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ABSTRACT

A study is made of both block and sequential
decoding methods for a class of channels called
Discrete Finite State Channels. These channels
have the property that the statistical relations
between input and output symbols are determined by
an underlying Markov chain whose statistics are
indeoendent of the input symbols.

A class of (non-maximum likelihood) block
decoders is discussed and a particular decoder is
analyzed. This decoder has the property that it
attempts to probabilistically decode by testing
every possible combination of transmitted code word
and channel state sequence. An upper bound on
error probability for this decoder is found by
random coding arguments. The bound obtained decays
exnonentially with block length for rates smaller
than a capacity of the decoding method. The bound
is cast in a form so that easy comparison may be
made with the corresponding results for the Discrete
Memoryless Channel.

A related sequential decoder based on a modifi-
cation of Fano's decoder is presented and analyzed.
It is shown that Rcome is equal to the block coding
error exponent at zero rate for an appropriate sub-
class of Discrete Finite State Channels. It is
also shown that for this class, the probability of
decoding failure for low rates is the probability
of error for the block decoding technique rresented
here.

h All results may be specialized to the case of
Discrete Memoryless Channels. Some of the results
on behavior of the sequential decoding algorithm
were not rreviouslv available for this case.

Thesis Su-ervisor: Robert M. Fano
Title: Ford Professor of Engineering
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Chapter I

Introduction

Most of the results pertaining to the reliability

which may be achieved when data are transmitted over a

channel have been obtained for the special case of

the Discrete Memoryless Channel (DMC). Recent work

of Fano , Gallager8 , and Shannon, Gallager and

Berlekampl9 has led to an almost complete specifi-

cation of the smallest nrobability of error obtainable

with maximum likelihood decoding of block codes for

the DMC.

Collaterally, the investigation of practical

decoding techniques for the DMC has led to the design,

construction and testing22 ,23 of a sequential decoder

based on the sequential decoding technique of Wozen-

craft21 . More recently, Fano 5 has presented a new

sequential decoder which appears to have great genera-

lity of application.

Our nurpose in this thesis is to examine decoding

techniques for channels that are not of the Discrete

Memoryless variety. The channels with which we are

concerned are such that at each discrete instant of

time one of a finite set of symbols may be transmitted.

One of a finite set of output symbols will then be

received. The probability that a particular symbol



is received when a particular symbol is transmitted

is a function whose value is determined by an under-

lying finite state stochastic process which is inde-

nendent of the transmitted symbols. The aspect of

memory is introduced by requiring that the proba-

bility that the underlying process is in a particular

state at a given time is dependent on the sequence of

states which the process has occupied in the past.

In narticular, we will restrict this dependence to

be Markovian, which (since we are concerned with

finite state processes) is equivalent to allowing the

denendence to be over any finite span of previous

states: A more careful description of the Channels

is presented in Chapter II where appropriate notation

is introduced.

A discussion of the broadness of the above model

and some of its implications is also presented in

Chanter II. We shall call this class of channels,

Discrete Finite State Channels (DFSC); sequences of

states of the underlying process will be called

channel state sequences.

In the following chapters we will examine both

block and sequential decoding for the DFSC. The

denarture in philosophy taken here is that we attempt

to decode by nrobabilistically testing both the



transmitted message and the channel states, rather

than the transmitted message alone. Our primary

interest is, of course, in the correctness of our

decisions on the transmitted messages. The method

of testing the compound hypotheses (both message

and channel state), however, appears to be natural

for sequential decoding. The reason for this state-

ment lies in the fact that the joint statistics

of the output, and channel state, given a particular

input, are Markovian, while the statistics of the

output, alone, are not. By testing both the trans-

mitted message and the channel state we are able to

design a sequential decoder which operates in a step-

by-step fashion closely related to the operation of

such decoders for the DMC. Our ability to achieve

such a design is a consequence of the Markovian

statistics of the joint event (output and channel

state).

A thorough discussion of the particulars of

our decoding philosophy is presented in the next

chanter. We also discuss, briefly, several alter-

native approaches to decoding which are suggested

by the fact that the DFSC might be described as a

time-varying channel. These alternative approaches

are those that have arisen when, in engineering



Dractice, one considers what might be done to improve

communication capability of such channels.

To operate in accordance- with the above philo-

soprhy we must assume that the transmitter and decoder

have an exrlicit probabilistic description of the

underlying process. This assumption may be questioned.

We observe that this assumption is no worse than the

assumption that the probability structure of a given

memoryless channel is known. Experience in simula-

tion of the DMC has shown that if the true probabil-

istic structure of the channel is at all like the

assumed structure, then the decoding will behave

essentially as predicted theoretically (c.f, Hor-
11

stein ). We should expect the same to be true in

the case at hand. In addition, knowledge of the

behavior of decoding when the probabilistic descrip-

tion of the channel is known makes available a bound

to what might be achieved in oractice.

The DFSC fits within the class of channels for

which Blackwell, et. al.1 have investigated capacity.

In addition, Kennedyl3 has presented upper and lower

bounds to the probability of error achievable with

block coding for binary input, binary output DFSC's.

Aside from these results and the previously referenced

discussions of the DMC, no previous work of relevance

to the DFSC appears to be in the literature:



In Chapter II we present a mathematical description

of the DFSC and discuss the problem of decoding for

this class of channels.

In Chapter III we present various mathematical

results which will be applied in the sequel.

In Chapter IV we find an upper bound to the

probability of error which can be achieved by block

coding for the DFSC when the method of simultaneously

testing transmitted information and channel states is

employed. A bound which decays exponentially with

the block length is found and compared to known results

for the DMC.

In Chapter V we examine the behavior of the Fano

sequential decoder when used on a DFSC. The results

obtained here on maximum information rate for which

the first moment of computation is bounded and for

various probabilities of error and failure may be

snecialized to the DMC. Certain of these results for

the DMC were previously found by Fano . Certain

others have been obtained independently by Stiglitz

(unrublished). The results for the DFSC have not been

previously obtained.

In Chapter VI we summarize the thesis and suggest

and discuss various possible extensions.

1 0



Most of the mathematical expressions, equations,

and inequalities are numbered in succession in each

chanter. For convenience, we will refer to all such

exoressions as equations. When referencing a previous

equation in the same chapter we give its number.

When referencing such an equation in a previous

chanter we give both the chapter number and the number

of the equation. Thus for example, if in Chapter III

we wish to refer to equation 2 of that chapter, we

call it Equation (2). If, on the other hand, we wish

to refer to equation 4 of Chapter II, we call it

Equation (2.4).



Chapter II

Introduction to Decoding for the DFSC

A. Description of Channels

We will be concerned with a class of channels

where at each discrete instant of time one of a set of

K inputs, x4X, (x=1l,2,...,K) may be transmitted and

one of a set of L outputs yCY, (y=l,2,...,L) will be

received. The probability that output y is received

when input x is transmitted is determined as follows:

Suppose we have a B state Markov chain with

states dtD, (d=1,2,...,B) and a stationary (i.e.,

time-invarient) probability matrix Q = (qij ) where

qi j(i,j = 1,2,...,B) is the probability that when

the chain is in state i, the next transition will be

to state j. In addition, let there be a set of B2

probability functions, p(y/x,d',d) defined for all

y Y, xgX and d',d D with the property that:

p(y/x,d',d) C 0 ; all y,x,d',d ( 1)

and I p(y/x,d',d) = 1 ; all x,d',d (2)
Y

Suppose now that at some time the Markov chain is in

state d' and a transition is made to state d, then

conditional on this event, the probability that y is

received when x is transmitted is p(y/x,d',d). Thus

for fixed d', d we may view p(y/x,d',d) as the trans-



ition probability function for a fixed channel.

The aggregate of the Markov chain and the set

of functions p(y/x d' d) will be called a Discrete

Finite State Channel (DFSC). We will call the

functions p(y/x,d',d) transmission probability func-

tions, and sequences of states from the Markov chain

will be called channel state sequences. In this

thesis we will restrict ourselves to the case in

which the underlying process (i.e., the Markov

chain) is irreducible.

Let us pause for a moment and consider the

generality of this definition. Although we have

defined the transmission probability functions

o(y/x,d',d) on the state transitions, we have

clearly included the case in which it is desirable

to define these functions on the states. To demon-

strate this inclusion we need only observe that if

we allow p(y/x,d',d) to be independent of d' (or

d) our functions are then defined on the states.

Another model which might be considered is the

following: Let there be a set of A probability

functions p(y/x,c) ; (c=1l,2,...,A). These functions

determine the probability of receiving a given out-

put when a given input is transmitted, for the event

c occurring. Further, let there be a set of B2

probability functions Hd,d(c) ; (d',d=l,2,...,B) with



H (c) 0 ; H-- Hd (c) = 1 (3)
d',d c=l d',d

where Hd ,d (c) is the probability that, when a transi-

tion of the Markov chain from state d' to state d

takes place, the transmission probability function

which determines the input-output statistics is

p(y/x,c). The resulting situation may be modelled

as a DFSC in either of two ways.

First, each state, d, of the chain may be split

into A states, dl,d 2,..., dA one for each value of c.

For the resulting model we then have:

Pr (d / d'c,)= Hd',d(c) qd',d (4)

and p(y/x,d' c,d ) = p(y/x,c) (5)

A second alternative is to retain the original

description of the chain and take:

A

p(y/x,d',d) = 21. p(y/x,c) H d(c)6)
C=I

where we observe that the above equation defines a

valid transmission probability function.

We shall find that because of the decoders em-

ployed for the DFSC as discusssed in later sections

of the chapter, and because of the techniques used to

I _14



bound the behavior of these decoders, it is generally

desirable to model the channel with as small a number

of states in the underlying Markov chain as is possi-

ble. For this reason, the second alternative discussed

above is adopted when we have such a choice available.

To illustrate further the multiplicity of models

which may be used to model a DFSC we consider the

special example of a memoryless Binary Symmetric

Channel. We may, of course, use the one-state model

of the channel as is the usual choice. (Note here

that a memoryless channel may always be taken as a

DFSC with a single state in the underlying Markov

chain). We may also choose a model in which we

associate the transmission probability functions with

states. We distinguish two types of states, 'a 0

state and a 1 state with transmission probability

functions as shown in Figure 2.1. We may then take

any of the models shown in Figure 2.2. Each model

clearly is equivalent to a BSC with cross-over proba-

bility p. This particular example is of great inter-

est since it allows us to discuss certain deficiencies

of our decoders. We will return to this matter in

Chapter IV.

To denote sequences of random variables we will

use the symbol for the random variable underlined

and with a symbol in parentheses indicating the number
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Figure 2.1 Transmission Probability Functions

for "0" States and "1" States

16

x\



Q l1-p

1-p

"O0" state

P

"i" state

A two state model

2

1-D
2

122

2

2
2

2

p/2

p/2

p/2

p/2

"O" states "1" states

A four state model

1-p

l-pm

1-p
rn

"0" states

l-p

Z.m
rn 19

m

* . p/m p/n

. . p/m p/m

"1" states

A 2m state model

Figure 2.2 Alternate Models for a BSC

17

p/2

p/2

p/2

I
I

1-n
rn

I-_m

&-

a &



of elements in the sequence. Thus a sequence of n

channel inputs will be denoted by x(n). The set

of all such sequences, which is the n-fold cartesian

product of the set of all values of the basic one-

dimensional random variable will be denoted by a

superscript on the symbol for the one-dimensional

set. Thus we speak of x(n) Xn. The position of

a particular element of a sequence will be denoted

by a subscript. Then, making the obvious analogy

of sequences to vectors and elements to components

of the vector, we write:

x(n) = (x1,x2,...,x n )  (7)

One exception to this rule is that for channel state

sequences we will speak of d(n)6 Dn,

d(n) =  (do,dl,...,d n )  8)

which is actually in Dn+ l . The reason for this

convention is the simplification of notation and

this convention should be remembered since it is

in continuous use in the sequel. The inclusion of

d specifies the initial state. As an additional

notational convenience we introduce the symbol di,

d = (d. ,d) (9)
1 i-l,

The notation of equation (7) suggests that we

interpret x(n) as a row vector. We will use an

overbar to denote matrix transposition. Thus x(n)

is a column vector.



The standard introductory reference on Markov

chains is Feller7. The algebraic treatment of

Markov chains in terms of Frobenius's theory of

matrices with non-negative elements is given in

detail in Gantmacher9 . An excellent discussion

incorporating aspects of both Feller's and
17

Gantmacher's treatments is given by Rosenblattl7

B. Block Decoding for the DFSC

We now begin our study of decoding for the DFSC.

The situation of block coding is dealt with initially

because it is inherently simpler to discuss than

sequential decoding.

nRWe wish to transmit one of M = e equally

likely messages over a DFSC. To do so, we select

a set of M channel input sequences x (n); m=l,2,...,M,

and transmit sequence x (n) to signify that message-Tn

m occurred at the transmitter.

Upon receipt of the output sequence Y(n), we

attempt to guess which message was transmitted. The

best guess, in the sense that it would minimize our

orobability of error, would be that given by a maxi-

mum likelihood decoding scheme. In this case we

decide that message k was transmitted if

Pr(y(n) / x (n) ) max Pr(Y(n) /x (n) ) (10)
-k m m



The probability of error for such a decoding

scheme is not readily analyzed for the DFSC, but in

principle we may always perform maximum likelihood

decoding. The result we expect to obtain when properly

chosen block codes are employed on the DFSC is that

for rates, R, less than some yet to be determined

canacity we are able, by increasing n, the block

length, to make the achievable error probability

arbitrarily small.

The difficulty that arises, when we attempt to

analyze block coding bounds on error probability for

maximum likelihood decoding, is that an early step

in our derivation of a bound reduces the sharpness

of the bound to the point that it is equivalent to

a bound on the behavior of the non-maximum likelihood

decoder which we ultimately study..

How does one decode for the DFSC? Experience

with time-varying channels in general has led

various investigators to suggest schemes based on

heuristic reasoning. One such scheme may be described

as follows: From the received data make an estimate

of the channel state sequence. Then, assuming that

this estimate is correct, do maximum likelihood

decoding as if this assumption were correct. This

scheme is embodied physically in such systems as

Rakel 4 and in systems which utilize techniques of

phase estimation and coherent demodulation with the

20



estimated phase for channels with a time-varying

rhase shift. This latter scheme is analyzed in some

detail by Van Trees23. Although these examples

apply to continuous channels, the philosophy of

anproach is clearly applicable to the case of the

DFSC. The aspect of these schemes which make them

attractive is that for the particular situation for

which they are intended, they are readily instrumented

in practice while maximum likelihood techniques are

not. Both schemes show the following deficiency:

The estimate of the channel state is made independent-

ly of any hypothesis on the transmitted information.

This factor may or may not be bad. Whether it is or

not depends on the complex of the rate of transmission,

the nature of the particular channel at hand, the

choice of modulation, and the interactions among

these.

Now consider how such schemes may be applied to

the DFSC. We have some rational for deciding that a

oarticular channel state sequence d*(n) has occurred.

Then, assuming this decision is correct, we compute:

Pr(y(n) /x (n),dj(n) ) for each k = 1,2,...,M. We

then decide that message m was transmitted if:

Pr(y(n) /x (n),d*(n) ) = max Pr(y_(n)/x (n),dI(n)) (11)"m -k

21



The behavior of such a decoder clearly depends on the

method of choosing d*(n). Such methods arise from

what amounts to good intuition applied to the parti-

cular case at hand. Since we are interested in a

broad class of situations, it is unlikely that such

intuition could be applied in general. A way out is

described below.

Suppose we broaden our approach to include

joint estimation of both the channel state sequence

which occurs and the transmitted message. We are

then not forcing ourselves to decide on the channel

state sequence first. Of course, as in the examples

discussed above, our primary interest lies in making

our decisions on the transmitted message correct. The

penalty we pay for being wrong on the channel state

sequence is zero if we are right on the transmitted

message.

This concept of joint estimation arises in an

internretation of the maximum likelihood recievers

for gaussian signals in gaussian noise (see Kailath 1 2

20
and Turin ). In this case the receivers may be

realized in a form in which an estimate is made of

the shape of the gaussian signal conditional on the

transmitted message having been a particular one.

This estimated shape is then used as a reference for

a correlation receiver for that particular message.

One such estimate and correlation operation is per-

formed for each different transmitted message hypothesis.

22



A class of decoders may now be thought of

immediately. We may for example consider the

function Pr(y(n)/x (n),d(n) ) for all values of

both d(n) and k. The decoding rule could then

be: choose message m as transmitted if

max Pr(y(n)/x (n),d(n)) = max max Pr(y(n)/x (n),d(n))
d(n) k d(n)k

(12)

An objection to this decoder which might be

raised is that for a particular message which is

not the transmitted message, there might be a

particular channel state sequence d*(n) such that

Pr(y(n)/x(n),d*(n) ) is very large.

There are at least two ways of avoiding this

unhappy situation. First, by appropriate choice of

modulation (i.e., the choice of the x (n)'s) we-k
might be able to avoid the possibility of this occur-

rence. Again, such a choice is to be found by

applying good intuition to the particular case at

hand.

A second alternative lies in weighting the

probabilities in Equation (12) by a factor which

takes into account how probable any sequence d(n)

is a priori. We may, for example, take a binary

weight and assign weight 1 to those channel state

sequences whose probability exceeds a given thresh-

old, (say n ) and weight 0 to the remainder.

23



Thus if we let D be a set such that:
0

Do ={d(n) Pr(d(n) 0 po (13)

o c

and let Do be the complement of this set we might

formulate a decoding rule as follows: Pick message

m as transmitted if:

max Pr(X(n)/x (n),d(n) )
d(n)eD mi- o
max max Pr(y(n)/x (n),d(n) ) (14)
k d(n)ED -k

f o

An upper bound on the probability of error for

such a decoder can be found, but it is not presented

here because it is weaker than the bound for the

decoder we do analyze.

The idea of weighting the probabilities in

Equation (14) can be extended to the logical conclu-

sion of using as weights the actual a priori proba-

bilities of the state sequences. Thus we are led to

the decoder to be employed in this thesis. Our de-

coding rule is stated as follows:

Choose message m as transmitted if:

max Pr(v(n)/x (n),d(n) ) Pr(d(n) )
d(n) m

= max max Pr(y(n)/x (n),d(n) ) Pr(d(n) ) (15)
k d(n) --

24
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Now, we note that:

Pr(y(n)/x (n) ) Pr(y(n)/x (n),d(n)) Pr(d(n) ) (16)
D m

It would seem reasonable that, if Equation (15) is

true, then with high probability Equation (10) is

true. We have not proved the above statement, we

have merely suggested its validity. The true rela-

tionship between a maximum likelihood decoder and the

decoder to be used in this thesis is explored further

in Chapter IV.

It is clear that to evaluate the max's in

SEuation (15) the decoder must test every channel
state sequence. This concept of testing both channel

state sequences and transmitted messages in order to

decode leads to the title of this thesis, "Channel

State Testing in Information Decoding". In our

decoder we are, in effect, deciding on both the

transmitted message and the sequence of channel

states. Although we make the latter decision, our

primary interest is in the transmitted message and

hence in Chapter IV we shall evaluate an upper bound

on the probability of decoding error without regard

to the probability that the decision on the channel

state sequence is correct.

This decoder has the advantages that we are able

to obtain an analytical bound on its error probability.

i25L



Furthermore, this bound has the desired property

(an exponential decay with n) that we would hope to

find. Still further, the decoder metric (i.e.,

Pr(y(n)/xk(n),d(n)) Pr(d(n)) may be, with slight

- - -- - -- - I__L _ - -

modification, usea as a metric (see thne next section)

for a sequential decoder.

That these advantages are obtained should not

be construed as meaning that the other decoders

discussed above or, in fact, any decoder based on

good heuristic reasoning should be precluded. We

shall find, for example, that there are many situa-

tions in which our decoder is a poor choice. This

may be due to the fact that the model chosen for a

particular channel is a poor model or that the decoder

itself is inherently poor for the case at hand. We

can better discuss such matters in Chapter IV.

The point to be emphasized here is that for our
-I •1~J I F• .• ~ A • • I

• -
2 • I -I... --- tI- •

C C I'~ UI IC) I-' U WI"' (~-~ t'1 ti Cii .-4 I TI -I rIrIllV'C(1 r~TI ~7T'fT ~ 7'i!~ ~v, I ~ 'I" ¶?

whose strengths and weakness in any particular case

orovide an opportunity to examine the issues at the

heart of decoding for the DFSC. In the almost total

absence of prior results for channels which are not

of the discrete memoryless variety, this opportunity

was not previously available.

26
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C. Sequential Decoding for the DFSC

In block decoding we face a dilemma. As we

increase n to make the error probability arbitrarily

small, while holding the rate, R, constant, the number

of messages M = enR grows exponentially, since for

the various alternatives of block decoding discussed

above, we must test each possible transmitted sequence.

Thus we will, in general, face an exponential amount

of computation.

These remarks apply to the DMC as well as the

DFSC. In the latter case, for our decoder, the situa-

tion is even worse. We must also test every possible

channel state sequence. The number of these also

grows exponentially with the length, n, of the code.

The most successful technique for avoiding this

exponential amount of computation has, in the case of

the DMC, been the sequential decoding technique of

Wozencraft21 . Recently, Fano 5 has presented a new

sequential decoding algorithm which appears to be

somewhat more general. We will use the Fano algorithm

with a slight modification to do sequential decoding

for the DFSC.

We will restrict the underlying process to

i h ave the property that each state may be reached

from each other state in a one step transition.

27i



The reason for this restriction will be explained

in Chapter V where we discuss its implications.

We assume that the information to be transmitted

arrives at the encoder as a stream of equiprobable

binary digits which we will call information digits.

The encoder is considered to be a finite state device

to which are fed Volog2e information digits at a time

and whose state at any given time depends on the last

V log 2e information digits which it has accepted. The

state may also depend on a particular function of

time selected by the designer of the encoder. The

encoder output at a given time is then determined

uniquely by its state at that time and hence depends

on the last V log 2e information digits fed to it.

Such dependence is most readily represented as a tree

code in which a particular set of information digits

trace a path in the tree along which are listed the

channel input symbols generated by the encoder

(see Figure 2.3).

The leftmost node of the tree corresponds to the

initial state of the encoder which can be assumed to be

a state corresoonding to a stream of all 0 information

digits having been previously fed to the encoder.

Each branch corresponds to a particular state of the

encoder which is specified by the order number of the

branch (i.e., how far into the tree the branch lies)

and the last V log2e information digits leading to it.
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V

N = olog 2 e
(17)

for each branch.

Now consider two different paths stemming from

the same node of the tree. Call this node the

reference node. Because the state of the encoder

depends on the lastV log e information digits fed
2

to it, these two paths must correspond to a sequence of

encoder states which are different for at least

/•0 branches. Beyond this point corresponding

states along the two paths will coincide wherever

the sequences of the last V10og 2e information digits

along the oaths are identical. Two paths stemming

from a reference node are called "totally distinct"

if the sequences of encoder states along them differ

everywhere beyond (i.e., to the right of) the refer-

ence node.

30
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In the figure the information digits are shown just

to the left of the branch they generate. The channel

symbols corresponding to each branch are shown just

above the branch in question.

We assume that the rate, R, is measured in

natural units per channel symbol. Thus the number

of channel symbols per branch, N is given by:0



The above description of tree codes has been
6

paraphrased from Fano . In Chapter V we will be

concerned with an ensemble of such codes. Let us

observe at this point that the ensemble (and certainly

every member of it) can be generated by an appropriate

ensemble of linear feedback shiftregister generators

to which are added devices containing stored digits

to establish a particular encoder. We will not dwell

on the realization of these encoders here, since they
16have been adequately discussed by Reiffen and

5,6Fano ; but we do state the result that the encoder

need have a complexity, as measured in terms of num-

ber of elements, that grows only linearly with .

Note thatylog2e in this case corresponds to n, the

block length, in the case of block coding.

Let us now discuss the method of decoding to be

A Tl P 1 1- il h h
LILL UP:e 0 e sU111 1a .am iarit Y i tý eU ao

decoder for the DMC. The decoder computes a metric

depending on received and hypothesized transmitted

s.mbols for each branch along a path which is being

tested. The running sum of this metric along a path

under test is computed. The metric is so chosen that

for the actually transmitted path this sum has, with

hi roabiit A monotnen inc-reasing- (wit-.h ript11
into the tree) lower bound. The decoder is so de-

signed that it searches for and accepts any path having

31
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which are consistent with the state sequence accepted

to this node. This concept of jointly testing both

message and channel state sequence hypotheses, follows

from the discussion of the preceeding section of this

32

this property. More precisely, if there are more

than one path which have this property, the decoder

follows one of them. The decoding procedure is a

step-by-step procedure in which each branch is

tested individually (rather than long sequences

being tested at once as in block decoding). The

deoendence with depth into the tree arises from the

fact that the branches which may be tested at a

given time are restricted to those stemming from a

tree node which lies along the path accepted up to

that time. This reference node is continually up-

dated as the decoding proceeds further and further

into the tree. The meaning of this description will

become more clear when we examine the details of the

decoder for the DFSC.

To adapt the Fano decoder for use on the DFSC

we will construct a metric for that case. The view-

noint that we adopt is that we attempt to decode the

compound event of transmitted message and channel

state sequence which has occurred. Thus, having

accented a path in the tree up to a certain node,

the decoder tests all branches stemming from this

node, and simultaneously all channel state sequences



chanter.

Let us now be more precise. Define an arbitrary

orobability distribution f(y) on the channel output

symbols, such that:

f(y))O ; y=1,2,...,L

L

. f(y) =L
y=1 (18)

Now for the branch of order number n, with a particu-

lar hypothesis on the transmitted symbols and a

particular hypothesis on the channel state sequence,

consider the metric

nNnN0  o(yv/xj,d )qd
->d j-1

In - U
n j=(n-l)N y+1

f(Yj)

(19)

where U is an arbitrary bias.

This metric is the extension to the sequential

decoding case of the metric used in the previous

section. The significant difference lies in the

inclusion of f(y). This function plays the same

role here the p(y) plays for the Fano decoder for

the DMC. Ideally we would like to include a state

33



derendent term in the denominator of the argument

of the logarithm in Equation (19). We do not do so

because we have found such a term to be analytically

intractable. The price we pay is that our results

for sequential decoding for the DFSC will not, in all

cases, bear the same relationship to the results for

block coding that is borne in the case of the DMC.

Note that the metric requires knowledge of the

present output symbols; the present input symbol

hypothesis along the path being followed, the present

channel state sequence hypothesis and the most recent

channel state hypothesis. Thus, the metric can be

computed for each branch in a step-by-step manner

which requires only the presence of a tree code

generator and a minimal storage of the previous state

decision at the decoder.

Now for a particular path in the tree code and a

narticular sequence of channel states assumed in the

decoding define:
n-l

L = . .n j=l J (20)

The decoder to be presented below attempts to

find a path in the tree and a corresponding sequence

of channel states such that along this oath the

sequence of values L has a monotone increasing lower

bound.

3 4



The operation of the decoder is best explained

by examination of a flow chart for it. In Figure

2.4 we present the flow chart.

Here we assume that at each node the branches

are numbered in order of the value of the metric

along them. Thus gl(n) is the largest value of the

metric (consistent with the state assumption on the

Previous symbol), and j(n) = 1,2,...,P e' °

Define g. = max gi(d)
1 d , i d (21)

Here d is a particular channel state assumption

associated with the branch in question. We assume

the branches are numbered in order of the value of

p and g l(n)is the largest value of the metric

consistent with the state assumption on the previous

symbol and i(n) = 1,2,...,eVo

Finally,

1 - F stands for: set F equal to 1

Ln i(n± L set Ln+ 1 equal to L +i(n)

n j (n) Ln+l

n 4 1 n-4"n

i(n) •i-i (n)

T To--pT

n+1 T

" " " " " L +g.(n j(n)

"! " substitute n+l for n (increase

n by one)

" " substitute i(n)-~ for i(n)

" " substitute T + To for T

Scompare L and T; follow

path marked 4 if Ln+1I T.
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7
The operation of the decoder is essentially the

same as the operation of Fano's decoder in the case

of the DMC. The difference lies in the fact that

when the decoder is moving forward (i.e., following

a path for which L is continually increasing) the
n

only state hypotheses utilized are those that maxi-

mize the metric for each particular message hypothesis.

When the decoder is moving backwards (i.e., following

loop B or loop C) for the first time however, we

allow the state assumptions to vary over all states

consistent with the state decision on the branch

preceeding (in order of depth into the tree) the

branch presently under investigation. We need never

allow this variation for more than one step backwards.

This follows from the fact that with Markovian

statistics the state sequence can always be forced

into any desired state in a one step transition

(under the present hypothesis that all states are

reachable from all other states in a one step transi-

tion). Thus, if a particular path in the tree with

a particular channel state sequence hypothesis is one

that the decoder can follow successfully, we can always

move from this same path with a different state

sequence hypothesis to the desired one in a one step

transition.

The flow chart presents an equipment whose com-

plexity is independent of V. It is intuitively clear

that as the parameter)increases the required speed

of ooeration of this equipment must increase. We



thus evaluate an upper bound on a quantity relating

to this required speed in Chapter V under the

assumption that = 00 .

The quantity which is bounded is the average

number of times the decoder follows loop A per node

decoded. What we mean by "per node decoded" is the

following: We shall find (see the next few para-

graphs) that the decoder follows a path which agrees

with the transmitted path almost everywhere with over-

whelming probability. To ultimately follow this path

the decoder may examine a given branch more than

once (by being forced back through loop B or C).

Once the decoder has examined a given branch on the

ultimately accepted path for the last time, we may

say that the node(i.e., the information symbols)

preceeding this branch has been decoded. It is

intuitively clear that most of the time the decoder

will follow loop A if it is to ultimately get anywhere.

Thus the bound on the average number of times loop

A is followed per node decoded gives a reasonable

measure of the speed with which the decoder must

ooerate. The result obtained in Chaoter V is that

for rates of information transmission smaller than

a rate R , this number of traversals of loop A

(i.e., the number of computations) is bounded while

for rates exceeding R it is not.
comp



An investigation of the decoding algorithm leads

to the conclusion that the decoder never makes an

irrevocable decision. This follows from the fact

that the decoder may move backwards in the tree

(i.e., to the left) by following loops B or C.

There is no limit to how far back the decoder may

move. We may obtain an appreciation for the proba-

bility that the decoder ultimately follows the correct

path, by inhibiting the ability of the decoder to move

backwards indefinitely. If we constrain the backward

motion to a fixed number of nodes, which we call a

constraint length, we can then determine the proba-

bility that the decoder has made an incorrect decision

at any node once it moves a constraint length ahead

of this node. It is this event which precludes the

nossibility of the decoder ever moving back to change

its incorrect hypothesis. This probability is

upper bounded (as in the probability that the decoder

is ever required by the algorithm to move back more

than a constraint length) under the assumption that

c) = co. The reason for this assumption will become

clear in the next paragraph. It is found that both of

these Drobabilities decay exponentially with the

constraint length for rates smaller than R Thus
Scomp

if the rate of information transmission is smaller

than R we are assured that, except for the errors

39



to be discussed in the next paragraph, the decoder

will eventually follow the correct path if the con-

straint length is infinite.

There is a class of errors which the decoder

can make which we call undetectable errors. These

arise in the following fashion. Suppose the decoder

follows a path which is correct to a given node, but

then is incorrect for the next, say, k information

digits, and then is correct once more for the informa-

tion digits beyond this point. Because of the method

of encoding the correct path will differ from this
k

oath in k + i)-) o ) log2e branches, but will
Slog 2 e 0 2

agree everywhere else. If the metric on the correct

oath has a monotone increasing lower bound, then so

does this particular incorrect path since the two

agree in all but a finite number of branches. Thus

4h n it ci 4 csa ed Le- +i v h the d

may follow this particular incorrect path and yet

never detect that such an event has occurred. The

results quoted in the previous paragraph establish

that with orobability one, the decoder will detect

an error that occurs from its following a path which

is totally distinct from the correct path beyond a

given node. Undetectable errors arise only on paths

which are not totally distinct from the correct path.

40
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In Chapter V we will find an upper bound on the

average number of undetectable errors made per node

decoded. It will be found that this bound decays

exnonentially with 'V and hence all errors may be

reduced in probability to arbitrarily small values

by increasing 9 .

The probability that the ultimately accepted

channel state sequence is correct is ignored. We

in effect consider all errors in the channel state

sequence to be undetectable. It is for this reason

that we allow the decoder to change state hypotheses

only one step into the past. We justify our viewpoint

by observing once more that if the decoder follows

the nath corresponding to the transmitted information

digits, then errors in the channel state sequence are

of zero cost.
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(Ii )( b 1-A (1-A)
b  - ( a bi )

i=1 i i=1 i=1

(3)
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Chapter III

Mathematical Preliminaries

We interrupt the flow of the thesis at this

point to introduce some mathematical results which

are required for the following chapters.

A. Convexity and Some Standard Inequalities

We list here some standard inequalities which

will prove of use in the sequel. Proofs and discus-

sion of these inequalities may be found in Hardy,
10

et.al. . Throughout, we take A to be a real number

with

0 o• • (1)

The Inequality of the Algebraic and Geometric

Means:

Let a,b O0. Then

x (l-A)
a b +Aa + (1- X)b (2)

Holder's Inequality:

Suppose a.,b- Ž0 ; i=1,2,...,N

Then

N N 1 k N 1
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Two additional inequalities of interest are:

N

i=1 i

and. if

L- b =
i=l i

(i.e., b ij is

N

• ba X
i=l 1 i

a probability distribution) then

N

_ (i b.a ) (
i=l I1 (I

6)

Minkowski's Inequality:

Suppose a. i 0; i=l,2,...,N ; j=1,2,...,M. Then

N M 1 M

2 ( ai ):
i=1 j=1 j=1=

N

( a i )
i=l

(7)

We next quote a few results on convexity. A good

discussion of these results is given in Blackwell and

Girschick 2

A set, C, of elements c is said to be a convex

set if for every c,c'EC and every Xsatisfying
equation (1) we have:

Ac + (1-A)c' C )

a.
1

(4)

(5)

4 z

(8)



1

eorem 
: 

necess 

d

tion that r* minimize F(p) is that: there exists a

real number,A, such that:

44
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The elements may be vectors.

A function, F(c) is said to be convex over the

set, C, if

F(Ac + (1-A )c') AF(c) + (1-A) F(c') (9)
If the inequality is reversed the function is said

to be concave.

A sufficient condition for convexity of F(c)

where c is a real number in some interval and F is

twice differentiable is that:

2
d22 F(c) - 0 (10)de

This condition is also necessary if F is

differentiable, but a non-differentiable function

may be convex.

Clearly the set of n-dimensional probability

vectors

S= (plP2"",p n)

M

P. ; = (11)
1 i=l i

is a convex set. In this event we have the following

snecial case of the Theorem of Kuhn and Tuckerl .

mTh 1 A



_ F(p) - A ; p > 0 (12)

and

P -
= I p  - A; p = 0 (13)

Equation (13) allows us to determine if in fact

the minimum occurs on the boundary of the set of

probability vectors (i.e., for some components of the

vector being equal to zero).

B. Bounds on Functions over a Markov Chain

In this section we discuss bounds for functions

defined over a finite state Markov chain. The basic

results stem from Frobenius's theory of non-negative

square matrices (see Gantmacher 9 ). The essentials

of this theory are given below as Theorem 2.1, We

begin with a discussion of irreducible non-negative

matrices.

A B x B matrix Z = (zij) is non-negative

(i.e., Z - 0) if

Z O0 for i,j = 1,2,...,B (14)

The matrix Z is said to be irreducible if it is

impossible by a simultaneous permutation of rows and

columns of Z to put it in the form:

45



Z , O

Z 0Zz3 z 2

where Z and Z are square matrices. Clearly the1 2

probability matrix of an irreducible Markov chain

is an irreducible matrix.

A vector v = (v ll12,...,v ) is said to be

greater than a vector v 2  (v21,v 2 2 ,...,V 2 B)

(i.e., v 1 v2 ) if Vlj v 2j  ; j=1,2,...,B (15)

Frobenius's theorem then states:

Theorem 3.2:

An irreducible non-negative matrix, Z,

has a largest positive eigenvalue u which has the

following properties:

1) u is a simple root (i.e., of multiplicity

one) of the characteristic equation

Z - uI = 0 (16)

2) If w is any eigenvalue of Z then

W I u (17)

3) There exist positive left and right eigen-

vectors v and x of Z with eigenvalue u

i.e., Z x = ux ; x>,0

Y Z = uy ; V >0 (18)

46
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z(Xt - (1- )t ) _Z(tl ) z(t )1 2 1 2

SXz•(t ) + (l-A) z(t ) (22)
1 2

The first inequality above comes from the logarithmic

convexity. The second inequality comes from the

inequality between algebraic and geometric means

(Equation (2 ) ).

47
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4) If w is a positive eigenvector of Z then

w has eigenvalue u.

5) Let )> 0 and w> 0 satisfy the equation

Z 7 !.A w (19)
,

then A uu

where the inequality is strict unless w is an eigen-

vector of Z.

6) u is a monotone function of the matrix elements.

That is, if any matrix element is increased, then u

is increased.

In the sequel we will be interested in exponen-

tial bounds for the powers of the matrix Z (t) where

Z (t) = (z.ij(t) ) (21)

and each z..(t) is positive, twice differentiable,
1j

and logarithmically convex in some range of real

t, to t t t . We say a function, z(t) is logari-

thmically convex if ln z(t) is convex. This implies

that z(t) is convex since for 0 - X ) 1



Now let the nth power of Z (t) be

S (t = (z (t) ) (23)

then we have the following theorem:

Theorem 3.3:

Let Z (t) be a B x B non-negative irreducible

matrix with elements z. (t). The elements,
(n)(t) f the nth Jl

z. (n)(t), of the nth power of Z (t) satisfy the

inequality:

B

Al(t) (u(t) )n. z (n)(t) ý A (t) (u(t) )
j=1 ij 2

(24)

Here u(t) is the dominant eigenvalue of Z (t)

and A (t) and A 2(t) are positive and independent of

n. Furthermore, if the z. (t) are all twice differ-Ij
entiable and logarithmically convex, in a region

t - t 4t , then A (t) and A 2 (t) are twice differ-

entiable and u(t) is twice differentiable and logari-

thmically convex in the region t 0 t 4 tl

Proof:

Let b(t) be a positive right eigenvector of

Z (t). Then
B

T- z..(t) b.(t)= u(t) b (t) (25)
j= 13 3 i



and

(n) (t)(t)
j=1 ij

Now since b(t)

component b,(t) and

n
(u(t) ) b (t)b (t) (26)

is positive it has a smallest

a largest component b'(t). Thus

(u(t) )n

S 1
b'(t)

1
b.*(t)

b!(t)

b*(t)

Here A (t)

and

B

j='
(n)

z (t) b
ij j j

(n)

(t)

(t) b (t) =
J

(u(t) )

= b*(t)
b (t)

A (t) =
2

b'(t)

b*(t)

are positive and independent

Next observe that u(t) is a solution of the

equation:

(t) = 0 (29)

49

b*(t)

b'(t)

(u(t) ) h (tI)

b'(t)

(n)

1= -
(t)

b.(t)

b*(t)
(u(t))

(27)

(28)

of n.

v !

i=l i



The left hand side of this equation is a poly-

nomial of degree P in v, each coefficient of which

is a polynomial in the elements z..(t) of Z(t).
13

Since these elements are twice differentiable, it

follows that u(t) is also.

Now since u(t) is a simple root of Equation (29)

it follows that the matrix

Z(t) - Iu(t) = (zij(t) - i u(t) ) (30)
13 ij

has rank B-1. Furthermore, since the matrix Z(t)

was irreducible, the vector a with componentsI a = 1 (31)
1

a. = 0 ; 1Zi 4 B (32)

must be linearly independent of the first row of

Z(t) - iu(t). Thus the B x B matrix Y(t) formed by

deleting the first row of Z(t) - Iu(t) and replacing it

with a must be non-singular. Thus the equation

y(t) E (t) = (1,0,0,...,0) (33)

serves to specify b(t) which is independent of n.

If all coefficients of the b (t)'s in the above
i

equations are twice differentiable, it follows that

b (t)'s are also. Thus A (t) and A (t) must be
i 1 2

! twice differentiable.
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Now let t s, r t . Then define the vector
0o

b with components:

b = (b.(s) )
i 1

(b.(r) )1

for 0 4 X 4 i. Then we have

- (z s + (l- )r) b

(1- X)
; i=1,2,...,B (34)

j=1 ij

- Z[ (s) b (s) A (r) b (r)
= ij j ij j (

by virtue of the logarithmic convexity of the z..'s.
13

Now arplying Holder's inequality (Equation(3) ) we have

A z (Xs + (1-A)r) b
j=1 13

B B 1-
Sz. (s) b (s) z (r) b.(r)

= ij3 13 3
&--

u(s) u(r)
(36)

Thus by Equation (20) of Theorem 2.2 we have:

) )1-A
u(As + (l-A)r)4 (u(s) (u(r) ) (37)

35)

4,;"
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Thus u(t) is logarithmically convex, if the z..(t)'s

ij
are. Q.E.D.

The above theorem is essentially the same as
13

that given by Kennedy . Our proof differs somewhat

in detail and appears to be simpler. We now prove

Theorem 3~4:

Let V(t) be a non-negative, irreducible matrix

with elements
1

z..(t) t, where the z (t)'s are
13J ij

logarithmically convex in the region t t t .
o 1

Let v(t) be the dominant eigenvalue of V(t). Then
t

(v(t) ) is logarithmically convex in the same region

of t.

Proof: Let b(t) be a positive right eigenvector

of XV(t) and let to 0 s,r tl. Then define the

vector b with. components

"s

•s+(l-4)r
b - (bi (s) )

for 0 X- 1. Then we have
B

Sz. *(>s + (l-A)r)
j=1

B _l

S ( 1~Z z. (S)

(b.(r)1

(l- X)r
X s+(1-X)r

(38)

1
s + (l-A)r

As+(l-• )r r As+(1-)r
b.(s) (rb

ij i

(39)
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by virtue of the logarithmic convexity of the z (t)'s.
ij

Now applying Holder's inequality (Equation 3) we have:

L. z. (,s
j=1 13

£4 . .(S)
AsT+(l-A)r I

b.(s F
j=l

11
r

z (r) bi(r)
ij

(-1-X)r
xs+(l-A)r

- (v(s) )
X s

As+(l-A)r

Thus by Equation (20) of Theorem 2.2 we have:

X (l-)rA)
(v (s) ' Xs +(l-A)r v(r ) rJ As + (I-A1r

It follows then that

X s +(l-A)r
(1-A)

-[(v(s) )s] (v(r))r

(42)

Q.E.D.

We now prove the following corollary to Theorem 3.3.

(1-A)r
(s+(1-X)r

(v(r) )
(40)

v(As +(l-)r) 4

v(As +(1-A)r)



Corollary (3.1):

Let V(d(n) ) = g(d )
-0

TT v( )
k=1 k

A
where v(dk ) is a non-negative function defined on the

state transitions of a Markov chain and g(d ) is a
0

non-negative function defined on the states. Then

(44)Ln V(d(n) ) - A^tD

where/(A is the dominant eigenvalue of the matrix

O = v(i,j)

and A is positive and independent of n.

Proof:

Let ~n =(v(n)(i,j))

Now by Theorem 2.3 we have:

B

i Z g(i)v(n)(i,j) 4 A
i=l j=l

where the constant, A, includes the factor g,+i).

Next observe that by the definition of matrix multi-

nlication

Z
d =1I
k-I

v(d k_) v (dk)

54

(43)

(45)

(46)



defines the element v ( 2 ) ( d _ , d ) of the matrix 2(~dk-2 oftemtiJ

Thus, upon itterating the sum on Dn in Equation (44)

and performing the innermost n-1 sums, we recognize

the identity

B B

V(d(n) ) I X g(i) v (i,j) (47)nD i=l j=l

The Theorem then follows from Equation (46).

In like manner we prove the slightly more

complicated

Corollary 3.2:

m n

Let V(d(n) )= g(d ) v(dk) w( )
0o k= r-m+l r

(48)

where g(d ) and v(dk ) are as in Corollary 2.1 and
o k

w(d ) is a positive function defined on the state
r

transitions. Then

5 n-m
V(d(n) ) A m  (9)

D
n

where w is the dominant eigenvalue of the matrix (w(i,j)).

The proof is simply an elaboration of the pre-

ceeding nroof!

We close this chapter with the observation that

·I-i
r; ' I - "



the lower bound of Equation (24) guarantees that the

unper bounds of the preceeding corollaries are ex-

nonentially tight.

I



I

block Decoding for the DFSC

A. Introduction

In this chapter we obtain an upper bound on the

block error probability attainable with block codes

for the DFSC.

The method of determining a bound on attainable

error probability will be to upper bound the average

probability of error where the average is with respect

f to an ensemble of codes in which the various codewords

are selected independently by pairs and the letters

within each codeword are selected independently from

a common distribution given by the probability function

P(x). This ensemble of codes is precisely the ensemble

used for the same purpose in work on the DMC by

Shannon1 8, Fano, and Gallager . The utility of the

resulting bound resides in the theorem

Theorem 4.1: Let Pe be the average probability

for block decoding error over the ensemble of random

codes. Then there exists a code in the ensemble with

orobability of block decoding error less than or

equal to Pe. Furthermore, a code selected at random,

in accordance with the statistics of the ensemble,

will, with probability greater than or equal to
1

1 - a, have a probability of block decoding error

less than or equal to a Pe.

The proof is standard and is not repeated here.
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We use the symbol Pe,m to refer to the probability

of error when message m is transmitted. By the

probability of error Pe for a particular code we

mean:
M

Pe = 1 Pe,m (1)
M m=l

In addition, we denote the average over the ensemble

of Pe,m by Pe,m.

SB. Probability of Error Bounds

In this section we will develop an upper bound

to the probability of error averaged over the ensemble

of random codes. The bound was first developed using

generating function arguments. Subsequently, the

bound was obtained using arguments based on those

given by Gallager .in his proof of the random coding

bound for the DMC. We present the latter proof here!

Details of the random coding argument are omitted

since they are covered adequately in the literature!

We first need the

Lemma 4.1

Pe,m tL Pr Pr(y(n)/x (n),d*(n)) Pr(d*(n))

Pr(y(n)/x (n),d(n) ) Pr(d(n) )m
for any m' l m and any d*(n) (2)

where d(n) is the channel state sequence that actually

occurs.



Proof:

Pr(y(n) /x
m

(n) ,d(n)

) Pr(d'(n)max
d'(n)

The Lemma follows from Equation

rule (Equation(2.15)j).

We now prove:

Lemma 4.2

1

Pe M Pr(d(n)) 4+

(3) and the decoding

nPr(x(n))
Xn

(4)
Proof:

Define the variable, &m(y(n)

) (vy(n)

Equation

= 1 ; if event in square

(2) is true. B&(y(n)m

brackets in

) = 0 ; otherwise.

1
1+tv

Then -
m D*

Pr(vn/x (n);
-mnm'=m d*(n))

1
d(n) )r~

Pr(d*(n) )

-e Pr(d(n))

(5)

Equation (5) follows from the fact that when

= 1 at least one of the terms in the summand

exceeds 1, and when =m 0 the right hand side is
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) Pr(d(n) )

(3)
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I_ _ _

Pr(y(n) /x(n),d'(n)

1 1+

1+C
Pr(y(n)/xIn),d(n))

Pr(y(n)/Y (n) ;



positive. Now when message m is transmitted the

pair (Y(n),d(n) ) occur with probability

Pr ( (n) /x
m
(n) ,d(n)

Lemma 4.1 and Equation

Pe,m = n Pr(y(n )Yn Dn

yn D n

• I T Pr(d
m'=m D*n

) Pr(d(n)). Thus by virtue of

(5) we have:

/x (n),d(n)
-m

1j-e
) ) Pr(y(n)/x

m

-(n)

1

(n) ,d(n)

1

) Pr(y(n)/x
m'

(n) ,d*(n)

(6)
Now by assumption on the independence of codeword

choices for the random code assignment we have:

Pr(Y/x (n-n

1
T~e

);d(n))

Pr(x (n)
-i1 '=m Dn

1
d +(

Pr(d*(n))

Pr(y(n)/x
m'

(n) ,dt(n)

We recognize TT Pr(x(n),,) to be a probability
m'=m 1 w

function. Hence fore 4 1 ; we have from Equation (2.4)
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Pe,m
Y D

Pr(d(n)) n Pr(x (n))
Xn "m

-I-rnFT Xn
m

1 e
1
B 1+ (7)

I

) Pr(d(n))&m(y(n)

1
l~e,.

I

`r



Pe,m Pr(d(n) Pr(x (n)) Pr(y(n)/xyn Dn X n m M (n);d/m ~
m

SPr(d*(n))l Pr(x (n))Pr(y(n)/x (n) d*(n)
m'=m D*n  -X n  -m m -

(8)
We now recognize that the expression inside the

curly brackets of Equation (10) is the same for each

m' and is also the same as the corresponding expres-

sion outside the curly brackets. Thus Pe,m is inde-

pendent of m and hence by Equation (4) we have:. _ 4+e

Fe = (M-1) (d(n)) Pr(x(n))Pr(v(n)/x(n),d(n))
X

(9) J

Now bound (M-1) by M. Q.E.D.

This Lemma is basic to all of the results to be

obtained below. We now obtain a bound that depends

exnlicitly on the block length, n, and hence establishes

a coding theorem: The bound is given for three dif-

ferent cases of DFSC's.

Case I: Channels inwhich the output specifies

the state: We say that a DFSC is a channel in which

the output soecifies that state , if ilnon knrnwin the.

output symbol we know, without ambiguity, the state

occupied by the underlying Markov process. In Figure .. l

6 1



we give an example of a channel in which the output

specifies the state. We choose, in this case, to

associate the transmission probability functions

with the states rather than with the state transi-

tions, because of conventions which will put our

bound in the same form as that previously obtained

by Gallager (unpublished) for this case. For con-

venience we write our transmission probability

functions as p(y/x,d). We now have:

Theorem 4.2:

The average probability of error for block

codes of length n for a DFSC in which the output

snecifies the state is bounded by

Pe A e - o p) RJ (10)

-E (f,•p)
where e o is the dominant eigenvalue of the

matrix H1(q) where

-E p(?,)
H ()= (q.. e o0 ) (11)1 ij

and

L 1

E ( ,) - n P(x)p(y ,j)
oJ y= x=l

(12)

P = (P IP ,...,pk )  (1k)
1 2 k
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V p

q
0 4 p, q 1

p (y/x,1)

1 2 3 4 5 6

1-a a/2 a/2 0 0 0

b/2 1-b b/2 0 0 0

c/2 c/2 1-c 0 0 0

0 - a,b,c - 1

p (y/x,2)

1 2 3 4 5 6

0 0 1o -d d/2 d/2

0 0 0 e/2 1-e e/2

0 0 0 f/2 f/2 1-f

d,e,f _1

Figure 4.1 A Channel in which the Output Determines

the State
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and Tp - P(k)= Pr (x =k) (14)

(recall that there are K input symbols for the

channel).

Finally, A is independent of both M and n.

Proof: Observe first that once we have assigned

the transmission probability functions to the states

we may drop consideration of d and take dI as the
o0

initial state. Then interpreting d(n) as (d1 ,d2 ,...,d)

we observe that

Pr(y(n) / x(n), d(n) ) = 0

unless d(n) is the particular state sequence specified

by v(n). Thus the sum in curly brackets in Equation (4)

has only one non-zero term and hence the sum may be

removed from the brackets. The resulting bound on

error probability is then:

1

e ýE M Pr(d(n)) Pr(x(n)) Pr(y(n)/x_(n),d(n))
D Y X

(15)
n n

Iterate the sums on Yn and Xn and define

L K 1 -w +
v(d ) = Pr(d. ) P(x)p(v /x ,d.)

i i-1 x =1  i i

{ (16)
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Here we use the fact that for random coding

Pr(x(n) )= T P(x ) (17)
i=l i

Then from Corollary (3.1) we obtain the desired

result.

Case II: Channels with input rotations

Let Z be a matrix representing the transmission
d',d

nrobability function p(y /x,d' ,d). Thus

Z = (p (d',d) ) (18)
d',d kL

where

= p( / k,d',d) (19)

We say that a DFSC is a channel with input rotations

if for every d' and d the matrix Zdd may be obtained

from the corresponding matrix for every other dI and

d by a permutation of rows alone. An example of a

channel with input rotations is given in Figure 4.2.

Now let P(x), the probability assignment for the

random codes, be restricted such that

P(x) = P(x') (20)

if there exists any two state transitions d',d and

c",c such that

(d',d) = p (c',c) ; all y 1,2,...,L
x',y X',

(21)



-a-b a b
Q = c l-c-d d

f f 1-e-f

0 - ab.c,d,ef c 1

p(y/x,1)

1 2 3 4

1/8 1/8 1/4 1/2
1/3 1/3 1/6 1/6
1/16 5/16 7/16 3/16

2/5 1/5 1/5 1/5

6/11 1/11 3/11 1/11

p(y/x,2)

1

2

3

5

1 2 3 4

1/3 1/3 1/6 1/6
118 118 1/4 1/2
1/16 5/16 7/16 3/16

2/5 1P/ 1/5 1/5

6/11 1/11 311 1/11

y
x 1 2 3

1 1/3 1/3 1/6 1/6

2 1 1/8 1/ 1/2

3 2/5 1/5 1/5 i/5

S /16 5/16 7/16 3/16

S6/i !!ll i3/11 1/11

r Fi ure &.2 A Channel with Inrut Rotations
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In effect we partition the input symbols into disjoint

sets such that all the elements in a given set satisfy

Equation (21) for some other element in the set and

some oair of state transitions. Then to all the

elements in a particular set we assign the same pro-

bability in the random code.

In the example of Figure 4.2. these sets are

x1 = (1,2)

X2 = (3,4) (22)

X = (5)

and the orobability assignment is constrained such that

P(1) = P(2) = p

P(3) = P(4) = q (23)

P(5) r

where we have

2p + 2q + r = 1 (24)
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We then have:

Theorem 4.3:

The average probability of error for block

codes of length n for a DFSC with input rotations,

and P(x) restricted as in Equation (20), is bounded by

Fe '- A e
-no(eI,2) - FR (25)

Eoij (e'P)

Fdominant eigenvalue of the
matrix H(q)]

where H(?) = (qij +t )

and Eoi (t, ) = - In p(x)p(y/x',ij)1

(26)

and is independent of i,j. Furthermore, A is inde-

nendent of M and n.

Proof: Observe that under the restrictions on P(x)

1

Pr(x(n) ) Pr(y(n)/ x(n),d(n) )1+? is independent
Xn
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of d(n). This factor may therefore be taken out of

the curly brackets in Equation (4). The resulting

bound is:

11+
Fe 4 M Pr(x(n) ) Pr(v(n)/x(n),d(n) ) e

1
Dn Pr(d(n) (27)

Iterating the sums on yn and Xn we have:

1+Q

Pe e oij Pr(d(n) )

(28)

Then identifying

1

v(d.) = Pr(d / di )
(29)

and applying Corollary 3.1 we obtain the result of

( the theorem.

Case III: General DFSC: In this case we have the:

Theorem 4.4:

The average probability of error for block

codes of length n for the DFSC is bounded by the

exoression

e A a-n Eo ( ,P)
S)3U IP., f e



Eo(I E)
where e 1+ C is the maximal eigenvalue of the

matrix H(W).

Sij

1
1+q E +

and Eoi j (,p) is given by Equation (26) but is de-

nendent on i and j. Furthermore, A is independent

of M and n.

Proof:

We apply Minkowski's inequality (Equation (3.7) )

to Equation (4). Identifying:

1
Yj = i : D j ; 1+ = (32)

1+

Pr(d(n) Pr(x(n) )Pr(y(n)/x(n),d(n) )

We obtain the result:

= a..I j

Pe - M • Pr(d(n)
f4n - C1

1+#

\%yf - 'diPr(x(Q 'Pr(v(n)/x(n),d(n) 1I
(n3

(33)

(31)



Next iterate the sums on yn and Xn and define:

1
0V(.1+(P

v(d.) P(x. )P(Yi/xAdj)V =1 xi=1 1

(34)

Then applying Corollary 3.1 we obtain the desired

result.

C. Properties of the Bound

In this section we investigate various properties

of the bounds of Theorems 4.2, 4.3, and 4.4. We begin

by observing that if a matrix is multiplied by a

constant, all eigenvalues of this matrix are multiplied

by this same constant. Thus the bound of Theorem 4.3

is identical to the bound of Theorem 4.4. In the

proof of Theorem 4.4. we used Minkowski's inequality

which was not used in Theorem 4.3. The conclusion

we reach is that for channels with input rotations ,

Minkowski's inequality holds true as an equality if

the random code probability assignment is restricted

as in Equation (20). We may then treat the results

of Theorem 4.3 and 4.4 as the same.

We next observe that the functions E (B p )

are precisely the functions which appear in Gallager's

bound
S-n(E (e,E) - R)

Pe - e o (35)

for block coding for the DMC. That is, if we consider

p(y/x,ij) for fixed i,j as the transmission probabilitv
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function for a DMC, then the function E (P,_) which
O

appears in Equation (35) is just Eoij(., ). Gallager

has shown that this function is a twice differentiable,

concave function of f for a fixed p. We then have:

Theorem 4.5:

The functions Eo(Q,p) of both Theorems 4.2 and

4.4 are twice differentiable, concave functions of

for fixed E.

Proof: From the observations above we have that

- Eoi .,)
q.. e oi is a twice differentiable, logarith-

2.

mically convex function of ( for fixed p. For

Eo( ,r) of Theorem 4.2 the desired result then follows

from Theorem 3.3.For E ((,2 ) of Theorem 4.4, the

result then follows from Theorem 3.4.

We now observe that the matrix H(O) is stochastic

(in both cases of interest) and hence has a dominant

eigenvalue equal to 1. Thus, E (O,p) = 0. The

possible behaviors of E (f,r) for fixed r, are then

as is shown in Figure 4.2.

Now define:

E (R,p) max
In4rtI

(36)

We then have, trivially, for all cases of the DFSC:

-n E(R,D)
Pe •- e (37)

From the concavity of EO () we may write:

Eo(0 n) e R



1 I

Max Eo(e) = Eo (1)
e

Eo(e, ) I

1
I
I
I
p

Max

So0
Eo(e) = E (t o )

Eo () = ,o(O)

Figure 4&.3 Possible Behaviors of Eo(4?,E)
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Theorem 4.5:

If 3E (~,P )Io

Then E(Rip) = 0

If E(,)

Then E(R, ) = E0 ( ,P)

l (38)

where is picked such that

R Eo(, 0 )

If, furthermore,

EE 0(, ?)

E(R,2) E0 (1, ) -

I

for R 4

R

(41)
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Finally, for all rates such that Equation (3 9)

may be satisfied we have:

I--9
(42)

Proof: All results of the theorem are obvious

except Equation (42). For this, set

E(R,p)

R

(R p)I Eo (? o )]
R. I

(43.)

The possible behaviors of E(R,p) are then as

is shown in Figure 4.3. The situation in Figure 4.3

is exactly that encountered in the analysis of the

DMC.

We may now deduce:

Pe e
-n E(R)

(4.5)

(45)where E(R) = max E(R,p)

This maximization cannot be achieved analytically

in any cases of generality. Clearly

E(R) = max max
f I (46)
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E(R .n)
slope = -1

slope = -e

Corresponding to Figure 4.3a

slope = - o

slope = -e

Corresponding to

E (R, )

Figure 4.3b

Corresponding

R

to Figure 4.3c

Figure 4.4 Possible Behaviors of E(R,p)
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and the max's may be taken in any order. If the max

on r is evaluated first we may then construct E(R)

grarhically as shown by Gallager . In general, to

perform the max on p first we may use the fact from

Theorem 3.2, that the dominant eigenvalue of a

positive matrix is a monotone function of the matrix

elements. Thus if each element of the matrix is

decreased or kept fixed, the dominant eigenvalue

of the matrix decreases.

For the special case of channels with input

rotations, we observe that the constraint on the

random code probability assignment defines a con-

vex set of probability vectors D. Furthermore, in

all cases, Eoi(, p ) is a concave function of r.

(This follows from Gallager's results on the DMC).

Thus, in this special case we may observe that to

maximize Eo(f,r) we may maximize Eoij(f,•) and

conditions on r to achieve this maximum are given

by the Kuhn-Tucker Theorem (Theorem 3.1).

Finally, we observe that for situations in

which there exists a r such that

it is appropriate to define the capacity, C, of

our decoding scheme as:
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C = max E (p~,)i

= 0 (48)

D. Further Prorerties of the Bounds

In this section we investigate the "goodness"

of our bounds in the sense of their exponential

tightness and relation to bounds on maximum likeli-

hood decoders for the DFSC. The discussion is

qualitative rather than quantitative for reasons to

become obvious below.

Our first observation is that for the special

case of a DMC (in which there is only one state in

the Markov chain) our bound is equal to that found

by Gallager .for maximum likelihood decoding. This

follows from the fact that in this special case our

decoder is, in fact, maximum likelihood.

In more general cases, we may make the following

observation: Our Lemma 4.2 may be replaced by the

following Lemma for maximum likelihood decoding.

Lemma 4.3:

The average probability of error for maximum

likelihood decoding of block codes for the DFSC is

bounded by:
1+

-- 11

fe M Pr(x(n) ) Pr(v(n)/x(n)
yn 

(n)

O - 1 (49)
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This result appears an an intermediate step in

Gallager's derivation of his bound for the DMC. The

argument is equally valid for the DFSC. Now observe

that:

Pr(v(n)/x(n)) = Pr(y(n)/x(n),d(n)) Pr(d(n))

(50)
Then by anplying the inequality of Equation (3.4)

we have:

11 -1

Pr(yn)/x(n)) D Pr(d(n)) Pr(y(n)/x(n),d(n)
Dn

(51)

By substituting the above bound in Equation (49) we

obtain our Equation (4). It then follows that the

weakness of our decoder relative to maximum likelihood

decoding may be measured in terms of the weakness of

the bound in Equation (51).

Next observe that for channels in which the state

determines the output, there is only one non-zero

term, for fixed y(n), in the sum on the right hand

side of Equation (50). Thus in this case the equality

holds in Equation (51) and our resultant bound (as

well as our decoding method) is maximum likelihood.

For soecial cases in which x(n) and d(n) uniquely

specify y(n), the inequality of Equation (51) may be

investigated in terms of the number of sequences d(n)
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which jointly with x(n) specify a given y(n). If

the number is at most algebraic in n, then the

bound of Equation (51) can not be exponentially

wrong. This means that:

1

lim n In Pr(y(n)/x(n)

1 1
11 1+±= lim n In nPr(d(n) ) Pr(y(n)/x(n),d(n)

n .4 Dn

(52)

Kennedyl3 has called such channels (in the

binary input-binary output case) Type I Channels.

For such channels, our decoder is asymtotically as

good as a maximum likelihood decoder.

The important question of whether any given

physical channel can always be modelled as a DFSC

with the property of Equation (52) remains unanswered.

Such structural questions appear to be far too diffi-

cult for ready solution.

At this point we are able to justify our state-

ments regarding choice of models which were made in

Section A of Chapter II. The cost of poor modelling,

when using our decoder, is easily shown by the

example of the memoryless Binary Symmetric Channel.

Consider the alternate models shown in Figure 2.2.

It may be readily checked that for the two state

model our bound (as given by Theorem 4.3) agrees with



the bound which may be obtained by considering the

channel as memoryless. However, for the 2m state model

the function Eo( ) (the inputs are taken equally

likely) which is obtained for the two state model is

decreased by the quantity ?ln m. Hence for large

enough m, the form of E (?) can change from that

shown in Figure (4.la) to that shown in Figure (4.lc).

As a consequence, we go from the correct bound

to no bound at all.

Finally, let us consider the degredation in our

bound of Theorem 4.4 introduced by the use of

Minkowski's inequality. We have already observed

that for channels with input rotations we suffer no

loss at all from this inequality. On the other hand,

by comparing Theorems 4.2 and 4.4, we see that for

channels in which the output specifies the states,

we may, indeed, suffer great loss. The extent of the

weakness introduced by this inequality is a subject

for future investigation.

E. Final Comments

We have presented a decoding technique for which

unper bounds on error probability may be obtained and

evaluated. The major virtue of these bounds lies in

the fact that we may now replace vague questions,

such as "What can be said about decoding for time-

varyin7 channels?" by the more specific questions

nosed in the preceeding section of this chapter.



Although we are unable to answer these questions,

at least certain fundamental issues have been

brought to light. What we offer is a set of results

against which later analyses and results may be com-

pared.

There is one final matter we wish to discuss

before closing this chapter. There has long existed

the question as to whether or not, by using knowledge

of the memory in the channel, it is possible to obtain

better error probabilities than by ignoring such

memory. To answer this question we must assume that

there is a data processing scheme which converts the

given channel to a memoryless channel against which

coding comparisons can be made.

It is important to emphasize that this comparison

must be fair. For example, we may consider the case

of a continuous channel with additive gaussian noise

and a stochastically varying phase shift. Suppose

we signal over this channel with orthogonal signals.

We first observe that to fit the channel to our model

we may quantize the phase to some desired level.

Assuming that, for the resultant model of the channel,

Equation (52) is satisfied we may state the following

from physical considerations:

1) Our bound is always poorer than what is

achievable with coherent detection and known

phase.

2) Our bound is always as good as or better than



what is achievable with incoherent detection.

It is clear that it is not fair to compare our

results to those for a coherent receiver. On the other

hand, it is not clear that incoherent detection repre-

sents a good conversion of the channel to a memory-

less channel.

This example presents another interesting

question. If we quantize the phase to a very fine

level, then the resultant Eoij(e,p) functions will

be relatively large, but the number of states in the

model will be large. In some cases, this large

number of states may cause a deterioration off-setting

the effect of the large Eoij (,p)'s on our bound.

It may then be true that an optimum level of quanti-

zation exists. The investigation of this optimum

quantization deserves to be pursued. It is clear

that resultant error probability for a system employ-

ing such optimum quantization will not be better than

true maximum likelihood detection which will perform

annropriate integration of the (continuous) distri-

bution on the phase.

To return to the question of utilizing memory

in decoding, consider the following example (due to

Kennedyl3).

We have a binary input-binary output channel

with two states having the Markov transition proba-

bilitv matrix



1 - p P I; Pt)

p 1 - p

State I is a 0 state and state 2 a 1 state as in

Figure (2.1).

There is a temptation in such cases to define

for comparison purposes a memoryless binary symmetric

channel whose cross-over probability is equal to

the stationary orobability of state 2. In this

examnle, the resultant channel would have capacity

eaual to zero. On the other hand an evaluation of

the aoplicable probability of error bound (Theorem

4.3) shows that the E0 () for this example is equal

to that of a memoryless Binary Symmetric Channel with

cross-over rrobability p.

We can in one special case make a reasonably

fair estimate of the cost of time variations.

Sunpose, that for some r, Eoij(e,g) is independent

of i and j. When such a situation occurs, we say

the channel is state indeoendent for this p. Thus

channels with inout rotation are state inderendent

for all t's meeting the constraint of Equation (20).

Other cases can occur. For example, if the matrices

of Equation (18) are such that the matrix for each

state transition may be obtained from that for every

other state transition by a permutation of columns

alone, then a choice of r with all components equal



will yield a state-independent channel.

For state inderendent channels, the bound of

Theorem 4.4 may be written as in Theorem 4.3. We

then have:

Eo ( ) = Eoi ( ) - (1+) n dominant eigenvalue of (q ij

(53)

It is fair to consider the DMC with transmission

nrobability function equal to that of any particular

state transition. For this DMC and the particular

0, Gallager's upper bound on block error probability

may be written as:

- n E oi(p,)) -
Fe - e (54)

By comnarison with Equations (25) and (53) we see

that we may define a loss in reliability due to time

variations, and this loss is wholly attributable

to the rightmost term of Equation (53). In particular,

from Equation (48), the maximum rate at which arbitrary

nrobability of error is guaranteed is reduced due to

time variations by an amount
i 1

SIn ominant eigenvalue of (qij

If the n's for which the channel is state indenendent

include the n which yields capacity for the above



defined DMC, then it is fair to call the above term

the loss in capacity due to time variations.

j



Chapter V

Sequential Decoding for the DFSC

,. The Ensemble of Tree Codes

In this chapter we study the decoder described

in Section C of Chapter II. We will obtain upper

bounds on the three quantities discussed there by

random coding methods similar to those used in the

rreceeding chapter. We begin with a description of

the ensemble of codes.

Consider an ensemble of tree codes with the

following property. At each time, for each possi-

ble state of the encoder, the code symbols generated

are selected independently from the common distri-

bution P(x). Furthermore, the symbols generated

for any state of the encoder at any given time are

selected independently of the symbols generated

for any state of the encoder at any other time. Thus

the symbols along any path of the tree are selected

independently of each other from the common distri-

bution P(x). In addition, the symbols along any

totally distinct paths are selected independently

of each other from the common distribution P(x)

beyond the point in the tree at which they first

become distinct. This property does not hold true

for paths which are not totally distinct. Wherever



the encoder states along any paths are the same at

the same time, the symbols generated at that time

must be the same for each of these paths.

Now consider two paths diverging from a reference

node in the tree code. Let x(n) denote the sequence

of n symbols beyond the reference node along the path

that the encoder happens to follow. Let x*(n) denote

the corresponding sequence of symbols along the

other path. Furthermore, let v(n) and d(n) denote

the corresponding sequences of received symbols and

channel-state sequence that occurs, respectively.

Then, over the ensemble of. codes, the 4-tuple of

vectors (x(n), x*(n), v(n), d(n) ) occurs with

probability:

Pr(d(n) ) Pr(x(n) ) Pr(x*(n) ) Pr(v(n)/x(n),d(n) )

n

= Pr(d) TT P(x )P(x # ) q d ,di P(Yi/x ' d i )

i1 1-1 1

(1)

if the paths remain distinct up to length n. If the

naths merge at length k It n, (i.e., have the same

seauence of encoder states beyond k) then the 4-tuale

occurs with probability:

Pr(d(n)) Pr(x(n)) Pr(x*(k)) Pr(X(n)/x(n),d(n) )
k

= Pr(d ) I P(x.) P(x*') q d (yx. ,di) )
o i= i  1 qd1 1i 1ii

! k P(x.) q d (Y./x ,d
j=k+1 dj- 1 ,d

(2)



and x = x*. ; i=k+l,k+2,...,n. (3)

The properties of this ensemble will be utilized

in the chapter in much the same way that the properties

of the ensemble of random block codes were used in

the preceeding chapter.

P. Bounds on the Performance of the Decoder-Formulation

We will upper bound the quantities: average

number of computations per node decoded, probability

of failure, and average number of undetectable errors

ner node decoded in that order.

We assume, as will be established later, that the

decoder will ultimately follow the correct path with

some choice of channel state sequence (not necessarily

correct).. Now suppose that at some time the decoder

first arrives at a particular node on the correct path.

We will take this node to be the reference node and

take the metric along the correct path at this node

to be It for the particular state sequence accepted

in first reaching this node. By virtue of the manner

in which the decoder chooses its threshold, T, we

must have that upon first arriving at this reference

node

0 -L T 1 T (L)
L1 o

Now consider the set of all incorrect paths

stemming from the reference node. We will upper

bound the average number of times the decoder passes



(See Figure 2. 4)
through loop Awith a hypothesized branch which lies

in this set. In addition, we will bound the average

number of times that the decoder passes through loop

A with the hypothesized branch being the first branch

along the correct path stemming from this reference

node. If we find these bounds for each node along

the correct path taken as a reference node, then

we will have considered every possible branch in the

tree. Furthermore, if the bounds for a particular

reference node are independent of the reference node

in question, then a bound on the average number of

computations per node decoded will be given by the

sum of the bounds computed for any particular

reference node.

Now consider the flow chart in Figure 2.4.

Any particular branch in the tree code corresponding

to a narticular message hypothesis can be tested at
s N° + 1

most Bo 0 times in loop A with a given threshold

in effect. This follows from the fact that the

node from which the branch stems and the node to

which it leads can each be the furthest node into

the tree ever accepted along a particular path exactly
N0

once. Thus it can be tested with at most B channel

state assumptions for the branch in question and P

channel state assumotions for the preceeding symbol.

We assume here that in choosing channel state sequences

for test after first entering a backward mode we
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need consider only one sequence for each state assump-

tion for the final symbols on the branch under test.

This is so because all state sequences with the same

firal state will lead to the same behavior of the

metric Ln at future nodes. This property is not

accounted for in the flow chart of Figure 2.4 because

it only complicates the chart. It may be readily

incorporated into a physical realization of the de-

coder so we assume it here. For the flow chart

shown in the figure we may replace BNo+l by B2No.

Let us clarify the above statements. The first

time a given branch is tested in loop A the threshold,

T, is increased by incriments of To until its value

just fails to exceed the value of Ln at the

node to which the branch leads. At this time F=O.

By the threshold in effect we mean the final value

of T reached in this process. Each subsequent time

this branch is tested in loop A, we must have F=l

because we are testing this branch as a consequence

of having previously followed loop B and reduced the

threshold, or else having previously followed loop C.

In testing the branch in question these subsequent

times, the threshold is not raised in travelling

through loop A and hence by the threshold in effect

we mean the value of T which is held constant. Each

time we test this given branch with a particular

assumntion on the channel state sequence along this



branch and a particular assumption on the channel state

just prior to this branch, the threshold in effect

must be different. This follows from the fact that

having once tested a branch with a given threshold

in effect we will only test this branch again if we

are forced, by future events, to reduce the threshold

in effect (i.e., we follow loop B). If we are not

forced to lower the threshold then there exists a

path along which the decoder can move without ever

returning to the node from which the branch in question

stems.

Now consider a particular node along the correct

(actually transmitted) path in the tree. Take this

node as a reference node and compute the metrics for

all paths stemming from this node as if the metric

for the correct path at this node were zero. Also

for convenience, of future arguments assign this node

order number 1. Let Ln (n=1,2,... ) be the sequence

of values assumed by the metric along the ultimately

accepted path (the correct path) with the ultimately

accepted channel state sequence hypothesis. Let

Lmin = min Ln  (5)n

Now consider a branch of order number k in the

set of incorrect branches stemming from the reference

node and let N(k) be the number of traversals of loop



A made by the decoder using this branch as a hypothe-

sis. Let L*k+l(d*(kNo))be the value of the metric

at the node in which this branch terminates for the

channel state sequence hypothesis d*(kNo). Finally

let Aj be a random variable with

Aj = 1 ; if L*k+l(d*(kNo))A Lmin+(j-)To for any d*(kN,)

(6)
=0 ; otherwise

then we have:

Theorem 5.1:

N(k) ' No+l j A. (7)
j=1 j

Proof: The smallest threshold in effect for which

the branch in question is tested satisfies the inequality

0 4 L -T - T

On the other hand, the largest threshold in

effect for which the branch in question is tested,

satisfies the inequality

0O max Lk (d*(kNo))- T T
d*(kNo) (9)
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Thus, the fact that the branch in question is

tested with j different thresholds in effect implies

that A != 1 . The theorem then follows from the dis-

cussion above.

Now let N(O) be the number of times the first

branch on the correct path stemming from the reference

node is tested in loop A. Let A be defined as in
"o

Equation (6) with L*k+1  0. Then without further

comment we have:

Corollary 5.1:

oe
N(O) :BNo+1 2 o A

j=l oj (10)

Now let us switch to a discussion of the proba-

bility of failure. Suppose that we impose a finite

decoding constraint length, rNo (recall that we assume

V =e). Define L (r)min

L . (r) = min L
rman n=l, 2,...,r+l r1n (11)

where we assume that we know the ultimately accepted

channel state sequence. We can then observe that the

decoder can follow an incorrect path from the refer-

ence node from which it stems to a constraint length

beyond, when the metric on this path lies above the

threshold just below L . (r) at every node. Such an

m9



event constitutes an error, and we denote its proba-

bility by Pe(r). It is the fact that we will be able

to upper bound Pe(r) by a quantity that becomes

arbitrarily small for large r that we can assume that

the decoder ultimately accepts the correct path. Of

course Pe(r) must be computed conditionally on the

assumption that when the decoder first reaches the

reference node in question it has not yet made an

error. The situation here is analogous to that which

arises in the calculation of the probability of error

for the Wozencraft21 sequential decoder.

Now define Lm,r+l(dý(rNo))for the mth of the

ierNoR incorrect paths of length rN0 stemming from

a given reference node. Then define the variable

A (m) as in Equation (6) with Lmi n replaced by

Lmin (r). We then have:

Theorem 5.2:

½erNo
R

Pe(r) - 1 -T (1-Al (m) )
m=1 (12)

Proof: The probability of the joint event that

an incorrect path has a metric greater than a given

value at each of a finite number of points is upper

bounded by the probability that the metric exceeds

this value at any one of these points. The product in

Equation (12) will be zero when any one of the Al(m)'s

are equal to 1. Q.E.D.
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A failure in the ability of the decoder to

onerate in accordance with its algorithm will occur

if either the events leading to an error occur or if

L min- L min(rNo) Z 0 (13)

Thus defining Pf(rNo) as the probability of

failure with the decoding constraint length rNo

we have, upon bounding the probability of Equation

(13) by A01(rP)
Corollary 5.2:

½erNOR

Pf(rNo ) 1 - (l-Al(m) ) + A01(r4
m=l

(14)

Finally let us consider the situation of unde-

tectable errors. Let us assume that we know the

ultimately accepted channel state sequence that is

associated with the ultimately accepted correct path

if V = 0. Now for V finite we can follow an incor-

rect path that diverges from the correct path at a

narticular reference node and remerges with the

correct path (ceases to be distinct) at a node of

order number h + if the metric along this path

lies above the threshold just below Lmin(h + o - 1)

at every node up to the point at which the correct

rath and this path remerge. If we follow such a

a•th we make a sequence of hL o undetectable errors

196
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along this path stemming from this particular refer-

ence node on the correct path.
hNoR

There are ½e paths which remerge with the

correct oath at length (in nodes) h+ V/9o0  Now,

define Aj(m) as in Equation(6). Then if Pu(h) is

the probability that the decoder follows a path stem-

ming from a particular reference node along the

correct path and makes h undetectable errors along

this path; we have:

Theorem 5.3:

½ehNoR

Pu(h) 1 - m (1-Al(m))
m=l1 (15)

The proof is essentially that of Theorem 5.2.

C. Bounds on the Properties of the Decoder -

Analytical Results

In this section we obtain analytical bounds for

the three quantities of interest. For the purposes

of computing these bounds we assume that the path

ultimately accented is the correct path and that

the accented channel state sequence is the one that

actually occurs. The significance of this assumption

lies in the fact that we can then find bounds using

methods similar to those used to find the bounds on

Pe in the nreceeding chanter.

7



It will be clear from the operations to be car-

ried out in the remainder of this chapter that the

bounds to be computed under this assumption are

strictly valid:- if, beyond the reference node in

question, the minimum value of the metric on the

correct path with an assumed state sequence that

actually occurs is less than or equal to the minimum

value of the metric on the path that is ultimately

accepted. If this situation does not occur, we note

that the separation between these minimum values

must always be finite. This statement follows from

the fact that any arbitrary channel state sequence

may be forced to merge, in a one step transition,

with the state sequence that actually occurs. It

will be clear in the operations below that such a

finite difference introduces no significant altera-

tion in our bounds.

Now consider the variable P. for an incorrect

oath of kNo symbols stemming from a reference node

on the correct path. Let Ln+ 1 be the value of the

metric on the correct path (with the state sequence

that actually occurs) and define the variable

A. by

Aj, n = 1 ; if Lk+l(d*(kNo)) - Ln+l +(j-2)To

for some (d*(kNo )) (16)

=0 ; otherwise



Trhen we ha~ve:

Lemma 5.1:

A. Z A.J n= 1  j ,n (17)

Proof: For some n we must have

Ln+ = Lmin (18)

Thus, if Aj n  0 for all n we must have A. 0.
3 ,n

If A. = 1 for any n the right hand side of EquationJ,n

(17) is greater than or equal to 1 and hence overbounds

Aj.

Now consider the variable A (m) for the mth

of M incorrect paths of kNo symbols stemming from a

reference node on the correct path. Define the vari-

able Aj,n(m) by

A . (m) = 1 ; if Lm,k+l(d(kNo ) - L+ + (j-2)T

for some d*(kNo ) (10)

A (m) = 0 : otherwise
3,n

Then we have

Lemma 5.2:

M k M

1a. 1 - (1-A (M)
m=1 - n=1= m=l jn

(20)

o09



proof and is omitted.

At this point we introduce some additional

notation: Define the sequences x(n-k)e Xn -k having

components

x(n-k) = (xk+l,xk+2,....x n )  (21)

In like manner define the sequences y(n-k) and

d(n-k). Now let the sequence of transmitted

symbols corresponding to the mth of the incorrect

raths be xm(n) and let x(n) be the sequence of

transmitted symbols corresponding to the correct

path. In addition, recalling the metric defined

in Chapter II, Section C, we let

k n

F(v(k)) = ' f(y. )  F(v(n-k)) = iT f(y.i)
i=1 i=k+l

(22)

Then we have:

Theorem 5.4:

If n" k

M -(j-2)tTo

S 1+f -KEo *,E)
I- (1-A (m)) JM e  e o

m=1 j,n

-(N-K) 0
e 1+ e

lfl

T)7~ nrnt~f" is simnlv ~317 c71Flbnral.ion cbf tks~ nrc~a)~a~c~imp

t;2 )



(j-2)IrI o
1+0-i-F (1-A

m=l1 j,n
(m)) t• JMw e

- NEo ("p)

1..
a" (E (r, P)
l"r+b

(2L)

Here K = kNo, N = nNo

Eo (f,p) is given by Equation

(25)

(4.26) and

= dominant e

G(e) = (q. . (.)13 Fi3

where F..(r) = f(y)

The constant

igenvalue of the matrix G(wr)

(26)

) (27)

0' 4P(x)

J is independent of M,N,

(28)

and K.

The rroof of the above Theorem is given in the

Annendix.

101A

If k ~

__ C~CI

-(K-NI f (,Ip)+



Thi s Thc~nrem nlhvs the rr~½ hlere niaved by '

Lemma 4.2 and Theorem 4.4 in the previous chapter.

We may use it to derive the following important

theorems:

Theorem 5.5:

The maximum rate at which the average number of

comrutations per node decoded converges, for V = i,

is bounded below by Rcomp(U). Here R (U) is given
comp

by the smaller of the following:

a) Eo(f*,p) whereRq is the largest value of

ef o for which

U Eo(e,)

Q8 (29)

(Recall from Figure 4.3 that E(9 ,P) ( max E0 (q,)
004~l0e 1

b) maxr min E1(9, )+ (Eo(',p)+U),Eo(

Proof: Let N(k) be the average over the ensemble of

codes, channel outputs and channel state sequences of

N(k). We may obtain an upper bound on N(k) from

Theorem 5.1 and Lemma 5.1 by using the bounds of
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Theorem 5.4 with M = 1. This upper bound is inde-

oendent of which Darticular incorrect branch of order

number k we discuss. There are e kNo R such branches

and hence, the total average computation will be

bounded by:

kN R
' e A

k=O n=l i=l j3,n

We introduce the bounds of Theorem 5.4 and sum on j

first. Observing that

S•l -Jl ToI. e 1+? o
j=1

is finite for all >' 0 we may eliminate this sum

from further consideration.

Next we split the sums on k and n as follows:

0 0
e . = e

k--O n=l 3,n k=O n-k=O jn

Z kNoR
+ e A. (30)

n=l k-n=O Jn

Using the bound of Equation (23) in the first sum on

the right hand side of Equation (30) we see that this

sum will converge if both
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Eo (,p) - RIO
and

Eo(Q,r) - UO>0 (31)

Thus condition a) of the theorem is established upon

recalling the properties of Eo(Q,p) from Chapter IV.

In like manner, we introduce Equation (24) into

the second sum on the right hand side of Equation (30)

and derive the following conditions for convergence:

E o(,E) - R>0

E1(v,p ) + (Eo(c,p)+U) - R>O
i+¢a (32)

Q.E.D.

We now prove:

Theorem 5.6:

The ensemble average P-e(r) of Pe(r) is bounded by

P-e(r) - J1 e (33)

where J1 is a constant, and

E7 (¢,T) + o (Tr) ()
) + (+ )e

If Equation (34) is not true, then

10l



4j eSE (Eo(j,_)+U _-rNo E € E)4 1 , -P)"4S J2 e
(35)

where J2 is a constant.

Proof: Substitute the bound of Lemma 5.2 into

Theorem 5.2.

Then apply the bound of Equation (24) with

M=erNoR and k=r. Next sum over k-n from 0 to r-l.

If the condition of Equation (34) is met then the

sum is not exoonential in r and just contributes

to the constant Jl. If Equation (34) is not true

then the sum contributes an exponential factor to

yield Equation (35). This factor is determined by

the identity
n-1

ix e -1 enx
e -= X

i=O e - 1 ex - 1 (36 )

Note that a similar bounding of Aol(rNo ) does

not contribute an exponentially poorer term and thus

~(rN ) has the same bound (except for a different

constant) as Pe(rNo).

Finally we prove
Theorem 5.7:

Let Nu be the average number of undetectable

errors made per node decoded. Then Nu is bounded by

- /9Vo NoRcom (U)
t ( J7

where J is a constant.

105
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Proof: Upon setting

M=- e
- Vtl/NoR (h+V/• 0 )N0oR

e in Equations (23)

and (25) we use them to bound the right hand side of

Equation (15) via Lemma 5.2. Thus, ignoring constants,

we have

-u(h+ //V 0o)
-V/) N RU - (h+9/o) No E (,) -R ]

-i [E1(,( )+TU-Eo 0 (,)
i=O

- V/VoN Re -(h+Q/o)N 1o ER0 e 0

c00

i=l

E-i E ' e( ) - U
L0+

(38)

The last sum will converge only if

and have the bound

e-hN E1(,2')- e'R]

We may treat the first term on the right hand side

exactly in accordance with the proof of the previous

theorem. Thus if Equation (34) is true, the term in
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question is bounded by e x right hand

side of Equation (33) with r=h .

If Ecuation (34) is not true, it is bounded by

e- V/yVO N E1(,) + (En(cp)7+U
e 1+4 x

Lright hand side of Equation (35) with r=h].

Now f~rm

Nu . h Pu(h+ 9/V) (38)
h=O 0

Observe that the conditions for convergence of this

sum are less stringent than the requirement

R4Romp(U) (39)comp

The conditions on the exponent which dominates

the resultant expression are precisely those that

determine RcomD(U). Q.E.D.

D. Discussion

The bounds developed here are unfortunately

left in terms of the function Ei(_,2 ) which denends

on f(y). Note, however, that if f(y) can be chosen

such that

E1 ( ? , p )  O0 (40)

we may draw the conclusion (in the non-trivial

case C - 0):
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Theorem 5.8:

If E1(e,r) 4 0 then

R = maxcom U

Furthermore,

R (U)

for

E(°0 ('0) .u•'o •t

R com(U) =E (O(f,P )

Eo, ,E)U=

Eo ( R,: ) )

For?* chosen as

El (,, + 1e*

in Equation

(Eo(~*,P)+U)

(44) we have:

= E!(P,_)+Eo(q=,P)-Eo(?, )

(45)

Now C)~J

(l6)

s Eo(l,f) _ eEo'(f)-Eo(e)

hi oo e 2

This follows from the prorertips o

coding exronents of Chapter IV.

the above exrression is

block coding exronents,

f the block

The numerator of

just the negative of our

= Eo (90E (L4 )

= 0-

where

(42)

(43)

Proof:

(44)



Thus ?* in Equation (44) must be the largest

value of ?for which

U - (47)

The conditions on Roomp are then satisfied by the

choice of the theorem statement.

Next let us consider the bound on Fe(r). We have

Theorem 5.-:

Suppose E1(,r) - O. LetG'* be such that

E (t*,P) -c*R = max E (C(,P) - CR = E(R,I)
0o 4 -

(48)

Then for all U such that

1E+rI  N
i-+•a (49)

We have
-rNoE(R,2)

Pe(r) LK e (50o)

For all U such that Equation (L9) is not correct,

we have

r) K e -rN (Rcomp (U ) - R)
Pe(r) - K e (51)

where o is such that the minimum in condition b)

for R om is achieved:combr
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Proof: The theorem follows directly from inspection

of Theorem 5.6 and the conditions for Rcomp(U). The

only question that arises is whether for any (R,U)

pair Equation (49) can ever be satisfied. Observe that

forT* =',, Equation (49) will be satisfied for all

U Eo fo)U E
eo (52)

This result is non-trivial for the case eo = 1.
It is now appropriate to show that there exists

channels for which f(y) may be adjusted such that

E1(Q, 2 ) 0. For channels with input rotations we
K

have that 21 P(x) P(y/x,i,j) is independent of i

and j. Thus for these channels we may pick

K

f(y)- P(x) P(y/x,i,j)
x=l (53)

This choice insures the desired property of El1,' ) -O

as may be checked from the definition in Theorem 5.4.

We note here that a DMC is a channel with input

rotations, so that the results obtained in this

charter may be specialized to that case. An analysis

of the decoder's performance on the DMC has been

carried out independently byr Stiglitz (unpublished).

The results in this case may be made somewhat stronger

than those contained here because it is not necessary
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to make some of the approximations carried out in

the proof of Theorem 5.4. The resultant value of

Rcom however, is unchanged.

In Figure 5.1 we show the results in a graphical

form.

E. Final Comments

In this chanter we have analyzed a sequential

decoder for the general DFSC. The assumption that

every state was reachable from every other state

was used only in Theorem 5.1. It is clear that al-

though this assumption was not unphysical in the first

lace, it may be removed in certain special cases

(for example the unphysical channels in which the

outnut determines the state). The primary reason

for not discarding this assumption is that the

resultant decoder (Figure 2.4) gains efficiency in

not having to examine large numbers of unnecessary

state sequences. On this note we close the chapter.

111



M°F

0

oo
4 t

Ur

-.- C,
CHk1

h e0

UI I z

0oo

V 0
lo

0
Csl

U-r
0

U/2

C)

o

0 0

r--*

0 -C

O82-i --·i~Q~
I,0

0i

C)

Ilr

P

1

j

3

i



T
Chanter VI

Concluding Remarks

We have presented an analysis of a class of

channels which might be alternately described as

channels with memory or time-varying channels.

This analysis has been tied to a particular approach

to decoding for these channels. As has been pointed

out earlier in the thesis, our results can be viewed

as a starting noint for further analyses aimed at

removing deficiencies left and answering questions

nosed here.

Beyond the particular suggestions for further

research made in the thesis, we might add:

1) An attempt to find lower bounds to the

probability of error attainable with block

codes for the DFSC.

2) A study of higher order moments of compu-

tation for sequential decoding for the DFSC.

3) A study of channels in which the statistics

of the underlying Markov chain are dependent on

the input symbol.

4) An extension of the results here to continuous

channels.

Finally, let us note that theory in the absence

of exnerimentation is just theory.
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Appendix

Proof of Theorem 5.4

Let x(nNo ) be the sequence of nNo transmitted

symbols along the correct path stemming from the

reference node. Let xn(kNo) be the corresponding

sequence of kNo symbols along the mth incorrect

rath. Finally let d(n) be the state sequence that

actually occurs. Then, we have by definition:

M
Lmk+1 (d(•K )-Lmi n (n)-(j-2)To

( T -iT (-A (m)) = 1 ; if e - 1
m=l j.,n

for any m i M and any d*(K)

= O ; otherwise
(1)

Here N = nNo and K = kN

Then we have:

1Tnl jAn m 1LK

i"of
(2)

M

This follows from the fact that when 1-IT (1-A. (m))=l
m=1 J,n

at least one term in the sum on the right hand side

of Equation (2) must be greater than or equal to 1.

Ial

I



On the other hand, the right hand side is always

nositive. Then recalling the definitions of the

L's from Equation

Lm,k+ 1 (d*(K)) P:

(2.19) and (2.20) we have:

-KU
e

F(y(K))

and a similar expression for L . (n).min

(3)

Thus

M

1-TT(1-A. (m))
m=l , n

1+e(N-K) e
-e

U - (j-2) ?
1' I To * F(y(K) )

L F(fN)

1
1+ B

Pr(d*(K))

Pr(y(N)/x(N) ,d(N) ) Pr(d(N))±/!+€

(4)

We now average the right hand side of Equation (4).
We must consider the separate cases N4K and K-\I.

115I;

M=

m=1l DK

I--

,
r(y(K)/,m(K),d(K))Pr(d(K))

Pr(y(K)/xm(K) ,d*(K) )



Case I: N - K

In this case the ensemble statistics

Pr(y(N)/x(N),d(N)) Pr(d(N) ) Pr(x (K))-- n

Introduce the symbols x(N-K), etc. as in Chapter V

and observe:

M

1- 1(1-A

.1DK

D( K

DN-K

Pr(d(K)

Pr(d*(K)

(N-K)
,nI

1
7-e

I1l+e

z
XK

X*K

1

Pr(d(N-K)/dK)

Pr(x(K))Pr(v(K)/x(K),d(K))

Pr(x*(K)Pr( (K)/x_(K),d*(K))

yN-K
F(yN-K) )

xN-K

{
A

Pr(y(N-K)/x(N-K)

F(y(N-K)

d(N-K)) 1

116

are:

-j

14

rye

(5)

__

-(j-2) -FI Tf

11+e

Pr(x(N-K))



Here we have used the factorization properties

Pr(y(N)/x(N) ,d(N)) - Pr(y(K)/x(K),d(K)

Pr(y(N-K)/x(N-K),d(N-K),dK)

etc., and averaged as in the case of the proof of

Lemma 4. 2.

Next recognize that F(y(N-K) ) is a probability
1

distribution and use Equation (3.6) with A= 1+- to

establish

1

Pr(d(N-K))L
N-K

D
yN-K

F(y(N-K))
SN-K

Pr(x(N-K)) *

1
Pr(y(N-K)/x(N-K),d(N-K),dK) 1+)

1

Pr(d(N-K))
N-K N-K

Pr(x(N-K))

1
1+(7

(71
117

--

(6)

DN-K

Le

l-cC

++er((-K )/_x(N-K),d_(N-K ),d )



By comparison with Equation (4.33) and with the

aid of Corollary 2.1, we may bound the right hand side

of Equation (6) by -(N-K)(e,) The remainder
e 1+

of the right hand side of Equation (5) may be compared

with Equation (4.4). With the help of Theorem 4.4

we may bound this term to yield the desired result

(Equation (5.23)).

Case II: K - N

Here the ensemble statistics are:

M

Pr(y(K)/x(K),d(K)) Pr(d(K)) Pr(x(K)) Pr(Ln(K))
m=1

We may handle this case by interchanging the

roles of N and K in Equation (5) and replacing the

factor that anpears on the left hand side of Equation

by the factor:

N Pr(d(K-N)) KN Pr(x(K-N))Pr(X(K-N)/x(K-N),d
K-N N-K K-NDi Y X

K-N

I

Pr(d*(K-N)) )i
X K- N

(6)

(K-N) ,dK)

Pr(x*(K-N) )

Pr(y(K-N)/x*(K-N),d*(K-N),d*K)

F(y(K-N))

A



We now anply Holder's inequality (Equation ( 3. 3)) wi.th

1
to upper bound this

Pr(d(K-N))

Pr(x(K-N))

I
Z
yK-N

factor by:

F(X(K-N))

Pr(y(K-N)/x(K-N) ,d(K-N) ,dK

1

1+}

K-N K-NPr(d*(K-N)) K-N
x*w

Pr(x(K-N))

Pr(v(K-N)/x*(K-N),d*(K-N),d*K)

Comparing the rightmost factor of the

Equation

above with

(4.4) and then applying the results of

Theorem 4.4, we may bound this factor by

The remaining factor of the above

may be handled by Corollary (2.1) to yield the bound

-(K-N)El(e, )
. The rest of the proof proceeds as

in Case I to obtain the desired result (Equation

.E.D.

119

K-N

fK-l NX

e
1P 1

(5.25)).

-(K-N)Eo(?I _p) ,
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The bounding methods presented here and in

Lemma 4,.2 are closely related to the technique of

generating function bounds which have been widely

used in the past. Discussion of this latter tech-

nique is given by Fano4 . The sharpness of such

techniques may be proven by means of the "Central

Limit Theorem with Large Deviations" due to Shannon

(unpublished). A good presentation of an independent

derivation of this theorem is given by Blackwell

3and Hodges
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