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(ii)

ABSTRACT OF THESIS

The thesis is concerned with a detailed inves-
tigation of the vectors and tensors associated with a
ruled surface imbedded in an Euclidean space of four
dimensions, which tensors require no more than second
order differential equations in their treatment. In
other words, this is a study of the simple differential
geometry of a ruled surface in R4. The fundamental forms
of and important sets of curves on the surface thus
defined are presented, with particular interest center-
ing around the unique curves, the so-called striction
curve and the quasi-asymptotic curve. The curvature
properties of the surface are investigated with respect
to the variation of the normal vectors and curvature
conic along a generator of the surface. A few formulae
for a ruled V3 in R4 are appended. \ihile no striking
new results have been obteined, this study seems impor-
tant in that it asks- and answers- tljustwhat tensors
are" for a -situation just out of the ordinary.
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1.

RULED SURFACES IN EUCLIDEAN FOUR SPACE

I. INTRODUCTION
The object of this thesis is to study a two

dimensional ruled surface in a Euclidean space of four
dimensions from the point of view of differential ~eometry.
We use Va to designate the surface when the representation
is such that the first fundamental form is positive
definite (cf. p.a and p. fq), and R4 to designate the
surrounding Euclidean Space. The notation used is a COQ-

bination of ordinary vector and tensor notations. The
- ~vector x, orx, has components Xl, x2, x3, x4 with respect

to some allowable coordinate system.l Greek indices refer
to the surrounding space, R4, arabic to tllesurface V2

itself. The super-bar is reserved for vectors, indices
are necessarily used for tensor quantities of order
greater than one. Scalar products are indicated by x.y
or x~y~ as seems most convenient, etc. The formal manip-
ulation and algebra of tensors used is that developed in
Schouten and Struik I.2 We are mainly concerned with
those properties of the surface which depend on the

1 O.Veblen 1932,3
2 J.A.Schouten 1935,3
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surrounding space, in the sense that the surface cannot
be imbedded in an ordinary space of three dimensions, but
not on the particular coordinate system employed, that
is:- properties of the surface invariant with respect to
transformations of the R4. Numbers in the footnotes refer
to the bibliography at the end of the thesis- which is
arranged chronologically.

II. GENERAL DISCUSSION

is called the directrix
of the surface and the
vectors i the rulings or
generators. If all the

p

FIG. 1
o

A ruled surface, Va, in a Euclidean space of
four dimensions, R4, may be considered as generated by a
vector moving along a space curve.1 If the curve, 0, is
represented by x(t) and the moving vector by i(t), where
the functions x~(t), i~(t) (~= 1,2,3,4) are real single-
valued functions of the parameter t sufficiently regular
to permit differentiation as may be required, any point,
P, on the surface, with coordinates y~, will be given by
(1) y(t,u) = x(t) + u i(t)
where, if i(t) is a unit vector, u is the distance of P
from the curve 0 in the positive direction of i(t).

The curve C

1 W.O.Graustein 1935.1, p.208.



where N = iteXt,
angle the rulings

3.

vectors i are moved to the Sfu~epoint, they will form a
cone which cuts the unit hyper-sphere on the s&~e origin
in a curve. This cone is called the director cone of the
surface. By unit vector we understand,
(2) i.i = 1

where the e indicates the ordinary scalar product. Dis-
tance measured on the surface will be given by
(3) ds2=dy.dy = (xt_Xt + 2uit.Xt + u2It.it)dt2 +

2i.Xtdt du + du2
t>Xwhere Xt = ot a.s.o.

There is thus defined~n the surface a linear element or
first fundamental form
(4) ds2 = g dt2 + 2g dtdu + g du2

11 12 22
or, we may say, a fundamental covariant tensor gij'
(i,j = 1,2) with discriminant g = gllg22 - g122 and a
contravariant tensor gij, vlhere gij = Gij/g, Gij being
the cofactor of gij in its matrixngij"_

If t is the axc length of the curve C

(5) Xt.Xt = 1
and (3) may be written

+ 2Nu + IvI2u2)dt2 + 2 coslY dtdu + du2
~2 - - - -1-1 = it-it, cos?!)= i.Xt and tJ is the
m~~e with the curve C.
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The orthogonal trajectories of the rulings will
be the integral curves of the equation1

(?) cos 19 dt + du = 0
vlhichcan be solved by quadratures. Hence vIe have: A given
ruled surface in a Euclidean snace of four dimensions can
always be transformed so tllatthe directrix is an ortho-
gonal trajectory of the rulings and distance on the surface
is measured :Q.l.

(8) ds~ = (1 + 2Nu + M~u~)dt~ + du~.
For future reference we note the following formu-

lae calculated from the definitions after (4) and the
linear element (8).
(9) Christoffel symbols of the first kind.2

(22,21 = 0
t vug11 = - (11,2]

(22,lJ = 0

[ll,i) = t ()tgll = t °tg = u(xt.Itt + Xtt.it) +
2- -u it.1tt

= - tC>ugll = - tdug = - (xt.It ,+ uit.It)[11,21

[12,lJ =
[12,2J = 0

(10) Christoffel symbols of the second kind3

-r1 - g~~ [11,21 = (11,2111-

Xt.it + Uit.it
T!2= gll [12,11 L d g_= -- 2--2g u - 1 + 2uxt.lt + U~it.it

T~2 = 0

'T7 I' :. 9 II [", I] :. _I ()t~ =.!.. d (\ (1(& G)
----- 2lj ~ T J J

1 L.P.Eisenhart 1909.1
2 L.P.Eisenhart 1926.1, p.l?
3 See also J.A.Schouten 1935.3, p.83
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(11) The Riemann-Christoffel tensor Rijkl has only one
distinct non-zero covariant coordinate.

2 d --,,2. + Z 7'~
(I ~, £1101

-:---, Q
I
2)1

= t 'd2uug - (dug)2
4g

= it. it - eXt. it + uit.it) :a
g

(12) The Riemann curvature scalar or scalar curvature
R = R1221g11g22 + R2112g11g22 = -(2/g) R1212

IeDesignating by hij the second covariant deriva-
tives of the functions defining the surface1, we have
(13) h;j = "iyj

If//( IC J' II: ~ ~ ~Since hji = Yji - ji Yk and Yji = Yij from our assump-
tions about the nature of the functions Y~ and the symmetry

"of the Christoffel symbols, we see that hij is ~ symmetric
~~nsor with respect to the covariant indices.

With respect to the rrontravariant index ~ the
'"h(i)(j) are vectors in the R4 normal to the surface,2 and

lie in the plane which is completely perpendicular to the
tangent plane at any point.3 The y~ are vectors in the

J.

1 L.P.Eisenhart 1926.1, p~160.
2 The. (i)(j) indicate that the indices are IIdeadli•

s F.S.Woods 1922.2, for perpendicularity in n-dimensional
spaces.
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tangent plane at 8.nypoint since they are the tangent
vectors to the parametric curves. Then

~ Ie 1YiYi =

Differentiating
~ ;(.

~jYiYk = 0

YiYj = 0 from our assumptions (2) and (5)

(i,j,k = 1,2)

and
(-It = 1,2,3,4)

"for any permutation i, j ,k, G.ndthe three vectors h(i) (j)

are normal to the tangent plane at any point of the sur-
face. Since we are working in a four dimensional space,
these vectors must lie in the plane which is completely
perpendicular to the tangent plane.

There must then be a linear relation among the three
vectors. Calculation of their components in terms of the
functions defining the surface with the help of the formulae
(10) and (ll) shows that

-
Xtt + uitt Xt + uit i

hll
1 U(it.Xtt + itt.Xt) 2- - 0= + U it.itt g

(14)
g

i.Xtt + ui.itt 0 1

it Xt + uit i
h12

1
it.Xt= + uit.it g 0g

0 0 1
h22 = 0 and perforce such a linear relation does exist.
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It

Since h(i)(j) is a vector perpendicule~ to the surface
,( , If ~ ,(

(15) h(i)(j) = h(i)(j) P + h(i)(j) q , i,j = 1,2
where p~ and q K are unit orthogonal vectors in the normal
plane of the surface.l

and the Gauss-Codazzi equations of the surface are
(16) R1212 = L: h12h12

- -= h12.h12
I I 1 , 2 p'KVq.,c(17) ~ihjJ k = Y [ihjJk' ,\-,There~i - - ;i = 1c
t ~ I

and '(ihj]k = ~ [ihj)k

and the Ricci condition of integrability is

(18)

These equations are in the tensor form, but we can also

derive 'vector' eque,tions2

(19) ••• 2 -= - R121 Y2

V h R••• 1
- 2 21 = 212 Yl

The second funde~ental form of the surface is defined by

means of these quantities hije

(20) 'l' = hll dt2 + 2h12dtdu

1s the 'second vector form. Its magn1 tude ~ = c:p. 'l'

(21) f.t.-= hll.hlldt4 + 4hlleh12dt3du + 4h12.hladt2du2

IThis can a1v.Taysbe done. Cf. Eisenhart 1926.1, p.143.
~For the relation between (16)-(19) see Wilson 1916.2,p.305.
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is defined by some authors1 as the second form, but we
shall prefer to use (20).

The Gaussian curvature of a real ruled surface
in four dimension8~ Euclidean space is always negative
or~. The Gaussian curvature of the surface at any
point is K = tR, where R is the scalar curvature defined
in (12). From this definition and with the help of
formulae (11)
(22) K = - R,a,a

g
- -= - h, a .h, a

g

If we calculate hij for the surface in the form
(6) ),: 'tie have

(14)a.
1

U(it.Xtt + Xt.1tt) + u;ait.ittll + 2Nu + M;au2

I.Xtt + uI.It t cos -zJ

cos 7J

1

It Xt + uit i

h12 = 1 N + uMa 1 + 2Nu + 1.!2u2 cos -Jg
0 cos -rJ 1

h2a = 0

and
( 23) h12.h1a !vI2sina -& - N2

= g

lL.P. Eisenhart 1926.1, p.166.
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and
(24) K=- (l-iasinaJJ- Na)

ga

Then
(25) Masin2-b - Na = 0

is the condition that the Gaussian curvature vanish. If
h1a is a non-isotropic vector, it must then be a null
vector for K to vanish, and we have

where a = N + uMa
Nu +. sin2 t)

and b = - cas 19
Nu + sin21J

The tangent plane at any point on the ruled sur-
face 1s represented by the bivector

(27) T ~~ = (xC,.. [ ~J = 1,2,3,4t + ui{ )i. K, ~, j, ~

~). ~ a(l [r iJ]If K - 0, To + u) (xt 1 ), which is independent of
u, and the tangent plane 1s fixed along a generat or. The
surface is then the tangent surface of a twisted curve.
Definition: Ya in ~ for which K = 0 ~ developable
surfaces. Then it follows from above that Ruled surfaces
which are developable ~ twisted curve surfaces. How-
ever, in R4 all surfaces for which ~ = 0 are not neces-
sarily ruled developab1es.1 For in general ~= tR = -

-P..,~:'f.~ = Ii".haa - h,a.h,a
g g and the numerator may vanish

1 E. B. Wilson 1916.2, p.343.
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without h12 = 0 and h22 = 0, as for ruled developables,
or without the terms vanishing separately. We shall take
(25) as the condition defining ruled develop~ble sur-
faces when we have represented them in the form (6).

There are no skew ruled surfaces of constant
curvature. Substituting for g its value in terms of t
a.nd u in (24)

K = - (M2sin2lY- N2

1 + 2Nu + 1.1 u 2

The numerator does not depend on u, and if K is to be a
constant

N = 0, M2 = o.
But then K = 0, and the surface is developable.

III. THE STRICTION CURVE

We consider now only skew surfaces, that is
surfaces for which K is not identically zero. For the
infinitely distant points on the rulings the surface be-
he,veslike a developable since as u ~ cD, K ~ °(1/u4) from
(22). In general K is finite for all finite points of a
ruling, but there may be one or more rulings along which
K = 0, which rulings may be found by solving (25) for t.
For any regular generator K will have a minimum value
at the point
(28) u =-N

o 1<12
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found by differentiating expression (24) with respect
to u and equating to zero. The value of the Gaussian
curvature at the point Uo is

( 29)

Then at any point

(30) K =
K o

(1 - K (u - U )2)2o 0

If we ask for the minimum distance between two
consecutive generators, t and t + dt, on the surface, we
must solve the two following equationsl

(31) ~~~~;) = 2 cos -,I) dt + 2du = 0

o(ds2 )
dU =

whence

(32) -N
u = W and dt -1du = -c-o-s-f)-

We call the point so defined on the generator the cen-
tral or striction point of the ruling. The locus of the
striction point is the striction curve of the surface.
The minimum distance between consecutive generators is
then
(33) d~ = dt2{1 - N~/M2) - COS2~ dt2 =

dt2 (M2sin2l9 _ N2)

M2

The struction curve is in general not an orthogonal

1 K. Kommerell 1911.2
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trajectory of the rulings since d~a is not its linear
element. If the surface is developable, the d~2 = 0 and
and consecutive generators intersect. We might have
taken this as a definition of developable sUl'faces. For
such a surface the striction line ccincides with the edge
of regression. If we compare (32) and(28) we see that
the striction curve is the locus of minimum Gaussian
curvature, and moreover this curvature ~ symmetric
about the striction point on any ruling.

We may accept as a theorem of projective
geometry in R4 that two skew lines determine an Rs.
Then any tvIO rulings of the V:a"vi11d etermine an Rs in
which there will be one line perpendicular to the two
given. Thus the a..rgumentfound. in textbooks of ordinary
three dimensional differential geometryl defining the
striction point as the foot of the common perpendicular
to two infinitesimally close rulings may also be follow-
ed for a ruled surface in R4.

The tangent pla.nesalong a ruling all lie in
the same Rs. From (27) this Rs has covariant components

. (34) v = ex" i P i'>
~ ).-K~~ t t

where e = + 1 depending on the permutation of the).~rv

1 W.O. Graustein 1935.1, p.209
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indices1, and its normal vector is
(35) v,) = e ~ Xt:HitJ'4i "7tr .,
Then the angle ~ between the tangent plane at a point
u and the tangent plane ~t the striction point may be
sho'\"mto be a function of the distance between the two
points.2

't"lhere~ 2 =

(36) tan 41 = u - Uo
'\3

M2sin219 - 1'12

and the tangent planes rotate around. the rulings.
From (35) vlv~ = M2sin2~ - N2, and the distribution

1Yl u~parameter ~ = + M · The normal vector ]f to the sur-
face which lies outside the tengent Rs along a ruling
then plays the part in R4 that ~ does in arguments in
Rs.

Now, the geodesic curvature (as we shall show
) cas wlater of the directrix is --- , uhere w is the anglerl

between the osculating plane of the curve and the
tangent plane of the surface, and rl is the radius of
first curvature. From the definitions of the quantities
involved
(37) -N dfl

= sin iJ - dt

1 A.J.McConnell 1936.2, p.8 and p.298 for esystems of
special relativity

2 L.P.Eisenhart 1909.1
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If the striction curve is the directrix and also a
cos UJ Dgeodesic, N = 0, .oand cos is a constant, therl

rulings cut the directrix under a constant angle. If
d~ dBN = 0, dt = 0, the curve must be a geodesic. If dt = q

cos~ = 0 the curve must be the striction curve. So werl
have Bonnet's theorem1: If a curve on a ruled surface
possesses two of the following properties, it possesses
the third; 1. The curve is the striction curve; 2. The
curve is a geodesic; 3. The curve cuts tIlerulings with
~ fixed angle.

The properties of the striction curve of the
ruled surface in R4 ment.ioned above are prt:cise1y those
of such a surface in R3. We have been unable to find
any which do not carryover, and, conversely, any which
do not occur for ruled V2 in R3. Fu~ther properties are
to be found in papers by O. Bonnet, E. Bour, H. Beck
and J. Krarnes.2

IV. CURVATURE PROPERTIES OF THE RULED SURFACE

Any non-minimal curve on the surface defined
by y~(s), (x = 1, •••,4) or by xi(s) (i=1,2), where s is
the length of the curve, has an absolute curvature

1 O. Bonnet 1867.1
2 E. Bour 1862.1,2; H. Beck 1928.1; J. Krames 1928.2
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vector with respect to the surrounding space defined byl

(38)

But since

(39)

H _~,\ 'V ~H:

n - ds ) ds
9:1:,( _ ay~ dxi

ds - oxi ds

n I{ _ ~ dxi V dx j +
- dXj ds i ds

"There
It d j dxi

(40) InK'- B..L -1L Vj is the relative curva-- dxi ds ds
ture vector of the curve, or the component of the absolute
curvature in the surface, and

tC r( dx1 dxj
(41) un = hij ds ds is the component orthogonal
to the surface, called the normal curvature vector. Or,
( 42)" n tt = I n 7t + II n J(

If rl is the radius of curvature of the curve in the given
direction with respect to R4, fg the radius of curvature
of the curve with respect to the V2, and R the radius of
curvature of the geodesic in that direction

(43) 1 1
ry = p~ + 1

W

(42) expresses the extended Meusnier theorem for a curve
on a surface in R4. All curves through a point P: on
the surface in the S8~e direction have the S8~e normal
curvature. Since we have a definite metric (8), there

1 J.A. Schouten 1938.1, p.80.
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is an angle w such that

(44) sine..) 1
r1 = R

From (41) and (20) we see that the normal curv-
ature vector for a direction at a point is the second
vector form of the surface. The normal curvature proper-
ties of a surface then may be derived from a study of
this quadratic form. Before we begin this study we note
that the mean curvature vector at a point is

(45) =
and the mean curvature is
( 46 ) 1\1 = Ii". Ii, ,

4g::!

if the surface is referred to orthogonal parameters (8).
If the linear element is (6)

(47)
~ M

h" - cas -r9 h,~
= 2g

The ruled surface is a minimal surface, in the sense of
.11.least area, if M is a null vector.1 But this requires

that
(48) g(Xtt + Uitt) + U(it.Xtt + Xt.Itt + uIt.ltt)(Xt + uIt)+

g(I.xtt + Uitt) i = 0

which is equivalent to the condition that g vanish. The
rank of the first funda.inentalform is then one and the

1 E.B. Wilson 1916.2, p.325
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surface can be imbedded in an R3. That is: The only
minimal ruled surfaces in ~ ~ those of Ra, namelY
the right helicoid.

Since "n~ is perpendicular to the surface at
any point for all directions on the surface through that
point, P, it lies in the normal plane to the surface at
that point and the end point of tln'< traces a curve in
this plane as the direction changes. From (41) we see
that "n~ becomes infinite only if ds~ = 0; but these
are isotropic directions on the surface, and as long as
we deal only with real directions "n W must describe a
finite curve. If we consider the surface referred to
orthogonal parmneters (8) and take as a system of ortho-
gonal unit vectors on the surface those in the directions
of the parametric curves,

(49) ia." 0 1,
1

ia: 1 , 0 (a=l,2)
2 -rg

any direction dt:du will then be represented by

(50) ia = cos 0( ia + sin ~ ia
1 2

and n n U for ia

"n x = iaibh K K 2
(51) sin 2 0( "n ~= H + - t cos 20< "nJ'('ab 1 2
't'lhere"nX iaibh"K 1 U= = - h112 2 2 ab g



18.

2
iaibh~ = 1 h~linK =

1 1 2 ab ig 12

"n
J( iaibh~ = 0=

1 1 1 ab

The normal curvature in the direction of the rulings is

~. From (51) we see that the normal curvature vector

traces ~ ellipse in the normal plane 1'lith center Md and
~ 2

!!:. pair of conJugate radii t"n , "n ~ • vie call this the
2 1

curvature conic. It ls clear that the conic passes

through the surface point P since for 0( = 0, un x = 0.1

Since h11.h12 is quadratic in terms of the parameter u,

we note that there are two points on each ruling where

the mean curvature vector i8 an axis of the curvature

- - 2conic, when h11 is perpendicular to h12•

Conjugat~irections at a point are defined as

those for vlhich

(52) h11 dt ~t + h12 (dt ru + du ft) = o.
At a point for which h11 ~ h12 (52) is satisfied by dt =

0, ~t = O. That is: the conjugate directions at ~ Doint

coincide with and ~ in the direction of the ruling

through the point.

Asymptotic directions by definition are those

for vlhich

1 The curvature properties may also be studied by means
of an extended Dupin indicatrlx, the curve in 1'lhlch an
R3 perpendicular to 11,(cuts the surface.

2 See the paragraph on quasi-asymptotic curves on the
surface and the diagrams and example at the end of this
section.
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(53) h11dt2 + 2h12 dtdu = O.
At any point then for which h11 ~ h12, there is only one
asymptotic direction, that of the generator through the
point~ The conjugate directions and the aSVffintotic
direction at ~ regular point Qll ~ ruled surface in an R4
coincide with the direction of the rulin~ through the
point.

We may note, however, that those authors who
define the second fundamental form of the surface by (21)
obtain in addition to the rulings, two conjugate directions
and two definite asymptotic directions which are ortho-
gonal. I

If we define those directions for lnlich the
normal curvature has maxima and minima as the principal
directions at any point, we find four such; one of which
i8 in the direction of the generator, the others are
obtained as the roots of the equation2

(54) f -4g11h~lh;a X + (4h~lh~1 - 8g11h;ah;a) >-' +

12h;lh;:aA + 8h~2h;2} ). = 0
(If we used the more general representation of the surface
(6), (54) would be more symmetric in form, but still of
the fourth degree in A.) (>. = dt :du). The lines of
curvature on the surface are the integral curves of (54).

1 E.B. Wilson 1916.2~
:a Differentiate~n~hX(41) and equate to zero.
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At least tvlO of the roots of (64) are real since there is

at least one change of sign in the ccefficients in the

expression in brackets, namely the first and\the third

terms. If we apply the criteria for equal roots of a

cubicl, we find that the directions ). ( ell = 1,2,3,4) are
.c

in general distinct. If the surface is developable and

afl + 12 gll a~2 > 0, two of the directions coincide

with that of the generator, the other two are real and

distinct •. vlhen hll is perpendicular to h12 the para-

metric directions are two of the principal directions

and if 2g11 8.22 > all the other tvJO directions are real

and make equal angles with the parametric curves. At

a regular point the parametric curves cannot both be

lines of curvatu~e since A = ~ obviously does not

satisfy (54). If vle \1ish to determine vlhether any tvlO

of the other three are orthogonal we must solve

~ ~ + 1 = 0,
01 ~

ol,~ = 2,3,4 if ~
1

dt ::.°= du - •

And it may happen that one pair of principal directions

is orthogonal but two pair cannot be so. In fact,

Moore and Wilson2 show that if the directions ~(Q=1,2,3,4)
eI

are perpendicular in pairs the curvature ellipse must
,t ,c

lie in a plane perpendicular to M. Since 1.1 is a

1 F. Cajori 1904.1.
2 1916.2, p.350-354.
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diameter of the curvature conic for our surface, YIehe-ve
the result: the prinoipal directions A oannot be....

orthogonal in pairs.
The Gaussian curvature is related to the prin-

cipal curvatures byl

(55) , Q(,~ = 1,2,3,4

where the principal curvatures are the normal curvatures
in the prinoipa1 directions.

Moore and Wilson2 defining principal directions
at any point as those perpendicular directions for which
differential changes of normals are perpendicular, obtain

() 1 - (- 2 - - 2)56 2g h11• -gh12dt + h11dtdu + h12du = 0

and find only two suoh directions at a point, n8~ely

( ) dt - - - ,r(- - )2 (- - ) 257 du = h".h11 + V~h'l~h'l + 4g h'l.hl~
gh11.h12

We believe that our definition agrees better with the
more general treatment of the subject found in tensor
analysis texts.3

tt!
In general the tensor hij is of rank t't'IO't°lith

respect to the index ,,4 , since
(58)

lJ.A. Schouten 1938, 1, p.136.
21916.2; p.350.
sSee L.P. Eisenhart 1926~1
4J.A.Schouten 1938.1.
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is 8. set of tv:o equHtions in four unli.:no't'lnsHhich has tV-TO

r< Itlinearly independent solutions for v -'f. If h11 = f h1:a,
there will be only one solution for (58). A point of the

Ifsurface for which the rank of hij as just defined is two
"is a planar point. A point is called axial if hij is of

rank one at that point. The points of a ruled surface
then are planar points in general~ But we may ask, are
there any points which are axial? The answer is: there
is ~ axial point on each ruling of a ruled surface in

From (14)
(59)

"Thence

(60)

r~ ). r Jj
-Xtt Xt it i

c" ).. ". &JJitt Xt it i
locates a point on the ruling unless the numerator and
denominator of (60) both vanish, since each 1s a fourth

" I<order determinant. But this means that Xtt and itt are
~ " Kalways linear functions of xt,it,i end the surface

lies in an Ra. So we have the result stated.
(60) says that there 1s one point .Ql.!. each rul-

ing such that the principal normals of all the curves of
the surface through that point 11e in the Ra tangent to
the surface. The locus of such points is called a quasi-
asymptotic curve.1 Indeed from (53) we see that the

1 E. Bompiani 1914.1
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direction of this curve may be an asymptotic direction.1
At Ul the curvature ellipse becomes a line segment.

H {dt2 dt du \ r(
( 61) IIn = ds + 2 r ds ds J h11
The extremities of the line segment are obtained when

dt (dt + 2 r du 1ds I ds . ds
attains its maximum or minimum. This occurs for

dt -1 + {l + 4f2 gll
du = -2g11

These are then the principal directions at the quasi-
asymptotic point.

At the quasi-asymptotic point h:1}and hence M~,
lies in the R.a tangent to the surfa.ce.
From (14)

h~l = A(t,u) (X~ + Uitl(t)+B(t,u) (xt
lt + Ui~) + C(t,u)ilC

At u = Ul, from (69) we have
h;l = A(t,u) (ax';+ bi; + ciK

) + B(t,U)(X;+Ui~)+ C(t,u)i~
= a' (t) x; + b t (t) i~ + ct (t) 1J(

which from (34) defines the tangent R3 to the surface.
The l~cus of quasi-asymptotic points on the

surface has also a projective definition. It is the
curve of intersection of a given ruled surface and its
transversal surface, where the latter is defined as the

1 V. Hlavaty 1924.2
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locus of straight lines which intersect three consecutive
rulings of the given surface. The reader is referred to
a series of papers by Ranum1 and Stouffer2 dealing with
this approach.

Bompiani3 has also defined quasi-asymptotic
curves of the second kind on a surface as those curves
whose osculating spaces contain the tangent plane to the
surface and which have four point contact with the curve.

In our notation this condition may be expressed
by saying: any vector v K = ~(x; + uit) + f i" -must lie in

~ ). ~2 ~ a3 .>the R3 : e ~ ~ ~ , or
rt).tn} ds ., 2 a 3o.s S

-x ~ d~YI' d3yv
e ).. v v d = 0~ r s ds~ ds3

Since ~ and f are arbitrary, (62) may be written as two
conditions. If we work with both, i.e. making the
determinants into sums of determinants containing single
functions as elements, we are led to the same differential
equation. This equation is

d2u du 2 {(63) 3(f11 + u fl~) dt2 - 6 f12 (at) + 13 fg + 2 f13

+ u(3 f10 + 2 f14)) ~~ + fa u3 + (f4 + f6

1 1912.1, 1915.1, 1915.2
:a 1927.1
3 1914.1 See also Lane, 1932.1, p.60.
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where the fi are determinants formed from (x;,i~,i~,l~t'
K It: .r< ) I ~tL I'f tC IXtt,Xttt,lttt e.g. f1 = Xt i Xtt Xttt a.s.a.

This equation is the same as that obtained by Lane(l)
p. 60, and we see there are ~~ quasi-asymptotic curves
of the second kind on a ruled surface in R4.

A developable ruled surface possesses no auasi-
asymptotic curve. For if the surface is developable,

~ ~K = 0, h12 is a null vector1h11 is not null and there are
two real coincident asymptotic directions at a point,
namely those of the rulings.

In order to visualize the curvature properties
of a ruled surface in R4, we present the following theorem
and accompanying example and diagrams as a summ8~y of such
properties.
Theorem: The normal planes to a ruled surface along ~
generator rotate about a fixed direction in the space ~
in such a way that the tangent of the angle between the
normal plane at ~ point p(t,u) and the normal plane at
the striction point Po(t,uo) is ~ linear function of the
distance ,u-uo'; and, moreover, the angle is eaual to that
between the tangent planes at the two points. From (15)
the vectors normal to the surface at any point P may be
expressed

(i,j=1,2)
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a
where hiJ (a = 1,2) are scalar functions depending on the
point P and p~ and q~ are unit vectors in the normal
plane, N, to the surface and mutually orthogonal. In
general pit and q 11. are invariant functions of (t,u)I but
are determined only up to a rotation. Let us take pK
the unit vector in the direction of the normal vI( (35).
P it then depends only on the parameter t and not on u and
is the same for all normal planes on one ruling. qK(t,U)
will, in some sense, give us, as it varies, with u, the
change in the normal planes. ~q~, p}, i~, y;} forms at
any point p(t,u) a set of four mutually orthogonal vectors.
q~ lies in the tangent R3 to the surface since it is per-
pendicular to v 1< (= if) ano\tsin fact the intersection of

x }. ,...)that space with the normal plane. ~q,i ,Yt \forms at
any point P(t,u) a set of three mutually orthogonal
vectors in the tangent R3. At the directrix rX~i~] is a
plane perpendicular to i". q tf and y';are parallel to
{X~i~] for all u. {y~i).]is the tangent plane, T, at P
and the angle between this plane and the tangent plane To
at the striction point of the ruling, Po' is given by

(36) tan <p = u - Uo
(3

{q~i~) defines a family of ple~es, (8], in one-one corre-
spondence 1'11th the family of tangent planes 1TJ, and

1 E.B. Wilson 1916.2, p.309.
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corresponding planes are perpendicular. Then the angle
between the plane of lS 1at P and the plane at Po is

<(>. Or, the angle between q tt( t,u) and q r< (t,uo) is 1'.
rp~q~) defines the family of normal pianes~[N]. each
plane of 1~hich contains the common direct ion pit = V ~ •

Then since q~ is parallel to fx~i~l for all u, as u
varies ip~q~l rotates about prl and the angle between N
8.ndNo is that betl'leenql(u) and q 1(uo)1 namely 1'.

To describe more concretely the locus gener-
ated by the planes {N) if vIe call the line in the direc-
tion i~ the x-axis, that in the direction p~ the y-axis,

1'1<
.K,

FIG. 4
/

x = }.

w = ay + bz
This plane to be N, must
contain the line

x = ).

z = 0

w = 0

Thus, N:is given by
x = )..

w = bz

r(a plane perpendicular to i is represented by
'J

There is a linear relation between b and ~ since the nor-
mal planes rotate 1'lTiththe angle 1> (36). Say b = k~
where k is a constant. (Then the fr~le of reference has
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been set up at P.) Thus the locus of [N] is:o

w = kxz,

which is a cylinder formed by lines parallel to the y-
axis in points of an hyperbolic parabaloid in the wxz-
space.

Example: Take a circle in each of two completely
perpendicular planes in R4 defined in terms of the same
par8~eter and consider points as corresponding which
have the S8~e value of the par8~eter. Join correspond-
ing points by straight lines. Then we have the ruled
surface defined by

y(t,u); aucost, ausint, bcost - aucost,
bsint - ausint

where a and b are arbitrary but normalized so 2a2 = b2 = 1.
The x(t): 0, 0, b cost, b 5/n t Z.

(0,0,0,0)b 81n't can, in our language,
be considered the directrix
and I(t):(a cost, a sint,
-a cost, -a slnt) the
vector in the direction
of the rulings for the
surface FIG. 5

(tto.o•o)

and t and u are orthogonal pRr8~eters. Substitution in
the general formulae show that the Gaussian curvature
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K =

The quasi-asymptotic point is Ul =~ , and the striction
point Uc = -ab. The striction curve Uo = -ab is a par-
ticular curve of the fp~ily u = c each of which possesses
the properties: 1. that the scalar curvatures have ratios
which are constants not zero; 2. the curves project
orthogonally on to m perpendicular planes into curves so
tangents and normals are projections of corresponding
tangent and normal spaces of C. These curves have been
studied in some detail by M. Syptak1 and the associated
ruled surface by M. Bo~rovkaa and are a generalization
of helices.

v. THE DEFOR}~TION OF RULED SURFACES

The question which concerns us now 1s: can
a given ruled surface be transformed into another ruled
surface without strain, and if so, in what ways?3 This
is the problem of the applicability of spaces and not
that of continuous deformation.4 Since the necessary

1 1934.2
2 1931.1
3 cf. the argument for surfaces in R3 based on a study

of asymptotic lines, which treatment cannot be carried
over into higher spaces. G. Darboux 1896.1 and
L. Bianchi 1899.1

4 cf. L.P, 'Eisenhart 1926.1. chapter 6.
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t4.and sufficient condition that symmetric tensors gij,hij
0..and the anti-symmetric vector Yi determine a surface is

that they satisfy extended Gauss-Codazzi-Ricci conditions
and since the surface is then determined except for a
rigid motion, we are not concerned with this type of
transformation.

Since we know tlwJt any ruled surface may be
expressed in terms of orthogonal parameters (8) we ask
for the transformation tl(t,u), ul(t,u) which will carry
our surface into
(64) d sa = (1 + 2N Iu' + M Iau Ia)dt l:a+ du t a
where NI(tl) = N(t), MI(tt) = M(t).
This gives rise to a set of three partial differential
equations of the first order in the two unknown functions
tl(t,u), ul(t,U).3 The question of the integration of
this system is a classical problem - once proposed by
the French Academie - and, in general, unsolved.

The obvious solution of these equations is the
identity transformation, which then gives the same

:a~u,:a ~u'
1 g(t,u) = g(tt,u')(~) + (at)

o = g(t' ,u') 'dt' C)ul du1il ul

-i"t-ou +~clU

1 = g(t t , U ') (;~ ' ):a + (~~ I ) :a
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parametrization for two surfaces and a point corresponds
to a point with the same coordinates. vfuat conditions
are now imposed on the second forms? Or, given (8)
determine all surfaces yW(t,u) such that the Gauss-
Codazzl-Riccl conditions are satisfied. Or, determine

If:the tensors hij, vi satisfying these conditions and the
necessary symmetry conditions. Then by the integration
of

the surface is determined except for a rigid motion.
If we write out the tensor form of the G-C-R

equations, we have five partial differential equation
in eight unknown functions. vThi1e the actual details of
the integration may be difficult a solution does exist
and we may say: any ruled surface may be deformed so
that the rulings remain rulings end in an ~s ways.

To ascertain 'Vlhetherthe surface may be de-
formed so rulings do not correspond, we might ask the
question: can any curve on the surface be transformed
into a straight line? Eisenhe~t in his Differential
Geometryl treats an analogous question for surfacesin

Any ruled surface in R4 ~ be deformed into
!! ruled surface in Rs in an inrini ty of vlays. ~ that
rulings correspond. We have to solve the equations:

1 1909.1, p.333.
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(63)

where a with three components and z with three components
determine the surface in the form
(64) w(t,u) = z(t) + ua(t)
applicable to the surface (1). The linear element of the
two surfaces is (8).

Bonnet1 proved a theorem to the effect that any
ruled surface in R3 which is applicable to a second must
have its generators in correspondence with those of the
second unless the two surfaces are applicable on a
doubly ruled surface in such a way that the rulings of
the first surface correspond to one set of the rulings
on the quadric while those of the second correspond to
the other set of lines on the second degree surface. So
we now have the following:
Any two applicable ruled surfaces in R4 have their
generators in correspondence unless they can be deformed
into the same doubly ruled surface with one set of
generators corresponding to ~ set of lines of the
doubly ruled surface and t~ generators of the other
surface to the second family of lines.2

1 1867.1
a Any doubly ruled surface in R4 must l1e in an R3 since

all of its points are axial points. Cf. J.A.Schouten
1938.1, p.99.



35.

If we exclude the above case, the problem may
be considered that of integrating the equations
gij = ViyK Vjy ~ which, if we take the surface in the
more general form (6) (i.e. non-orthogonal parameters)
means we must solve the five (ordinary) partial differ-
ential equations in eight unknowns
(67) N(t) = it.Xt

M2(t) = It.it
If I(t) is any curve on the unit hypersphere

1

(68) i (t); cos ~, sin u.) cas ~, sin u) sin ~ cas '-P , sinw sin ~ sin't'
the second of conditions (65) determines the parameter t.

l"

(69) fM dt = arc length of curve i on the unit sphere.
o

(70) M2 = (dtU/dt)2 + (d~/dt)2sin2w + sin2
(u sin2 ~(d't'/dt)2

determines 'P as a function of u.) and ~ • Then the three
last equations of (65) determine Xt with one degree of
freedom and X is obtained by quadratures.

- N - -{M2s1n2J- N2
(71) Xt = co s ~ i + IlI2 it = M P

where p 1s a unit vector orthogonal to 1 and it.
We may picture this as follows: Any curve Can

the unit hypersphere determines the parameter t. Then
the polar surface of C on the hypersphere, the locus of

1 }I2sin219 - N2 = 0 1s the condition for developable ruled
surface, p.~ Then Xt = cos t) I + N/1vi21t and there are

~2 surfaces applicable on a given ruled developable.
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vectors perpendicular to i and it, is determined also.
Any curve on the polar surface, e', will be a locus of
the vector p. To any curve e and O' on its polar surface
are associated two ruled surfaces, due to the double
sign in (69). Any two curves on the unit hypersphere
which are polar, determine two ruled surfaces. A ruled
surface in R4 can be bent so that 0 and O' are axbitrary
polar curves on the unit hypersphere. All ruled surfaces
with the same 0 but different A. are parallel in R4.

Actually to realize the deformation of a sur-
face into another is not so easy. If we ask that form
the directrix may take b~ bending as does Beltramil the
problem of determining a curve from its intrinsic
equations faces us.2

If ~ is the angle the tangent plane to the
surface at the directrix makes with the osculating plane
of the directrix, and f is the angle it makes with the
plane iXtn3]'
(72) I = cos" Xt + sin't9cos crnl + sin -a sin ~ sinr n2

+ sin -8 sin a- cos ~ n3
~nlerenj is the jth normal to the directrix.
second of conditions (67) becomes

1 1865.1
a A.R. Forsyth 1930.1

Then the



- sin -{)sin ()sin r 1ara +

37.

(73) W~ = sin2f) (dil/dt + cos<r/rl)2 + f~t (sin'l9cos<r)
cas t>+ --- rl

l~t (sin l? sinG" sin f )

sin f) cas <r+-----ra
- sin {J sin G" cas?

r3 ~~t (sin"1.9sin q" cos r )
+ sin -B sinersin r ') a

r3 1
\'lherer j is the radius of the jth curvature .of the curva
In the process of bending the angle ~ and the relative
curvature of the directrix remain fixed, since it depends
only on the first form,

(74)

- sin f) d 'l.9 = sin t) cas <I + N
dt r1

Substitution of (74) in (73) gives a functional relation:

Given any curve, r is determined from (75) as a function
of one arbitrary parameter, then ~ is determined from
(74). For any form of directrix the form of the corre-
sponding surface is determined by rand (\. But for each
form of directrix there are cd possible surfaces since
(75) is a differential equation in r .
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As an example: If we ask if the directrix can become a
. cos ~straight line, it is clear that rl = 0 for a given

curve. That is, it must be a geodesic. Condition (73)
then is of the form

A (d f/ dt )2 + B (cos -r ) d f/ dt + C sin ~ + D = O.

<J is indeterminate.
Suppose the directrix becomes the,line Xl
x4 = 0, the conditions are then:
( 76) i1 = cos t9 i 1 = Nt

2. 2 2 2 2 i3 2 2i1 + i2 + 13 + i4 = 1 i1 + i2 + i3 + i4 = }v12t t t t
These equations present essentially t'tvoequations in
three UnknOltlnS,and 'Vle have:'

1. A ruled surface ~ be deformed ~ ~ curved
~eodesic becomes ~ straight line and the director ~
has a fixed pro.1ection in !Yl B.a. in an~ number of \-lays.

2. A ruled surface ~ be deformed ]Q ~ geodesic
becomes a straight line and the director ~ cuts the
hypersphere in a great circle in just ~ way.

3. Any ruled surface cen be deformed ~ the
directrix becomes a plane curve and the director ~
is arbitrary~

4. Any ruled surface can be deformed so the
directrix becomes the quasi-asymptotic curve and the
director ~ is arbitrary.
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VI. ISOTROPIC RULED SURFACES

In the work which has preceded we have been
careful to exclude imaginary or isotropic quantities and
have dealt only with real functions of real variables
representing real geometric entities. We now admit the
variables to be complex and turn to a brief study of
isotropic manifolds, that is, manifolds with vanishing
linear element in some direction or directions. Lensel

has shown that the only completely ametric manifolds
(ds2 = 0 for all directions), )(n' imbedded in a Euclidean
R2n are linear spaces.

In R4 the only completely e~etric X2 is the
completelY isotropic plane. For if

ds2 = gijdXidXj = 0 for all dxi dxj,
gij = O.

If. ~ I(_~But gi j = Y1 Y j 'Vlherey1 - d xi
surface. Differentiating partially

'dgi.1 K I( Ie.)(

dxk = Yi Yjk + yik Y j = 0
This relation holds for any i,j,k, so we have also

1 1926.2
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Adding and subtracting 8~ong these three relations
Y; Yjk = O.

But Yjk is not a vector, so this must mean that each y;~
= 0, or y J-C is linear in the xj, upon integratinge

We may then expect to find some characteristic
ruled surfaces containing one or more fields of isotropic
vectors, but none with identically vanishing metric.

We consider ruled surfaces whose generators
are isotropic. In such a situation we have instead of
(2)1

(77) j.j = 0

whence g22 = 0 and the metric (which is perfectly well
de£l.lJ-edl) for the surface y I( = x~ + uj I( becomes
(78) ds2 = (xt.Xt + 2u1t.Xt + u2}t.1t)dt2 + 21.xt dt du

and g = - (j.Xt)2, that is, the first fundamental form is
(negative (not positive) definite. Since gij is well
defined we may use the ordinary definitions to calculate
that the Gaussian curvature is given by

(79) K = 1t.1t if 1.Xt I:: O~
(j.Xt)2

This is, in general, not zero. So, in contra.st to the
situation for a ruled surface in R3 with isotropic
generators, we have: A ruled surface in R4 with isotropic

1 We use 1for the vector in the direction of the rulings
instead of i in order to indicate that it is no longer
a unit vector.
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generators II not necessarily developable. If the surface
is develooable, then the ds2 is a perfect sQuare.1 A
developable ruled surface is the tangent surface of a
twisted curve (p.9) and may be represented by

yK = x~ + ux;

Then if the generators ~ isotropic xtx; = 0, the
directrix is !!:. minima.l curve and

ds2 = (xt + UXtt)2dt2

We note from (77) further that the Gaussian
curvature of a non-developable ruled surface with iso-
tropic generators is fixed along a ruling. There 1£,
therefore, !!Q. "striction point" on El ruling of such,g,
surface in the sense that there 1s no point of minimum
Gaussian curvature, and the argument we used on p. II no

longer strictly obtains. However, we may ar~~e with
Beck2 as follows, and find that the striction point
exists in such a situation and indeed is the ideal point
of the ruling. The formula

U :::
(80) (Xt-}) (}.1t) - (xt.1t) (1.})

(}.})(}t.1t) - (J.1t)2

defines the striction point of a ruling in general by

1 Cf. J. Eiesland 1911.1.
a 1928.1.
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the ordinary argument referred to above. (This reduces
to our formula (32) 't1henv!e require 1and Xt to be
unit vectors.) Now, if j.j = 0, the denominator of
(78) vanishes, and u is infinite if the numerator is
finite. We may distin~uish two cases: 1. Xt.1~0,
the surface is skew and not a tangent surface of a
minimal curve. 2. Xt.1= 0, the surface is a minimal
cone or the tangent surfe.ce of a minimal curve. In
which case the striction curve is the edge of regression,
Beck classifies such isotropic surfaces by this means.
(See paper 1.)

We also note from (77) that the curvature is
al'tllJayspo s1tive.

Any non-minimal curve on the surfa.ce"Till
have an absolute curvature vector with respect to R4
defined as on p. IS" and again this is equivalent to the
sum of two vectors, the relative and normal curvature

I(.vectors, Since the tensors hab and the tangent plane
to the surface are defined. If we treat the normal
curvature vector by differentiating as before we find
that there are only two principal directions at any
point, these directions are the roots of the equation
(81) (allgllg12 - a12g112)~2 + (allg122 - gtla22)~ +

4(a12gta - aa2g11g12) = °
and the principal curvatures in these directions are the
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same, viz.
28.'2 - a"a22

2a1ag11g12 - a11g~2 - aaagl12

where all = h11.h11 etc.

"If If, the mean curvature vector, is a null
vector, the manifold to 1'!hichit belongs is minimal in
the sense of least area. By the use of formulae p.~
and the defini tion\ of 1,11t p. /6 , 'tV'ecalculate

N'" = g12 ~ j; - tg12 dugll.1']
T 12 I'( ..l.. 1 2 ""'" ~ Th this is null if g = 0, or if jt = ~-g uug11j• a
is if j; is an isotropic vector, 1t.1t = O. But then
K = 0, and vle have: 1.1inimalruled surfeces in R4 vJith
isotropic generators are the isotropic developables and
conversely.

Any ruled surface containing two fe~ilies of
straight lines can be put in an R3, so the surface in
R4 containing two sets of isotropic lines is the
ordinary sphere.

J. Lense and M. Pinl in a series of papers1 have
treated the subject of isotropic manifolds as the integral
surface of ds2 = 0 and have considered various types

1 J. Lense 1931.2; 1935.2; 1936.1; 1939.1: M. Pinl 1932.2,
4; 1936.3; 1937.1,2. See also papers by E.Schrenzel
1929.1 and G.F.C. Griss 1934.1.
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depending upon the rank of the matrix gij. They have
also considered tlle surfaces generated by various types
curves possessing certain isotropic normal spaces.
Since we have obtained no further or new results, we
refer to their papers. Note - vie ma.y note, hO'Vlever,
that since the metric for the particular case we have
presented is of rank two there is no difficulty in-
volved in applying the ordin8~Y surface theory, and
our results are interesting in that they present
another fairly tangible realization of the general
tensor theory.

For a classification of possible isotropic
manifolds we refer to Schouten and Struik III and to
Lense's flrst paper on the subject.2

VII. RULED V3 IN R4

The theory of ruled V3 in R4 generated by an
oD' of planes or aoo2 of straight lines can be considered
as a generalization of ruled surfaces. Such manifolds
are developable in the sense that they possess a singu-
lex or focal curve which each generating plane osculates.
The important formulae are appended and for more

1 1938.1
2 1926.2
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information we refer to Schouten and Struik III for the
genera.l V 1 in R and to Ranum2 for the projectiven- n
geometric approach and the theory of related manifolds.
(81) V3:y{t,u,v) = i(t) + uxt{t) + vi(t)
't'lhereXt.Xt = 1, i.i = 1, Xt-i = 0 and u and v are
rectangular cartesian coordinates in a generating plane.
(82) ds2 = glldt2 + 2g12dtdu + 2gl3dtdv + du2 + dv2

1-1heregll = 1 + 2vXt-It + 2uvxtt.Tt + v2it.It +
2-u XtteXtt

coordinate of the curvature in
is the normal curvature, or the

g =lg1jl= gll - g~2 - g~3

(85) 'f = hlldt2 ... 2h12dt du + 2h13 dt dv
vlhere h1j = (V1jyIC

) n ~, and n I< is the unit normal to the
ma.nifold and II hll 1s of rank tv-lO.

(86) ~ = _hi--...1_d_X_
i

d_x_j_

g dxia.xjij

the direction n~.

11938.1, p.62.
2l9l2.l~
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(87) Principal normal curvatures

~ = 0, (-hll+2h12g12+2h13g13)+ (hll-2h12g12-2h13g13)2
-4(h~2+h~~)(-~,,+gf2+gf~)

- 2(gll - g~2- g~3)
Principal directions: three mutually orthogonal

: 0, I, i = 1,2,3

lie in t't10planes

)i ~a h,a-kag, a 1 ~ principal nor-h13-~2g13 , h13-X2g13 , ,
2 i mal curvatures. x x

:\' 3 h,~-3 g,a 1/ 3 h13-~g13 h13-X g13 ,
3 3

Principal directions are conjugate directions and orthog-
onal
(89) ~ = ~ COS2~ + ~ COS2~

223 3
From which we see that the Dupin indicatrix reduces
to a conic and two line segments.

Along any line in ~ generating plane through the focal
point the n It' are in the same direction.
(90) Asymptotic directions

h11dt2 + 2h12 dt du + 2 h13 dt dv = 0

idt = 0

lh11dt + 2h12 du + 2h1S dv = 0
Two points on the seme straight line through the focal
point of the generating plane in which they lie have
asymptotic planes lying in the same Rs, the tangent Rs
to the Vs•



47.

REFERENCES

1862.
1. BOUR, E.: Theorie de la deformation des surfaces.

Jr. de l'ecole Poly technique 39, XXII, p.1-148.
2. BOUR, E.: Sur l'integration de~ equations differ-

ential partielles. Jr. de llecole Poly technique
39, XXII, p.149-191.

1865.
1. BELTRAMI, E.: Sulla flessione delle superficie

rigata. Ann. di Mat. 7, p.l05-l38.
2. BELTRA}II, E.: Risoluzione di una problema relativo

alIa teoria delle superfice gobbe. Ann. di Mat.
7, p.139-l50.

1867.
"1. BONNET, 0.: La theorie des surfaces applicable

, J I "sur une surface donne. r. de 1 ecole Poly-
technique 42, XXV, .p.1-151.

1894.
, " ,1. DARBOUX, G.: Lecons sur la theorie generale des

surfaces III. Paris Gautier-Villars, p.230.
1896. , "1. DARBOUX, G.: Le90ns sur la theorie generale des

surfaces IV. Paris Gautier-Villars,p.343.
1899.

1. BI~~CHI, L.: Vorlesungen uber Differential
Geometrie. (Authorized translation by M.Lukat)
Leipzig, B.G.Teubner, chapter 8.

1901•.....
1. KUHNE, H.: Uber Striktionen. Math. Ann. 54,

p.545-552.
1904.

1. CAJORI, F.: Theory of Equations. N.Y. Macmillan
Co. p.41.

1905.
1. KOrvIl.iERELL,K.: Riemannsche Fl8.chen im ebenen

Raum von vier Dimensionen. Math. Ann. 60,
p.548-596.

1909.
1. EISENHART, L.P.: Differential Geometry of Curves

and Surfaces. Boston, Ginn and Co.
1910.

1. SEGRE, C.: Preliminare di una teoria delle
"v8~leta luoghi di spazi. Rend. di Palermo 30,

p.87.



1916.
1.

1921.
1.

48.

1911.
1. EIESLAND, J.: On l1inimal Lines and Congruences

in Four Dimensional Space. Trans. Am. Math.
Soc. 12, p.403.

2. KO~n1ERELL, K. and V.: Spezielle Flachen und
Theorie der Strahlen-systeme. Leipzig,
G.J.Goschen, ~.68-72.

3. MOHRi1ANN, H.: Uber die windschiefen Linienflachen
im Raume von view Dimensionen und ihre
Haupttangentenflachen als reciproke Linien-
f1achen. Arch. der Math. u. Phys. (3), 18,
p.66-68.

1912.
1. RANm~, A.: On Projective Differential Geometry on

n-dimensional Spreads Generated by 001 Flats.
Ann. di Mat. (3), 19, p.205-249.

1914.
1. BOMPIANI, E.: Alcune proprieta proiettivo-

differenzia1e del sistemi di rette negli iperspazi.
Rend. d1 Palermo 37, p.305-331.

1915.
1. RANill1,A.: On the Differential Geometry of Ruled

Surfaces in Four-Space and Cyclic Surfaces in
Three-Space. Trans. Am. Math. Soc. 16, p.89-110.

2. RANUM, A.: On the Projective Differential Classi-
fication of N-Dimensional Spreads Generated by
~I Flats. Am. J. Math. 37, p.ll?-159.

LEVI-CIVITA, T.: Nozione d1 parallelismo in una
varieta qua1unque e conseguente specificazione
geometrica della curvatura Riemanniana. Rend.
di Palermo 42, p.173-205.

2. WILSON, E.B.: and G.L.E. Moore: Differential
Geometry .of Two Dimensional Surfaces in Hyper-
space. Proc. Am. Acad. Arts Science 52, 2?0-368

SEGRE, G.: Hehrdimensionale Raume, Ency. Math.
Wissen. III,2,2,A, Leipzig, B.G.Teubner, p.905-
919.

1922.
1. vcrLLER, A.: Quelques proprietes des surfaces

reg1e#es en liaison avec la theorie du pa.rallelisme
de M. Levi-Civita. C. R. Acad. SCl., Paris 174,
p.997-999.

2. WOODS, F.S.: Higher Geometry. Boston, Ginn and Co.
Chapter 19.



1928.
1.

1930.
1.

1931.
1.

49.

1924.
1. BERTINI, E.: Einfuhrung in die Projektive

Geometrle mehrdimenslonaler Raume, Vienna,L.W. Seidel & S. (Translated from 2nd Italian
ed. by A. Duschek)

2. HLAVATY, V.: Sur les courbes quasi-asymptotiques.
Christiaan Huygens. International Math.
Tijdschrift, l,{ll). p.209-245.

1926.
1. EISENHART, L.P.: Riemannian Geometry. Princeton

University Press.
2. LENSE, J.: Uberametrische Mannigfaltigkeiten

und quadratlsche Differential formen mit
verschwindender Diskriminante. Jahresber.
Deutsch. Math. Verein. 35, p.281-294.

1927.
1. STOUFFER, E.B.: Singular Ruled Surfaces in Space

of Five Dimensions. Trans. Am. Math. Soc. 29,
p.80-95.

"BECK, H.: Uber Striktionsgebilde. Jahresber.
Deutsch. Math. Verein. 37, p.91-106.

2. ~iES, J.: Bemerkung zum Vortrag von H. Beck:
Uber Striktions g ebilde. Jahresber. Deutsch.
Math. Verein. 37, p. 107-112.

1929. "
1. SCHRENZEL, E.: Uber Kurven mit isotropen Normalen.

Sitzungsber. Akad. Wien. 138, p.439.
FORSYTHE, A.R.: Geometry of Four Dimensions I.

Cambridge University Press, p.279.
uBO~ROVKA, 0.: Sur les hypercirconferences et

certaines surfaces paraboliques dans 11espa.ce
euclidien a quatre dimension. C.R. Acad. Sci.
Paris 193,~p.633.

2. LENSE, J.: Uber die "Ableitungsgleichungen der
umetrischen Mannigfaltigkeiten. Math. Zts. 34,
p.721-736.

1932.
1. LANE, E.P.: Projective Differential Geometry of

Curves and Surfaces. Chicago University Press,
p.37- .1

2. PINL, M.: Uber Kurven mit isotropen Schmiegraumen
im Euklidischen Raum von n Dimensionen. Monatsh.
fur Math. und Phys. 39, p. 157-172.

3. VEBLEN, O. and J.H.C.lvnITEHEAD: Foundations of
Differential Geometry. Cambridge University Press.



50.

4. PINL, M.: Quasi-metrik auf tota1isotropen Flachen
(I),II,111. Proc. Kon. Akad. v. Wetensch •
.~msterdam (35,p.1181-1188); 36, p.550-557j 38,
p.171-l80.

1933.
1. ROTH, L.: Ruled Surfaces in Four Dimensions. Proc.

London Math. Soc. 35, p.380-406.
1934.

1. GRISS, G.F.C.: Differential invarianten eines
kovarianter Tensors vierter Strife im binaren
Gebiet. Composltio Math. I, p.238-247.

2. SYPTAK, M.: Sur les hyperclrconferences et
, I ,hyperhelic~s generallsees dans les espaces

euclidien a p dimensions. C.R. Acad. Scl. Paris,
198, p.1665-1667.

1935.
1. GRAUSTE1N, W.O.: Differential Geometry. New York,

Iv1acmil1anCo•.,2. LENSE, J.: Uber Kurven mit isotropen Normalen,
Math. Ann. 112, p.129-154.

3. SCHOUTEN, J.A. and D.J. STRUIK: Einfuhrung in die
neuren methoden der Differential Geometrie I.
Groningen, P. Noordhoff.

1936.
1. LENSE. J.: Uber vol1isotrope Flachen. Monatsh.

fur Math und Phys. 43, p.177-186.
2. MCCONNELL, A.J.: Applications of the Absolute

Differential Calculus. London and Glasgo,.,.
Blackie and Sons.

3. PINL, M.: Zur Dualistischen Theorie isotropen
und verwandte Kurven im euklidischen Raum van
n Dimensionen. I>ionatsh.fur Math. und Phys.
44, p.1-12.

1937.
1. PINL, M,: Zur Integrallosen Darstellung n-

dimensionaler isotrope Mannigfaltigkeiten im
euklidischen Rn+2. Math. Zts. 42, p.337.

2. PINL, M.: Zur Existenztheorle und Klassifikation
Totalisotropen Fl~chen. Compositl0 Math. 5,
p.208-238.

1938 •.
1. SCHOUTEN, J.A. and D.J. STRUIK: Einfuhrung in die

neueren Methoden der Differential Geometrie II.
Groningen, P. Noordhoff.

1939. ~
1. LENSE, J.: Uber isotrope Mannigfa1tigkeiten

Math. Ann. 116, p.297-309.



51.

BIOGRAPHY

Martha Hathaway Plass was born on January 25,
1914 in l~ontclair, New Jersey. She attended the public
schools in Montclair and graduated from the High School
in 1931 "with honors in Mathematicsl'. She received the
the A.B. degree from Wellesley College in 1935, again
tl~lithhonorsll in Mathematics, and the S.M. degree from
the Massachusetts Institute of Technology in 1936. At
Wellesley she was a Durant Scholar and was elected a
member of Phi Beta Kappa. She also is an associate
member of Sigma Zi and belongs to the American Mathe-
matical Society.

The second semester of 1937-1938 she was an
instructor in Mathematics at Wellesley College. Begin-
ning with the fall of 1938 she has been teaching Mathe-
matics at the University of Maryland.


	page1
	titles
	J 

	images
	image1


	page2
	images
	image1


	page3
	titles
	(ii) 


	page4
	tables
	table1


	page5
	titles
	(iv) 

	tables
	table1


	page6
	titles
	- ~ 


	page7
	images
	image1


	page8
	titles
	t>X 

	images
	image1


	page9
	titles
	T~2 = 0 

	images
	image1
	image2

	tables
	table1


	page10
	titles
	2 d --,,2. + Z 7'~ 
	= it. it - eXt. it + uit. it) :a 
	" 
	'" 

	images
	image1
	image2
	image3
	image4


	page11
	titles
	" 

	images
	image1
	image2
	image3

	tables
	table1
	table2


	page12
	titles
	(18) 
	(19) 

	images
	image1
	image2
	image3
	image4

	tables
	table1


	page13
	titles
	- - 
	(14)a. 

	images
	image1
	image2
	image3

	tables
	table1


	page14
	titles
	-P..,~:'f.~ = Ii".haa - h,a.h,a 

	images
	image1

	tables
	table1


	page15
	page16
	titles
	(30) 

	images
	image1
	image2


	page17
	titles
	. (34) 


	page18
	titles
	7tr ., 

	images
	image1


	page19
	page20
	titles
	(38) 
	(39) 
	(43) 

	images
	image1


	page21
	titles
	= 

	images
	image1
	image2
	image3


	page22
	titles
	, 

	tables
	table1


	page23
	tables
	table1
	table2


	page24
	page25
	titles
	~ ~ + 1 = 0, 

	tables
	table1


	page26
	titles
	, 

	images
	image1
	image2


	page27
	titles
	" 
	c" ).. ". &JJ 

	images
	image1
	image2
	image3


	page28
	page29
	images
	image1


	page30
	images
	image1


	page31
	titles
	(36) 


	page32
	titles
	nglJre Z 

	images
	image1
	image2
	image3


	page33
	titles
	-- 
	- 
	Figure 

	images
	image1
	image2
	image3
	image4
	image5
	image6
	image7
	image8
	image9


	page34
	titles
	/ 

	images
	image1

	tables
	table1


	page35
	images
	image1
	image2


	page36
	images
	image1


	page37
	titles
	~u,:a ~u' 


	page38
	images
	image1


	page39
	titles
	(63) 

	images
	image1
	image2
	image3


	page40
	images
	image1
	image2


	page41
	page42
	titles
	+ --- 
	+----- 

	images
	image1
	image2
	image3


	page43
	images
	image1

	tables
	table1


	page44
	images
	image1


	page45
	tables
	table1


	page46
	titles
	yK = x~ + ux; 
	(80) 
	(Xt-}) (}.1t) - (xt.1t) (1.}) 


	page47
	page48
	titles
	(82) 
	" 

	images
	image1


	page49
	page50
	images
	image1
	image2
	image3
	image4
	image5


	page51
	images
	image1

	tables
	table1


	page52
	titles
	" 
	, " , 
	, " 
	" 


	page53
	page54
	page55
	titles
	. , 


	page56

