will be executed (called operation scheduling) and the

hardware functional block that will execute it (called hardware allocation). Clock

period constraints, throughput constraints and hardware resource constraints make this

a non-trivial optimization problem.

Decisions taken during behavioral synthesis have a far reaching impact on the

power dissipation of the resulting hardware. For example, throughput-improvement by

exploiting concurrency via transformations like pipelining and loop unrolling enables

the hardware to be operated at lower clock frequencies, and thereby at lower volt-

ages [CPRB92]. The lower supply voltage leads to a reduction in power dissipation.
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Hardware allocation also has an effect on the switching activity and thereby on the

power dissipation. This effect has been reported in [RJ94, DK95, MC95, CP95].

The technique we propose is centered around the observation that scheduling has

a significant impact on the potential for power savings via power management, i.e.,

"turning off" blocks that are not being used by preventing transitions at the inputs

from propagating through the block. Based on this observation, we present a scheduling

algorithm that is power-management-aware, it generates a schedule that maximizes the

potential for power management in the resulting hardware. The proposed algorithm

operates under user specified combination of throughput, cycle-time and hardware

resource constraints. Starting from a Silage [Hil85] description, our implementation of

the algorithm generates VHDL [Per94] code for the controller as well as the datapath

corresponding to the power-management-aware schedule. Validation of power reduction

is done via the Synopsys power estimation tool [Syna].

8.1 Scheduling and the Ability for Power Management

In a typical design, the flow of data is determined at run time based on conditions

derived from input values. As an example, say we need to compute la - bj. One way

to implement this is to do the comparison a > b and if the result of this operation is

true we compute a - b otherwise we compute b - a. The Control Data Flow Graph

(CDFG) for this simple example is shown in Figure 8-1. Assume that one control step

is required for each of the three operations (-, > and MUX).

The only precedence constraint for this example is that the multiplexor operation

can only be scheduled after all other three operations. Existing scheduling algorithms

use this flexibility to minimize the number of execution units needed and/or the number

of control steps.

If we are allowed two control steps to compute la - bj, then necessarily the

operations a > b, a - b and b - a have to be executed in the first control step (we
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ababba

Ia-bn

Figure 8-1 Control Data Flow Graph for Ia - b1.

ababba

Schedule for la - bi using two control steps.
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Step 1

Step 2

Step 3

Figure 8-3 Schedule for ja - bj using three control steps.

need two subtractors) and the multiplexor in the second control step as indicated in

Figure 8-2.

If instead we are allowed three control steps, we can get by with one subtractor

and schedule operations a - b and b - a in different control steps, one in the first

control step and the other in the second. Operation a > b can be scheduled in any of

these two control steps and the multiplexor will be in the third control step, as shown

in Figure 8-3.

In either case, both a - b and b - a are computed although only the result of one

of them is eventually used. This is obviously wasteful in terms of power consumption.

We propose a scheduling algorithm that attempts to assign operations involved in

determining the data flow (in this case a > b) as early as possible in the initial control

steps, thus indicating which computational units are needed to obtain the final result.

Only those units that eventually get used are activated. The algorithm chooses a schedule

only if the required throughput and hardware constraints are met. In other words, the

algorithm explores any available slack to obtain a power manageable architecture.

For our example, and assuming we have available three control steps, our scheduling

algorithm will assign a > b to the first control step and a - b and b - a to the second.

Depending on the result of a > b, only the inputs to one of a - b and b - a will be

i I i
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Figure 8-4 A power managed schedule for ja - bj using three control steps.

loaded, thus no switching activity will occur in the subtractor whose result is not going

to be used. This situation is shown in Figure 8-4, where the dashed arrows indicate

that the execution of the '-' operations depends on the result of the comparator. Here

we assumed we have two subtractors available. If that is not the case, we need to

assign one subtract to the first control step and another to the second. The subtraction

in the first control step will always be computed, but we can still disable the one in

the second control step when it is not needed.

If only two control steps are allowed, there is no flexibility. The solution is unique

(Figure 8-2) and our scheduling algorithm will produce the same result as the traditional

method; no power management is possible.

8.2 Mutually Exclusive Operations

Two operations are said to be mutually exclusive if the result of only one of them will

be used, whatever the input. The mutual exclusiveness of two identical operations can

be exploited to schedule them in the same control step and to make them share the

same resource. With this in mind, a few algorithms have been proposed in the past to

identify mutual exclusiveness efficiently. For a review, see [JCG94].
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As an example consider

if (i == 0)
f = a + b;

else
f = c + d;

Obviously the two addition operations are mutually exclusive, therefore they can be

scheduled to the same control step using a single adder. The source operands for the

addition are determined from the result of the comparator.

Scheduling algorithms that can determine these kind of situations can generally

achieve solutions which require less hardware. Further, no wasteful computation is

done, so no power management is needed.

Our application of mutual exclusiveness for power management is more general

in that we also exploit mutual exclusiveness of two operations that are not identical

to each other. Even so, we can leverage off the previous work on algorithms for

identification of mutually exclusive operations.

For example in

if (i == 0) {
f = a + b;
g=a*b;

} else {
f = c + d;
g = 0;

the mutually exclusive detection mechanism will allow us to use only one adder, but

it would not help for the multiplication. If we had:

if (i == 0)
f = a * b;

else
f = c + d;

although the operations are mutually exclusive, they would both be scheduled if we

do not use the scheduling algorithm for power management.
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1. Generate CDFG ;
2. For each multiplexor mux {
3. Annotate nodes in fanin of the 0, 1 and control inputs of mux ;
4. Compute new ASAP of each node in the fanin of the 0 and 1 inputs ;
5. Compute new ALAP of each node in the fanin of the control input ;
6. If for any node ASAP > ALAP
7. then power management not possible for mux ;
8. else assign new ASAP and ALAP values to nodes ;
9. }
10. Create control edges between last node in the control fanin and top nodes

in 0 and 1 fanin of muxes for which power management is possible ;
11. Execute HYPER scheduling ;
12. Generate final Datapath and Controller circuits ;

Figure 8-5 Pseudo-code for the power management scheduling algorithm.

8.3 Scheduling Algorithm

Given a behavioral description of the system, our objective is to schedule the operations

such that operations whose result goes through some conditional branch (such as an if

or case statement) are only activated if the condition for their use is met. We want to

maximize the number of operations whose control signals (the signal that selects the

usage of their result) are computed before they are scheduled. The pseudo-code for an

algorithm that does such an optimization is shown in Figure 8-5. This algorithm was

implemented within the HYPER framework [RCHP91]. HYPER routines were used

for the parsing of the high-level description language (Silage [Hil85]), final scheduling

and VHDL output generation.

In step 1, the behavioral description of the system is converted into a Control

Data Flow Graph (CDFG), where each node corresponds to an operation. This process

creates all precedence conditions among operations. Also the "As Soon As Possible"

(ASAP) and "As Late As Possible" (ALAP) values for each node are computed. These
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values indicate the earliest and latest control step a given node can be scheduled in.

In other words, they represent the slack of a node for the specified throughput.

After this parsing, the conditionals in the system will correspond to multiplexor

nodes. Our goal is to schedule nodes in the transitive fanin of the control input of

each multiplexor before nodes in the transitive fanin of inputs 0 and 1, and do so for

as many nodes as possible.

The algorithm looks at each multiplexor individually and starts with those multi-

plexors closer to the outputs (or farther from the inputs). The reason for this is that if

we are able to do power management on a multiplexor closer to the outputs then we

will be able to shut down a larger number of operations in the circuit.

For each multiplexor, the algorithm identifies which nodes are in the transitive fanin

of each input (step 3). If a node is in the fanin cone of both the 0 and 1 inputs of

the multiplexor then no power management is attempted since the operation is needed

no matter what the result of the condition is. The same applies for nodes that fanout

to other nodes besides the current multiplexor.

In step 4, new ASAP values are computed for the nodes in the 0,1-input fanin

assuming they are scheduled after the last node in the control input fanin of this

multiplexor. Similarly, in step 5 new values ALAP values are computed for the nodes

in the control input fanin assuming they are scheduled before the first node on either

the 0 or 1 input fanin.

If at any point any node is assigned an ASAP value greater than the value for

ALAP then no scheduling is possible for this node, meaning that with the specified

throughput value no power management is possible for the current multiplexor. In that

case, the ASAP and ALAP values for the nodes are reverted (step 7).

Otherwise, the multiplexor is selected to be power managed and the current ASAP

and ALAP values become the new values for the nodes. In any case, the algorithm

now returns to step 3 with the next multiplexor.

After all multiplexors in the circuit have been processed and those which can be

power managed selected, in step 10 new precedence edges are created between the
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last node in the control input fanin and the top nodes in the 0,1-input fanin of each

of these multiplexors. With this new edges, we allow HYPER's original scheduling

algorithm to determine a complete schedule (step 11), targeting minimum hardware

resources for the desired throughput.

HYPER does scheduling and allocation simultaneously [PR89]. A tentative allocation

using a lower bound on the number of hardware modules is first obtained. Scheduling is

then performed starting with the most critical operations, i.e., operations that correspond

to resources that have high demand and short supply. If the scheduling process is

unsuccessful, the number of hardware modules for the most critical operations is

increased, a new allocation is obtained and scheduling is again attempted.

The final step is to map the scheduled CDFG into execution units (datapath) and

specify the finite state machine (controller) that generates the signals that control the

loading of registers and the flow of data through multiplexors. For the datapath we use

HYPER's algorithm directly. However for the controller we developed a new routine.

The controller is somewhat more complex since the loading of the input registers

to some of the execution units will depend on signals generated by some previous

computation. This process will be described in the example presented in the next

section.

8.4 Example: Dealer

To illustrate the algorithm presented in the previous section, we follow a complete

example step by step. Consider the circuit dealer described in the hardware descrip-

tion language Silage in Figure 8-6. Once the code is parsed, the CDFG generated by

HYPER is shown in Figure 8-7.

For this example, assume that we are allowed 6 control steps to process one input

sample. With this throughput requirement the ASAP and ALAP values for each node

in the CDFG are given in Table 8.1 in the two columns under the header INmAL.
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func main(PresentSuit, NoSuit, Incr, Limit, DeckSize: int<8>)
Card, Avalue: int<8> =

begin
Card@@l = 0;
Avalue@@1 = 0;
Card = if (PresentSuit == NoSuit) ->

if (Limit < Card@l) ->
Card@l1 - Limit

Card@1 + Incr
fi

if (Card@1l + Incr >= DeckSize) ->

fi;
Avalue

end;

1

Card@l1 + Incr

= 1 + Avalue@l;

Figure 8-6 Silage description of the dealer circuit.

Figure 8-7 Control Data Flow Graph for the dealer circuit.
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NODE INITIAL AFTER MUX 3 AFTER MUX 2
ASAP ALAP ASAP ALAP ASAP ALAP

+2 1 3 1 3 3 3
>= 2 4 2 4 2 4

MUX1  3 5 3 5 3 5
- 1 4 2 4 3 4
< 1 4 2 4 2 3

MUX 2  2 5 3 5 4 5
== 1 5 1 3 1 3

MUX 3  4 6 4 6 4 6
+1 1 6 1 6 1 6

Table 8.1 Time frames for the nodes in the dealer circuit as power management
is added.

8.4.1 Multiplexor Selection

There are three multiplexors that can be used for power management. The algorithm

will start with MUX3 since it is the one closer to the outputs (there is a potentially

larger number of operations to shut down). In step 3 of the algorithm, the labeling of

operations is:

Input Operations
control ==

0 MUX 1, >=
1 MUX2 , <, -

Note that since operation +2 is in both the 0- and 1-input paths, it cannot be managed

by the input condition to this multiplexor. However, as we will see later, the conjunction

of the input condition of this multiplexor and of multiplexor MUX 2 will allow some

power management for +2.

New values for ASAP are now computed for operations MUX 1, >=, MUX 2, <

and - (step 4 of the algorithm). Since they depend on == which has ASAP = 1 their

ASAP values have to be at least 2. Similarly a new ALAP is assigned to ==, one unit

.~'-"""""1111.--~"-"^III-*L^CI~UI~IWII
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less than the smallest ALAP of the operations it controls (step 5 of the algorithm).

The new values for these nodes are in Table 8.1 under AFTER MUX3.

All the nodes still verify ALAP > ASAP, i.e., the condition in step 5 is false,

therefore these ASAP and ALAP values become definitive values for these nodes and

MUX 3 is selected for power management.

We now work on the next multiplexor, which can either be MUX 1 or MUX 2 since

they are at the same level. For this example it happens that no power management

can be achieved for MUX1 . This is due to the fact that the only operation in the

0,1-input path is +2 which turns out to be also in the control-input path.

Thus we process MUX2 and the operations are annotated as:

Input Operations
control <

0 +2
1 -

As before, - and +2 have their ASAP values updated to 3 (ASAP of < plus 1) and

< has its ALAP updated to 3. The new (and final) ASAP and ALAP values for each

node in the CDFG are presented in the last two columns of Table 8.1.

There is still a valid schedule for each node (ALAP > ASAP) so MUX 2 is also

selected for power management. For +2 we have ASAP = ALAP, therefore this node

has to be scheduled necessarily in control step 3. This also indicates that if we had a

higher throughput (less number of available control steps) than we would have ASAP

> ALAP for +2 meaning that MUX 2 could not be power managed.

Notice that although the operation +2 could not be power managed by MUX3 by

itself, the conjunction of the conditions for MUX2 and MUX 3 may still disable +2

appropriately. If == evaluates to 0, then the result of +2 is always needed and it is

computed since MUX 3 does not manage it. On the other hand, if both == and <

evaluate to 1 then +2 is shut down.

As a final note, observe that the ASAP and ALAP values for +1 remain constant

since this operation is never involved in any power management attempt.
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Figure 8-8 CDFG of dealer with control edges for power management.

At this point the algorithm has selected the multiplexors to do power management

with. Control edges are created starting at the node driving the control input of each

selected multiplexor to the top nodes of the fanin of the 0,1-inputs of the same

multiplexor (step 10 of the algorithm). For our example, edges are created between

node == and nodes < and - (this creates precedence conditions that ensure that also

>=, MUX1 and MUX 2 are scheduled after ==) and between node < and nodes -

and +2. The final CDFG for this example is shown in Figure 8-8.

The final scheduling is done by HYPER's scheduling routine.
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:.+2

MUX 2

-- ,MtX 1

MtJX3

4IUX 1

(a) (b)

Figure 8-9 Controller (a)without and (b)with power management.

8.4.2 Controller Generation

The circuit implementation consists of two parts, the datapath and the controller. The

primary function of the controller is to generate the necessary signals to activate the

operations in the required order. For our purposes, we use the datapath as constructed

by HYPER, but we need to modify the controller such that operations are shut down

whenever that is possible.

Returning to the dealer example, after scheduling without power management,

the controller generated by HYPER is shown in Figure 8-9(a). Notice that all operations

are executed leading to wasteful power dissipation.
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We developed a new controller generator. For the conditions associated with each

multiplexor that was selected for power management we create conditional branches.

Depending on the result of the condition, only signals that control operations that are

going to be used are actually activated.

After the scheduling of the CDFG generated by the power management algorithm

(Figure 8-8), the controller that is generated by our routine is shown in Figure 8-9(b).

As can be observed, the branches are controlled by the operations that make the

selection of the inputs of the multiplexors. Only operations that feed into the selected

input of the multiplexor are computed. Note that MUX 1 was not selected for power

management, therefore there is no branching from the state where the condition for

this multiplexor is computed (>=).

8.5 Techniques to Improve Power Management

Tight constraints on throughput and hardware resources may leave very little slack

for the ordering of operations thus restricting the effectiveness of our scheduling

algorithm. We propose some techniques that can improve power management under

tight constraints.

8.5.1 Multiplexor Reordering

The algorithm presented in Section 8.3 selects multiplexors for power management

on an individual basis (cycle 2-9 in pseudo-code of Figure 8-5). The selection of a

particular multiplexor may impede the selection of one or more other multiplexors,

therefore the order in which the multiplexors are tested can play an important role on

the number of total modules that can be shut down.

In our algorithm we test the multiplexors closer to the outputs first. It may happen

that we have less savings from power managing the multiplexor that is closest to

the outputs than the savings for another multiplexor and this multiplexor may not be

selected because of the first being selected.

___11*_··_1_1_1______I___ ____
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Cl X Y Z C2

Figure 8-10 Example of multiplexor reordering: before.

For instance, consider the circuit of Figure 8-10. Assume that the throughput

constraint is such that MUX1 can be power managed but not MUX 2. If the complexity

of block X is similar to the complexity of blocks Y and Z together, then we will be

saving 50% of the power, which is the maximum we can expect.

However, if X is very simple and Y and Z are each very complex, and further

C1 makes MUX1 select the input from MUX 2 most of the time, then both Y and

Z are computed most of the time therefore the savings we get from shutting down X

are very small.

Now assume that we reorder the multiplexors as shown in Figure 8-11, keeping

the functionality the same. With this arrangement the scheduling algorithm will select

MUX 2 for power management instead of MUX 1. Using the same conditions as in last

paragraph, only one of Y or Z, which are the complex blocks, is computed (though X

is always computed, it is very simple). Therefore with this reordering of multiplexors

we have been able to increase the amount of logic that is shut down.

We are currently working on a pre-processing algorithm which performs reordering

of multiplexors trying to maximize the number of modules that can be shut down.
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C1 Y X Z C2

Figure 8-11 Example of multiplexor reordering: after.

8.5.2 Pipelining

A common technique to increase the throughput of a design is to introduce pipeline

stages. A two-stage pipeline means that two input samples are processed at any given

time. The effective number of control steps needed to process one input sample is

reduced by half.

For our purposes we can look at this through a different angle: adding control steps

for pipelining increases the number of control steps and at the same time improves the

throughput or leaves it unchanged. The addition of new control steps is very useful

for power management since it creates the slack needed to schedule the control signals

first.

The disadvantage of using pipelining is that the latency of the circuit increases.

Also it may lead to some increase in the number of registers and execution units,

increasing the area of the circuit.
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CIRCUIT CRITICAL NUMBER OF OPERATIONS
NAME PATH MUX COMP + I- x
dealer 4 3 3 2 1 0
gcd 5 6 2 0 1 0
vender 5 6 3 3 3 2
cordic 48 47 16 43 46 0

Table 8.2 Circuit statistics.

CIRcUrrT CONTROL P.MAN. AREA NUMBER OF OPERATIONS POWER
NAME STEPS MUXS INCR. MUX ICOMP + - x RED.(%)

dealer 4 1 1.20 2.00 2.00 2.00 0.50 0.00 27.00
5 1 1.00 2.00 2.00 2.00 0.50 0.00 27.00
6 2 1.00 2.00 2.00 1.75 0.25 0.00 33.33

gcd 5 1 1.00 5.50 2.00 0.00 0.50 0.00 11.76
6 1 1.00 5.50 2.00 0.00 0.50 0.00 11.76
7 2 1.05 5.50 2.00 0.00 0.25 0.00 16.18

vender 5 4 1.04 4.50 2.50 1.50 1.00 1.00 41.67
6 4 1.00 4.50 2.50 1.50 1.00 1.00 41.67

cordic 48 38 1.00 47.00 16.00 24.00 27.00 0.00 30.16
52 46 1.17 47.00 16.00 22.00 23.00 0.00 34.92

Table 8.3 Average number of operations executed using power management.

8.6 Experimental Results

In this section we present results that compare the power dissipation of circuits with

and without power management. In Table 8.2 we give some statistics about the circuits

we present results for. The first of these circuits (dealer) corresponds to the example

used in Section 8.4. Under CRmCAL PATH we give the minimum number of control

steps needed to perform the operation. The remaining columns indicate the number of

each different operations that make up each circuit.

All circuits were initially described in Silage [Hil85]. They were read into HY-

PER [RCHP91] and a scheduling with power management was obtained using the

algorithm described in Section 8.3. Table 8.3 shows the results obtained.
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CIRCUIT CTL AREA POWER
NAME STP ORIG NEW INCR. ORIG NEW %

dealer 6 895 946 1.06 46.5 35.1 24.5
gcd 7 806 892 1.11 31.9 28.7 10.0
vender 6 2338 2283 0.98 106.2 71.4 32.8

Table 8.4 Power estimation using Synopsys' DesignPoweiTM .

The second column of Table 8.3 (CONTROL STEPS) indicates the number of control

steps we allowed each computation to take and under P.MAN.Muxs is the number of

multiplexors that were selected for power management given this number of control

steps. Column AREA INCR. gives the area increase due to the extra execution units

needed to perform the desired power management. As it can be observed, in most

cases there is no area penalty or the increase is very small. The exceptions are the

dealer circuit with 4 control steps which requires an extra multiplexor and an extra

comparator, gcd with 7 control steps which needs an extra multiplexor and vender

with 5 control steps needing an extra subtractor.

In the next columns we show the average number of times that each of the operations

is executed in one computation. Here we have assumed that each multiplexor has equal

probability of selecting any of its inputs.

The last column of Table 8.3 gives the estimated power savings achieved by using

power management. To obtain this estimate, we computed the power consumption

of each of the operations using timing simulation with random input vectors, thus

obtaining a relative weight of the operations in terms of power (MUX: 1; COMP: 4;

+: 3; -: 3; and x: 20). An 8-bit datapath was assumed for all examples. Recall that

without power management all the operations given in Table 8.3 are always executed.

These power savings are relative only to power dissipated in the datapath. The real

power savings will be slightly less since the controller for the power managed circuit is

slightly more complex. As it can be observed, it is possible to achieve power savings

above 40% in the datapath using this scheduling for power management.
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To further validate our power savings estimations we used Synopsys power analysis

tool, DesignPowe"M [Syna]. The RT level circuits, described in VHDL, were syn-

thesized to gate-level using Synopsys Design CompilerTM [Synb] and power estimates

obtained with DesignPoweiTM . The results are presented in Table 8.4. For the allowed

number of control steps, we compare the area increase and the power savings of the

design without (ORIG) and with (NEW) power management. These values agree with

our predictions. Recall that the power reduction in Table 8.3 refers only to the datapath.

Since the controller is more complex for the power managed circuit, the savings in

Table 8.4 are slightly lower than in Table 8.3 as expected.

8.7 Conclusions and Ongoing Work

We have presented a scheduling algorithm which, for a given throughput, exploits

the slack available to operations to obtain a schedule that enables the use of power

management techniques. When possible, controlling signals are scheduled first thus

indicating which operations to activate and which operations to shut down. This more

constrained scheduling process may lead to a larger number of execution units required.

The algorithm obtains a solution that maximizes the ability to do power management

while still meeting user specified throughput and hardware resource constraints.

Tight throughput constraints may limit the amount of power management possible.

We are currently working on techniques such as those described in Section 8.5 to

increase the number of operations that can be power managed. We are also working

on developing a global cost function to obtain a globally optimum multiplexor selection.

The results presented in Section 8.6 show that as much as 40% power reduction is

possible for control-dominated circuits. We are currently running experiments on larger

designs.
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Chapter 9

Conclusion

Rapid increases in chip complexity, increasingly faster clocks, and the proliferation

of portable devices have combined to make power dissipation an important design

parameter. The power dissipated by a digital system determines its heat dissipation

as well as battery life. For some designs, power has become the most constringent

constraint. Power reduction methods have been proposed at all levels - from system

to device.

In this thesis we focused on techniques at the logic level. At this abstraction level

it is possible to use a simple but accurate model for power dissipation. The goal is to

give the designer the ability to try different implementations of a design and compare

them in terms of power consumption. For this purpose efficient power estimation tools

are required.

9.1 Power Estimation

The first part of this thesis was concerned with the problem of estimating the power

dissipation of a logic circuit. In Chapter 2 the generally accepted model for power

dissipation for static CMOS circuits described at the logic level was presented. It was
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shown that power dissipation is determined from the switching activity of the signals

in the circuit, weighted by the capacitive load that each signal is driving.

Also in Chapter 2, we reviewed existing approaches for the switching activity

estimation problem. These can be divided in two main categories: simulation-based

and probabilistic techniques. The issues relative to each approach have been presented.

Simulation-based techniques have the advantage that existing timing simulators can be

used. The problem is then deciding how many input vectors are needed to obtain a

desired accuracy level. For some circuits this may imply a long simulation run.

Probabilistic techniques can potentially be much more efficient, especially in the

context of incremental modifications during synthesis. These approaches aim at propa-

gating given primary input probabilities, static and/or transition, through the nodes in

the circuit. Thus in one pass the switching activity at each node can be computed.

However issues that are naturally handled in timing simulation arise for these prob-

abilistic approaches, such as glitching and static and temporal correlation at primary

inputs and internal nodes. The way a probabilistic approach deals with these problems

determines its accuracy and run-time.

We have proposed in Chapter 3 a probabilistic method that can handle these issues

exactly. This approach is based on symbolic simulation. A Boolean condition for each

node in the circuit making a transition at each time point is computed. This approach is

very efficient for circuits of small to moderate size (< 5000 gates). For larger circuits,

the size of the symbolic network is too large for BDDs to be built.

In order to obtain accurate estimates for sequential circuits some other issues have

to be taken into account. There exists a high degree of correlation between consecutive

clock cycles. The values stored in the memory elements in the circuit at some clock

cycle were generated in some previous clock cycle. Further, the probabilities at the

output of these memory elements are determined by the functionality of the circuit

and have to be calculated if accurate switching activity values are to be computed.

Simulation-based techniques, though capable of taking the necessary correlation between
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clock cycles, have the problem of requiring a very large number of input vectors to be

simulated before we can assume that steady state at the state lines has been achieved.

In Chapter 4 we presented an elegant and efficient way of computing the proba-

bilities of state lines. This technique is applicable to circuits with an arbitrary number

of memory elements. It requires the solution of a non-linear system of equations that

can be solved using iterative methods. For the Picard-Peano method, we showed that,

although not very strong theoretical convergence proves can be made, in practice it

works well and is faster than Newton-Raphson. We proved that for Newton-Raphson

convergence conditions are met for most circuits. We presented results for circuits with

more than 1700 registers. Previous techniques computed state probabilities as opposed

to individual state lines and were restricted to less than 20 registers. We pay some

accuracy penalty by ignoring the correlation between the state lines, but the experi-

mental results show that the error introduced is less than 3% on average. Methods to

improve this accuracy at the expense of computation time have also been presented.

Another problem we have addressed, also in Chapter 4, is the power estimation of

a circuit given a particular input sequence. We described how a finite state machine can

be built to model the input sequence. The methods for power estimation of sequential

circuits can be applied to the cascade of this finite state machine and the original circuit.

Previous attempts to model the correlation of an input sequence involved computing

correlation coefficients, typically between every pair of input signals. Besides the

problem of having a large amount of information to specify to the power estimator,

the accuracy can be very low.

Future Work

The estimation of average switching activity and power dissipation in digital logic

circuits is recognized as an important problem and no completely satisfactory solution

has been developed. Hence a significant amount of research is being done on this

problem.

The exact method we presented in Chapter 3, though efficient for small circuits,
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cannot be applied for large circuits and this an important limitation. It is generally

accepted that approximation methods have to be used if circuits of significant size are

to be handled.

Approximation schemes proposed for power estimation thus far lack some desirable

properties. Most schemes are not based on an exact strategy, but based on heuristic

rules that model correlation between internal signals in the circuit. While their runtime

is typically polynomial, they are rarely parameterizable to improve accuracy at the

expense of runtime, and are not calibrated against an exact strategy.

We are currently working on approximate method based on polynomial simulation

that possesses these properties [MDG96]. This method is a generalization of the exact

signal probability evaluation method due to Parker and McCluskey [PM75] and handles

arbitrary transport delays. The method is parameterized by a single parameter p, which

determines the speed-accuracy tradeoff. When p = N, the number of inputs to the

circuit, the method will produce the exact switching activity under the transport delay

model taking into account all internal correlation. Pruning conditions based on graph

dominators allow this method to be used for fairly complex circuits.

9.2 Optimization Techniques for Low Power

Being a relatively new field and given its relevance for today's digital integrated circuits,

optimization techniques for low power have been the subject of intense research in the

last few years. The most representative work has been reviewed in Chapter 5.

At the logic level, power is directly related to the switched capacitance, i.e.,

switching activity of the signal weighted by the capacitance this signal is driving. We

believe that in this thesis we have made a significant contribution in terms of innovative

approaches for the reduction of overall switching activity in logic circuits.

We have proposed three different optimization methods. The first (Chapter 6) targets

reduced glitching in the circuit by the use of retiming. The basic observation is that

any glitching present at the input of a register is filtered by it. The registers are
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repositioned such that the reduction in switched capacitance is maximized. Up to

16% power reductions were obtained. The applicability of this technique is limited to

pipelined circuits. The reason is that the operation of retiming in a cyclic sequential

circuit changes the switching activity in the circuit globally thus it is very difficult to

predict what the consequences of a particular move are.

We have developed a more powerful optimization technique, termed precomputation,

in Chapter 7. As stated above, the retiming technique is restricted to reducing the power

dissipation due to glitching. Precomputation attempts the overall reduction of switching

activity. A simple circuit is added to the original sequential circuit that tries to predict

the circuit's outputs for the next clock cycle. When this is achieved, transitions at (all

or part of) the inputs to the original circuit are prevented from propagating to the

circuit by disabling the input registers. Significant power savings of up to 75% have

been obtained and reported in the results section of Chapter 7.

The third optimization technique we developed follows the precomputation strategy

of data-dependent "power-down". In precomputation the disabling of a module is

dependent upon the structure of the logic circuit. The technique of Chapter 8 works at

the behavioral abstraction level where this structure does not yet exist. This technique

attempts to schedule the operations in an order such that controlling signals that decide

the flow of data are computed first, thus indicating which operations are actually needed

to compute the final result. The inputs to modules whose result would be discarded

are disabled. Again we have presented results that show that more than 40% power

savings can be achieved by this power-management-aware scheduling technique with

little or no penalty in terms of hardware requirements. This technique works under

user-specified performance constraints.

Future Work

Research on optimization techniques for low power is under intense investigation; new

approaches at all levels of abstraction will surely be proposed in the next few years.

At the logic level, we are lacking some scheme that can predict efficiently how
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the overall switching activity of a circuit is affected when some incremental change

is done. This would be a very important method to guide re-synthesis tools for low

power. Some work at this level has been proposed in [LN95].

A tool like the one described in the previous paragraph could allow us to extend

the retiming algorithm of Chapter 6 to find a global optimum for a k-pipeline, with

k > 1 (instead of the iterative approach proposed in Chapter 6). We would also like to

handle cyclic sequential circuits such as finite state machines. For this purpose, some

approximation has to be made regarding how the inputs to the registers (because of

the feedback) change due to retiming.

In Chapter 7 we proposed a few precomputation architectures. We have presented

comprehensive results for the complete and subset input disabling sequential architec-

tures. As to the multiplexor-based sequential architecture, some issues have still to be

solved like on how many inputs to base the Shannon decomposition on and how to

decide on which inputs to use.

More importantly, we believe that the combinational precomputation has potential

that we have not completely explored. Better algorithms should be developed that

decide on the optimum set of subcircuits to precompute.

As mentioned before, techniques at higher level of abstraction can have a higher

impact on the power consumption of a circuit. We gave one step in this direction

with the method of Chapter 8. Still, this is a first cut approach. Improvements in the

scheduling for low power can surely improve on the results of Chapter 8.

Tight performance constraints can leave very little room for the reordering of

operations such that power management is possible. In these situations, precomputation

can serve as an alternative. We would need to modify the technique of Chapter 8 to

produce schedules such that the ability to precompute logic blocks in the circuit is

maximized.

We believe that the work we have developed in this thesis gives an important

contribution to understanding the impact that logic synthesis can have for low power
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design at the gate level. This insight is fundamental for the development of synthesis

tools for low power at higher abstraction levels.
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