Computer Science and Artificial Intelligence Laboratory

Technical Report

MIT-CSAIL-TR-2007-057 December 10,2007

Quantitative Information Flow as Network
Flow Capacity
Stephen McCamant and Michael D. Ernst

massachusetts institute of technology, cambridge, ma 02139 usa — www.csail.mit.edu

CSAIL

Technical report version

Quantitative Information Flow as Network Flow Capacity

Stephen McCamant

Michael D. Ernst

MIT Computer Science and Al Lab
{smcc,mernst}@csail.mit.edu

Abstract

We present a new technique for determining how much information
about a program’s secret inputs is revealed by its public outputs. In
contrast to previous techniques based on reachability from secret
inputs (tainting), it achieves a more precise quantitative result by
computing a maximum flow of information between the inputs and
outputs. The technique uses static control-flow regions to soundly
account for implicit flows via branches and pointer operations, but
operates dynamically by observing one or more program execu-
tions and giving numeric flow bounds specific to them (e.g., “17
bits”’). The maximum flow in a network also gives a minimum cut
(a set of edges that separate the secret input from the output), which
can be used to efficiently check that the same policy is satisfied on
future executions. We performed case studies on 5 real C, C++,
and Objective C programs, 3 of which had more than 250K lines
of code. The tool checked multiple security policies, including one
that was violated by a previously unknown bug.

1. Introduction

The goal of information-flow security is to enforce limits on the
dissemination of information. For instance, a confidentiality prop-
erty requires that a program that is entrusted with secrets should
not “leak” those secrets into public outputs. Absolute prohibitions
on information flow are rarely satisfied by real programs: if a sen-
sitive input does not affect a program’s output at all, it is better
to simply omit it, and unrelated computations of different security
levels should be performed by separate processes. Rather, the key
challenge for information-flow security is to distinguish acceptable
from unacceptable flows.

Systems often deal with private or sensitive information by
revealing only a portion or summary of it. The summary contains
fewer bits of secret information, providing a mathematical limit on
the inferences an attacker could draw. For instance, an e-commerce
web site prints only the last four digits of a credit card number,
a photograph is released with a face obscured, an appointment
scheduler shows what times I’m busy but not whom I'm meeting,
a document is released with text replaced by black rectangles, or
a strategy game reveals my moves but not the contents of my
board. However, it is not easy to determine by inspection how
much information a program’s output contains. For instance, if a
name is replaced by a black rectangle, it might appear to contain
no information, but if the rectangle has the same width as the text it
replaces, and different letters have different widths, the total width
might determine which letters were replaced. Or a strategy game
might reveal extra information in a network message that is not
usually displayed.

A slightly abridged version of this paper has been submitted to PLDI 2008.

Quantitative Information Flow as Network Flow Capacity

The approach of quantitative information-flow security ex-
presses a confidentiality property as a limit on the number of bits
revealed, measures the bits a program actually reveals, and detects
a violation if the measured flow exceeds the policy. The problem
we address here is how to measure, by observing an execution of a
program (dynamic analysis), how much information about a subset
of its inputs (designated secret) can be inferred from a subset of its
outputs (designated public). The text of the program itself is always
considered public, and other techniques must be used to prevent in-
ferences from observable aspects of the program’s behavior other
than its output, such as its use of time or system resources. The
measurement produced is a sound upper bound on the actual in-
formation flow, so that our technique can sometimes overestimate
the amount of information revealed, but never underestimate it.
Some programs reveal only a negligible amount of information on
most executions, and this can be measured by quantitative policy
that allows only a small fraction of a bit: for instance, the amount
of information revealed by an unsuccessful login attempt, if an
attacker had no previous knowledge of the password. Most previ-
ous research on quantitative information-flow has focused on very
small flows, but a quantitative policy can be applied to any situa-
tion in which secret information is partially revealed. We focus on
a broader class of problems in which the amount of allowed flow
can be arbitrarily large, as long as the all the allowed flows contain
less information than the flows that must be prohibited.

In some violations of information-flow policies, confidential
data is exposed directly, for instance if the memory containing
a user-provided password is not cleared before being reused by
the operating system. A number of existing techniques can track
such direct data flows. However, in many other cases information
is transformed among formats, and may be eventually revealed in
a form very different from the original input. Our research aims
to soundly account for all of the influence that the secret input
has the program’s output, even when the influence is indirect.
Specifically, this means our technique must account for implicit
flows in which the value of a variable depends on a previous secret
branch condition or pointer value.

Most previous approaches to information-flow program analy-
sis are based on some kind of fainting: a variable or value in a
program is tainted if it might contain secret data. The basic rule of
tainting is that the result of an operation should be tainted if any of
the operands is. Tainting is appropriate for determining whether an
illegal flow is present or not, but it cannot give a precise measure-
ment of secret information because of its conservative treatment of
propagation. A single tainted input can cause many later values to
be tainted, but making copies of secret data does not multiply the
amount of secret information present.

A key new idea in the present work is to measure information-
flow not using tainting but as a kind of network flow capacity. One
can model the execution of a program as a network of limited-
capacity pipes, and secret information as an incompressible fluid.
Then the maximum rate at which fluid can flow through the net-

1 2007/12/7

Figure 1. Two possible graphs representing the potential informa-
tion flow in the expressionc = d = a + b, where each variable is
a 32-bit integer. Our tool uses the graph on the right, which unlike
the one on the left excludes the possibility of 32 bits of information
flowing from a to c, and a different 32 bits flowing from b to d.

work corresponds to the amount of secret information the execu-
tion can reveal. According to the classic max-flow-min-cut theo-
rem, this capacity also corresponds to a minimum set of secret in-
termediate values that (along with public information) determine
the program’s output.

A dynamic security analysis can be used interactively, to test
whether a policy holds and debug violations, or non-interactively,
to catch violations in production. In this work, we concentrate on
a debugging-style tool that enforces a general policy and gives
detailed information about information leaks, in the same way
a tool like Purify [24] or Valgrind Memcheck [42] is used to
debug memory safety violations. An interactive tool is also best
for developing policies that will later be enforced non-interactively.
Section 6.3 discusses different techniques for a production context
where error reporting is not important and performance overhead is.
Most convenient would be a static tool that checked a policy over all
possible executions at once, but static information-flow checking is
far from scaling to the large pre-existing programs we are most
interested in (Sections 8.1, 9.1).

The rest of this paper is organized as follows. Section 2 de-
scribes how to construct a flow network representing the propa-
gation of secrets in a program execution, and Section 3 discusses
how to ensure consistency between results from different runs. Sec-
tion 4 gives an implementation of the technique that operates at the
binary level. Then, Section 5 discusses efficiently computing the
maximum flow in a large network, and Section 6 describes how a
flow bound, once found, can be enforced on future program runs.
Section 7 evaluates our tool on confidentiality properties in a num-
ber of real applications. Finally, Section 8 surveys related research,
Section 9 discusses future work, and Section 10 concludes.

2. Dynamic maximum-flow analysis

Our basic technique is to construct a graph that represents the
possible flows of secret information through a program execution.
This section describes that construction, including how to account
for implicit flows, and how to assign capacities to edges in the flow
graph.

2.1 Basic approach

The flow graphs our technique constructs are similar to circuits:
edges in the graph represent values, and nodes represent basic op-
erations on those values; the in-degree of a node corresponds to the
operation’s arity. However, for efficiency, the graph represents byte
or word-sized operations; edges have capacities giving how many
bits of data they can hold. For the case when the result of an opera-
tion is used in more than one subsequent operation, our tool adds an
addition single edge and node, which represents the constraint that
the operation has only one output (see Figure 1); this is also equiv-
alent to giving a capacity limit on a node. Copying a piece of data
without modifying it does not lead to the creation of new nodes

Quantitative Information Flow as Network Flow Capacity

need need need
Program outputs ‘ founcl exp’n mterproc H length
bzip2 17
OpenSSH client 0
ImageMagick 1
X server 0

Figure 2. Summary of the results of the static analysis discussed in
Section 2.3 to compute which locations a code region (containing
an implicit flow) might modify. Overall, the automatic analysis
found 72% (“found” column) of the outputs used by the rest of
the analysis (“outputs” column).

or edges, but because memory is byte-oriented, loads and stores
of larger values are split into bytes for stores and recombined after
loads. The graph is directed, with edges always pointing from older
to newer nodes, and so is also acyclic. Inputs and output are repre-
sented by two distinguished nodes, a source node representing all
inputs, and a sink node representing all outputs.

2.2 Implicit flows

General programs are more complex than circuits because of op-
erations such as branches, arrays and pointers that allow current
data to affect which operations will be performed in the future or
what their operands will be. In an information flow context, these
operations are said to lead to indirect or implicit flows which do
not correspond to any direct data flows. For instance, later execu-
tion might be affected by a branch that caused a location not to be
assigned to, or the fact that the 5th entry in an array is zero might
reveal that the index used in a previous store was not equal to 5. To
account for such situations, our technique must add edges that rep-
resent for all possible implicit flows. One simple approach is to add
edges from implicit flow operations (e.g., branches) directly to the
sink (output node) of the graph. The capacity of such edges corre-
sponds to the number of possible different executions: for instance,
a two way branch corresponds to an edge with capacity one bit,
while a pointer operation such as an indirect load, store, or jump
might reveal as many bits as are in the pointer value. While sound,
this approach can be imprecise, so our technique builds on it in two
ways.

First, rather than directing the global leaks from implicit flows
directly to the sink, it builds a chain of nodes corresponding to
each output operation the program performs, so that the informa-
tion leaked by an implicit flow can escape via the next output oper-
ation, or any subsequent one, but not an output that occurred before
the implicit flow did. Second, the technique can use what we call
enclosure regions to further constrain where implicit leaks can flow.
An enclosure region is a single-exit control-flow region of the code,
along with a list of all of its outputs, i.e., which parts of the program
state it might modify. When an implicit flow happens inside an en-
closure region, the leak is directed not to the final program output,
but to the outputs of the region. The next subsection describes how
our tool constructs enclosure regions.

2.3 Determining enclosure outputs

An enclosure region is a static program annotation, since it must
account for all the possible side effects of a code region that gen-
erally includes branches. The key task in constructing an enclosure
region is to list all of the locations that a code fragment might write
to. Though conceptually straightforward, the practical difficulty of
this depends on the language the program is written in. Since our
tool targets C and related languages, whose memory usage can be
rather unstructured, doing a full job is complex.

We have implemented the inference of enclosure regions as a
simple C source code analysis using the CIL framework [36], which

2 2007/12/7

scans the program function by function keeping track of which Ival-
ues are assigned to within each branch or loop. Figure 2 summa-
rizes the results of our simple enclosure region inference tool on
four programs (the remaining case studies from Section 7 are writ-
ten in C++ or Objective C, so our static tool cannot parse them).
Each output mentioned in an enclosure region is counted separately.
Overall, 72% of the needed variables could be found even by this
very simple analysis. The columns labelled “need expansion” and
“need inter-procedural” represent the two further features the tool
would need to find the remaining variables. Expansion refers to
cases where the inferred enclosure region referred to only a single
element in an array, but it needed instead to refer to the entire array,
either because the index expression was not constant throughout
the region, or because the index value might itself be secret. An
inter-procedural analysis would be needed to find some enclosure
regions where the side effects to be enclosed are in a called func-
tion, when it would not be enough to place the enclosure region in
the callee, either because there are implicit flow operations in the
caller or not all uses should be enclosed. As an orthogonal classifi-
cation, the final column “need length” counts the number of outputs
where the area being written to was a dynamically allocated array,
and the enclosure region required a static bound (currently supplied
by hand) on the size of the array. These bounds would not be re-
quired in a language like Java whose arrays keep track of their own
size.

2.4 Bit-capacity analysis

Previous subsections described the structure of the graph our tool
computes for a program execution, but to compute a maximum
flow, each edge must also be labelled with a bound on the amount
of information it can convey. To compute these bounds, our tool
performs a dynamic bit-width analysis to determine which of the
bits in each data value might contain secret information. This anal-
ysis is essentially implemented as dynamic tainting, but at the level
of bits. Every location in a memory or a register is shadowed by a
location of the same size containing a bit vector representing which
data bits might be secret. Each basic program operation computes
conservative secrecy bits for its results based on the secrecy bits
of the operands. The amount of secret information that might flow
through a value is then bounded by the number of its bits that are
marked secret. This analysis is very similar to the analysis that the
Valgrind Memcheck tool [42] uses to track undefined values, so we
were able to reuse much of its implementation.

3. Input spaces and consistency

In practice, the technique of the previous section can often give
a good bound based on only a single program execution, but to
be confident that the results will generalize, it is best to analyze a
set of representative executions. This section first explains why it
makes a difference what the possible inputs to a program are, and
then discusses how to get consistent results by analyzing several
executions together.

3.1 Why distributions matter

In information theory, there is no definition of the “amount of in-
formation” in a string of bits considered on their own. The amount
of information (entropy) in a piece of data depends on the distribu-
tion from which it is drawn. This can be an obstacle for a program
analysis; for instance, it would be natural to take the distribution of
a program’s inputs as an input to the analysis, but such a distribu-
tion is usually not available. A static analysis has only the program
itself, and a dynamic analysis can observe only some small subset
of all the inputs that might be supplied. And even worse than be-
ing unknown, the input distribution may chosen by an adversary.

Quantitative Information Flow as Network Flow Capacity

A password checker, or any other deterministic program with more
than one distinguishable output, can reveal at least a bit on every
input if the space of possibilities is small. For instance, an admin-
istrator might create users whose password is one of two choices
prearranged with an unprivileged user.

An alternate perspective on the flow measurement technique
described in Section 2 is that it determines from the execution a
compressed form of the secret input that is enough (along with the
public inputs) to recreate the program’s public output. For instance,
a sequence of bits from branch conditions is a compact coding of
the predicate on the input that those branches check. This choice of
perspectives is completely general: for a set of bit strings, there is
a natural isomorphism between a probability distribution on those
strings, a compression function on those strings that is optimal
for the distribution, and a measurement of the information in each
string that is the size of the result of the compression.

As another example, suppose that a program that can recognize
repeated characters in its secret input is presented with the string
of ASCII characters aa. (This example is slightly simplified from
a behavior we observed in the first pass of the bzip2 compression
tool, discussed further in Section 5.4.) How many bits of informa-
tion are in the string aa? One simple answer would be to count each
character as 8 bits, for a total of 16; this corresponds to measuring
the flow at the program input. Alternatively, if the program checks
that the two characters of its input are the same and then doesn’t
otherwise use the second a, another measurement would be 9 bits,
corresponding to measuring the 1 bit result of the comparison in-
stead of the value of the second character. Both of these measure-
ments are equally correct; they both extend naturally to sound mea-
surements of the information in any string. (For a string of n > 0
characters of which r < n are identical to the preceding character,
they would measure 8n or 9n — 8r — 1 bits respectively.) For this
example, our tool would measure 9 bits, but the choice of which
measurement is smallest depends on the input. (There other even
smaller measurements of this input that our tool happens not to
consider: for instance, one in which aa conveys 1 bit and any other
string conveys 8n + 1 bits.) However, it could give misleadingly
small results to measure each execution by a different standard; the
measurements of different executions of a program should be con-
sistent.

3.2 Combining runs

A dynamic analysis is limited to examining only a finite number of
program executions, but given that constraint, we would still like
the tool’s results to generalize as much as possible to unobserved
executions. The best predictor of generalizing to future executions
is generalizing over existing executions, so we would the tool to
a produce single consistent set of measurements for a number of
different runs. It does so by combining the graphs from multiple
executions, adding the edge capacities, and computing a total flow
on the combined graph.

Combining flow graphs from multiple runs of a program re-
quires identifying which parts of each graph correspond to the
“same” program locations. Our tool does this by labelling each
edge with a value that includes both a static location (i.e., instruc-
tion address), and a 64-bit hash of the calling context (stack back-
trace), computed in a similar way to Bond and McKinley’s proba-
bilistic calling context [4]. Any number of so labelled graphs can
be combined by identifying edges with the same label (adding their
capacities), and unifying all of the nodes the various copies of an
edge are incident upon, which can be done almost-linear time with
a union-find structure.

It is easy to see that when flow graphs are combined in this
way, any sum of possible flows in the original graphs is possible
in the combined graph, so a bound computed for the combined

3 2007/12/7

graph is still sound. However, the converse does not hold: the bound
computed for the combined graph can be larger than the sum of the
individual bounds. Intuitively speaking, the flow in the combined
graph is limited only by bottlenecks that appear consistently in each
original graph.

4. Machine-level implementation

We have implemented the information-flow analysis described in
the previous sections as a dynamic binary analysis for executables
on Linux/x86 systems.

4.1 Dynamic instruction rewriting

Our tool instruments a program by dynamically rewriting its in-
struction stream, using the Valgrind framework [38]. Valgrind
translates each basic block of instructions into a simple compiler-
like intermediate representation; our tool adds instrumentation op-
erations and calls in that format; and then Valgrind translates the
IR back into x86 instructions for execution. This translation in-
sulates our analysis from most of the complexities of the large
x86 instruction set: features such as complex addressing modes,
implicit operands, string instructions, condition codes, and condi-
tional moves, which require special treatment in tools that operate
directly on instructions [10], are handled automatically. Valgrind’s
automatic register allocation also makes it easier to insert instru-
mentation operations.

One architectural complexity of that x86 that is not abstracted
by Valgrind is the presence of overlapping registers: for instance,
the 16-bit register %dx consists of the lower-order bits of the 32-bit
register %edx. In order to be able to treat each register as distinct,
we have changed Valgrind’s translation of such sub-registers so that
instructions that access them instead read or write from the full
register, selecting the relevant portion using bitwise operations.

4.2 Value tagging

To build the flow graph described in Section 2, the tool associates
a positive integer, which we call a fag, with each value during
execution that might contain secret information; values that are not
reachable from the secret input have a tag of 0. These tags represent
the identities of nodes in the flow graph; a tag is associated with
each register, and each byte in memory. If at least one operand of
a basic operation has a non-zero tag, the instrumentation code for
the operation assigns a fresh tag for the result of the operation, and
creates edges linking the inputs to the result.

The representation of edges depends on whether the graph-
combining feature of Section 3.2 is in use. If every edge is to be
considered unique, they do not need any in-memory representation:
each edge is output to the graph immediately, as an ordered pair of
node tags. In this mode, the memory usage of the tool is bounded by
a multiple of the memory usage of the original program: it does not
grow as the graph becomes larger. On the other hand, if edges are to
be combined based on their program locations, it is more efficient
to keep a representation of each class of equivalent nodes in the
tool’s memory. However, it is not necessary to retain the entire
original graph: instead, all that’s needed is the combined graph,
and information about those nodes that still correspond to values
in registers or memory. The tool implements an algorithm similar
to mark-and-sweep garbage collection to identify when tags can be
reclaimed. These techniques differ from previous implementations
because of the need to minimize memory usage for long-running
programs. For instance, Redux [37] builds a similar graph with
an in-memory linked data structure, which facilitates computing a
backward slice from the output but is less scalable.

Quantitative Information Flow as Network Flow Capacity

4.3 Large-region operations

Because enclosure regions can mention entire arrays or other large
data structures, the tool often wishes to represent the fact that a
piece of information might flow to any byte in a large memory re-
gion. However, it would be too slow to do this by operating on the
tag of each memory location individually: for instance, consider
a loop operating on an array in which each iteration might poten-
tially modify any element (say, if the index is secret). Operating
on each element on each iteration would lead to quadratic runtime
cost. Instead, the tool performs operations on large memory regions
lazily, by maintaining a limited-size set of region descriptors, each
of which describes a large range of contiguous memory locations,
perhaps with another limited-size list of addresses excepted. Op-
erations such as a flow to an entire region can be recorded just by
modifying the descriptor, and operations on single addresses can be
marked as exceptions. However, if a region accumulates too many
exceptions, it is either shrunk to exclude them (if they are all near
the beginning), or eliminated.

4.4 Other issues

Because the analysis operates at the binary level, all of the libraries
that program uses are included automatically. Inputs and outputs
are recognized based on system calls, such as read and write
respectively; memory-mapped I/O is not supported, though doing
so would not be difficult because every memory operation is al-
ready instrumented. It would be possible to treat malloc as part
of the instrumented program, though we currently inherit Mem-
check’s behavior of replacing the program’s allocator. Doing so
leaves the possibility of information flow via the addresses returned
from malloc; this channel could be blocked by using a separate
arena for allocations inside enclosure regions, or randomizing the
addresses. We have not studied the best extension of our technique
to multi-threaded programs, since Valgrind implicitly serializes the
programs it executes; it would likely suffice to execute enclosure
regions atomically. (The case studies of Section 7 are all single-
threaded.) Many aspects of a program’s interactions with its envi-
ronment might reveal information about its internals, such as how
long it takes to execute or how much power the CPU draws. If such
side channels are reflected in the program’s output, they can be in-
cluded in our approach: for instance, the result of gettimeofday
could be treated as secret. However, observations made outside the
program are beyond this scope of this technique.

5. Efficient maximum-flow

Computing the maximum flow in a network is a long-studied com-
putational task, but the flow graphs constructed by our technique
are both very large and a fairly well-structured, so specialized opti-
mizations are both necessary and possible.

5.1 Asymptotic performance

The best general algorithms for computing a maximum flow have
time complexity at least O(V E)), where V and E are the number of
vertices and edges in the input graph [11], but a dynamic program
analysis is usually only feasible if its running time is close to linear
in the running time of the original program. Therefore a more
specialized flow algorithm is called for. The flow graphs produced
by our technique have a number of special features that could guide
the choice of an algorithm. Because vertices and edges are added
at the same time, the graphs are sparse; i.e., £ = O(V). The
capacities of edges are all small integers; e.g., no more than 32 if
the program only uses word-sized operations. Intuitively, the graph
from a long program execution will be deep but not very wide: the
length of a path from the source to the sink is unbounded, but the

4 2007/12/7

Sand P R largest
Program vertices edges nodes nodes | Rnode
KBattleship 49135 57049 10583 8 5485
ImageMagick twist 1324145 | 1516765 | 286409 2639 151483
ImageMagick pixelate 225294 271464 43882 82 28714
ImageMagick blur 1898289 | 2354791 | 343095 2376 | 359440
OpenGroupware.org 550 647 21 2 45
X server 2010 2253 380 3 174
bzip2, 1KB input 1254073 | 1559800 | 196937 1011 197911
bzip2, 2KB input 2352727 | 2916519 | 362728 1993 373783

Figure 3. Experimental evaluation of SPQR trees for representing
flow graphs. An SPQR tree is an efficient representation for maxi-
mum flow computation if the size of its largest R node (last column,
measured in vertices) is small.

number of vertices that are in use at any moment is bounded by the
size of the original program’s memory.

In theory, this last “narrowness” property is be sufficient to give
an algorithm that is linear in the execution length, since for any
flow graph with at most k outputs, there is a bounded-size graph
that allows the same flows. However, the best upper bound we have

found on the size of such a mimicking graph is 22" vertices [22, 6],
clearly impractical if k is the size of memory. A related approach
is to bound the treewidth of a flow graph: graphs with bounded
treewidth can be hierarchically decomposed in a way that again
gives a linear-time maximum flow algorithm [22]. We suspect that
the flow graphs produced by our tool have small treewidth, though
we have not been able to experimentally verify this; the well-known
algorithms that are efficient for fixed treewidth k all apparently
have exponential dependencies on k that make them impractical
for treewidths as small as 4 (e.g, [3]). However, the next subsection
gives a further specialization of this idea that is within the realm
of experiment, using the class of series-parallel graphs, whose
treewidth is at most 2.

5.2 SPQR trees

A series-parallel graph is one that can be formed using only the op-
erations of series and parallel composition familiar from electrical
circuits. The maximum flow in a series-parallel graph can be com-
puted easily, since series and parallel composition correspond to
the operations of minimum and addition on the maximum flows of
the subgraphs. Our flow graphs are not generally series-parallel, but
they often contain large series-parallel portions, which suggests the
use of a data structure called an SPQR tree. An SPQR tree is a tree
that represents a hierarchical decomposition of a directed acyclic
graph with exactly one source and sink (an s-t DAG). The nodes in
the tree are of four kinds labelled S, P, Q, or R: S nodes represent
a series composition of their children, P nodes represent a parallel
composition, Q nodes are leaves that represent single edges, and
R nodes represent any composition that is not series-parallel. An
SPQR tree can be constructed efficiently, and maintained incremen-
tally as vertices and edges are added [2]. Depending on the structure
of the graph, the tree can range between having no R nodes (for a
series-parallel graph), and representing the entire graph by a single
R node with all Q nodes attached directly.

If our flow graphs have SPQR trees without large R nodes, then
the maximum flow can be computed quickly, since a super-linear
general algorithm would only be needed inside R nodes. Moreover,
the hierarchical nature of an SPQR tree allows for a convenient
incremental flow algorithm: if an edge is added to the graph, the
only the flows in the subtree corresponding to the two endpoints
would need to be recomputed.

To test the efficacy of SPQR tree decomposition on our flow
graphs, we computed SQPR trees for them using the batch algo-
rithm from the AGD library [21]. (OGDF [7], the successor library

Quantitative Information Flow as Network Flow Capacity

to AGD, also includes incremental SPQR tree construction and is
open-source, but was not available when we started this project.)
The results are shown in Figure 3 (for OpenSSH, the flow graph
was too large for the SPQR tool to process; for ImageMagick we
used a smaller image size). Series-parallel structure occurs across
all the programs, as shown by the large number of S and P nodes.
However, most of the trees also had a large R node at the root, indi-
cating that the high-level structure of the flow is not series-parallel.
Comparing the two runs of bzip2, notice that the R node at the root
grows as a constant fraction of the graph size; if this is the general
pattern, it means that an SPQR tree will not provide an asymptotic
performance advantage for this program. Therefore, while SPQR
trees capture some useful regularities, they do not appear sufficient
to allow the technique to scale to very large graphs.

5.3 Graph collapsing by code location

Since we have not found an efficient way to compute the maximum
flow in large graphs exactly, the next best approach is to simplify
the graph in a way that is sound and does not greatly increase the
flow. We considered some general-purpose graph operations, but
the most important regularities in large graphs seem to come from
loops in the original program, and are most easily exploited by us-
ing information about the program. In fact, our tool is able to do
this using the same implementation of edge labelling and node col-
lapsing that was described in Section 3.2: even the graph of a single
run can be simplified by combining edges with the same context-
sensitive code location, since the context does not distinguish dif-
ferent loop iterations. A graph can be collapsed even further by
combining edges based only on their (context-insensitive) code lo-
cation. With either variant, the size of the collapsed graph grows not
with the runtime of the original execution, but with its code cover-
age; since the latter tends to plateau, much longer executions can
be analyzed. A disadvantage of this collapsing technique is that it
undoes some of the properties that make computations on the origi-
nal graph easy: the summed capacities on edges can be unbounded,
and collapsing can introduce cycles. For instance, collapsed graphs
cannot be represented with SPQR trees.

5.4 Empirical results

We measured the scalability of our tool by testing it on bzip2, a
general-purpose compression tool based on block sorting. bzip2,
with its entire input marked secret, is not a very realistic example
for security analysis, since no detailed measurements are needed
to determine that its output contains the same information as its
inputs. We chose it because it represents a worst-case for our anal-
ysis’s performance: it is computationally intensive, almost all of the
computation operates on data derived from the input, and it makes
extensive use of large arrays that necessitate the laziness described
in Section 4.3. Also, it is easy to select inputs of various sizes, and
the expected amount of information flow can be computed a priori
to give a bound on the expected results. We chose a class of inputs
that are highly compressible: the digits of 7, written out in English
words, as in “three point one four one five nine”.

We ran our tool with context-sensitive edge collapsing, and
bzip2 in verbose mode -vv with a 100k block size. The computer
was a 1.8GHz AMD Opteron 265 running Linux; bzip2 and our
tool ran in 32-bit mode. Figure 4 compares the flow measured by
our tool to the expected bound, which is the minimum of the size
of the input, and the size of that portion of the output that depends
on the input. The latter is somewhat uncertain, because part of the
binary output format consists of fixed headers, and the commentary
printed to the terminal is only partially input-dependent; so we give
lower and upper bounds. The results match our expectations: very
small inputs cannot be compressed by bzip2, but for inputs that

5 2007/12/7

16408 r—r——— T

r

1e+07

1e+06

100000

10000

Flow (bits)

1000

100

P) A R RPN BRI R R R
10 100 1000 10000 100000 1e+06 1e+07 1e+08
Input size (bits)

Figure 4. The amount of information revealed in compressing files
with bzip2, as measured by our tool (note log-log scale). The solid
line shows the flows measured by our tool, in bits. The dotted lines
represent other functions that would be expected to bound the flow:
The straight line through the origin represents the input size. The
two curved lines (which are close to linear but do not pass through
the origin) represent size of the program’s output, minus upper
and lower approximations of the amount of output (such as fixed
headers and progress messages) that does not depend on the input.

6000 T T T T T

5000

4000

3000

Time (sec)

2000

1000

0 | | | | |
0 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

Input size (bytes)

Figure 5. The running time of our analysis, with graph collapsing,
on bzip2 running on a range of input sizes. For a 2.5 megabyte file,
the tool took about 1.5 hours. For small inputs, the performance is
also linear, but dominated by a constant startup time of about 4
seconds.

bzip2 can compress, the size of the compressed output is the best
estimate of the amount of information the program processes.

The running time of our tool grows linearly over this range of
input sizes, thanks to the lazy range operation implementation and
graph collapsing techniques, as shown in Figure 5. For the largest
input, 2.5MB, the tool’s running time was 1.5 hours. Though still
quite slow compared to an uninstrumented execution, this time re-
flects processing a graph (before collapsing) with 3.6 billion nodes,
since almost all of bzip2’s time is spent operating on secret data.
When tracing code that is not operating on secrets, no graph is con-
structed, so the tool’s overhead less, though still more than Mem-

Quantitative Information Flow as Network Flow Capacity

check’s. The time to compute a maximum flow on the collapsed
graph was less than a second in all cases.

6. Checking a flow bound

Once the main technique discussed in this paper has been used
to determine the amount of information a program reveals under
testing, one would also like to enforce that the same bound always
holds as the program is used in deployment. Checking a policy
is a simpler problem than discovering it, so a more optimized
implementation technique can be used. After describing how to
compute a cut of the flow graph from a maximum flow, we will
give two checking techniques that use such a cut.

Intuitively, a cut is a way of dividing a flow graph into two
pieces, one containing the source and the other the sink (a more
precise term is an s-¢ cut). Formally, it is convenient to define a cut
as the set of nodes that lie in the half containing the source, but we
are often interested in the set of edges that cross from that set to its
complement; their removal disconnects the source from the sink.
The capacity of a cut is the sum of the capacities of these edges.
There is duality between flows and cuts, captured by the classic
max-flow-min-cut theorem: the value of any flow is bounded by
the capacity of any cut, and the maximum flows are those with the
same value as the minimum-capacity cuts, since there is no way to
augment them [11]. It is often helpful to think about a maximum
flow computation as instead finding a minimum cut: for instance,
the graph combining technique of Section 3.2 can be thought of as
restricting the choice of cuts to those that are consistent across the
combined graphs.

6.1 Computing a minimum cut

Once a maximum flow has been discovered, a corresponding min-
imum cut can be computed by finding the set of nodes reachable
from the source along a path in which each edge has excess capac-
ity. This set of nodes can be computed with a depth-first search;
then the edges of the cut are those that connect reached and un-
reached nodes.

On the analyzed run(s), the edges of the cut carried an amount
of data equal to our tool’s estimate of the amount of information the
execution revealed, and all information flows from the secret inputs
to the public outputs passed through them. On future executions,
the amount of data corresponding edges carry will likely be a
good estimate of the information revealed, as long as no other
flows occur. Therefore, a static representation of the edges can be
used to efficiently check when an analogous policy holds on future
executions; enforcement is reduced to a tainting-style reachability
check. Our tool reports the source code line numbers to which the
cut edges correspond; since cuts tend to have only a few edges,
and most lines contain only one assignment, it is easy to use these
results to write static annotations. If the static annotation language
is context-insensitive, the best results are obtained by collapsing the
flow graph according to static edge locations before computing the
cut.

6.2 Tainting-based checking

When a cut is supplied, checking that no secret information reaches
the output other than across the cut is a simple reachability prob-
lem, so one obvious approach is to use dynamic tainting. We have
implemented this as an alternate mode of our tool, reusing the bit-
level tainting analysis described in Section 2.4. The cut edges cor-
respond to annotations that clear the taint bits on data, while si-
multaneously incrementing a counter of information revealed. If
any other tainted bits reach the output or an implicit flow opera-
tion, they are conservatively counted in the same way: enclosure
regions are still required. The runtime overhead of this approach is

6 2007/12/7

#of secret
Program ‘ KLOC ‘ libraries data
KBattleship 6.6 37 ship locations
OpenSSH client 65 13 authentication key
ImageMagick 290 20 original image details
OpenGroupware.org | 550 34 schedule details
X server 440 11 displayed text

Figure 6. Summary of the programs examined in the case studies
of Section 7. The program sizes, measured in thousands of lines
of code (KLOC), include blank lines and comments, but do not
include binary libraries (3rd column, measured with 1dd) that were
included in the analysis but not directly involved with the security
policy.

comparable to that of Memcheck: between 10 and 100 times the
uninstrumented execution time.

6.3 QOutput-comparison checking

If no support for debugging policy violations is required, an even
more efficient checking technique can be based on running two
copies of a program. The basic idea is to run two copies of a
program in parallel, one which initially has access to the secret
input, and the other which operates on a non-sensitive input of the
same size. At the point when the programs reach a cut annotation,
the program with the real secret input sends a copy of the values on
the cut to the second copy. If the programs produce the same output,
then the data that the second program received from the first at the
cuts is the only secret information needed to produce the output,
and the flow policy is satisfied; if the outputs diverge, then another
flow is present and execution should be terminated.

The key advantage of this technique is that the execution of
the two programs can be mostly uninstrumented: they only need
to behave unusually at the cut points. Enclosure regions are also
not required, as long as the non-sensitive input is such that the
program can execute the code that would be enclosed without
crashing or looping. A 2x overhead is less than any binary-level
dynamic tainting system, and using two copies can take advantage
of multiple processors.

A simpler version of this technique (without a cut, for check-
ing only complete non-interference) has been implemented in an
operating-system-level tool called TightLip [52]. The extension to
quantitative policies by sending information at a cut was suggested
in a previous paper [33], but in a theoretical context to convert an
information-flow property into a safety property that could be more
easily proved by induction.

7. Case studies

To learn about the practical applicability of our tool, we used it to
test a different security property in each of five open-source ap-
plications. The programs and the secret information protected are
summarized in Figure 6. In each program the sensitive informa-
tion we would like to protect participates in implicit flows, and
is partially disclosed in ways that are nonetheless acceptable; thus
both a quantified policy and a sound treatment of implicit flows are
needed.

To obtain precise results, all of the programs required enclosure
regions beyond those that could be inferred by the automatic tool
of Section 2.3; for the programs written in Objective C or C++, we
supplied all the enclosure regions by hand. Because of limitations
in our current syntax for specifying such regions, this sometimes re-
quired local code refactorings, such introducing a temporary value
to hold a return value. We spent about as much time writing such

Quantitative Information Flow as Network Flow Capacity

annotations as compiling and configuring the programs to run on
our system and developing test cases for the relevant policies.

7.1 KBattleship

In the children’s game Battleship, successful play requires keeping
secrets from one’s opponent. Each player secretly chooses locations
for four rectangular ships on a grid representing the ocean, and then
they take turns firing shots at locations on the other player’s board.
The player is notified whether each shot is a hit or a miss, and if
a hit has sunk a complete ship. A player wins by shooting all of
the squares of all of the opponent’s ships. In a networked version
of this game, one would like to know how much information about
the layout of one’s board is revealed in the network messages to the
other player. If the program is written securely, each missed shot
by the opponent should reveal only one bit, since “hit” or “miss”
represent only two possibilities. KBattleship is an implementation
of the game that is part of the KDE graphical desktop. We used
our tool to measure how much information about the player’s ship
locations is revealed when playing KBattleship.

We were inspired to try this example because Jif, a statically
information-flow secure Java dialect (the latest descendant of the
work described in [34]) includes as an example a 500-line Battle-
ship game. Apparently unlike Jif Battleship, however, the version of
KBattleship we examined (3.3.2) contains an information leak bug.
In responding to an opponent’s shot, a routine calls a method named
shipTypeAt to check whether a board location is occupied, and re-
turns the integer return value in the network reply to the opponent.
However, as the name suggests, this return value indicates not only
whether the location is occupied, but the type (length) of the ship
occupying it. An opponent with a modified game program could
use this fact to infer additional information about the state of adja-
cent board locations. The KBattleship developers agreed with our
judgement that this previously unrecognized leakage constituted a
bug, and our patch for it appears in version 3.5.3. Though this bug
would have been detected with our tool, we discovered it by inspec-
tion while considering whether to use the program as a case study
(before the tool was implemented).

However, our tool can verify that the bug is eliminated in a
patched version: we mark the position and orientation of each of the
player’s ships as secret, and measure how much of this information
reaches the network. In response to a miss, the program reports one
bits of information; a non-fatal hit reveals two bits, one indicating
the shot is a hit and a second indicating it is non-fatal. These flows
can be observed in real time by running our tool in a mode that
recomputes the flow on every program output, or each second,
whichever is less frequent. Information about the ship locations is
also revealed via the program’s graphical interface, but we excluded
that code from the analysis by explicitly declassifying some data
passed to drawing routines; thus this analysis could miss leaks that
occurred through the GUI libraries.

7.2 OpenSSH

OpenSSH is the most commonly used remote-login application on
Unix systems. In one of the authentication modes supported by
the protocol, an SSH client program proves to a remote server the
identity of the host on which it is running using a machine-specific
RSA key pair. For this mode to be used, the SSH client program
must be trusted to use but not leak the private key, since if it is
revealed to the network or even to a user on the host where the
client is running, it would allow others to impersonate the host.
(We were inspired to consider this example by the discussion of
it by Smith and Thober [44]). We used our tool to measure how
much information about the private key is revealed by a client
execution using this authentication mode, by marking the private

7 2007/12/7

Figure 7. Image transformations vary in how much information
they preserve. Our tool verifies that pixelating (left) or blurring
(middle) the original image (top, 375120 bits), reveals only 1461 or
1717 bits respectively. By contrast, the bound our tool finds for the
information revealed by a twisting transformation (right) is 357120
bits, no less than the input size. Applying the same transformation
with the opposite direction to the twisted image gives back an
image fairly close to the original (lower right).

key (a number of arbitrary-precision integers) as secret as it is read
from a file.

Our tool finds that 128 bits of information about the secret key
are revealed. The cut location reveals that this is the MDS5 checksum
of a response that includes a value decrypted with the public key,
as expected under the protocol. Of course, our tool is not able to
verify that MDS is a secure one-way function, though that belief is
part of why revealing those particular 128 bits is acceptable.

7.3 ImageMagick

ImageMagick is a suite of programs for converting and transform-
ing bitmap images. We evaluated some of its transformations to
assess how much information about the original they preserve. For
instance, if attempting to anonymize a photograph by obscuring
the subject’s face, using a transformation that preserves very lit-
tle information would prevent the original face from being recon-
structed.

Figure 7 shows an original 125-pixel square image, which is
represented by 375120 bits in an uncompressed PPM format, and
the output of three different transformations. Pixelation to a 5x5
grid uses the options -sample 5x5 -sample 125x125, while
blurring uses -resize 5x5 -resize 125x125, and the twisting
transformation uses —swirl 720. Though all three transformed
images are visually unidentifiable, they differ greatly in the amount
of information they preserve, as our tool verifies. Pixelation and
blurring both involve shrinking the image to a small intermediate
form and then enlarging it, so the maximum flow is dominated by
the size of the intermediate form. Since ImageMagick uses 16-bit
pixel component values internally, a 5-pixel square image is repre-
sented by 1200 bits. In addition there are some implicit flows, since
the header of the file, which includes its size and other metadata, is

Quantitative Information Flow as Network Flow Capacity

also considered secret. In total our tool gives bounds of 1461 bits
revealed for pixelation and 1717 bits for blurring.

On the other hand, the twist transformation computes each out-
put pixel by finding the corresponding input image location under
a continuous transformation, and interpolating between the four in-
put pixels near it. There is no apparent bottleneck in this computa-
tion, so our tool’s bound is the same as the input and output size,
375120 bits. Though the result is only an upper bound, and does
not prove that no information is lost, it accords with the intuition
that a continuous transformation is reversible, aside from blurring
caused by the interpolation. In fact, a twist of the same magnitude
in the opposite direction gives back an image fairly close to the
original (and more sophisticated inversion techniques are probably
possible).

7.4 OpenGroupware.org

OpenGroupware.org is a web-based system for collaboration be-
tween users in an enterprise, providing email and calendar features
similar to Microsoft Outlook or Lotus Notes. We focused specif-
ically on its appointment scheduling mechanism. Each user may
maintain a calendar listing of personal appointments, and the pro-
gram allows one user to request a meeting with a second user during
a specified time interval. The program then displays a grid that is
colored according to what times the second user is busy or free.
This grid is intended to provide enough information about the sec-
ond user’s schedule to allow choosing an appropriate appointment
time, but without revealing all the details of the schedule: for in-
stance, the boundaries of appointments are not shown, and the gran-
ularity of the display is only 30 minutes. We used our tool to mea-
sure the amount of information about the user’s calendar this grid
reveals, marking the starting and ending times of appointments as
tainted as the program reads them with a SQL query.

For instance, for a proposal for a one hour appointment between
9:00am and 6:00pm, when the target user has an appointment from
10:00am to noon, our tool bounds the amount of information re-
vealed as 12 bits. In previous research using the tainting version
of our tool, we had discovered that a loop that computes appoint-
ment intersections unnecessarily considered times every minute,
and fixed it to use the same half-hour interval as the final display;
the 12-bit measurement corresponds to a cut at checks made in this
loop.

This example also demonstrates the possibility of different flow
estimates that are equally correct, but differ in when they are more
precise. Later in the code, the objects created in the intersection-
checking loop are used to decide whether each of the 18 squares in
the grid should be colored beige or red; a cut there would measure
every one-day appointment search as revealing 18 bits. For the case
of a single morning appointment, a cut at the intersection loop gives
a more precise bound, but if the user had many appointments, later
in the day, an 18-bit bound from the display routine would be more
precise.

7.5 X Window System server

In the X Window System commonly used on Unix, a single pro-
gram called the X server manages the display hardware, and each
program (X client) that wishes to display windows communicates
with the server over a socket. The X server’s mediating role makes
it a significant potential source of security problems: programs can
use it to communicate with each other (including using the same
mechanisms that support cut and paste), and any information dis-
played on the screen also passes through the server. The original
design of X addressed security only with respect to whether clients
could access the server; more recently, the protocol has been ex-
tended with mechanisms that can enforce information-flow poli-
cies, by dividing clients into trusted and untrusted classes and re-

8 2007/12/7

stricting what untrusted clients can do [S0]. However, it can be dif-
ficult in a large monolithic system like the X server to ensure that
enough permissions checks have been added. Since the X server is
written in C, there is also the danger that an attack such as a buffer
overflow could allow any checks to be subverted. As an alternate
approach, we examined whether it is possible to avoid trusting most
of the server implementation, and instead enforce our information
flow goals directly. We used our tool to measure how much infor-
mation from client programs is revealed to other clients or other-
wise leaked from the server, by marking text data as secret when
it arrived in requests used for cut-and-paste or drawing text on the
screen.

Data bytes provided for cut-and-paste are uninterpreted by the
server, and cause no implicit flows. By contrast, drawing text on
the screen involves a number of computations: looking up bitmaps
from a font, computing the width of the area drawn, and drawing
each pixel according to the current rendering mode. The main effect
is to change pixels in the framebuffer, which we do not count as a
public output; but as a side effect, the server also computes a bound-
ing box for the text that was drawn, for use in later redrawing cal-
culations. The dimensions of this bounding box reveal information
about the text that was drawn, in the same way that the dimensions
of a black redaction rectangle in a declassified document would, by
constraining the sum of the widths of the characters drawn inside.

For instance, our tool estimates (somewhat imprecisely) that in
one font and drawing context, the bounding box generated from the
string Hello, world! could reveal up to 21 bits about the charac-
ters of the string. However, on examining the location of this pos-
sible leak, it was clear to us that it could be eliminated by using a
more conservative bounding box (not dependent on the contents of
string), perhaps at the expense of requiring more redrawing later.
Once the expected leaks are accounted for, either with cut anno-
tations or algorithmic changes, a dynamic checking tool can catch
any other information flows that violate the policy. For instance, our
tainting-based checker can use a single policy to catch both leaks
caused by user errors, like pasting text from a secret application
into an untrusted one, and code injection attacks, like a simulated
exploitation of a an integer overflow vulnerability [25] in which
code supplied via a network request walks through memory, looks
for strings of digits that resemble credit card numbers, and writes
them to a hidden file in /tmp.

8. Related work

Our technique combines some of the attributes of static analyses
(including type systems) that check programs for information-flow
security ahead of time, and of dynamic tainting analyses that track
data flow in programs as they execute.

8.1 Static information-flow

Static checking aims to check the information-flow security of
programs before executing them [12]. The most common technique
uses a type system, along with a declassification mechanism to
allow certain flows. It is also possible to quantify information flows
in a static system, though this has been difficult to make practical.

Despite advances such as selective declassification [17, 35], bar-
riers remain to the adoption of information-flow type checking [48]
extensions to general purpose languages [34, 43, 28]. Static type
systems may also be too restrictive to easily apply to pre-existing
programs: for instance, we are unaware of any large Java or OCaml
applications that have been successfully ported to the Jif [34] (clos-
est are the poker game of [1] and the email client of [26]) or Flow
Caml [43] dialects. Techniques based on type safety are inapplica-
ble to languages that do not guarantee type safety (such as C and
C++) or ones with no static type system (such as many scripting
languages).

Quantitative Information Flow as Network Flow Capacity

Information-flow type systems generally aim to prevent all in-
formation flow. Many type systems guarantee non-interference, the
property that for any given public inputs to program, the public out-
puts will be the same no matter what the secret inputs were [19, 48].
Because it is often necessary in practice to allow some information
flows, such systems often include a mechanism for declassification:
declaring previously secret data to be public. Such annotations are
trusted: if they are poorly placed, a program can pass a type check
but still leak arbitrary information. The minimum cuts described in
Section 6 could be used to choose the placement of declassification
annotations, since they would be a minimal interface between se-
cret and declassified data. However, we do not envision them to be
a trusted representation of the information flow policy: rather, the
policy is a numeric flow bound, and a cut is an untrusted hint to
assist enforcement.

Quantitative measurements based on information theory have
often been used in theoretical definitions of information-flow se-
curity [20, 14, 29]. Clark et al.’s system for a simple while lan-
guage [9] is the most complete static quantitative information flow
analysis for a conventional programming language. Any purely
static analysis is imprecise for programs that leak different amounts
of information when given different inputs. For instance, given an
example program with a loop that leaks one bit per iteration, but
without knowing how many iterations of the loop will execute,
the analysis must assume that all the available information will be
leaked. A formula giving precise per-iteration leakage bounds for
loops [30] may be difficult to automate. Our technique’s results re-
flect the number of iterations that occur on a particular execution.

8.2 Dynamic tainting

Many of the vulnerabilities that allow programs to inadvertently re-
veal information involve a sequence of calculations that transform
secret input into a different-looking output that contains some of
the same information. To catch violations of confidentiality poli-
cies, it is important to examine the flow of information through
calculations, including comparisons and branches that cause im-
plicit flows. Several recent projects dynamically track data flow for
data confidentiality and integrity, but without a precise and sound
treatment of implicit flows.

Some of the earliest proposed systems for enforcing confiden-
tiality policies on programs were based on run-time checking: Fen-
ton discovered the difficulties of implicit flows in a tainting-based
technique [16], and Gat and Saal propose reverting writes made by
secret-using code [18] much as our technique does. However, these
techniques are described as architectures for new systems, rather
than for as tools evaluating existing software, and they do not sup-
port permitting acceptable flows or measuring information leakage.

Recent dynamic tools to enforce confidentiality policies do not
scalably account for all implicit flows. Chow et al.’s whole-system
simulator TaintBochs [8], which traces data flow at the instruction
level to detect copies of sensitive data such as passwords. Because
it is concerned only with accidental copies or failures to erase data,
TaintBochs does not track all implicit flows. Haldar, Chandra, and
Franz [23] track information flow at the object level for the Java
virtual machine, but since their technique does not allow an ob-
ject to write public data after reading secret data, it prohibits most
useful computations involving secrets. The RIFLE project [47] is
an architectural extension that tracks direct and indirect informa-
tion flow with compiler support. The authors demonstrate promis-
ing results on some realistic small programs, but their technique’s
dependence on sound and precise alias analysis leaves questions as
to how it can scale to programs that store secrets in dynamically
allocated memory. Our approach also uses a mix of static analysis
and dynamic enforcement, but our static analysis only needs to de-
termine which locations might be written, while RIFLE attempts to

9 2007/12/7

match each load with all possible stores to the same location, which
is more difficult to do precisely in the presence of aliasing. Masri
et al. [31] describe a dynamic information-flow analysis similar to
dynamic slicing, which recognizes some implicit flows via code
transformations similar in effect to our simple enclosure region in-
ference. However, it appears that other implicit flows are simply
ignored, and their case studies do not involve implicit flows. DY-
TAN [10], a generic framework for tainting tools, applies a sim-
ilar technique at the binary level, where the difficulties of static
analysis are even more acute. In case studies on Firefox and gzip,
they found that their partial support for implicit flows increased the
number of bytes that were tainted in a memory snapshot, but did
not evaluate how close their tool came to a sound tainting. For in-
stance, they marked the input to gzip as tainted, much as we did
with bzip2, but do not report whether the output was tainted. None
of these tools enforce a quantitative security policy.

In an earlier unpublished technical report [32], we presented a
tainting-based quantitative information-flow analysis that was the
predecessor to the implementation described here. That system had
no maximum flow or minimum cut analysis; instead it used manual
annotations, called “preemptive leakage™” annotations, that played
the role of a (not necessarily minimal) cut. Enclosure regions in that
system were also manually supplied, and were unsound because
they propagated tainting only to locations that were dynamically
accessed. More recently, we gave a soundness proof [33] for a
simple formalized system that can be seen as modelling our tainting
based implementation, with enclosure regions modified to be sound
in the same way those in the present paper are. The simulation
proof technique use there could be extended to the present system
by treating the minimum cut corresponding to a maximum flow as
a preemptive leakage annotation. Our discussion there of the policy
guaranteed by the tool omits the issues of consistency we describe
in Section 3.

Restrictions on information flow can also be enforced by an op-
erating system. Traditional mandatory access control (MAC) tech-
niques [13] at granularity of processes and files are too coarse for
the examples we consider. A new operating system architecture
with lightweight memory-isolated processes, such as the “event
processes” of the Asbestos system [15], is more suitable for con-
trolling fine-grained information flow, but is not compatible with
existing applications. Like our technique’s enclosure regions, As-
bestos event processes provide isolation of side effects, but they are
implemented using hardware memory protection.

In attacks against program integrity, the data bytes provided by
an attacker are often used unchanged by the unsuspecting program.
Thus, many such attacks can be prevented by an analysis that
simply examines how data is copied.

The most active area of research is on tools that prevent
integrity-compromising attacks on network services, such as SQL
injection and cross-site scripting attacks against web applications
and code injection into programs susceptible to buffer overruns.
These tools generally ignore implicit flows or treat them incom-
pletely. Newsome and Song’s TaintCheck [39] is based on the same
Valgrind framework as our tool, while other researchers have sug-
gested using more optimized dynamic translation [27, 41], source-
level translation [51], or novel hardware support [45] to perform
such checking more quickly. The same sort of technique can also
be used in the implementation of a scripting language to detect
attacks such as the injection of malicious shell commands (as in
Perl’s “taint mode” [49]) or SQL statements [40].

Quantitative Information Flow as Network Flow Capacity

9. Future directions
9.1 An all-static maximum-flow analysis

Since the dynamic analysis considered in the body of this paper al-
ready takes advantage of static inference, and we found that a flow
graph labelled with static identifiers was fairly precise, it is instruc-
tive to consider how the same basic idea of network maximum flow
could be applied to an entirely static version of the information-
flow task. The flow graphs we consider are similar to the program
dependence graphs used in slicing, and the dynamic bit-width anal-
ysis of Section 2.4 has a close static analogue [5]. The key diffi-
culty is likely how to bound the number of times a static flow edge
will execute, in terms of a developer-understandable parameter of
the program input. The result of a static information flow analysis
would need to be a formula in terms of such parameters, rather than
a single number, but would still be piecewise linear in the execution
counts.

9.2 Supporting interpreters

In the past, information flow tracking for languages such as Perl
and PHP has been implemented by adding explicit tracking to op-
erations in an interpreter [49, 40]. However, since such interpreters
are themselves written in languages such as C, an alternative tech-
nique would be to add a small amount of additional information
about the interpreter to make its control-flow state accessible to our
tool in the same way a compiled program’s is, and then use the
rest of the tracking mechanism (for data) unchanged. This tech-
nique is analogous to Sullivan et al.’s use of an extended program
counter combining the real program counter with a representation
of the current interpreter location to automatically optimize an in-
terpreter via instruction trace caching [46]. Compared to a hand-
instrumented interpreter, this technique would exclude most of the
scripting language’s implementation from the trusted computing
base, and could also save development time.

10. Conclusion

We have presented a new approach for determining how much in-
formation a program reveals, based on the insight that maximum
flow is a more precise graph model of information propagation
than reachability (as implemented by tainting) is. Using a practi-
cal quantitative definition of leakage, the technique can measure
the information revealed by complex calculations involving im-
plicit flows. By applying that definition with an instruction-level
bit tracking analysis and optimized graph operations, it is applica-
ble to real programs written in languages such as C and C++. In a
series of case studies, our implementation checked a wide variety
of confidentiality properties in real programs, including one that
was violated by a previously unknown bug. We believe this tech-
nique points out a promising new direction for bringing the power
of language-based information-flow security to bear on the prob-
lems faced by existing applications.

References

[1] A. Askarov and A. Sabelfeld. Security-typed languages for
implementation of cryptographic protocols: A case study. In
Proceedings of the 10th European Symposium On Research In
Computer Security (LNCS 3679), pages 197-221, Milan, Italy,
September 12—14, 2005.

[2] G. D. Battista and R. Tamassia. Incremental planrity testing. In 30th
Annual Symposium on Foundations of Computer Science, pages 436—
441, Research Triangle Park, NC, USA, October 30-November 1,
1989.

[3] H. L. Bodlaender. A linear time algorithm for finding tree-
decompositions of small treewidth. In Proceedings of the Twenty-Fifth

10 2007/12/7

[4

[l

[5

—_

[6

—_

[71

[8

—

[9

—_

(101

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Annual ACM Symposium on Theory of Computing, pages 226-234,
San Diego, CA, USA, May 15-18, 1993.

M. D. Bond and K. S. McKinley. Probabilistic calling context. In
Object-Oriented Programming Systems, Languages, and Applications
(OOPSLA 2007), Montréal, Canada, October 23-25, 2007.

M. Budiu, M. Sakr, K. Walker, and S. C. Goldstein. BitValue
inference: Detecting and exploiting narrow bitwidth computations.
In European Conference on Parallel Processing, pages 969-979,
Munich, Germany, August 29—September 1, 2000.

S. Chaudhuri, K. V. Subrahmanyam, F. Wagner, and C. D. Zaroliagis.
Computing mimicking networks. Algorithmica, 26(1):31-49, 2000.

M. Chimani, C. Gutwenger, M. Jiinger, K. Klein, P. Mutzel, and
M. Schulz. The Open Graph Drawing Framework. In /5th
International Symposium on Graph Drawing, Sydney, Australia,
September 23-26, 2007.

J. Chow, B. Pfaff, T. Garfinkel, K. Christopher, and M. Rosenblum.
Understanding data lifetime via whole system simulation. In /3th
USENIX Security Symposium, pages 321-336, San Diego, CA, USA,
August 11-13, 2004.

D. Clark, S. Hunt, and P. Malacaria. Quantified interference for a

while language. In Proceedings of the 2nd Workshop on Quantitative
Aspects of Programming Languages (ENTCS 112), pages 149-159,

Barcelona, Spain, March 27-28, 2004.

J. Clause, W. Li, and A. Orso. Dytan: A generic dynamic taint analysis
framework. In ISSTA 2007, Proceedings of the 2007 International
Symposium on Software Testing and Analysis, London, UK, July 10—
12, 2007.

T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to
Algorithms. MIT Electrical Engineering and Computer Science
Series. MIT Press and McGraw-Hill, Cambridge, Massachusetts and
New York, New York, 1990.

D. E. Denning. A lattice model of secure information flow.
Communications of the ACM, 19(5):236-243, May 1976.

Department of Defense Computer Security Center. Trusted Computer
System Evaluation Criteria, August 1983. CSC-STD-001-83.

A. Di Pierro, C. Hankin, and H. Wiklicky. Approximate non-
interference. In /5th IEEE Computer Security Foundations Workshop,
pages 3—17, Cape Breton, Nova Scotia, Canada, June 24-26, 2002.

P. Efstathopoulos, M. Krohn, S. VanDeBogart, C. Frey, D. Ziegler,
E. Kohler, D. Mazieres, F. Kaashoek, and R. Morris. Labels and
event processes in the Asbestos operating system. In Proceedings of
the 20th ACM Symposium on Operating Systems Principles, pages
17-30, Brighton, UK, October 32-26, 2005.

J. S. Fenton. Memoryless subsytems.
17(2):143-147, May 1974.

E. Ferrari, P. Samarati, E. Bertino, and S. Jajodia. Providing flexibility
in information flow control for object-oriented systems. In /997 IEEE
Symposium on Security and Privacy, pages 130-140, Oakland, CA,
USA, May 4-7, 1997.

I. Gat and H. J. Saal. Memoryless execution: A programmer’s
viewpoint. Software: Practice and Experience, 6(4):463—471, 1976.

The Computer Journal,

J. A. Goguen and J. Meseguer. Security policies and security models.
In 1982 IEEE Symposium on Security and Privacy, pages 11-20,
Oakland, CA, USA, April 26-28, 1982.

J. W. Gray III. Toward a mathematical foundation for information
flow security. In 71991 IEEE Symposium on Research in Security and
Privacy, pages 21-34, Oakland, CA, USA, May 20-22, 1991.

C. Gutwenger, M. Jiinger, G. W. Klau, S. Leipert, P. Mutzel, and
R. Weiskircher. AGD - a library of algorithms for graph drawing.
In 9th International Symposium on Graph Drawing, pages 473-474,
Vienna, Austria, September 23-26, 2001.

T. Hagerup, J. Katajainen, N. Nishimura, and P. Ragde. Character-
izing multiterminal flow networks and computing flows in networks
of small treewidth. Journal of Computer and System Sciences,

Quantitative Information Flow as Network Flow Capacity

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[34]

[35]

[36]

[37]

[38]

[39]

57(3):366-375, 1998.

V. Haldar, D. Chandra, and M. Franz. Practical, dynamic information
flow for virtual machines. In 2nd International Workshop on
Programming Language Interference and Dependence, London, UK,
September 6, 2005.

R. Hastings and B. Joyce. Purify: A tool for detecting memory leaks
and access errors in C and C++ programs. In Proceedings of the
Winter 1992 USENIX Conference, pages 125-138, San Francisco,
CA, USA, January 20-24, 1992.

M. Herrb. X.org security advisory: multiple integer over-
flows in DBE and Render extensions, January 2007. http:
//lists.freedesktop.org/archives/xorg-announce/
2007-January/000235.html.

B. Hicks, K. Ahmadizadeh, and P. McDaniel. From languages
to systems: Understanding practical application development in
security-typed languages. In Proceedings of the 2006 Annual
Computer Security Applications Conference, pages 153—164, Miami
Beach, FL, USA, December 11-15, 2006.

V. Kiriansky, D. Bruening, and S. P. Amarasinghe. Secure execution
via program shepherding. In //th USENIX Security Symposium,
pages 191-206, San Francisco, CA, USA, August 7-9, 2002.

P. Li and S. Zdancewic. Encoding information flow in Haskell. In
19th IEEE Computer Security Foundations Workshop, pages 16-27,
Venice, Italy, July 5-6, 2006.

G. Lowe. Quantifiying information flow. In /5th IEEE Computer
Security Foundations Workshop, pages 18-31, Cape Breton, Nova
Scotia, Canada, June 24-26, 2002.

P. Malacaria. Assessing security threats of looping constructs. In
Proceedings of the 34rd Annual ACM SIGPLAN-SIGACT Symposium
on Principles of Programming Languages, pages 225-235, Nice,
France, January 17-19, 2007.

W. Masri, A. Podgurski, and D. Leon. Detcting and debugging
insecure information flows. In Fifteenth International Symposium
on Software Reliability Engineering, pages 198-209, Saint-Malo,
France, November 3-5, 2004.

S. McCamant and M. D. Ernst. Quantitative information-flow
tracking for C and related languages. Technical Report MIT-CSAIL-
TR-2006-076, MIT Computer Science and Artificial Intelligence
Laboratory, Cambridge, MA, November 17, 2006.

S. McCamant and M. D. Ernst. A simulation-based proof technique
for dynamic information flow. In PLAS 2007: ACM SIGPLAN
Workshop on Programming Languages and Analysis for Security,
San Diego, California, USA, June 14, 2007.

A. C. Myers. JFlow: Practical mostly-static information flow
control. In Proceedings of the 26th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 228—
241, San Antonio, TX, January 20-22, 1999.

A. C. Myers and B. Liskov. A decentralized model for information
flow control. In Proceedings of the 16th ACM Symposium on
Operating Systems Principles, pages 129—142, St. Malo, France,
October 5-8, 1997.

G. C. Necula, S. McPeak, S. Rahul, and W. Weimer. CIL:
Intermediate language and tools for analysis and transformation of C
programs. In Compiler Construction: 11th International Conference,
CC 2002, Grenoble, France, April 812, 2002.

N. Nethercote and A. Mycroft. Redux: A dynamic dataflow tracer. In
Proceedings of the Third Workshop on Runtime Verification, Boulder,
CO, USA, July 13, 2003.

N. Nethercote and J. Seward. Valgrind: A framework for heavyweight
dynamic binary insrumentation. In Proceedings of the ACM
SIGPLAN 2007 Conference on Programming Language Design and
Implementation, San Diego, CA, USA, June 11-13, 2007.

J. Newsome and D. Song. Dynamic taint analysis: Automatic
detection, analysis, and signature generation of exploit attacks
on commodity software. In Annual Symposium on Network and

11 2007/12/7

Distributed System Security, San Diego, CA, USA, February 34,
2005.

[40] A.Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans.
Automatically hardening web applications using precise tainting.
In 20th IFIP International Information Security Conference, pages
295-307, Chiba, Japan, May 30-June 1, 2005.

[41] F. Qin, C. Wang, Z. Li, H.-S. Kim, Y. Zhou, and Y. Wu. LIFT:
A low-overhead practical information flow tracking system for
detecting general security attacks. In Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture, Orlando,
FL, USA, December 9-13, 2006.

[42] J. Seward and N. Nethercote. Using Valgrind to detect undefined
value errors with bit-precision. In Proceedings of the 2005 USENIX
Annual Technical Conference, pages 17-30, Anaheim, CA, USA,
April 10-15, 2005.

[43] V. Simonet. Flow Caml in a nutshell. In First Applied Semantics II
(APPSEM-II) Workshop, pages 152-165, Nottingham, UK, May 26—
28, 2003.

[44] S. Smith and M. Thober. Refactoring programs to secure information
flows. In PLAS 2006: ACM SIGPLAN Workshop on Programming
Languages and Analysis for Security, Ottawa, Canada, June 10, 2006.

[45] G. E. Suh, J. W. Lee, D. Zhang, and S. Devadas. Secure program
execution via dynamic information flow tracking. In Proceedings
of the 11th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 85-96,
Boston, Massachusetts, USA, October 7—-13, 2004.

[46] G. T. Sullivan, D. L. Bruening, I. Baron, T. Garnett, and S. Ama-
rasinghe. Dynamic native optimization of interpreters. In ACM
SIGPLAN 2003 Workshop on Interpreters, Virtual Machines and
Emulators, pages 50-57, San Diego, California, USA, June 12, 2003.

[47] N. Vachharajani, M. J. Bridges, J. Chang, R. Rangan, G. Ottoni,
J. A. Blome, G. A. Reis, M. Vachharajani, and D. I. August.
RIFLE: An architectural framework for user-centric information-flow
security. In Proceedings of the 37th Annual IEEE/ACM International
Symposium on Microarchitecture, pages 243-254, Portland, OR,
USA, December 4-8, 2004.

[48] D. Volpano, G. Smith, and C. Irvine. A sound type system for
secure flow analysis. Journal of Computer Security, 4(3):167-187,
December 1996.

[49] L. Wall and R. L. Schwartz. Programming Perl. O’Reilly &
Associates, 1991.

[50] D. P. Wiggins. Security Extension Specification. X Consortium, Inc.,
November 1996.

[51] W. Xu, S. Bhatkar, and R. Sekar. Taint-enhanced policy enforcement:
A practical approach to defeat a wide range of attacks. In /5th
USENIX Security Symposium, pages 121-136, Vancouver, BC,
Canada, August 2—4, 2006.

[52] A. R. Yumerfendi, B. Mickle, and L. P. Cox. TightLip: Keeping
applications from spilling the beans. In 4th USENIX Symposium
on Networked Systems Design and Implementation, pages 159-172,
Cambridge, MA, USA, April 11-13, 2007.

Quantitative Information Flow as Network Flow Capacity

2007/12/7

