
14.32: Spring 2003


Review for mid-term 

0. Basic idea of this course: to quantify the relationships between variables (say X and Y). Its a 
good idea to keep some concrete example of X and Y at the back of your mind e.g. education 
and wages, access to schools and length of schooling, English language skills and wages, disability 
payments and labor force participation, strength of national institutions and GNP per capita, firm 
performance and CEO compensation, parents’ divorce and children’s lives (all research topics MIT 
people have worked on). 

I. Expectation, variance, covariance 
(i) 

E(aY + bX + c) = aE(Y ) + bE(X) + c; E( 
Y E(Y ) 
X 

) �= 
E(X) 

(ii) 
V (aY + bX + c) = a 2V (Y ) + b2V (X) + 2abCov(Y, X) 

Special case: V (Y + X) = V (Y ) + V (X) if Y and X are uncorrelated (e.g. if they are different

observations in a random sample).

(iii)


Cov(Y, X) = E[(X−E(X))(Y −E(Y ))] = E[(X−E(X ))Y ] = E[X(Y −E(Y ))] = E(XY )−E(X)E(Y ) 

Cov(aY + bZ,X) = aCov(Y, X) + bCov(Z,X) 

(iv) Correlation of Y and X: ρ(Y, X) = √	Cov(Y,X) 

V (Y )V (X) 

II. Conditional expectation� function:

(i) h(x) = E(Y |X = x) = yf (y|x)dy

(ii) Law of iterated expectations: E(h(x)) = E(Y ). Also written as E(E(Y |X)) = E(Y )

(iii) Residual Y − h(X) is uncorrelated with any function of X.

(iv) h(X ) need not be a linear function of X. Two cases when it is linear are when (Y,X) are joint

normal, and when X is binary i.e. takes on values 0 and 1.


III. Regression:

(i)Population regression coefficients are:


β = 
Cov(X, Y )

; α = E(Y ) − βE(X)
V (X) 

(ii) If the CEF h(x) is linear, then it is the same as the regression. If the CEF is non-linear, then 
the regression provides the best linear approximation (in the minimum MSE sense) to the CEF. 
(iii) α + βX is also the best linear approximation to Y in the minimum MSE sense i.e. α and β 
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� 

minimize E[(Y − a − bX )2] over all a, b. 
(iv) Sample regression coefficients are: � n 

ˆβ ̂= �	i=1(xi − x)yi 
α = y − β ̂ xn 

i=1(xi − x)2 ; 

These are called OLS (ordinary least squares) estimates of α and β.

(v) OLS estimates minimize the sum of squared errors 

� n
i=1(yi − a − bxi)2 over all possible values


of (a, b).

ˆ(vi) β = sXY = ρ(Y, X)sY /sXs2 

X 

IV. Classical (aka Gauss-Markov) assumptions:

(i) Linear CEF: h(x) = α + βX ⇒ yi = α + βxi + �i where E(�i|xi) = 0.

(ii) Homoskedasticity: all �i’s have the same variance i.e. E(�2 

i |xi) = σ� 
2


(iii)Random sampling: �i’s are independent.

(iv) Normality: �i is normally distributed.

(v) xi’s are fixed in repeated samples.


V. Regression properties under Classical Assumptions: 
ˆ(i) α̂ and β are unbiased for α and β. 

(ii) Sampling variance (standard error2) of β ̂ is � n 
σ� 

2 
= σ2 

i=1
(xi−x)2 Ns2 . 

X 

(iii)β ̂ is normally distributed.

(iv)β ̂ is the Best Linear Unbiased Estimator (BLUE).

(v) Hypothesis testing for H0 : β = β0 uses the test statistic


ˆ β − β0
T = 

s.e.(β ̂) 

This is distributed as tn−2 ( N(0,1) for large samples). 
(vi) Confidence interval (two-sided) at α level of confidence is 

β ̂ ± tn−2,α/2 × s.e.(β ̂) 

VI. We can relax all classical assumptions except random sampling. We lose the nice properties 
listed above, but we can use large-sample approximations to get the following:

ˆ(i) β is consistent i.e. comes closer to the true β as we increase sample size. 
√ 

n(β̂−β) is approximately N (0, 1), where the “asymptotic variance” is(ii) 
AV (β̂) 

AV (β ̂) = 
E[�i 

2(xi − E(X))2] 
V (X)2 

Note that under homoskedasticity, AV (β ̂) = σ2/V (X) as before. 
(iii)“Asymptotic standard error (ase)” of β ̂ is given by AV (β ̂)/n. We do inference by using the fact 
that 

ˆ β − β0
T = 

a.s.e.(β ̂) 
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is distributed as N(0,1) for large samples. Confidence intervals can also be obtained using this. 

VII. Residuals, predicted values, R2:

Predicted value ŷ  i = α + β ̂ xi. Residual ei = yi − ŷ  i ⇒ yi = ŷ  i + ei.
ˆ 
(i)

� 
i
n 
=1 ei = 0; 

� 
i
n 
=1 eixi = 0 (follows from the formula for ˆ ˆ α and β) 

n(ii)
� 

i=1 eiŷ  i = 0 ⇒ V (yi) = V (ŷ  i) + V (ei) =Regression sum of squares + Error sum of squares. 
(iii) R2 = RSS/TSS = 1 − (ESS/TSS) measures how much of the variation in Y is accounted for 
(statistically) by the regressor X. R2 = ρ2(Y, X) for bivariate regression. R2 measures the strength 
of the linear relationship between Y and X. 

VIII.Multivariate regression: y = β1x1 + β2x2 + � 
(i) β1 represents the impact of x1 on y, keeping x2 constant. 
(ii) Regression anatomy theorem: β1 = Cov(y, ˜ x1), where ˜x1)/V (˜ x1 is the residual from the regres­
sion of x1 on x2. 
(iii) Omitted variables bias: Suppose we regress y on x1 alone (”short regression”). Then short 
regression coeff=long regression coeff+ [coeff on omitted variables in long regression x regression of 
omitted variables on included variables] ⇒ β1,short = β1,long + β2γ1 where γ1 = Cov(x1, x2)/V (x1) 
= regression coeff of x2 on x1. 
(iv) Omitted variables bias is zero if either the omitted variables have coeffs of zero or if omitted 
variables are uncorrelated with included variables. 

IX. Regressions with dummy variables and interactions:

Classic example is using race (black=1) and gender (female=1) dummies:


Log(wage) = β0 + β1Female + β2Black + β12(Female ∗ Black) + � 

Then we have:

(i) β0 represents the expected log wage of a non-black male (Female=0, Black=0).

(ii) Expected log wage for a black male is β0 + β2; for non-black female is β0 + β1; for black female

is β0 + β1 + β2 + β3.

(iii)β1 represents the wage difference between non-black males and non-black females; β2 represents

the wage difference between white females and black females.
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