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I. INTRODUCTION

In the harmonic analysis of a wave function

Wiener developed the coherency matrix. This method has

applications in the field of optics and the quantum

theory. He has applied this theory to a single beam

of polarized light. Poinoare has analyzed this prob-

lem by a different method evolving the Poincare sphere.

Tuckerman has made an analysis of this problem by a

third method. It is the purpose of this thesis to

correlate the work of these three men, and to develop

the theory for the case of two polarized beams of

light.

This problem affords a physical picture in the

field of optics. Since the method of coherency

matrices is applicable to the quantum theory,which

theory does not readily submit to a physical picture,

it is felt that this study is merited.



II. INVARIANTS UNDER A ROTATION OF AXES

The determination of the invariants of these

papers can be brought under the following theorem.

If the axes of A, i -, +C, = o
74, * i- a + =0

are rotated through an angle , then A, A, + B B, and

A, B, - A B are invariant under this rotation.

Proof:

Let ' = 1 '

+

If A + C

Then A . c - -  A .

AA A3 
ý32.

A A A, _ -<8_ A t 13. t?- rA.-" -

A4, ( A, K-.•%- "&-.,"7- • " "•"



f we take for our parametric equationsrA o-'- (tot

re can bring these equations into the form of the equa-

tions of the invariant theorem as follows:

A is an invariant under a rotation

and - 32L-

is invariant.



III. SOME GENERAL CONSIDERATIONS
OF POLARIZED LIGHT

Given two simple harmonic motions acting at right

angles to each other.

Let = - A

- • • (0+ ) where / = -Li)

Eliminating the time factor between these two

equations gives

A aA%.

or ?(- - Q__ - Z

AX A3 C~/ ~~- :-

which represents an ellipse except when • (3 --

when ,PL ý5 = o i. e., when 1 -3, -=, --- 1

and the equation then may be written

X - 5) the equation of

two straight lines.

If A = B, then the equation represents a circle, or two

straight lines making an angle of 450 with the axes.

Therefore, under certain conditions two simple harmonic

motions at right angles to each other may be represented

by an elliptic harmonic vibration. Similarly an elliptic

harmonic vibration may be represented by two simple

harmonic motions at right angles.



The ellipticity of an ellipse is given by the ratio of its

axes such as B.
A

If • equals the angle between the % axis and the major

axis of the ellipse

S A 2 . -e - 3 U

A plane which is parallel to the optic axis of a

crystal and perpendicular to the face through which the

light enters is defined as the principal plane of that

face. If a beam of light having vibrations equally in all

directions falls upon a doubly refracting crystal, this

crystal will resolve the light into two component beams,

the vibrations of which are in one,parallel, and in the

other, perpendicular, to the principal plane. Light

restricted to a single plane of vibration is said to be

polarized, or more specifically, plane polarized. In the

direction of the optic axis of the crystal both waves

travel with the same velocity, and double refraction fails,

If the two components pass through a crystal slip cut in

such a way that the optic axis is parallel to the surface,

the two components will travel with different velocities,

causing a difference in phase between them on emergence

from the slip. This difference in phase is a function

of the thickness of the crystal slip. When the difference

in phase is -- ) it is called a quarter wave plate.
z
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From the consideration of two simple harmonic motions

acting at right angles to each other, it is readily

seen that light may be elliptically polarized.

Two rays of light from the same source may be

caused to interfere, while from different sources this

phenomenon does not occur. In the first case, the

light is called coherent, and in the latter,incoherent.



IV. INVARIANTS IN THE CASE OF A SINGLE
BEAM OF POLARIZED LIGHT

1. Tuckerman

Tuckerman considers a plane wave of monochromatic

elliptically polarized light falling normally on a series

of plane parallel doubly refracting plates. The axes of

reference chosen in each plate are the planes of polariza-

tion of the ordinary and extraordinary vibrations.

Let - A , -_
5, 4 - -, ( z)

represent the beam of light referred to the first plate,

where A, and B, represent the amplitudes of the ordinary

and extraordinary vibrations, respectively, and (V-,, - P, )

the phase lag of the extraordinary over the ordinary.

If we submit T, and l, to a rotation through an L4_ ,

where w represents the angle between the reference axes

of the first and second plates, we obtain the displacements

referred to the axes of the second plate. The passage of

this light through a series of such plates rotates the

components of the beam through an angle, - - ' for n
plates.
Under a rotation, from the invariant theorem

A + B = constant (2)
A BI a ( - constant, that is, that theA, B. AAU4. -p.) constant, that is, that the
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sum of the energies of the two wave components as well as

the mutual energy between these two components are in-

variants under a rotation.

Following Tuckerman's notation, we will let

A + B A = q- - I<

A _ B = -A 3 , C .-p) 5 (3)

Therefore P and S are the invariants, but the value

of Q and K vary under a rotation.

2. Poincare"

We have shown that by the elimination of the time

factor from the parametric wave equations the resulting

equation is that of an ellipse. Poincare starts from this

point of view.

He defines

-t -L_- __._._

_I." A•(• 13



Poincare defines

c-,A- A * £U - t-

/LA.

. ---.-U.-
.5

where P, P P are functions of a b ,c ,d and

their conjugates and

Poincare's P + P = A + B is invariant
12..

and corresponds to Tuckerman's

Poincare's invariants are P + P and P = A B,.( -L.)

A- L Lr (je-.(eo

It can be clearly seen that

E.F ( _, -L -

. 0 C~s ((o-)

Thus when .- = o the light is elliptically polarized.

If - = tL i. e., when / the points

S:- _ / represent right or left circular vibrations.

LY -Z 0 1A.- C (- - Y) = C

17

T
This is the case of rectilinearly polarized light.

When

L Lr

/-
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If the ray traverses a crystal slip where the

principal sections are oriented as the coordinate axes;

T-4 9 are propagated with unequal velocities, their

phases differ.

-A when w is the phase

difference introduced by the crystal slip.
I

Poincare shows that since P P, P? P are not

independent functions we have

an equation of a circle as the locus of the point

ellipses.

If the axes of the ellipse make an angle - with the

coordinate axes

are turned through an . From the

foregoing considerations Poincare shows that

when 7=-, *"

If 9" is kept constant while 7 varies from- o to + o

the point u, v describes a circle.

2. +

' ,+ -6-* --• T-a /' . ' - -
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if = then

• + • ) ,• r

the equation for a circle

When &-= Y1

If =

If (i- 0

center of circle (0, o)

, then -4-4-- C,

~- A~ -

-4-4- = (c4~4. (-'~~ ~ t2:e~~. &~**

Similarly if 7 is held constant and 9 allowed to vary

2J

~-(A~ *i'-J2. 2.

.44..

C. 16

-~ (a-),()/'4

7(u-,) (1 7,-) r ..

2.

equation for a circle

If 7 = then center of circle is ( o,/ ) a point circle

when-• ,-= o r 7 or _
7

i. e. when = 0

- 0

T- (
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The two circles

intersect orthogonally.

The ellipticity is given by the value of C- and

the angle - by -A- The representation on a plane

is then stereographically projected on a unit sphere,

the origin 0, being the point of contact of the sphere

with the plane u, v. The ,"- axis is projected into a

great circle called the equator, and the 0 axis into a great

circle orthogonal to the first called the first meridian.

Thus the two effects of double refraction and power

of rotation when superposed may be represented by the rota-

tion of the Poincare sphere about some axis. Poincareý

gives physical interpretations of groups of rotations on

his sphere. Tuckerman has shown that the sphere defined

by Q + K + 8 = P is the Poincare sphere

or L

The point 8 = P Q = K =0 is chosen as the pole of

the sphere, the plane S = 0 the equatorial plane.

Where -

where and - represent the latitude and longitude,

respectively, of the point on the sphere.
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3. Coherency Matrices of One
Polarized Beam of Light

Wiener,in his work on Coherency Matrices and

Zuantum theory; in making a harmonic analysis of his

wave functions forms a function

-m-

where

the matrix A- (- -4) a rr A k

Ls defined as a coherency matrix.

Therefore, if we take for the - (t) functions

the parametric wave equations for polarized light the

,oherency matrix is

AA

A -6 Y 13 73

rhere A A + B B and A are invariant.

A A + BB as the energy of the two components

.quals Tuckerman's zP

'aking the real part of -- we then have

1ýA T -,C -,

A= A A B B -• -)

.f A=A B=B

;hat is, L equals the mutual energy.squared.
;hat is, 4• equals the mutual energy, squared.



V. THEORY OF TWO POLARIZED BEAMS OF
LIGHT BY TUCKERMAN'S METHOD

In this part we consider two monochromatic ellip-

tically polarized rays of light falling normally on a

series of plane parallel doubly refracting plates.

Let' A,

Considering the real parts only

7 A e•e (- <)

A = A, A-- ,. ,+ 4 ,_A..
Similarly

rl -- - - 4 • -- )

where ce A= ,

tL

* - -& - • - , ( -• J • B

A,, Q-, o A .,,4 m~~A +,<•• _-A,, A -x<L--.--A•< t,-
A ' ,-.,_ r s •_ /,'= _ = •



= A4,, C- a (V, -?,)

K 12- =K =
K .?..&

SAI z

A
AA

•3
O' 1-

15

Ki,

A, 13,

A i 13
AL13,

A L-BA, 8,

A% A-B,A ,'

A, .

A 7
-. , A ,.

21.

- , 73 /3-)(3/2

A , ,, -<) 7 ,, , ( , - ,) ,4, 2. 7,•--'
?-4x, • • c /-.- A • 4 r,.-•,(4-_ )

C~(~L~9~)

C-~2 ( fa

4~(A4

44.i~~.i

~

C~-O~
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Energy density of rays of light

Let V , = -fl

, )-, T1,,+,

Similarly VJ = A.**, +- - -•LA - -)- i SP L)

We therefore find that the energy density of the

rays of light is invariant under a rotation. The function

S"-r is defined as light energy function and is similar

in this theory toY function of Schroedinger Which is de-

fined in the quantum theory as electric density, and is

shown to be an invariant.

In the case of two rays of light, we

Let -y- r , -i , -.

+ ,, .

-+- A V - +K V
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At this point it is interesting to note that the

optical density is equal to the sum of the energies of the

two components increased by twice the mutual energies.

This relation is analogous to the relation of inductance

in coupled circuits where

Inductance= L1 + L2 + 2 M

When L1 and L2 represent the separate inductances

and M, the mutual inductance,is a function of L1 and L *

Since 1~~ is energy density, its relation is more
1,, 42,_

nearly analogous to the

energy relations in a directly

coupled electrical circuit.
I. . . . . . . . . . . . .

-- L -A L .Energy = Ln tj+- - L. .L , L

Let L, L ,

L L- L, ~

L- L 4- "JZ • -•

If the currents are transformed linearly the quadratic form

is invariant. Given an infinite system of net works, with

same instantaneous current, the total instantaneous energy

is the same.

Let L, = , L

7A . ..
• , • Za..
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, L

LlIS , o 11 x% a ýx

Thus the quadratic form is preserved,

new inductance

Li, ,, = C ,, , + , L,,..,, , - L ,. -

L,1 J. a..,, L ,.

We find in the case of two rays of light that instead of

four invariants we have six invariants.
At, 4- -1 , At , --3,%, S15

for A ' +B = = P + 2 P. + (A,..+ B )

which is invariant, and

8 = S +8 + 8 + 8

and consequently (A + B ,) and (8, + S, ) are invariaii?-- ILZ. ? - •/ nt.

In the case of two rays of light we have the energy

of each component of each beam and the mutual energies

between the different components as invariants. The mutual

energy between the components of a single beam, and the

sum of the mutual energies between non-corresponding com-

ponents of the two rays are invariant, i. e.,

S + S and A + B
I %.% I I #ial



VI. INTERFERENCE OF LIGHT RAYS

In the problem of two rays of light a new element

is introduced - the conditions for interference.

If -- , i.e., the rays are in phase,

then A = A + A.) In this case the rays

are in resonance.

Suppose that f = t - then the rays are

in interference

A = (A -A )

if A A A and2.omplete interference
If A =A A = o and complete interference

results.

If -

A = + A+

In this case these rays are in quadrature.

If the two rays have the same ellipticity

B, B,

Interference may occur in the case of two simple

harmonic motions that are in the same straight line. There-

fore it is the phase relation between f, and . and ,

and Y that must be investigated. For interference

A = (A - A ) B (B - B )
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VII. COHERENCY MATRICES FOR TWO SIMULTANEOUS
POLARIZED RAYS OF LIGHT

1. Coherent Light

In this case

q = ( =

I %

-e-

zT3( t- A,

14 t t) - 'T)

A,. ~
-! f A,, t

~T
TA r

-4t

- j;AA,~.J.

The general coherency matrix for

A, A,

A .J WA- ( ý..- ý .)

A T -3

.A 13•

this case is
A, 4,
4.•, < 7 3-

A

-t

+ B I + A A + B
2. 2.

is invariant as well

as the determinant of the matrix 4 = o .

J., -IL1 cZ

73he

~I2. ~i.

A AiAt

c 9·-= / ,-P_ . ,°= 1 (t)=
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Taking the real part of A- the matrix

then takes the following form

A K,, A,#. K,%

Kit B,, KZ B1
A,. K, A, K

K% B Ka B

S= - S 8 S 8

We have previously shown that

8 8 and S + 8 are invariant

S ',- and 8., are invariant

It has been shown that

A + B + A + B I + -A + LB is invariant.

In this case then the value of the determinant as well as

the sum of the terms in the main diagonal of the matrix,

and of the two minors that contain no terms of the main

diagonal, are invariant.

2. Incoherent Light

In this case, k 4 X in the f,< (?) . This

means that there is no persistent definite frequency rela-

tion between the corresponding components of the two

polarized rays of light, i. e., this is the case of two

incoherent beams of polarized light.

,w o.

4
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t. "I' 7

The following eight terms become equal to zero:

A3 A1,i. = 0 A, A = 0

A1i A,, = 0 A% A = 0

A3 AX ,, = 0 A,, A,= 0

A4A k4 = 0 A A= 0

The coherency matrix take

AIA, Al B, "- -f<L f
A, B eI' B ,

0 0

0 0

is the following form:

0 0

0 0
A A A B B
ABL B B

where A = 0.

Taking the real part, we h

A,, Ki

K B

0 0

0 0
where A = S,, S ,which

have previously been shown

a.ve

o o0
0 0

A K

K BI

is an invariant since S, and S

invariant.

22

W-V I
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Thus it is seen that the value of the determinant of the

matrix for two incoherent beams of polarized light equals

the product of the value of the determinants of the

matrices of each beam of polarized light considered

separately. The other invariants for this case are:

P1, = ' (A,, + B,, )
P = (A + B* )

Thus the determinant of the matrix and the sum of its

diagonal terms are invariants for this case.



84

VIII. SIXTEEN FUNDAMENTAL COHERENCY MATRICES

Sixteen matrices representing different types of

coherent and incoherent polarized or unpolarized light

are made the basis for the following study, the energy

of the components taken equal to unity. The matrices

I i represent incoherent light and those called Cj coherent

light. At this point it is interesting to note that if

one unit is subtracted from each term in the main diagonal,

the resulting matrices give the sixteen Dirac matrices.

The rulesof combination for these matrices are

Ii Ii

Ci Ci

I I.

Ci C3

Ii CJ

2 Ii

a ai

Ij I

C3 Ii

The resulting matrix

beams of light. It

ly that Ii Ii = 2 Ii

represents the combination of four

is therefore to be expected physical-
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Table 1. FUNDAMENTAL MATRICES

1 o10

1 i 0 0

0 0 1 1

0 0 1 1

Two rays plane polar-
ized at 45o

1 1 0 0

1 1 0 012

0 0 1 -1

0 0 -1 1I

One ray plane polar-
ized at 450, the
other at 1350

1 -i 0 0

i 1 0 0

0 0 1 -1

0 0 1 1I
Two rays circularly
polarized with same
sense of rotation

1 -i 0 0

14
i 1 0 0

0 0 1 i

0 0-i 1
Two rays circularly
polarized with oppo-
site sense of rota-
tion

2 0 0 0

0 2 0 0
5

05 0 2 0

0 0 0 2

Two rays unpolarized

2 0 0 0

0 0 0 0
16

0 0 2 0

0 0 0 0

Two rays polarized
at 0

2 0 0 0

0 2 0 0
I-'

0 0 0 0

One ray unpolarized

2 0 0 0

0 0 0 0

18 0 0 0 0

0 0 0 2

Two rays plane polarized
in opposite directions
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(Table 1. Cont. )

1 0 1 0! 0 0 1

01
0 1 0

1 0 1 0

0 1 0 1
Two rays unpolarized
in resonance

0 1 0o

02
0 1 0-1

1 0 1 0

0-1 0 1

Two rays unpolarized
one pair of compo-
nents in resonance,
others interfering

1 0 -i 0

0 10 -it
03

i 0 1 0!

0

0 1 10
C5
05 0 1 1 0

1 0 0 L
Two rays unpolarized
plane coupling at 450

1 0 0 -1

0 1 1 01
C6 0 1 1 0

1 0 0 1

Two rays unpolarized
plane coupling at
1350

0
7

i 0 1

Two rays unpolarized
both pairs of compo-
nents in same quadra-
ture

1 0 -i 0

0 1 0 i

1 0 1 0

0 0-i

1-i 0

i 1 0

0 0 1

Two rays unpolarized
circularly coupled

1 0 0-i

0 1 1 0

0 -i 1 0

0-i 0 1
Two rays unpolarized
both pairs of compo-
nents in quadrature,
the quadrature differ-
ing byTr

i 0 0 1
Two rays unpolarized
circularly coupled with
opposite senses



Table 3.

PHASE RELATIONS FOR THE SIXTEEN
FUNDAMENTAL MATRICES

TI.-P . .-,
, =

-I--
Ki -T . _<_

I,, .

Lug ~ ~-.---- - .------ _ _ _xI

i77'c f--c,-~'. •-7ZK ,
- .... ..... ..... ... ... . .. . .. . ... . ... . . • ....... . ...

•"3 K, ÷ r>z

C a f .... ........j. .. . . . ... .........? ....... .

(C

: , 6,

C7,7

26a
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IX. THE GROUPS OF TRANSFORMATION MATRICES

The next step is to determine the transforma-

tions which will transform the matrix representing one

kind of light into a different kind, that is, to deter-

mine t in the following relations

I = M I M

I = M 0C M

C = M C M

These transformation matrices divided into two main

types which will be called the (5 type and the ( type.

To the 6 type belong the,~ , and y matrices. To the

f type belong the and - . The q matrices are

more nearly like the 6 matrices but do not belong to

the group.

1. The /5 Class

In determining the matrices of this group it was

found that a choice from twenty-four possible types of

matrices must be made, that is, in satisfying the condi-

tions imposed by the transformations, twenty-four

possible types were involved. These twenty-four formed
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Table 3

TRANS FORMATION MATRICES

_T , i, r ,

I aa. - Z/

" ii a7 •  a.
.3 a a 6 3 3

t. i & a , .j ,,

I O

I y

r5 ;I, L

i( v I- V A- n v
I. V O Lv Li

r) ( 0 r)
* I 3 U ;-i 2.I
r" . " I r c

C6 c C3 cy,

3 3 a

'y, Y. y Y= .

.aj-/ Y~.y yv

Y1 YY
y y7 Yx

(s( ( It ( '
-/ a 6

•I 4. //

I% L% A. 16(' 2

e- 3 y
. ,3 - Y ._3 4•

3 z , .j 4y 3

AL v v' v . "1. be"

,, (3

3 0 (33 .

S- ' y 3• 1 '

'..- 4 ;-L -V -a.,-- i.. • v 'i ." .0 /"

, .C. • !" v • •

C L V 6 z ', .:-/ ]'o1

I.3 a , ,
Ls. V 1 v~£ V.. T
4. . 3  / , I

ic . ... ir AS f

:t ct Q.,4 I 9

C, c.C, Cr
6, ] a9

J

S I .3 IC2 . 2A

if a.

e. d ,

. a. a " "
-

dv e 3 , 7 .. .. I

/ 3 c/

A. .¾

. ,: z) /

y, Y, y ,

t, /.33. 2I *6

(3 , G
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a non Abelian closed group. This group was resolved into

a group of four, three and two. The four group is the

vierer gruppe. The types in this group are the four forms

of the Dirac matrices. The three group is irreducible

except by using imaginaries. The types in this group were

selected for the transformation matrices and are called

Sy and a. No other set of these matrices satisfying

the imposed conditions formed a closed group. Each type

of the twenty-four represents thirty-two elements. The /

group is a closed Abelian group. This group can be resolved

into three two group,and one four group.
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Table 4.
TYPES OF TRANSFORMATION MATRICES

Reducible to Three Groups: (1,2,3,4) (1, 13, 21) (1,5)
Dirac Matrices 1,2,3,4. Transformation Matrices 1,13,21

1 0 0 0

0 1 0 0

0 0 1 0!

0 0 0 1

1 0 0 0

0 1 0 0

0 0 0 1100100

0 0 1 0
5

1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

1 0 0 0

0 0 0 1

0 1 0 0

0 0 1 0
'3

1 0 0 0

1 0 0 10

0 0 1 0

0o 1 0 0001

1 0 0 01

0 0 1 0

0 0 0 1

0 1 0 0

0 1 0 0;
1 0 0 0i

i0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

0 0 1 0
00101
0 0 0 1

6

0 1 0 0o

i0 0 1 0

1 0 0 01

0 0 0 1

0 1 0 0'

0 0 0 1

1 0 0 01

0 0 1 0;

o 1 o 0:

0 0 0 1'

0 0 1 0

1 0 0 0
IS

0 1 0 0:

0 0 1 0'

00 0 1

1 0 0 0;

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0
3

0 0 1 0'

0 0 0 1

0 1 0 0'

1000:1 0 0 01

0 0 1 0

1 0 0 0
0 0 0 1;
0 1 0o0

!0 0 1 0!0 1 0 0

0 0 0 1

1 0 0 0'I -
0 0 1 0!

1 0 0 0

0 1 0 0ý

00 0 1i0 0 1 0

0 1 0 0

1 0 0 0

0 0 0 1:
100

0 0 0 1
10 o ! 0.

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

1 0 0 0

01000 1 0 0'

0 0 0 1

1 0 0 0
0 0 1 0.

0 1 0 0

0 0 0 1

0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 1
1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

0 1 0 0

1 0 0 0

0 0 1 0
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Table 5

GROUP TABLE OF TYPES OF TRANSFORMATION MATRICES

1 23 4 5 s 7 8 9110

~ 4 6 7 i 10

2 2 1 4 3 61 5 8 7;11 15

3 3 4 1 2 8 7 6 5114113

4 4 3 2 1 7 8 5 616112l

1s 16 17 18 19120 21 22 23 1i 24

•.J ,. 13 14 .5 11617 18 1912o 0 222_2312

9 13112:1 .10 14120;24 21117! 19123_2218l

16i 15110 9'12'11 23 19 181221 24 20 17 21

14 101 11 1 9122 21 2412 ! 18 I1? 20119i

5 5 6 7 8 1 2 3 4 21 221 191 20 17 18. 23124 13 14 1121 9 O o 16

6' 6 5 7 2 1 4 3119 23 211 17120_24 221.811216 9113111315 1 1 14

7 7' 8 5 1 4 3 2_ 1.1817 223,2 22201 1915 11 14 ;10i 16112 13 9'

8 81 7 6 51 3 4 1 '24120o181 2212319!17 21:10 91 1151 14'13 12 11

1 9 14 111 6 13 10 1 121 1 6 a 5 2 7 4 21 22'23;24i17'18 19 20

10 10 13 12 15 14 9{16 111 3119 171 21124 201822:81 4 1 51 3 7

11!1116 9 141215110 13 21 5 41 7! 61 1 8 3 19,23 22118i20 24 21 17

121125110 13 11116 1 9 14 201 24 221 1811923 i21 17 61 1 4 71 2 5 8 3

1313! 10 152 91 I411 16117'181231242122 1201 5 2' 3 8 1 6 7 4
:

414 14 9 16 1 10 13112

15i 1512 13 10 16 1i 14

16116 11 14 9115 12113

17 22 23 20 21 18119
18 21 24 19:22 17 20

19 24 21 18 20 23 ,22,

20o23 22 17119 24 21

21 18 13 24 17 22 z 23

2i 22 17 20 23 18 21 24

:17
18

19

20

22. i

15i 3 7 1 5 8a 4 6' 22420 17;21 23 19 18 22

91 2 21 20 19 18 17 24 23; 7 3 2 6; 4 8 5 1

10! 4 81 21 6 7 3 5 1'18 17 2019i 2 21 24a a

24131 14 15 6e 9 10 11 12 1 6 7 4: 5 2 3 8

23 7 3 5 1 4 8 2 6 11 1 2 113 915 1 4 10

17 6 1 8 3 2 5 4 7 11 15 10 14 12 16 9 13

18112 l16110

120 5 2a 7

/191 1i1113'

141

4
II

15 9 13 2

12 14 10 4

5 8 3! 6 1 4 7

10 15 16 13 14 11 12

8 5 1 7 3 2 6

;23'12;3~'217 2 49182 9212111 14 13 1615 3 7 6 2: 8 4 1 5

17 22 8 41 61 2 3 7 1 5 14 13:12 1 10 9116 15

I_____·_·______·__·_C___

-·-·----·` ··

-i

24 i24 19 181 2123 i0o
; i

Slli 12 13;1 14
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Number 1 of Group of Type Matrices 32

1 0 0

•o ! o

0 1 0

001
0 0 0

ioo o1 0 0

0 - 0

0 0 1

0 0 0

1 0 0
0 - 0

0 0 1
0 0 0

1 0 0

0 -1 0100i

0 0 1O
0 0 0

1 0 0 0 1 0 0 0

0 1 0 0

0 0 1 0

1 0 0 0 -i

10 0 10

.0 -i 0 0

0010

i C 0 0-~

1 0 0 0 1 0 0 0

0 i 0 0 0 i 0 0

O 0 i 0 0 0 i 0

0 0 0 - 1
-7 .

1 0 0 0
0 -i 0 0

0 0 1 0

0 0 0 -1I

1 0 0

0 1 0

0 0 -I
0 0 0

1 0 0 0

0 1 0 0

0 0 -1 0

i0 0 0 -1

1 0 0 0: o 1 0 0

1000

0010

0 0 0 -10 0 1 00 0 -0:

1 0 0 0

0 1 0 00 0 1 0

0 0 0 -i1 0 0 0

0 -1 0 0o o o0 0 i 0

0 0 0 -i1 0 0 0/ýy

0 -1 0

0 0 -1

0i 0 0

1 0 0

0 0 -1

.0 0 0

0 -1 0

0 0 -i

0 0
s5-

0 -1 0 0

0 0-1 0
0 0 0 -1

1 0 0 0

0 1 0 0

0 0 -i 0

0 0 0 -1

1 0 0 0

0-1 0 0

0 0 -i 0

0 0 0 -i

1 o 0 0' 1 0 0 0

0 1 00 0 i 0 0

0 0 -1 0 0 0 -1 0
00 1 0 0 0 -i

Qo

1 0 0 0 0 0 0

0 -i 0

0 0 -1
000

0 -i 0 0

0 0 -1 0

0 0 0 -iilý

10 0 1 0

0 0 0

1 0 0

0. 0 0.0 0 -i

)o o 0

1 00 0 -1

0 1 0 0 0

0 0 -i 0 0

O 0 0 -i 0

12 0 0 0 -I
Jo

1 0 0 0 . 0 0 0

0 1 0

0 0 1

0 -i.

0 0 0

?_ 'tj i

10 0

0 -i 0

0 0 i

0 0 0



Table 7. THE g MATRICES
Number z13 of the Group. of Type of Matrices

0 0 0

0 0 1
0 1 0 0

0 o 1 0

1 0 0 0

0 0 0 -1

1 0 0

0 1 0
,5-

1 0 0 0

0 0 0 -1

0 1 0 0

0 0 1 0

1 0 0 0

0 0 0 -1

0 1 0 0

0 0 i 0

0 0 0

0 0 1

0 1 0 0

0 0-1 0

1 0 0 0

0 0 0 -1

0 -1 0
(n

1 0 0 0'

0 0 0 1

0 i 0 0,

0 0 -i O0

1 0 0 0

0 0 0 -1

0 1 0 0
0 0 -i 0

0 0 0 1 0 0 0

0 0 0 i

0 1 0 0

0 0 ± 0
'7

1 0 0 0

0 0 -0 -i
0-' 1 0 000100

0 0 0 01

0 0 0 0

0 0 1 O,

1 0 0 0

0 0 -i

i 0 0i

0 0 0 i

1 0 0

0 -i 0
tT

10 0 0
0 0 0 -i

0 1 0 0
0 0 -1 0

1 0 0 0

0 0 0 i,
0 i 0 0
0 0 -1 0

1 0 0 0.
0

0

0

0 0 -i

1 0 0

0 -1 01

1 0 0 0

0 0 0 1

0 -1 0 0

0 0 1 0
J

1 0 0 0

0 0 0 -1

0 -1 0 0

0 0 1 0,
7

1 0 0 0

0 0 0 1.

0 -i 0 0

0 0 i 0

1 0 0 0

0 0 0-1I

0 -i 0 0

0 0 i 0

1 0 0 0

0 0 0 1i

0 -1 0 0

0 0 i 0

1 0 0 0

0 0 0 -i1

0 -1 0 0
0 0 1 000±0

1 0 0 0

0 0 0 i

0 -i 0 0
0 0 1 0

;7

1 0 0 0

0 0 0 -1,
0 - 0 0

0 0 1 0

1 0 0 0
0 0 0 1

0-1 0 0

0 0 -1 0

1 0 0 0

0 0 0-1

0 -1 0 0

0 0 -1 0
7

1 0 0 0

0 0 0 1

0 -1 0 0

0 0 -i 0

1 0 0 0

0 0 0 -i

0 -i 0 0

0 0 -i 0

1 0 0 0

0 0 0

0 -1 0 0

0 0 -i 0a45

1 0 0 0

0 0 0 -i

0 -1 0 0

0 0 -i 0

1 0 0 0

0 0 0 1
0 -i 0 0
0 0 -1 0

1 0 0 0

0 0 0 -i
0 i 0 0
0 0 -1 0'



Table 8. THE / MATRICES
Number 21 of the Type of Matrices

11 0 0

0 0 1
0 0 00

0 0 0

0 1 0

0 0 -1
0 1 0 0 0 -1 0 0 0 1 0 0

1 0 0 0 1 0 0 0 1 0 0 0

0 0 -1
0 0 0
0-1 0

4

1 0 0

0 0 1
0 0 0

0-i o0
100

1 0 0 0

0 0-1 0

0 0 0 1

0 -1 0 0

0 -1 0

0 0 -1
1 0 0

7

0 0 0

0 1 0

0 0 -1

0 0 1 0 0
'/

1

0

0

0 0 0

0 -1 0

0 0 -i

0 i 0 0C
½'

1 0 0 0 1 0 0 0

0 0 1 0 0 0 1 0 0 0 i 0
0 0 0 1 0 0 0 1 0 0 0 -1
0 i 0 0 0-i 0

17
0 0 i 0 0

1 0 0 0 1 0 0 0 1 0 0 0
0 0 -i 0 0 0 -i 0 0 0 -i 0
0 0 0 1 0 0 0 1 0 0 0 -1
0 i 0 0 0 -i 0 0 0 i 0 0

2.3

1 0 0 0 1 0 0 0 1 0 0 0

0 i 0 0 0 1 0 0 0 i 0
0 0 0 i 0 0 0 1 0 0 0 -

0 0 -1 0 0 0 1 0 0
07

1 0 0 0 1 0 0 0 1 0 0 0
0 0 -i 0 0 0 -i 0 0 0 -i 0

i 0 0 0 i

0 0 -1 0 0
30

0 0 0 -i

0 1 0 0
I/

0 0

0 1

0 0

0

0
0

0 -1

0 0
1 0

'5-

1 0 0 0

0 0 1 0

0 0 0 -1
0-1 0 0

1 0 0 0!

0 0 -1 0

0o 0 0 -1
0 -1 0 0

1 0 0 0

00 1 0

0 0 0 -1

0 -1 0 0

1 0 0 0

0 0 -1 0

0 0 0 -

0 -i 0 0

1 0 0 0

0 0 1 0

0 0 0 -1

0-i 0 0

1 0 0 0

0 0 -1 0

0 0 0 -1

0 - 0 0

1 0 0 0

0 0 i 0

0 0 0 -1

0 -1 0 0

1 0 0 0

0 0 -i 00 00-
0 0 0 -i

0 -1 0 0

1 0 0

0 0 1

0 0 0

0

1

0

0
0

1

i 0

0 0

0 -1

0 0

1 0

0 03
0 0

0

0 1 0

0 0 0

0 1 0
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2. The Class

The determination of the matrices of transformation

in this group differed from that of the 5-3 groups. The

', ( and .- types do not form a closed group. The matrices

of this class are divided into three main types, each type

having two different forms. A matrix of the following

type

0 1 0 0

is called where

0 0 1 0

0 0 1 0

r stands for real, v for vertical and a matrix of the

type
o o o oio 0 0 0!

i I 0 0

0 0 1 1!

0 0 0 0 is called f where

i stands for imaginary and h for horizontal. This

terminology is used for the ', g and /- types.

Each one of the >,4 aoin table 3 is an element of a

vierergruppe, each vierergruppe being an independent group.

A number of types for the ;{( and o- matrices satisfied the

transformation conditions. All simple types satisfied

the following conditions;
. a a a 0 = a 0 a 0 $= a 0 0 a

a> 

aaa;

b b 0 0 0 b 0 b 0 b b 0
0 0 c c c 0 c 0 0 c c 0

0 0 d d 0 d 0 d d 0 0 d
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4. V

Table 10 GROUPS

(a, b, c, d, form separate groups)

0 1 0

0 1 0

0 0 1

0 0 1

0 -1 0

0 1 0

0 0 -1

0 0-1

0 -1 0

0 -1 0

0 0 -1

0 0 1

0 -1 0

0 1 0

0 0 1

0 0 -1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0 -1 0

0 -1 0

0 0 1

0O 0 1

0 1 0

0-1 0

0 0 1

0 0 1
(r

0 1 0

0 1 0

0 0 -1

0 0 1

0 -1 0

0 1 0

0 0-1

0 0 1

o 10 -1 0
0 0 -i 0

0 0 0-1

0 0 0-1

0

0

0

0

0-

0

00

0

0

0:
0

0

0

0

0

0

0

0

0

0
0

0

0

1 0

1 0

0 -1

0 -1

1 0 0- 0 1 0

1 0 0 0 -1 0

0 1 0 0 0 -1

0 1 0 0 0 "1

1 0

1 0

0 1

0 -1
C 3

0 0 1 0 0

0 0 -1 0
i0 0 1

0 0 -1

0 0 -1 0

0 0-1 0

0 0 0 1

0 0 0-1
c y

0 1 0

0 -1 0

0 0 0 -1

0 0 0 1

0

0

0

0

0

0

0

0

0

0

0

0



Table 9. THE n MATRICES

11000 1 1000 1000 1 0 0 0
0 00 0 0100 0000 00 0 0 0

0010 0000 0 0 0 0 0 0 0 0
o0 0 0 0 0 0 0 o0 0 0 0 0

O -i 0 0

0 1 0 0

0 0 1 0

0 10 i

Table 11. THE MATRICES

10 -i 0 01 0 -i 0 0

0-1 0 0 0 1 0 0

0 01 0 0 0 1 0

0 0 oi 0 0 -i 0
Cr,

0 -i 0 0

0-1 0 0

0010O 0 0

C.03

Table 12.

0 0 0

1 0 0

0 0 0

0 0 o
001 0 0
0 1 i

0 0 0

taif

.0 0 0 0
i-I 0 0
0 0 1 10000
0 0 0 0

0 1 0 01iI0 0

0 0 1 i
0 0 0 0

0

1

MATRICES

o o o
1 0 0
0 1-1

0 0 0 0:

o o ooo 0 0 0

0 0 1 -10 0-1 0 00014

0000

0 0 00

1-i 0 0

0 0-1 1
0 0 0 0

0 0 0 0

i-I 0 00011o oooi0 0 1 0

0 0 0 0

0000
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0

1

0

0

0

i

0

0



0 1 0
! o o

100o 1 0
1 0 oi

0 -i 0
1 0 0

0 1 0

i 0 01
100

Table 13.

0 0 1 0

0 1 0 0

0 0 1 0

o 0 1 o o
0-100

0 1 0 0
0 0 1 0
0010

10-o 0 0

MATRICES

0

0

0

0

0
0
0

0

0100 1 0
1 0 0

1 0 0

0 -1 00 -i 0

0-I0

1 0 0
c ,c/o.3

I0 0 1

0 1 0

0 0-1I
0-i0

~0 0 -i
10 1 0

S0 -1

0 -i 0
'. V

Table 14. ( MATRICES

o 0 0 0 0 0 0 o
0 1 01 0 1 0-1

1 0 1 0 1 0 1 0

0o 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0
0 1 0-i 0 1 0 1

1 0-i 0 1 0-1 0

0 0 0 0 0 0 0
L .4 F p4

0 0 0 0

10 1 0 1

00000 1 0 - 00 0 0 0
0 i 0O 01

0 0 i 0
1010

0 0 0 0

L 3

0 0 0 Ot
0 1 0-1

1 0 -1 0

00000 0 0 0
0 1 0 i

1010

0000i 0 1 0 ý0o 0 0 04
t 0 1
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0

0

0

0
0

o
0

0
0

0

0

0

0o

0

0



Table 15. AY- MATRICES

0 0 0 1

0 1 0 01

0 1 0 01

0 0 0 1
0L0 V0

~0 0 0-i'

0 1 0 0'

0 0 0 1
& V

0 0 0 1

0 1 0 0
0o-1 0 0

0 0 0 -1

0 0 0-10 -1 0 00 0- 0 0
coo V1

0 0 0-i

0 0 0 -1
& I

0 0 0 1

0 1 0 0

0 1 0 0

0 0 0-
A. V

'0 0 0-ico o 01
0 1 0 0

0 0 0-1I

L. 3

0 0 1
0 -1 0 0

0 1 0 0

0 0 0 1

0 0 0 -1

0 1 0 01

o-i 0 01

0 0 0 1

V.

0 0 0 0

0 1 1 0

0 0 0 0'

1 0 0 1

0 0o o 0

0 1 -i 0

0 0 0 0

1 0 0-il

Table 16. , MATRICES

0 0 0 0 0 0 0 0

0 1 1 0 0 1-1 0

0 0 0 0 0 0 0 0

1 0 0 -1 1 0 0 -1
4-.~

2-2

0 0 0 0'

0 1 1 0

0 0 0 0

1 0 0 -i

I. 
A

c-

0 0 0 0

0 1 1 0

0 0 0 0

1 0 0 1

~13
C-

0 0: 0 0

0 1-1 0

0 0 0 0

1 0 0 I

0 0 0 O0
0o oi
0 1 -i o
0 0 0 0

1 0 0 i1
4

' 1
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X. CHARACTERIZATION OF OPTICAL
INSTRUMENTS BY MATRICES

It has been shown that any one of the sixteen funda-

mental coherency matrices can be transformed into any other,

by the transformation matrices. Since each of the coherency

matrices represents a particular type of light, then the

transformation matrices characterize the optical instruments

that change one type of light into another. The instru-

ments represented by the ,6 transformation matrices are

conservative optical instruments, in that the power of the

input is identical with the power of the output. These

optical instruments form a closed group. This method thus

affords a means of studying the behaviour of the action of

different types of light under different optical instru-

ments. From Table 3 it is readily seen that the same

instrument can be used to transform several different types

of light. These instruments are in general not reversible.

Michelson's Interferometer utilizes two beams of

light.

The ray R is split up into

two rays of light by GL

which is thinly silvered.

The reflected ray R1

traverses a distance D1

passing through a glass G2

and is reflected by

mirror M 1 . The transmitted

-TPl 1 v-ft-r 3.
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ray R2 is reflected by mirror M which is reflected by

glass G, and unites with reflected R, which is transmitted

by G,. If the paths of these two rays differ by even

multiples of , reinforcement takes place; if by odd

multiples of Tr , interference. The coherency matrix for

these two types of emitted rays are

1 0 1 0

0 1 0 1

1 0 1 0

0 1 0 11

Reinforcement

The matrix 0 0 0 0!

0 1 0 1

1 0 1 0

0 0 0 0

characterizes the action

forcement, the matrix 0

1 0 -1 0o

0 1 0 -1

-1 0 1 0

0 -1 0 1

Interference

of the form ,-4

of

0

0 1

1 0

0 0

the interferometer for rein-

0 0 for interference.

0 -1

-1 0

0 0

Interference of two beams of light may be caused by the

divided lens method.
V%4 -9ý~- -
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The theory of this instrument is similar to

Michelson's Interferometer and is characterized by the

same transformation matrices. This instrument can be

used in the study of interference of polarized light by

placing a tourmaline crystal at T, or one each at T, and T.

Tourmaline transmits light in one direction only, absorbing

the light in the other. Therefore, tourmaline is not a

conservative instrument. When the tourmaline is placed at

T interference takes place as before; if placed at T, and T

interference does or does not take place according to the

position of the axes of the two tourmaline crystals. If

these axes are parallel, interference occurs; if at right

angles no interference fringes appear. The matrices of the

emitted ray of light are

1 0 -1 0

0 0 0 0
Interference

-1 0 1 0

0 0 0 0

1 0 1 01

0 0 0 01
Reinforcement

10 1 01

0 0 0 0

1 0 0 2

Axes of 0 0 0 0
Tourmaline
Crystals at 0 0 0 0 where 7 = + or +1
Right Angles 1

1 o 0 1
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CONCLUSION

Polarized light can be analyzed by several methods,

but the method of coherency matrices is more comprehensive

and can be more readily used, in the case of two or more

beams of light, Given a coherency matrix representing a

ray of light, the type of light and the relation of its

components can be immediately stated. The transformations

changing one type of light into another are easily deter-

mined. The coherency method gives a very simple way of

analyzing the many possible combinations of rays of light

and optical instruments.
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