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ABSTRACT OF THESIS

The thesis 1s concerned with a detailed inves-
tigation of the vectors and tensors assoclated with a
ruled surface imbedded in an Euclidean épace of four
dimensions, which tensors regquire no more than second
order differential equations in their treatment. In
other words, this 1s a study of the simple differential
geometry of a ruled surface in R,. The fundamental forms
of and important sets of curves on the surface thus
defined are presented, with particular interest center-
ing around the unique curves, the so-called striction
curve and the quasi-asymptotic curve. The curvature
properties of the surface are investigated with respect
to the variation of the normal vectors and curvature
conic along s generator of the surface. A few formulae
for a ruled V; in R, are appended. While no striking
new results have been obtained, this study seems impor-
tant in that it asks- and answers- "just what tensors

are' for a .situation Just out of the ordinary.
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RULED SURFACES IN EUCLIDEAN FOUR SPACE

I. INTRODUCTION

The obJject of thls thesis 1s to study a two
dimensional ruled surface in a Euclidean space of four
dimensions from the point of view of differential geometry.
We use V; to designate the surface when the representation
is such that the first fundamental form is positive
definite (ef. p.3 and p. 40), and R, to designate the
surrounding Euclidean Space. The notation used is a com-
bination of ordinary vector and tensor notations. The
vector x, or x*, has components x!, x2, x3, x* with respect
to some allowable coordinate system.! Greek indices refer
to the surrounding space, R.,, arabic to the surface V,
itself. The super-bar is reserved for vectors, indices
are necessarily used for tensor quantities of order
greater than one. Scalar products are indicated by Xey
or x“yx as seems most convenient, etc., The formal manip-
ulation and algebra of tensors used is that developed in
Schouten and Struik I.® Ve are mainly concerned with

those properties of the surface which depend on the

1 0.Veblen 1932,3
2 J.A.Schouten 1935,3



surrounding space, in the sense that the surface cannot

be imbedded in an ordinary space of three dimensions, but
not on the particular coordinate system employed, that
1s:- properties of the surfece invariant with respect to
transformations of the R,. Numbers in the footnotes refer
to the bibliography at the end of the thesis- which is

arranged chronologically.

II. GENERAL DISCUSSION

A ruled surface, Vp, in a Euclidean space of
four dimensions, R,, may be considered as generated by a
vector moving along a space curve.! If the curve, C, is
represented by x(t) and the moving vector by 1(t), where
the functions x™(t), 1™(t) (» = 1,2,3,4) are real single-
valued functions of the parameter t sufficiently regular
to permit differentiation as may be required, any point,
P, on the surface, with coordinates y”, will be given by
(1) y(t,u) = x(t) + u 1(t)
where, if 1(t) is a unit vector, u is the distance of P
from the curve C in the positive direction of T(t).

The curve C
is called the directrix
of the surface and the

vectors 1 the rulings or

FIG, 1 generators. If all the

! W.C.Graustein 1935.1, p.208.



vectors 1 are moved to the same point, they will form a
cone which cuts the unit hyper-sphere on the same origin
in a curve. This cone 1is called the director cone of the
surface. By unit vector we understand,
(2) I1=1
where the . indicates the ordinary scalar product. Dis-
tance measured on the surface will be given by
(3) As2=47.d7 = (X.X, + eul.X, + u?L,.T)at® +
Bf.ikdt du + du®
X

where xt =3t EeSe0.

There is thus definedbn the surface a linear element or
first fundamental form
(4) ds® = g 4t® + 2g dtdu + g du®

11 12 =22
or, we may say, a fundamental covariant tensor gij’
(i,j = 1,2) with discriminant g = g,1822 - £:2° and a
contravariant tensor gij, where giJ = Gij/g’ Gij being
the cofactor of gij in its matrixﬂgijn.

If t is the arc length of the curve C

and (3) may be written

(6) ds® = (1 + 2Nu + MPu?)dt® + 2 cos? dtdu + du3

— — r2 — [
where N = goXgs M = S cos? = i.,x

; and ¥ is the

angle the rulings make with the curve C.



The orthogonal trajectories of the rulings will
be the integral curves of the eguation?
(7) cos? dt + du = O

which can be solved by quadratures., Hence we have: A given

ruled surface in a Euclidean space of four dimensions can

always be transformed so that the directrix 1s an ortho-

gonal trajectory of the rulings snd distance on the surface

is measured by
(8) | ds® = (1 + 2Nu + MRPu®)dt® + du®.

For future reference we note the following fornu-
lae calculated from the definitions after (4) and the
linear element (8).

(9) Christoffel symbols of the first kind.?2

—~ 12 - 1 _' x5 ey T
1,1 =2 £811 = F o048 = ulx, T + X .T) +

t° it
R1,2) = - 39 817 = - ¥ 8 = - (K. T + uT,.Tp)
fe,1] = 326, = - (11,
fie,2) =0 [22,1] =0 [e2,2] = 0

(10) Christoffel symbols of the second kind®
Th= g% [11,2) = (11,9 _ - _

' £ £

T2z = 0 Tia=0 T2 =0

—'—:‘l = 9" [H. l] = -2—'5- th = -‘E ar (‘oa 3)

! L.P.Eisenhart 1909.1
% L.P,Eisenhart 1926.1, p.l7.
3 Bee also J.A,.Schouten 1935.3, p.83



(11) The Riemann-Christoffel tensor Rijkl has only one
distinct non-zero covariant coordinate.
Riz213 = - Rizar = Rz122
- BRI = RipiT = 2T 2 L T

= -0T%, +7T%, 7%,

1 ~=2 - 2 —_ —
2% ,u.8 - (38) 1 o1 (E.T,
4 T Tt°TE

Il

+ ui

2
t.it)
g

(12) The Riemenn curvature scalar or scalsar curvature

R = Ryiz2:8'%8°%% + Rz1128%%8°% = -(2/g) Ryz12

L3

1]

tives of the functions defining the surface!, we have
ol

#

Designating by h the second covariant deriva-

x G

=y = * Vy =9,y =37
le 13 Yy since Jy yy yJ

#_M__TJ"*: ”z _
Since hji = yji i yk and yji = yij from our assump
tions about the nature of the functions y~ and the symuetry
of the Christoffel symbols, we see that h;j is a2 symmetric

tensor with respect to the covariant indices.

VUith respect to the contravarilent index x the

7
h(i)(j) are vectors in the R, normal to the surface,® and

lie in the plane which 1s completely perpendicular to the

tangent plane at any point.2® The y; are vectors in the

! L.P,Eisenhart 1926.1, p.160.
® The (1)(3) indicate that the indices are "dead".

3 F.8.Woods 1922.2, for perpendicularity in n-dimensional
spaces.



tangent plane at any point since they are the tangent

vectors to the parametric curves. Then

yzyf =1 y;ys = O from our assumptions (2) and (5)
Differentiating
. K ¥ X x V3
ijiyk. =0 ijiyk. + yi ijk =0 (i::’:k = 1:2)
and < x % .
- —_ * 2
hjiyi =0 hjiyk + yihjk =0 (*=1,2,3,4)

for any permutation i, J,k, snd the three vectors h(;)(J)
are normal to the tangent plane a2t any point of the sur-
face. Since we are working in a four dimensional space,
these vectors must lie in the plane which is completely
perpendicular to the tangent plane.

There must then be a linear relation among the three
vectors. OCalculation of their components in terms of the
functions defining the surface with the help of the formulae
(10) and (11) shows that

Xy + uitt Xt + uit b

n. =2 |wi,.%, +1,,..%)+uT,.1 g 0

11 ~ ¢ t° 7ttt tt° 7t t°7tt
(14) - —

loxg, +ul.i, 0 1

_ . it X + uit i
0 0 1

h22 = 0 and perforce such a linear relation does exist.



4
Since h(i)(j) is a vector perpendicular to the surface

(18) niiy(g) = Bray(y) PTF B(ay(y) 97 L3 =12

where p” and q"are unit orthogonal vectors in the normal
plane of the surface.?

(a: I,Z)

o x -4 e
Then, hyy hyy = Z hyqhyy o

and the Gauss-Codazzl equations of the surfzce are

(16) Riziz 2:,£12£12
= H1:=:-H12
(17) V[iilj]k = ‘l,’[ilj]k’ where ‘;’1 = - ‘,2’1 = p Y9~
and ?&ﬁj]k = ?[1'3]k
and the Riccl condition of integrability 1is
(18) v[i‘e;jl = gkl(ﬁk[iﬁlgl)

These equations are in the tensor form, but we can also
derive 'vector! equetions?®

(19) V1}_112 - Vzh;, = - Ri3:1° 72

- V2hay = R3iz
The second fundamental form of the surface is defined by
means of these quantities _ij‘
(20) @ = b,,dt° + 20, .dtdu
1s the second vector form., Its magnitude % = @.¢

(21) ©= Hll --ﬁlldt4 + 4:511.5126.133(111 + 4:51205126132&113

'This can always be done. Cf. Eisenhart 1926.1, p.143.
*For the relation between (16)-(19) see Wilson 1916.2,p.305.
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is defined by some authors! as the second form, but we

shall prefer to use (20).

The Gaussilan curvature of a real ruled surface

in four dimensional Euclidean space is always negative

or zero., The Gaussian curvature of the surface at any

point is X = 3R, where R is the scalar curvature defined
in (12). From this definition and with the help of
formulse (11)

(22) K=-Ryipip = =hypa.h;,
g g

If we calculate Eij for the surface in the form

(6),: we have

(14:) Se
xtt + uitt X4 + uit i
— .].; - / V2,2
hy, = - u(it wt * Xt‘itt) +ufli i 1+ 2Nu + MR cog ¥
1.x tt + ui, 1tt cos V 1
it Xt + uit 1

hla=%‘g= N+ wd® 1+ 2Nu+ MPu® cos¥

0 cos v 1
hop = O
and
(23) B aFis = Masin? - N?

1L.P, Eisenhart 1926.1, p.l66.




and

(24) K = - (MPsin®¥ - NB)
ga

Then

(25) MPgin®9d - N® = O

is the condition that the Gaussian curvature vanish. If
h,» 18 a non-isotropic vector, it must then be a null

vector for K to vanish, and we have

(46) 1'6 = ax, + bi
where a = N + ulf® and b = - cos?
Nu + sin<? Nu + sin®®

The tangent pleane at any point on the ruled sur-

face 1s represented by the bivector

”eX
(22) 1= (xiF e walal e, 0 = 1,2,5,4

L

2 ]
IfXK=20, T, = a(l + u)(xt 17 ), which is independent of
u, and the tangent plane is fixed along a generator. The
surface 1s then the tangent surface of a twisted curve.

Definition: Vp in R4 for which K = O are developable

surfaces. Then it follows from above that Ruled surfaces

which are developable ere twisted curve surfaces. How-

ever, in R, all surfaces for which K = O are not neces-
sarily ruled developables.! For in general K= iR = -

"R 1 H .E - _: o_
_;gLa = =2 33~g aeliz 414 the numerator may vanish

1 E. B. Wilson 1916.2, p.343.
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without le = 0 and Egg = 0, as for ruled developables,
or without the terms vanishing separately. We shall take
(25) as the éondition defining ruled developable sur-
faces when we have represented them in the form (6).

There are no skew ruled surfaces of constant

curvature. Substituting for g its value in terms of t
and u in (24)

K = - (¥®sin®¥ - N2)
(1 + 2Nu + M*u=)?

The numerator does not depend on u, and if X is to be a
constant
N =0, M = 0.

But then K = 0, and the surface is developable,

ITI., THE STRICTION CURVE

We consider now only skew surfaces, that is
surfaces for which K is not identically zero. For the
infinitely distant points on the rulings the surface be-
heves like & developable since as u->e, X->0(1/u*) from
(22). 1In general K is finite for all finite points of a
ruling, but there may be one or more rulings along which
K = 0, which rulings may be found by solving (25) for t.
For any regular generator K will heve a minimum value

at the point

° =

V|

(28) u_ = =N
ot

| =
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found by differentiating expression (24) with respect
to u and equating to zero. The value of the Gausslan

curvature at the point u, is

ré

- 'L

o~ Mgin®v - N?

(29) K

Then at any point

. X
(30) K = o —
: (1 - X (u - u)?®)

If we ask for the minimum distance between two
consecutive generators, t and t + dt, on the surface, we

must solve the two following equations?

2(ds®) _ D -
(31) 5%5571 =2 cosV dt + 2du = O

2
%é%é—l = (2N + 2MPu)dt® = O

whence

-N at -1
(32) u=g5z and 3y = 5os9

We call the point so defined on the generator the cen-

tral or striction point of the ruling. The locus of the

striction point is the striction curve of the surface.
The minimum distance between consecutive generators 1s
then
(33) de® = dt3(1 - N3/K®) - cos®Y at® =

dt? (MPsin®d - N?)

M

The struction curve is in general not an orthogonal

1 XK. Kommerell 1911.2
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trajectory of the rulings since de® is not its linear
element. If the surface is developable, the d«® = O and
and consecutlve generators intersect. We might have
taken this as a definition of developable surfaces. For
such a surface the striction line ccincides with the edge
of regression. If we compare (32) and (28) we see that

the striction curve 1s the locus of minimum Gaussian

curvature, and moreover this curvature 1is symmetric

about the striction ppint on any ruling.

We may accept as a theorem of projective
geometry in R, that two skew lines determine an Rj.
Then any two rulings of the Vy; will determine an Rz in
which there will be one line perpendicular to the two
given, Thus the argument found in textbooks of ordinary
three dimensional differential geometry! defining the
striction point as the foot of the common perpendicular
to two infinitesimally close rulings may also be follow-
ed for a ruled surfece 1in Rs.

The tangent planes along a ruling all lie in

the same Rz, From (27) this R; has covariant components

. _ o® o p N
(34) v, = e'\“w)xtit i
where e)xfu,= + 1 depending on the permutation of the

1 W.C. Greustein 1935.1, p.209
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indices!, and its normal vector is

a1 b A
(35) v —e'x/wvxt i‘ti

Then the angle ¢ between the tangent plane at a point
u and the tangent plane at the striction point may be

shown to be a function of the distance between the two

points.?
(36)  tang =27 "o
B
vhere @ 2 = I®sin®y - N®
M=

and the tangent planes rotate around the rulings.

From (35) v'v, = M®sin®9d - N?, and the distribution

P\
perameter © = + lﬁl . The normal vector %& to the sur-

face which lies outside the tangent Rs along a ruling
then plays the part in R, thet Q does in earguments in
Rs.

Now, the geodesic curvature (as we shall show

COs

later) of the directrix is Ty

, Where & 1is the eangle
between the osculating plene of the curve and the
tangent plane of the surface, and r, is the radius of
first curvature. From the definitions of the quantities

involved

cos® _ =N as
(37) r,  sinv ~ dt

! A.J.McConnell 1936.2, p.8 and p.298 for e systems of
speclal relativity _

? L.P.Eisenhart 1909.1
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If the striction curve is the directrix and also a

geodesic, N = O, ggéf%oand cos?) 1is a constant, the
rulings cut the directrix under a constant angle. If

N =0, %% = 0, the curve must be a geodesic. If %% = Q
ngﬁL = O the curve must be the striction curve. ©So we

have Bonnet's theorem!: If a curve on a ruled surface

—_—— e —— e

possesses two of the followlng propertles, 1t possesses

the third; 1. The curve is the striction curve; 2. The

curve is g geodesic; 3. The curve cuts the rulings with

& fixed angle.

The properties of the striction curve of the
ruled surface in R, mentioned above are prescisely those
of such a surface in Rz. We have been unable to find
any which do not carry over, and, conversely, any which
do not occur for ruled Vz in Rz. Further properties are
to be found in papers by O, Bonnet, E. Bour, H. Beck

and J. Krames.?

IV. CURVATURE PROPERTIES OF THE RULED SURFACE

Any non-minimal curve on the surface defined
by y¥(s), (x=1,...,4) or by xi(s) (1=1,2), vhere s is

the length of the curve, has an absolute curvature

1 0. Bonnet 186%7.1
® E. Bour 1862.1,2; H. Beck 1928.1; J. Krames 1928.2
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vector with respect to the surrounding space defined by?

) ’ I 4
~_dy” v 4y
(38) n=ds »ds
i
But since gxi ='§Xf ax”
ds > i ds
X .
< .
(39) e _ayraxt v oaxd | ng, axt ax?
- ?xj ds 1 ds : as ds
where
P J i
(40) n¥ = 33& %ﬁ— ‘73 %% is the relative curva-
%

ture vector of the curve, or the component of the absolute
curvature in the surface, and

" dxi dxj
1} ds ds

to the surface, called the normal curvature vector. Or,

(41) "h* = h is the component orthogonal
(42) n" = 1n* 4 "p*

If r, is the radius of curvature of the curve in the given
difection with respect to R4, £, the radius of curvature |
of the curve with respect to the Vp, and R the radius of
curvature of the geodesic in that direction

1 1 1
(45)‘ ;? = .P: + RZ

(42) expresses the extended Meusnier theorem for a curve
on a surface in Ry. All curves through a point F: on
the surface in the same direction have the same normal

curvature. Since we have a definite metric (8), there

1 J.A. Schouten 1938,1, p.80.
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is an angle « such that

(44) cosewd _ 1 gina _ 1
B r Pq Ty R -

From (41) and (20) we see that the normal curv-
ature vector for a direction at a point 1s the second
vector form of the surface. The normal curvature proper-
ties of a surface then may be derived from a study of
this quadratic form. Before we begin this study we note

that the mean curvature vector at a point is
: % i, _ 1 .~
and the mean curvature is

(46) i = Braielia
4g?

1f the surface is referred to orthogonal parameters (8).

If the linear element is (6)

» x
2% hyy - cos ¥ hyp
(47) M = Zg

The ruled surface is a minimal surface, in the sense of

least area, if 1" 18 a null vector.! But this requires

that

(48) glxpy + ulyy) + ullyioxey + X T + ul ) (xp + ulp)+
g(f.ftt +ul ) 1T=0

which is equivalent to the condition that g vanish. The

rank of the first fundamental form is then one and the

1 E.B. Wilson 1916.2, p.325
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surface can be imbedded in an Rz. That is: The only

minimal ruled surfaces in R, are tnose of R, namely

the right helicoid.

Since "n* is perpendicular to the surface at
any point for a1l directions on the surface through that
point, P, it l1lies in the normal plane to the surface at
that point and the end point of "n” traces a curve in
this plane as the direction changes. From (41) we see
that "n” becomes infinite only if ds® = 0; but these
are lilsotropic directions on the surface, and as long as
we deal only with real directions "n* must describe a
finite curve. If ﬁe consider the surface referred to
orthogonal parameters (8) and take as a system of ortho-
gonal unit vectors on the surface those in the directions

of the parametric curves,

(49) ia: 0,1

any directlion dt:du will then be represented by

(50) 1% = cos « 1% + sin« 1%
1 2
and "n¥ for 1%
: 2
(51) "n = 12107 = 17+ sin 2 "g” - I cos 2= "p*
2

, in% - 18 I
where g = % % ab = & hy,
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2

"t = 1a1bh:b = Lip~
1 12 Yg 12
¥ = 121P0”% = 0

1 11 @b

The normal curvature in the direction of the rulings 1is

zero. From (51) we see that the normal curvature vector

traces an ellipse in the normal plane with center E: and
2
a pair of conjugate radii #'n”, "n”. Ve call this the
2 1

curvature conic., It 1s clear that the conlc passes

through the surface point P since for e = 0, "n”= 0.}

Since h,;,.h;2 1s quadratic in terms of the parameter u,

we note that there are two points on each ruling where

the mean curvature vector is an axis of the curvature

conic, when h,, is perpendicular to h;s.>2
Conjugatéiirections at a point are defined as

those for which

(52) By, dt $t + b, (dt Su + du §t) = O.

At a point for which h;, # h;» (52) is satisfied by dt =

t

0, $t = 0. That is: the conjugate directions a

—a—

a point

coincide with and are in the direction of the ruling

through the point.

Asymptotic directions by definition are those
for which

1 The curvature properties may also be studied by means
of an extended Dupin indicatrix, the curve in which an
R, perpendicular to M” cuts the surface.

See the paragraph on quasi-asymptotic curves on the
surface and the diagrams and example at the end of this
section.
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(53) h,,dt® + 2h,, dtdu = O.

At any point then for which h;, # h,=, there is only one
asymptotic direction, that of the generator through the
point., [The conljugate direqtions and the asymptotic

direction at a regular point on a ruled surface in an R

coincide with the direction of the ruling through the
point, |

e may note, however, that those authors who
define the second fundesmental form of the surface by (21,
obtain in addition to the rulings, two conjugate directions
and two definilte asymptotic directions which are ortho-
gonal.?

If we define those directions for which the
normal curvature has maxima and minima as the principal
directions at any point, we find four such; one of which
is in the directlion of the generator, the others are

obtained as the roots of the equation®

(54) {~4g11h;1hf3 X+ (4h;,h7, - Bgllh:zh;a)'f +

12h, his X + eh{ahfa} N =0
(If we used the more general representation of the surface
(6), (54) would be more symmetric in form, but still of
the fourth degree in A.) (A= dt:du). The lines of

curvature on the surface are the integral curves of (54).

! E.B. Wilson 1916.2,
2 Differentiate 'n“h”(41l) and equate to zero,
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At least two of the roots of (54) are real since there is
at least one change of sign in the ccefficients in the
expression 1n brackets, namely the first and@he third
terms. If we apply the criteria for equal roots of a
cubic!, we find that the directions } («=1,2,3,4) are
in general distinct. If the surface 1s developable and
af; + 12 g;, afs > 0, two of the directions coincide
with that of the generator, the other two are real and
distinct. ' When h,, is perpendicular to h,p the para-
metric directions are two of the principal directions
and if 2g,, azz 2 a,; the other two directions are real
and make equal angles with the parametric curves. At

a regular point the parametrio curves cannot both be
lines of curvature sincé \ = o obviously does not
satisfy (54). If we wish to determine whether any two
of the other three are orthogonal we must solve

- 4t

~ du = 0.

AX+1=o0, 0p = 2,3,4 1f X
‘% 1

And it may happen that one palr of principal directions
is orthogonal but twd palr cannot be so. In fact,

Moore and Wilson® show that if the directions )(«=1,2,3,4)
are perpendicular in pairs the curvature ellipse must

lie in a plane perpendicular to M*. Since M” is a

1 F., Cajori 1904.1.
2 1916.2, p.350-354.
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diameter of the curvature conic for our surface, we have

the result: the principal directions A cannot be

orthogonal in pairs.

The Gaussian curvature is related to the prin-

cipal curvatures by?

(55) K:%—%R—lﬁ , @, o= 1,2,5,4
AR

where the principa) curvatures are the normal curvatures
in the principal directions.

Moore and Wilson® defining principal directions
at any point as those perpendicular directions for which

differential changes of normals are perpendicular, obtain

(56) %E Hllo("gﬁlgdta + Hlldtdu + -ﬁladuz) = O

and find only two such directions at a point, namely

at _

au = E11-E11 :'—quLJQE11)2 + 4%(511-312)2

8511-H12

(87)

We believe that our definition agrees better with the
more general treatment of the subject found in tensor

analysis texts.2

I3
In general the tensor hiJ is of rank two with

respect to the index » *, since

”
(58) hij V" =0

1J.A. Schouten 1938, 1, p.1l36.
21916.2, p.350,

35ee L.P. Eisenhart 1926.1
4J.A.Schouten 1938.1.,
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1s a set of two equations in four unknowns which has two
linearly independent solutions for v, . If hyy =ph,z ,
there will be only one solution for (58). A point of the

surface for which the rank of hfj as Just defined 1s two

is a planar point. A point is called axial if h

x
1]
rank one at that point. The points of a ruled surface

is of

then are planar points in general. But we may ask, are
there any points which are axial? The answer 1s: there

ils one axial point on each ruling of a ruled surface in

R,. From (14) hy; = phys, if

« L " ” ” ~
(59) Xpp + Ul = axg + bl + ci
whence
[ x p
-X x, i, 1
(60)  w=u = —o—t—tg (4,2, = 1,2,5,4)
g xt it i

locates a point on the ruling unless the numerator and
denominator of (60) both vanish, since each 1s a fourth
order determinant. But this means that x{% and i{% are
always linear functions of x;,ig,ix and the surface
lies in an Rz. ©So we have the result stated.

(60) says that there 1s one point on each rul-

ing such thet the principal normals of all the curves of

the surface through that point lle in the Rz tangent to

the surface. The locus of such polnts is called a quasi-

asymptotic curve.! Indeed from (53) we see that the

1 E. Bompiani 1214.,1
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direction of this curve may be an asymptotic direction.?

At u,; the curvature ellipse becomes & line segment.

2 at d «
(61) "n" = {%‘E‘ + ZFEE 'a%} hll

The extremities of the line segment are obtained when

dt at du
ds fag‘f?fas}
attains its maximum or minimum. Thls occurs for

du — -2g11

These are then the principal directions at the quasi-

asymptotic point.

At the gquasi-asymptotic point h,, end hence E:,
]

lies in the R; tangent to the surface.

From (14)
hyy = A(,u) (xy + ul)+ B(E,u) (x + uif) + c(t,u)1”

At u = u,, from (69) we have

o”

hiy = A(t,u) (ax + bif + o) + B(t,u) (x[+uif)+ C(t,u)1"

]

al (t)xg + b'(8)1] + o' (£)1"

which from (34) defines the tangent R to the surface.
The locus of quasi-asymptotlc points on the

surface has also a projective definition. It is the

curve of intersection of a given ruled surface and its

transversal surface, where the latter is defined as the

1 V. Hlavaty 1924.2



locus of straight lines which intersect three consecutive
rulings of the given surface. The reader 1is referred to
a seriecs of papers by Ranum! and Stouffer® dealing with
this approach,

Bompiani® has also defined quasi-asymptotic
curves of the second kind on a surface es those curves
whose osculating spaces contzin the tangent plane to the
surface and which have four point contact with the curve.

In our notation this condition may be expressed

by saying: any vector v” = q(x£‘+ uig) +-?im’must lie in
d_'y')’ dzyP a3y v
2

the R e or
? “ApY A8 542 g3
A2 g2 ¥ 33vY
(62) enAruvjtgg d Z s A
ds ds®

Since « and ¢ are arbitrary, (62) may be written as two
conditions., If we work with both, 1.e. making the
determinants into sums of determinants containing single
functions as elements, we are led to the same differential

equation. This equation is

2 ]
(63) 3(fi, +u f12) T2 - 615, () + 55 fo + 2 f

at? 9 13

+ u(3 f +2f)g-11+f u® + (£, + £
10 14 at 8 4 6
2 —_

+f,7)u +(f2+f5+f5)u+fl_o

1 1912.1, 1915,1, 1915.2
2 1927.1
3 1914.1 See also Lane, 1932.1, p.60.
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»”

where the fi are determinants formed from (xt,i”,ig,igt,
" r r< ” ¥ ” ”

xtt’xttt’ittt) e.g. £ = |x; 1 x5 Xttt' 2.E8.0.

This equation 1s the same as that obtained by Lane(l)

p. 60, and we see there are oo quasi-asymptotic curves

of the second kind on a ruled surface in R,.

A developgble ruled surface possesses no guasi-

asymptotic curve. For if the surface is developable,

K =0, hf; is a null vector,h:; is not null ané there are
two real coincident esymptotic directions at a point,
namely those of the rulings.

In order to visualize the curvature properties
of a ruled surface in R,, we present the following theorem
and accompanying example and diagrams as a summery of such
properties,

Theorem: The normal planes to a ruled surface along a

generator rotate about a fixed direction in the space Ra

in such a weay that the tangent of the angle between the

normal plane at 2 point P(t,u) and the normal plene at

the striction point go(t,uo) is a linear function of the

distance u-u,4; and, moreover, the angle is ecual to that

between the tangent planes at the two points. From (15)

the vectors normal to the surface at any point P may be

expressed
h,,=nh "4+ h (1,3=1,2)
jJ jjp ‘jjq ’J 3
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a

where hij (a = 1,2) are scalar functions depending on the
point P and p” and q” are unit vectors in the normal
plane, N, to the surface and mutually orthogonal. In

¥ and q " are invariant functions of (t,u)1 but

general p
are determined only up to a rotation. Let us take p~

the unit vector in the direction of the normal v* (35).

p* then depends only on the parameter t and not on u and
is the same for all normal planes on one ruling. q"(t,u)
will, in some sense, give us, as it varies, with u, the
change in the normal planes. gq‘, p*, ik, y{ﬂ forms at
any point P(t,u) a set of four mutually orthogonal vectors.
q" lies in the tangent Rz to the surface since it is per-
pendicular to v (= ) anéhs in feect the intersection of
that space with the normal plane. {q",i),ygﬁtforms at

any point P(t,u) a set of three mutually orthogonal
vectors in the tangent Ry, At the directrix [xéi%] is a
plane perpendicular to 1". q” and yo are parallel to
{x%i%] for all u. [yéf] is the tangent plane, T, at P
and the angle between this plane and the tangent plane To

at the striction point of the ruling, P is given by

0’

(36) tan §= ‘i—;—ﬂo

[q'i’] defines a family of planes, [S], in one-one corre-

spondence with the family of tangent planes [T], and

! E.,B. Wilson 1916.2, p.309.
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WNormal plaves along a generator of a ruvled svrface 1n /7y

[frgure 2z
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Variation of curvatvre conic along a generator of a ruled
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corresponding plenes are perpendicular. Then the angle
between the plane of |8 ]at P and the plane at P, 1s

9. Or, the angle between q"*(t,u) and q"(t,u,) 1s 9.
[p“q") defines the family of normal pianes‘[N],each
plane of which contains the common direction p* = v ™.
Then since q* is parallel to |x$11] for all u, as u
varies ip”q’] rotates about p” and the angle between N
end N_ 1s that between q*(u) and q'(uo), namely .

To describe more concretely the locus gener-
ated by the planes [N) if we call the line in the direc-
tion 1° the x-axis, that in the direction p™ the y-axis,
a plane perpendicular to 1“is represented by

X = A J
W= ay + bz

This plane to be N, must

contain the line o
X:A 2 FOD
z =0
w.

w=20 ///

Thus, N.is given by

% = A FIG, 4

w = bz
There 1s a linear relation between b and A since the nor-
mal planes rotate with the angle $(36). Say b = k)

where k is a constant. (Then the frame of reference has



30.

been set up at P .) Thus the locus of [N] is:

w = kxz,
which 1s a cylinder formed by lines parallel to the y-
axis in points of an hyperbolic parabalold in the wxz-

space.

Example: Teke a circle in each of two completely
perpendicular planes in R, defined in terms of the same
parameter and consider points as corresponding which
have the same value of the parameter, Joln correspond-
ing points by straight lines. Then we have the ruled
surface defined by

y(t,u); aucost, ausint, bcost - aucost,

bsint - susint

where a and b are arbitrary but normalized so 2a® = b® = 1.

The x(t): 0, 0, b cost, bs/nt 2

(0,0,0,0)

b ¢lnt can, 1in our language,

be considered the directrix

and 1(t):(a cost, a sint,

-a cost, -a sint) the 3

vector in the direction ///
of the rulings for the

surface

FIG. 5

ds® = (1 - 2abu + u®)dt® + du®
and t and u are orthogonal parameters. Substitution in

the general formulae show that the Gaussian curvature

(@o.00)
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K = -a®

B (1 - 2abu + u®)?

The quasi-asymptotic point is u; =90 , and the striction
point u, = -2b. The striction curve u, = -ab 1s a par-v
ticular curve of the family u = ¢ each of which possesses
the properties: 1. that the scalar curvatures have ratios
which are constants not zero; 2. the curves project
orthogonally on to m perpendicular planes into curves so
tangents and normals are projections of corresponding
tangent and normal spaces of C. These curves have been
studied in some detail by M. Syptak!® and the associated
ruled surface by M. Boxrovka® and are a generalization

of helices.

V. THE DEFORMATICN OF RULED SURFACES

The question which concerns us now is: can
a given ruled surface be transformed into another ruled
surface without strain, and if so, in vhat ways?® This
1s the problem of the applicability of spaces and not

that of continuous deformation.?* Since the necessary

1 1934.2
2 1931.1

3 cf. the argument for surfaces in R, based on a study
of asymptotic lines, which treatment cannot be carried
over into higher spaces. G. Darboux 1896.1 and
L. Bianchi 1899.1

4 ef, L.P, Elsenhart 1926.1. chapter 6,
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and sufficient condition that symmetric tensors gij’hfﬁ

and the anti-symmetric vector v, determine a surface is

W1
that they satisfy extended Gauss-Codazzi-Ricci conditions
and since the surface 1s then determined except for a
rigid motion, we are not concerned with this type of
transformation.

Since we know that any ruled surface may be
expressed in terms of orthogonal parameters (8) we ask
for the transfofmation t'(t,u), u'(t,u) which will carry
our surface into
(64) ds® = (1 + 2N'u' + M'3u'2)at'® + dqu'®
where N'(t!') = N(t), M'(t') = M(t).

This gives rise to a set of three partial differential
equations of the first order in the two unknown functions
t'(t,u), u'(t,u).® The question of the integration of
thls system 1s a classical problem - once proposed by

the French Academlie - and, in general, unsolved.

The obvious solution of these equations is the

identity transformation, which then gives the same

2
b oglt,u) = gltt,ul) (207 + AL

?2t!' 2u! |, dutdu!

0=glt',u') x5, +5¢ 54

-
It

glt,ut) GEH° 4 @Y7
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paramnetrization for two surfaces and a point corresponds
to a point with the same coordinates. What conditions
are now imposed on the second formsg? Or, given (8)
determine all surfaces y"(t,u) such that the Gauss-
Codazzi-Ricel conditions are satisfied. Or, determine
the tensors h{}, vy satisfying these.conditions and the

necessary symmetry conditions. Then by the integration

= Viy“VJy“

the surface is determined except for a rigid motion,

of gij

If we write out the tensor form of the G-C-R
equations, we have five partial differential equation
in eight unknown functions. While the actual detalls of
the integration may be difficult a solution does exist
and we may say: any ruled surface may be deformed so
that the rulings remain rulings and in an =2 ways.

To ascertain whether the surface may be de-
formed so rulings do not correspond, we might ask the
question: can any curve on the surface be transformed
into a straizht 1line? Eisenhart in his Differential
Geometry! treats an analogous question for surfacesin
R3.

Any ruled surface in R. can be deformed 1into

a ruled surface in R; in an infinity of ways so that

rulings correspond. We have to solve the equations:

1 1909.1, p.333.
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"
|

(63) N(t) = ?:It.'i 1

t
r __ - -
M2(t) = CHREN 1=

tozt O = a.Zt

8

o |

where a with three components and z with three components
determine the surface in the form

(64) w(t,u) = z(t) + ua(t)

applicable to the surface (1). The linear element of the
two surfaces is (8).

Bonnet! proved a theorem to the effect that any
ruled surface in R; which is applicable to a second must
have its generators in correspondence with those of the
second unless the two surfaces are applicable on a
doubly ruled surface in such a way that the rulings of
the first surface correspond to one set of the rulings
on the quadric while those of the second correspond to
the other set of lines on the second degree surface. 5o
we now have the followlng:

Any two applicable ruled surfaces in R, have theilr

generators in correspondence unlessthey can be deformed

into the same doubly ruled surface with one_ set of

generators corresponding to one set of lines of the

doubly ruled surface and the generators of the other

surface to the second family of lines.?

1 1867.1

2 Any doubly ruled surface in R, must lie in an R, since
all of 1ts poilnts are axial points. Cf. J.A.Schouten
1938.1, p.99.
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If we exclude the above case, the problem may
be considered that of integrating the eguations
814 =V1y" VJy", which, if we take the surface in the
more general form (6) (i.e. non-orthogonal parameters)
means we must solve the five (ordinary) partial differ-
ential equations in eight unknowns
= cos ¥

i.x

X .

t

el

(67) N(t) = 1 ."t
M2(t) = Yt.ic

If 1(t) is any curve on the unit hypersphere

l=t

.1

ol

1 =

(68) 1(t); cosw, sinw cos 9, sinw sin® cosw , sinw sind siny
the sec?nd of conditions (65) determines the parameter t.

(69) ]ﬁ dt = arc length of curve i on the unit sphere.

(70) M; = (d«/dat)® + (d49/dt)®sin®w + sin®w sin® ¢ (4¥/dt)2
determnines ¢ as a function of » and $ . Then the three

last equations of (65) determine §£ with one degree of

freedom and X is obtained by quadratures.

N oy M2sin?)- N2 —
MR ¢ T M p

(71) §£ = cosY 1 +

where p 1s a unit vector orthogonal to 1 and E£.
Ve may picture this as follows: Any curve C on
the unit hypersphere determines the parameter t. Then

the polar surface of C on the hypersphere, the locus of

! M®sin®I - N2 = 0 ig the condition for developable ruled
surface, p.? Then Xt = cos?d 1 + N/M® 1 and there are
«? gurfaces applicable on a given ruled developable.
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vectors perpendicular to I and 1 1s determined also.

£
Any curve on the polar surface, C!, will be a locus of
the vector p. To any curve C and C! on its polar surface
are assoclated two ruled surfaces, due to the double

sign in (69). Any two curves on the unit hypersphere
which are polar, determine two ruled surfaces. A ruled
surface in R, can be bent so that C and C! are arbitrary
polar curves on the unit hypersphere. All ruled surfaces
with the same C but different C' are parallel in Rg.

Actually to realize the deformation of a sur-
face into another 1is not so easy. If we ask that form
the directrix may take by bending as does Beltrami! the
problem of determining a curve from its intrinsic
equations faces us.?

If ¢ is the angle the tangent plane to the
surface at the directrix makes with the osculating plane
of the directrix, and ¢ 1is the angle 1t makes with the
plane [Efﬁa]-

(72) T = cos?®X

g+ sin¥cose n, + sin¥Y sina singp na

+ sin® sinc cosp ng
where HJ is the Jth normal to the directrix. Then the

second of conditions (67) becomes

1 1865.1
2 A.R. Forsyth 1930.1
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(73) M2 = sin®9 (d9/d4t + cos</r;)? + {g—t (sin¥ coss)

D
+ cos
ry
- sin¥ sin< sine ) 2
Tz

+ {g—t (sin? sin<e sinf )

sin ¥ coga
he-]

+

- sindsginc cose ) * Sg__ "
o ] + 4% (sin¥ sin e cosp )

sin @ sine sin?\z
'3

+

where r'j is the radius of the Jjth curvature of the curve
In the process of bending the angle ¥ and the relative
curvature of the directrix remain fixed, since it depends

only on the first form,

- s8in 9 d¥= sin? cos9 + N
at ry

Substitution of (74) in (73) gives a functional relation:

(75) F(t:rl;_d;x_’lara:r?uf:gﬁ.) = 0.
dt dat

Glven any curve, P is determined from (75) as a function
of one arbitrary parameter, then 9 1s determined from
(74). For any form of directrix the form of the corre-
sponding surface is determined by $ ande . But for each
form of directrix there are o3 possible surfaces since

(75) is a differential equation in p .
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As an example: If we ask 1f the directrix can become a

cos G
1
curve., That is, 1t must be a geodesic. Condition (73)

straizht line, 1t is clear that = 0 for a given
then is of the form

A(ap/at)® + B(cosp)dg/dt + C sine + D = O,
G is indeterminate.
Suppose the directrix becomes the line x! = t, x® = x® =
x* = 0, the conditions are then:
(76) 1! = cos? i, =N

t

2 . < 2 3 2 2 2 2
it + 1% +1% 4+ 1% =1 111;+i12;+113;+i‘ = M?

These eqguations present essentially two equations in

three unknowns, and we have:’

—— ———t e St G

geodesic becomes a straight line and the director cone

has a fixed proJlection in an Ra in anw! number of ways.

2. A ruled surface can be deformed so a geodesic

becomes a straight line and the director cone cuts the

hypersphere in a great circle in Jjust one way.

3. Any ruled surface can be deformed so the

directrix becomes a plane curve and the director cone

is arbitrary.

4, Any ruled surface can be deformed so the

directrix becomes the gquasi-asymptotie curve and the

director cone is arbitrary.
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VI. ISOTROPIC RULED SURFACES

In the work which has preceded we have been
careful to exclude imaginary or isotropic quantities and
have dealt only with real functions of real variables
representing real geometric entities. We now admit the
variables to be complex and turn to a brief study of
isotropic manifolds, that is, manifolds with vanishing
linear element in some direction or directions. Lense?
has shown that the only completely ametric manifolds
(ds® = O for all directions),)ﬂv imbedded in a Euclidean

R2n are linear spaces.

In R, the only completely ametric X, is the

completely isotropic plane. For if

ds? = g“dxidxJ = 0 for all dx- axJ, 1,)=1,2
gij = 0.
I o " _Dy“ v
But gij =¥y yJ where ¥, = T and the y " define the

? X
surface. Differentiating pertially with respect to xk,

’Dgi] v o« * *
=¥y Yy + V43, Yo =0
,ka 173k ik Y
This relation holés for any i,J,k, so we have also
yj Vg + ¥y = 0

’ " ® _ox_
YK T, * YTy 0

1 1926.2
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Adding and subtracting among these three relations

¥y ¥y = O-
But ysk is not a vector, so this must mean that each ij
= 0, or y”1s linear in the xJ, ﬁpon integrating.

We may then expect to find some characteristic
ruled surfaces contailning one or more fields of isotropic
vectors, but none with identically vanishing metric.

We consider ruled surfaces whose generators
are isotropic. 1In such a situation we have instead of
(2)2
(77) J3y=0
whence gzz = O and the metric (which 1is perfectly well
definedi) for the surface y*= x" + uj” becomes
(78) as® = (x .x  + 2u3t.3c't + ua'j,c.'j',c)du:a + 23.Et at du
and g = ~ (?.Eg)a, that is, the first fundamental form is
(negative (not positive) definite. Since gij is well
defined we may use the ordinary definitions to calculate
that the Gausslan curvature is given by
Jge 3

(79) K = ——
(Jox,)®

if 'j.Sc't £ 0.

This is, in general, not zero. ©So, in contrast to the
situation for a ruled surface in Ry with isotropic

generators, we have: A ruled surface in R, with isotropic

1 Ye use J for the vector in the direction of the rulings
instead of 1 in order to indicate that it is no longer
a unit vector, '



41,

generators is not necessarily developable. If the surface

is develovable, then the ds® is a perfect square.! A

developable ruled surface is the tangent surface of a
twisted curve (p.9) and may be represented by

”x

U= x4+ ux{

Then 1f the generators are isotropilc x%xg = 0, the

directrix is a minimgl curve and

2 _ (v« ey 23+2
ds® = (xt + uxtt) at
We note from (77) further that the Gaussian
curvature of a non-developable ruled surface with iso-

troplc generators 1s fixed along a ruling. There is,

therefore, no "striction point" on g ruling of such a

surface in the sense that there is no point of minimum
Gaussian curvature, and tﬁe argument we used on p. #¢ no
longer strictly obtains. However, we may argue with
Beck® as follows, and find that the striction point
exlists in such a situation and indeed is the ideal point
of the ruling. The formula
(80)  (x. D7) - (.30 (3.3)

(1.7 (3,.3,) - (3.3,)°
defines the sfriction point of a ruling in general by

1 ¢f, J. Eiesland 1911.1.

-

< 1928.1.
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the ordinary argument referred to sbove. (This reduces
to our formula (32) when we require J and Et to be

unit vectors.) Now, if J.J = O, the denominator of
(78) vanishes, and u is infinite if the numerator is
finite. We may distinguish two cases: 1. Et.j £ 0,

the surface is skew and not a tangent surface of a
minimal curve. 2. §£.3 = 0, the surface is a minimal
cone or the tangent surfece of a minimal curve. In
which case the striction curve i1s the edge of regression,
Beck classifies such isotroplc surfaces by this means.
(See paper 1.)

We also note from (77) that the curvature is
always positive,

Any non-minimal curve on the surface will
have an absolute curvature vector with respect to Ry
defined as on p;zs- and agaln this is equivalent to the
sum of two vectors, the relative and normal curvature
vectors, #&ince the tensors h;b and the tangent plane
to the surface are defined. If we treat the normal
curvature vector by differentiating es before we find
that there are only two principal directions at any

point, these directions are the roots of the equation
(81) (811811812 - 212811%)3% + (8118127 - gf1222)A +

4(a;28%2 - 232811812) = O

and the principal curvatures in these directions are the
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game, Vviz,

(82) X = l".e = afp - ayi1822

2 2
282811812 - 211872 - 8z2811

where a,, = h,,.h,; etc.

It &ff the mean curvature vector, is a null
vector, the manifold to which it belongs is minimal in
the sense of least area. By the use of formulae p.%
and the definitionX of M” p./6 , we calculate

MY = gl? iJ; - ¥g'® Du811j?
This is null if g'® = O, or if Ji = %82 D g,)" That
is if j{’is an isotropic vector, 3%.3% = 0., But then

K = 0, and we have! Minimal ruled surfsces in R, with

isotropic generators are the isotroplc developables and

conversely.

Any ruled surface containing two families of
straight lines can be put in an Ry, so the surface in
R, containing two sets of isotroplc lines is the
ordinary sphere.

J. Lense and M. Pinl in a series of papers! have
treated the subject of isotropic manifolds as the integral

surface of ds® = O and have considered various types

1 J. Lense 1931.2; 1935.2; 1936.1; 1939.1: M., Pinl 1932.2,
4; 1936.3; 1937.1,2. See also papers by E.Schrenzel
1929.1 and G.F.C. Griss 1934,1.
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depending upon the rank of the matrix gij' They have
also considered the surfaces generated by varlous types
curves possessing certain isotropic normal spaces.
Since we have obtained no further or new results, we
refer to their papers. Note - We may note, however,
that since the metric for the particular case we have
presented 1s of rank two there is no difficulty in-
volved in applying the ordinary surfece theory, and
our results are interesting in that they present
another fairly tangible realization of the general
tensor theory.

For a classification of possible isotropic
manifolds we refer to Schouten and Struik II? and to

Lense's first paper on the subject.?

VII. RULED V5 IN R,

The theory of ruled V5 in R, generated by an
o! of planes or ac® of straight lines can be considered
as a generalization of ruled surfaces., Such manlfolds
are developeble in the sense that they possess a singu-
lar or focal curve which each generating plane osculates.

The important formulae are appended and for more

1 1938,1
2 1926.2
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information we refer to Schouten and Struik II! for the
general Vn—l in Rn and to Ranum® for the projective
geometric gpproach and the theory of related menifolds.
(81)  Va:y(t,u,v) = X(t) + ux (t) + vi(t)

where X, .x, = 1, 1.1 =1, E%.T = 0 and u and v are
rectangular cartesian coordinates ih a generating piane.
(82) ds® = g,,4t® + 2g,zdtdu + 2g,adtdv + du® + dav®

where gy1 = 1 + 2vx, .1, + 2uvx .1+ V21T, +

t tt° 7t t°7t
UPK o Xy
81z = 1 + VEt’EE
813 = = uE%'It
gzz = 0 | 822 = 1 g3z = 1

— - - o8 _ o2
g "giji 811 gia 813
(85) % = h,,dt® & 2h;2d4t du + 2h;, 4t 4av

where h (Vajy“)n”, and n”is the unit normal to the

13 °
manifold and nht is of rank two.

(86)  h, .xtaxd

1)

1s the normal curvature, or the

dxtaxd

€13 coordinate of the curvature in

the direction n*.

11938.1, p.62.
21912.1,
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(87) Principal normal curvatures

x =0, (‘h11+2h12812+2h13g13)i-U(h11‘2h12g12-2h13813)2

‘4(h$2+h§3l(-ﬁ11+g?2+g$3l
- 2(g11 - 852~ gfs)

(88) Principal directions: three mutually orthogonal

1 h
A o0, 1, 2= 1=1,2,3
1 h,,
Ai XQ h1 Q—ngla
-, B —— , 1, X ! principal nor-
2 13~%2813 13-X2813 i  mel curvatures
: x x
. 3 h,2-3 g1 1

T hy3-%g13 ~ hyz-X gi3 °’
3 3

Principal directions are conjugate directions and orthog-

onal

(89) X = ¥ cog®o + X cos®a
2 2 3 3

From which we see that the Dupln indicatrix reduces

to a conic and two line segments.

Along any line in a generating plane through the focal

point the n”" are in the same direction.

(90) Asymptotic directions

hlldta + 2h12 dt d.u + 2 h13 d.t dv = O

lle in two planes dt = 0

Shlldt + 2hy2 du + 2h;5 dv = O
Two points on the same straight line through the focal
point of the generating plane in which they lie have
asymptotic planes lying in the same R;, the tangent Rj

to the V3o
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