
Computer Science and Artificial Intelligence Laboratory

Technical Report

m a s s a c h u s e t t s i n s t i t u t e o f t e c h n o l o g y, c a m b r i d g e , m a 0 213 9 u s a — w w w. c s a i l . m i t . e d u

MIT-CSAIL-TR-2007-055 November 30, 2007

Mapping Stream Programs into the
Compressed Domain
William Thies, Steven Hall, and Saman Amarasinghe

Mapping Stream Programs into the Compressed Domain
William Thies Steven Hall Saman Amarasinghe

MIT Computer Science and Artificial Intelligence Laboratory

November 30, 2007

Abstract
Due to the high data rates involved in audio, video, and signal pro-
cessing applications, it is imperative to compress the datato de-
crease the amount of storage used. Unfortunately, this implies that
any program operating on the data needs to be wrapped by a de-
compression and re-compression stage. Re-compression canincur
significant computational overhead, while decompression swamps
the application with the original volume of data.

In this paper, we present a program transformation that greatly
accelerates the processing of compressible data. Given a program
that operates on uncompressed data, we output an equivalentpro-
gram that operates directly on the compressed format. Our trans-
formation applies to stream programs, a restricted but useful class
of applications with regular communication and computation pat-
terns. Our formulation is based on LZ77, a lossless compression
algorithm that is utilized by ZIP and fully encapsulates common
formats such as Apple Animation, Microsoft RLE, and Targa.

We implemented a simple subset of our techniques in the
StreamIt compiler, which emits executable plugins for two popular
video editing tools: MEncoder and Blender. For common opera-
tions such as color adjustment and video compositing, mapping
into the compressed domain offers a speedup roughly proportional
to the overall compression ratio. For our benchmark suite of12
videos in Apple Animation format, speedups range from 1.1x to
471x, with a median of 15x.

1. Introduction
With the emergence of data-intensive applications such as digital
film, medical imaging and geographic information systems, the
performance of next-generation systems will often depend on their
ability to process huge volumes of data. For example, each frame
of a digital film requires approximately 2 megabytes, implying
that a fully-edited 90-minute video demands about 300 gigabytes
of data for the imagery alone [10]. Industrial Light and Magic
reports that, in 2003, their processing pipeline output 13.7 million
frames and their internal network processed 9 petabytes of data [4].
The U.S. Geological Survey had archived over 13 million frames
of photographic data by the end of 2004, and estimates that 5
years is needed to digitize 8.6 million additional images [36]. In
all of these situations, the data is highly compressed to reduce
storage costs. At the same time, extensive post-processingis often
required for adding captions, watermarking, resizing, compositing,
adjusting colors, converting formats, and so on. As such processing
logically operates on the uncompressed format, the usual practice
is to decompress and re-compress the data whenever it needs to be
modified.

In order to accelerate the process of editing compressed data,
researchers have identified specific transformations that can be
mapped into the compressed domain—that is, they can operatedi-
rectly on the compressed data format rather than on the uncom-
pressed format [8, 21, 32, 38]. In addition to avoiding the cost of the
decompression and re-compression, such techniques greatly reduce
the total volume of data processed, thereby offering large savings
in both execution time and memory footprint.

However, existing techniques for operating directly on com-
pressed data have two limitations. First, they focus on lossy com-
pression formats (e.g., JPEG, MPEG) rather than lossless compres-
sion formats, which are important for the applications cited pre-
viously. Second, they rely on specialized and ad-hoc techniques
for translating individual operations into the compresseddomain.
For example, for DCT-based spatial compression formats (JPEG,
Motion-JPEG), researchers have developed separate algorithms for
resizing [12, 23], edge detection [28, 29], image segmentation [15],
shearing and rotating inner blocks [30], and arbitrary linear com-
binations of pixels [33]. Techniques extending to DCT-based tem-
poral compression (MPEG) include captioning [24], reversal [37],
distortion detection [11], transcoding [1], and others [38]. For run-
length encoded images, algorithms have been devised for efficient
transpose and rotation [22, 31]. A compressed audio format has
been invented that allows direct modification of pitch and playback
speed [19]. While these techniques are powerful, they remain in-
accessible to most application programmers because they demand
intricate manipulation of the underlying compression format. It is
difficult for non-experts to compose existing compressed-domain
operations into a complete program, let alone translate a new and
unique operation into the compressed domain.

This paper presents a technique for automatically mapping com-
plete user-defined programs into the compressed domain. Thetech-
nique applies to stream programs: a restricted but practical class
of applications that perform regular processing over long data se-
quences. Stream programming captures the essential functionality
needed by image, video, and signal processing applicationswhile
exposing the flow of data to the compiler. Our formulation is based
on LZ77, a lossless compression algorithm utilized by ZIP, and nat-
urally applies to formats such as Apple Animation, Microsoft RLE,
and Targa (which are special cases of LZ77). Lossless compression
is widely used in computer animation and digital video editing in
order to avoid accumulating compression artifacts. By providing an
automatic mapping into the compressed domain, our technique en-
ables a large class of transformations to be customized by the user
and directly applied to the compressed data.

The key idea behind our technique can be understood in simple
terms. In LZ77, compression is achieved by indicating that agiven
part of the data stream is a repeat of a previous part of the stream. If
a program is transforming each element of the stream in the same
way, then any repetitions in the input will necessarily be present
in the output as well. Thus, while new data sequences need to be
processed as usual, any repeats of those sequences do not need to
be transformed again. Rather,the repetitions in the input stream
can be directly copied to the output stream, thereby referencing the
previously-computed values. This preserves the compression in the
stream while avoiding the cost of decompression, re-compression,
and computing on the uncompressed data. In this paper, we extend
this simple idea to a broad class of programs: those which input
and output multiple data items at a time, and those which split,
combine, and reorder the data in the stream.

We implemented a subset of our general technique in the
StreamIt compiler, which generates plugins for two popularvideo
editing tools: MEncoder and Blender. While our current imple-
mentation handles only certain streaming patterns, it is sufficient

1

to express many practical transformations such as pixel adjust-
ment (brightness, contrast, color inversion) and video compositing
(overlays and mattes). Using a suite of 12 videos (screencasts, ani-
mations, stock footage) in Apple Animation format, computing di-
rectly on compressed data offers a speedup roughly proportional to
the compression factor. For pixel transformations, speedups range
from 2.5x to 471x, with a median of 17x; for video compositing,
speedups range from 1.1x to 32x, with a median of 6.6x.

In the general case, compressed processing techniques may
need to partially decompress the input data to support the behav-
ior of certain programs. Even if no decompression is performed,
the output may benefit from an additional re-compression step if
new redundancy is introduced during the processing (for example,
increasing image brightness can whiteout parts of the image). This
effect turns out to be minor in the case of our experiments. For
pixel transformations, output sizes are within 0.1% of input sizes
and often (more than half the time) are within 5% of a full re-
compression. For video compositing, output files maintain asiz-
able compression ratio of 8.8x (median) while full re-compression
results in a ratio of 13x (median).

To summarize, this paper makes the following contributions:

• An algorithm for mapping an arbitrary stream program, written
in the cyclo-static dataflow model, to operate directly on loss-
less LZ77-compressed data. In addition to transforming a sin-
gle stream, programs may interleave and de-interleave multiple
streams while maintaining compression (Sections 2-3).

• An analysis of popular lossless compression formats and the
opportunities for direct processing on each (Section 4).

• An experimental evaluation in the StreamIt compiler, demon-
strating that automatic translation to the compressed domain
can speedup realistic operations in popular video editing tools.
Across our benchmarks, the median speedup is 15x (Section 5).

The paper concludes with related work (Section 6) and conclu-
sions (Section 7).

2. Program Representation
Our transformation relies on the cyclo-static dataflow representa-
tion for input programs and the LZ77 representation of compressed
data. These are described in the next two sections.

2.1 Cyclo-Static Dataflow

In the cyclo-static dataflow model, a program is representedby a
set of independentactorsthat communicate using FIFO data chan-
nels [5, 18]. Each actor has an independent program counter and
address space; all communication is done using the data channels.
Actors have one or more atomic execution steps that execute in a
fixed pattern throughout the lifetime of the program. A key restric-
tion of the cyclo-static dataflow model is that, for each execution of
a given actor, the number of items produced and consumed on the
data channels is known at compile time. This enables the compiler
to perform static scheduling of the actors and to guarantee deadlock
freedom [5, 18].

Cyclo-static dataflow is a natural fit for many multimedia and
signal processing kernels, as such programs often have a regular
structure with known communication patterns. As a programmer,
one can use a high-level language such as StreamIt [35] to express
a cyclo-static dataflow program. An example StreamIt program
appears in Figure 1. It reads lines of an RGB image from a file,
shrinks the image by a factor of two, inverts the color of eachpixel,
then writes the data to a file. There are three kinds of actors in
StreamIt programs, and our analysis handles each one separately:

• Filters have a single input stream and a single output stream,
and perform general-purpose computation. Filters performthe

struct rgb {
byte r, g, b;

}

rgb->rgb pipeline HalfSize {
add splitjoin {

split roundrobin(WIDTH,WIDTH);
add Identity<rgb>();
add Identity<rgb>();
join roundrobin(1,1);

}
add AveragePixels(4);

}

rgb->rgb filter AveragePixels(int N) {
work push 1 pop N {

rgb out; int r, g, b;
for (int i=0; i<N; i++) {

rgb in = pop();
r += in.r; g += in.g; b += in.b;

}
out.r = r/N; out.g = g/N; out.b = b/N;
push(out);

}
}

rgb->rgb filter InvertColor() {
work push 1 pop 1 {

rgb pixel = pop();
pixel.r = 255 – pixel.r;
pixel.g = 255 – pixel.g;
pixel.b = 255 – pixel.b;
push(pixel);

}
}

void->void pipeline Toplevel() {
add ReadRGB();
add HalfSize();
add InvertColor();
add WriteRGB();

}

ReadRGB

InvertColor

WriteRGB

HalfSize

AveragePixels

IdentityIdentity

roundrobin(W,W)

roundrobin(1,1)

Figure 1. Example StreamIt program.

same function on every execution (there is no cyclic pattern
of computations). For example, in theInvertColor filter, the
work function specifies the atomic execution step; it declares
that on each execution, it pops (inputs) 1 item from the input
tape and pushes (outputs) 1 item to the output tape1.

• Splitters have a single input stream and multiple output streams,
and perform pre-defined computations. There are two types of
splitters:duplicatesplitters, which replicate their inputs to all
of the target streams, androundrobinsplitters, which distribute
the input items across the streams. Roundrobin splitters are
parameterized: roundrobin(n1 , n2) indicates that the firstn1

items are sent to the first output, and the nextn2 items are sent
to the second output. Splitters execute in a fine-grained, cyclo-
static fashion: regardless of the parameters, each execution step
passes only a single item from the input stream to an output
stream. In Figure 1, the splitter sendsWIDTH pixels in each
direction, distributing the lines of the image across alternate
streams.

• Joinershave multiple input streams and a single output stream,
and perform pre-defined computations. The only type of joiner
is roundrobin, which acts analogously to a roundrobin splitter.
In Figure 1, the joiner reads one pixel at a time from each
input stream, serving to interleave the pixels from neighboring
lines. Once the pixels are interleaved, each group of 4 pixels is
averaged together in order to decrease the picture width by two.

1 Though StreamIt also allows filters to peek at the input stream (i.e.,
to perform a sliding window computation) and to maintain mutable state
across executions, these features are uncommon in other stream languages
and we do not support them in the current work.

2

stream := value∗ stream := (value| repeat)∗

repeat :=〈distance, count〉

(a) Uncompressed domain (b) Compressed domain (LZ77)

Figure 2. Representation of data in the uncompressed and com-
pressed domains.

 1,3! 2,4!O L A

 1,3! 2,4!O L A

 1,3! 2,4!O L A

L A

 1,3! O L ALA A

 1,3! O L ALA A

O

input stream decompress output stream

4 8 965 721 3
distance

10

L L ALA AOO OO

L

L

L ALA AL

Figure 3. Example of LZ77 decompression.

2.2 LZ77 Compression

LZ77 is a lossless, dictionary-based compression algorithm. Named
after its creators Lempel and Ziv, who published the algorithm in
1977 [40], LZ77 is asymptotically optimal [39] and forms thebasis
for many popular compression formats, including ZIP, GZIP and
PNG. As described in Section 4, LZ77 also serves as a general-
ization of simpler encodings such as Apple Animation, Microsoft
RLE, and Targa, allowing our transformations to naturally extend
to these formats.

The basic idea behind LZ77 is to utilize a sliding window
of recently encoded values as the dictionary for the compression
algorithm. In the compressed data stream, there are two types of
tokens:valuesandrepeats(see Figure 2). A value indicates a token
that should be copied directly to output of the decoded stream. A
repeat contains two parts: a distanced and a countc; it indicates
that the decoder should start at offsetd from the end of the decoded
stream and copy a sequence ofc values to the output. The distances
are bounded, which enables the decoder to operate with a fixed
buffer size. It is important to note that the count may exceedthe
distance, in which case some of the values produced by a repeat
operation are also copied by that operation. For example, a value
A followed by a repeat〈1, 3〉 results in an output of “A A A”. An
additional example of LZ77 decoding is given in Figure 3.

3. Program Transformation
Our program transformation inputs a cyclo-static dataflow program
and outputs an equivalent program in which all of the data channels
use a compressed representation. One can think of this process as
mapping from the uncompressed domain to the compressed domain
(see Figure 2). Rather than modifying the code within the actors,
our transformation treats actors as black boxes and wraps them in
a new execution layer. The transformation attempts to preserve as
much compression as possible without ever performing an explicit
re-compression step. While there exist cases in which the output
data will not be as compressed as possible, under certain conditions

Variables Constants

S, T Input, output streams n1, n2 Actor’s pop rates
V List of values (may be empty)m Actor’s push rate
〈d, c〉 Repeat distance & count

Functions (list× list → list)

• List concatenation
F Filter work function, outputsm-element list

Figure 4. Notations used in the semantic rules.

S • V → T |V | = n exec-uncompressed
—————————-
S → F (V) • T

Figure 5. Semantics of EXEC(F): execution of filter F in the un-
compressed domain. Notations are defined in Figure 4.

Exec(F)

T

S

pop n

push m

Align(n)

T

S

Compressed-Exec(F)

(a) Uncompressed domain (b) Compressed domain

Figure 6. Overall execution of a filter F in the uncompressed and
compressed domains.

the output is guaranteed to be fully compressed (relative tothe
compression of the input).

For the sake of presentation, we use an operational semantics
to express the execution under the uncompressed and compressed
domains. Though some of the transition rules require dynamic data
rates and thus fall outside the cyclo-static dataflow model,all of
them have an efficient implementation in StreamIt. The rulesuse
the notations given in Figure 4, and have the following form:

S → T

S′ → T ′

This rule reads: if the incoming stream has valueS and the
outgoing stream has valueT , then after an execution step, the
streams have valuesS′ andT ′, respectively. As detailed in Figure 2,
we represent streams as lists of tokens; inputs to the streamare
added to the front of the list, while outputs from the stream are
removed from the end of the list.

To describe the mapping into the compressed domain, we con-
sider each StreamIt construct in turn: filters, splitters, and joiners.

3.1 Filters

Filter execution in the uncompressed domain is described bythe
rule in Figure 5. The rule expresses the simple fact that a filter
inputs a list ofn values from the end of its input stream; this list is
denoted byV . The filter pushes its results, denoted byF (V), onto
the front of the output stream.

Filter execution in the compressed domain requires a two-stage
transformation (see Figure 6 for an overview, and Figure 7 for a
detailed example). First, the input stream is aligned to a granularity
n that matches the input rate of the filter. This alignment guarantees
that every token in the stream is either a sequence ofn values, or a
repeat in which both the distance and the count are multiplesof n.
The alignment stage (described in detail later) is a no-op for filters
that pop only one item (n = 1).

3

input stream Align(2) output stream
Compressed-Exec
(HyphenatePairs)

 1,3! O 2,4! L A
 1,3! O 2,4!

 1,3! O
 2,2! 1,1! O

 2,2! 1,0! O O
 2,2! O O

 2,2!

[pass-uncompressed]
[pass-compressed]
[coarsen-repeat]
[expand]
[prune]
[pass-uncompressed]
[pass-compressed]
[exec-uncompressed]
[exec-compressed]
[exec-uncompressed]
[exec-compressed]

char->char filter HyphenatePairs {
work pop 2 push 3 {

push(‘~’);
push(pop());
push(pop());

} }

(b) Normal execution (c) Compressed-domain execution

|
|
|
|
|
|
|
|
| L A ~
| 3,6! L A ~
| O O ~ 3,6! L A ~
| 3,3! O O ~ 3,6! L A ~

|
| L A
| 2,4! L A
| 2,4! L A
| 2,4! L A
| 2,4! L A
| O O 2,4! L A
| 2,2! O O 2,4! L A
| 2,2! O O 2,4!

| 2,2! O O
| 2,2!

|

output stream

input stream Exec(HyphenatePairs) output stream

O O O O L A L A L A
O O O O L A L A

O O O O L A
OOOO

OO

|
| L A ~
| L A ~ L A ~
| L A ~ L A ~ L A ~
| O O ~ L A ~ L A ~ L A ~
| O O ~ O O ~ L A ~ L A ~ L A ~

(a) Example filter

input stream

Figure 7. Example execution of a filter in the uncompressed and compressed domains.

S • V → T |V | = n exec-uncompressed
—————————-
S → F (V) • T

S • 〈d, c〉 → T d%n = 0 c%n = 0 exec-compressed
————————————————
S → 〈md/n, mc/n〉 • T

Figure 8. Semantics of COMPRESSED-EXEC(F): execution of fil-
terF in the compressed domain. Notations are defined in Figure 4.

After the alignment stage comes the execution of the com-
pressed filter, which appears in Figure 8. Theexec-uncompressed
rule deals with values on the input stream, and is identical to that
in the uncompressed execution. Theexec-compressed rule deals
with repeats on the input stream and encapsulates the key idea of
the paper. Because the inputs are repeating at the correct granu-
larity, the repeat can be copied directly to the output of thefilter
without performing any new computation. The only change needed
is to adjust the repeat distance and count to match the filter’s output
rate.

3.1.1 Stream Alignment

The alignment phase is needed for filters that pop more than one
item from the input stream. Its goal is to align the executionbound-
aries of the filter with the repeat boundaries of the compressed data;
this alignment is required for the compressed execution. Following
alignment, each execution of a filter will input eithern consecutive
values, or a repeat token with a distance and count that are evenly
divisible byn (wheren represents the pop rate of the filter).

The alignment stage sometimes needs to partially decompress
the data in the stream. Due to the sliding-window dictionaryin
LZ77, in general it is difficult to decode only a few items without
decompressing others. Thus, our formulation assumes that afully
decompressed version of the stream is available; the transition rules
access the decompressed data using thedecodefunction, which re-
turns the sequence of values represented by a repeat token atits
current position in the stream. However, in practice, this decom-
pression can be avoided whenever the repeat distance is the same
as the window size, as this simply causes a value in the window
to be overwritten by itself. This case is very common in several
practical compression formats; for example, in Apple Animation,
the vast majority of repeats reference the same pixel in the previ-
ous frame (which is also the window size), and thus most decom-
pression is avoided. In run-length encoding, the repeat distance and
the window size are always equal to one, so no decompression is
needed. While general LZ77 does require a decompressed window
to be maintained, our technique still offers significant benefits by

S • V → T |V | = n pass-uncompressed
—————————
S → V • T

S • 〈d, c〉 → T d%n = 0 c ≥ n pass-compressed
——————————————
S • 〈d, c%n〉 → 〈d, c− c%n〉 • T

S • 〈d, c〉 • V → T expand

c < n ∨ 1 ≤ |V | < n ∨ (d%n > 0 ∧ ¬(d < LCM(d, n) < c))
——————————————————————————–
S • 〈d, c− 1〉 • decode(〈d, 1〉) • V → T

S • 〈d, 0〉 • V → T prune
————————
S • V → T

let L = LCM(d, n) coarsen-repeat

S • 〈d, c〉 • V → T d%n > 0 d < L < c
——————————————————-
S • 〈L, c− (L− d)〉 • 〈d, L− d〉 • V → T

Figure 9. Semantics of ALIGN(n): aligning data to a granularity
of n. Thedecodefunction uncompresses a repeat token into a list
of values; other notations are given in Figure 4.

computing on a smaller volume of data and avoiding the cost of
re-compression. For general algorithms such as gzip, compression
can be up to 10x slower than decompression [41].

The semantics of stream alignment are given in Figure 9. If
the end of the input stream containsn values, then alignment
is satisfied and the values are moved to the output stream (rule
pass-uncompressed). Likewise, if the input contains a repeat in
which the distance is a multiple ofn and the count is at leastn, then
a number of aligned repeats are peeled from the input and moved to
the output (rulepass-compressed). If the count is not a multiple
of n, then part of the repeat is leftover and remains on the input
stream.

There are some cases in which a repeat cannot be moved to the
output stream, in which case the data needs to be partially decom-
pressed (ruleexpand). This occurs if the repeat has a count less
thann, if it occurs in the middle of an aligned stretch ofn values,
or if its distance is not a multiple ofn (this last condition can some-
times be remedied by another rule, see below). Theexpand rule
decodes only one value from an unaligned repeat token, thereby de-
creasing its count by one; the rest of the repeat may become aligned
later. If the count of a repeat reaches zero, it is eliminatedby the
prune rule.

The final rule,coarsen-repeat, preserves a specific kind of
compression in the input stream. Consider that a filter pops two

4

roundrobin(m1,m2)

S

T1 T2

push m2push m1

roundrobin(n1,n2)

T

S1 S2

pop n2pop n1

push n1 + n2

pop m1 + m2

(a) Notation for splitters (b) Notation for joiners

Figure 10. Notations used in the semantics for splitters and join-
ers. In addition, the variablepos indicates how many items have
been written to (in the case of splitters) or read from (in thecase of
joiners) the active tape during the current execution cycle.

items at a time, but encounters a long repeat with distance three
and count 100. That is, the input stream contains a regular pattern
of values with periodicity three. Though consecutive executions of
the filter are aligned at different offsets in this pattern, every third
filter execution (spanning six values) falls at the same alignment.
In general, a repeat with distanced can be exploited by a filter
with pop raten by expanding the distance to LCM(d, n). In order
to perform this expansion, the count must be greater than the
distance, as otherwise the repeat references old data that may have
no periodicity. Also, the stream needs to be padded with LCM− d
values before the coarsened repeat can begin; this padding takes the
form of a shorter repeat using the original distance.

3.2 Splitters

It is necessary to consider splitters and joiners separately from
general-purpose actors because of their pass-through semantics: the
inputs are distributed to the outputs without performing any compu-
tation. Our translation to the compressed domain leveragesthis fact
to preserve considerably more compression than would be possible
if splitters and joiners were viewed as opaque computational nodes
with multiple inputs and multiple outputs. Consequently, splitters
and joiners should be employed by the programmer not only as a
natural expression of parallelism, but as a powerful way of expos-
ing the data reordering to the compiler.

As mentioned previously, splitters and joiners adopt a fine-
grained cyclo-static execution model, in which each execution step
transfers only one item from an input tape to an output tape. That is,
a roundrobin(k1, k2) splitter or joiner hask1+k2 distinct execution
steps. We refer to every group ofk1+k2 steps as anexecution cycle.

Duplicate splitters are trivial to transform to the compressed
domain, as all input tokens (both values and repeats) are copied
directly to the output streams. For roundrobin splitters, the central
concern is that a repeat token can only be transferred to a given
output tape if the items referenced are also on that tape. If the items
referenced by the repeat token were distributed to another tape, then
the repeat must be decompressed.

The rest of this section focuses on roundrobin splitters. Tosim-
plify the presentation, we consider a splitter with only twooutput
streams. This captures all of the fundamental ideas; extension to
additional streams is straightforward. Rewrite rules now take the
following form:

S → T1; T2

S′ → T ′

1; T
′

2

whereT1 andT2 represent the output streams of the splitter (see
Figure 10). In addition, we make two further simplifications:

• The rules assume that the next execution step of the splitterwill
write to T1. The subscripts should be interpreted without loss
of generality.

S • V → T1; T2 |V | = 1 pass-uncompressed
———————————
S → V • T1; T2

Figure 11. Semantics of SPLITTER: execution of a roundrobin
splitter in the uncompressed domain.

S • V → T1; T2 |V | = 1 pass-uncompressed
———————————
S → V • T1; T2

let offset= d%(m1 + m2) pass-compressed-long
let (L1, L2) = run splitter(c)
S • 〈d, c〉 → T1; T2 offset= 0
——————————————–
S → 〈dm1/(m1 + m2), L1〉 • T1;

〈dm2/(m1 + m2), L2〉 • T2

let offset= d%(m1 + m2) pass-compressed-short
let offset’ = if offset≤ posthen offset

elseoffset−m2

let actualrepeat= min(c, split potential(d))
S • 〈d, c〉 → T1; T2 offset> 0 split potential(d) > 0
————————————————————————-
S • 〈d, c− actualrepeat〉 →
〈m1 ∗ floor(d/(m1 + m2)) + offset’, actualrepeat〉 • T1; T2

let offset= d%(m1 + m2) expand
S • 〈d, c〉 → T1; T2 offset> 0 split potential(d) = 0
——————————————————————-
S • 〈d, c− 1〉 • decode(〈d, 1〉) → T1; T2

S • 〈d, 0〉 → T1; T2 prune
————————
S → T1; T2

Figure 12. Semantics of COMPRESSED-SPLITTER: execution of a
roundrobin splitter in the compressed domain.

• We usepos to denote the number of items (in terms of the
uncompressed domain) that have already been written to the
current output stream (T1) in the current execution cycle. For
brevity, the rules do not maintain the value ofpos, though it is
straightforward to do so.

The semantics for splitter execution in the uncompressed do-
main appear in Figure 11. Thepass-uncompressed rule simply
passes a single value from the input tape to the current output tape,
T1. Note that the current positionpos is implicitly incremented;
oncepos reachesm1, it is reset to zero and the output tapes are
switched (tapeT2 will be namedT1 on the next execution).

The compressed-domain semantics for splitters are given inFig-
ure 12, and a detailed example appears in Figure 13. As mentioned
previously, a repeat token can be transferred to an output tape so
long as the items referenced also appear on that tape. However, the
repeat may need to be fragmented (into several repeats of a lesser
count), depending on the repeat distance. There are two cases to
consider.

The first case, expressed by thepass-compressed-long rule
in Figure 12, distributes an entire repeat token to both output tapes
without any fragmentation. This is only possible when the repeat
can be cleanly separated into two independent sequences, one offset
by m1 and the next offset bym2. In other words, the repeat
distance must be a multiple ofm1 + m2. In this case, the repeat
token is moved to the output streams. The repeat distance is scaled
down to match the weight of each stream, and the count is divided
according to the current position of the splitter (a simple but tedious
calculation implemented byrun splitter in Figure 14).

5

oooooxoooo

ooooo
xoooo
ooooo

xoooo
ooooo

xooo
o

oooo

xooo
oo

o

x
oooooooo

o
xoooooooo

x

o

o o

o

o

o

o o

o

oxoooooooo

in RR(5,5) RR(1,1) out

 1,4! o
x 1,3! o

 1,4! o x
 1,3! o

 1,4! o x 1,3!
o

 1,4! o x 1,3! o

 1,4!
x 1,3! o

o

x 1,3! o

 1,4! o

x 1,3!

 1,4! o
o

x 1,3!

 1,4!
o o

input RR(5,5) RR(1,1) output

x

 1,1!
 2,6! o o

 1,1!
x 2,6! o o

 2,1! x 2,6! o o

[pass-uncomp]

[pass-comp-short]

[pass-uncomp]

[pass-uncomp]

[pass-comp]

[pass-uncomp]

[pass-uncomp]

[pass-comp-long]

[pass-uncomp]

[pass-comp-short (a)]

x 1,3! o

 1,4! o

fast

forward

char->char splitjoin
Transpose2x5 {

split roundrobin(5,5);
add Identity<char>();
add Identity<char>();
join roundrobin(1,1);

}

continued

o o o oo

o o o ox

(a) Example splitjoin (b) Normal execution (c) Compressed-domain execution of splitter (left) and joiner (right)

prune rules

not shown

Figure 13. Example execution of splitters and joiners in the compressed domain. As illustrated by the input/output pairs in (a), the example
performs a transpose of a 2x5 matrix. When the matrix is linearized (as in (b) and (c)), the input stream traverses the elements row-wise while
the output stream traverses column-wise. Due to redundancyin the matrix, this reordering can be done largely in the compressed domain.

The second case, handled by thepass-compressed-short
rule, is when the repeat distance is mis-aligned with the splitter’s
execution cycle, and thus the repeat (if it is long enough) eventually
references items that are distributed to a different outputtape.
Nonetheless, part of the repeat may be eligible to pass through,
so long as the items referenced refer to the current output tape.
This judgment is performed bysplit potential (Figure 14) by
comparing the repeat distance to the current position in theoutput
stream. If one or more of the repeated values are in range, the
valid segment of the repeat (of lengthactual repeat) is moved
to the output tape. As before, the repeat distance needs to bescaled
according to the weights of the splitter, and an extra offsetis
needed if the repeat distance wraps around to reference the end
of a previous cycle.

If neither of the above transfers apply, then the input stream
needs to be partially decompressed (according to theexpand rule)
because the current repeat token references items that willbe sent
to the wrong output tape. Theprune rule is also needed to clear
empty repeats generated byexpand.

Though we omit the details, it is also desirable to employ an
analog of thecoarsen-repeat rule (Figure 9) to preserve even
more compression across a splitter. The intuition is that, by increas-
ing certain repeat distances, the splitter’s output tapes can become
more independent (referencing themselves rather than eachother).
This enables a compressed rule to fire in place of an expansionstep.

3.3 Joiners

Analogously to splitters, there are two ways to pass repeat tokens
through a joiner. If the input streams contain compatible repeat
tokens, then they can be combined into a long repeat that spans
multiple execution cycles; otherwise, a shorter repeat is extracted
from only one of the streams. Both of these cases are illustrated
by example in Figure 13. Unlike splitters, there is never a need
to decompress repeat tokens into values before passing through a
joiner. Though the repeat length may shrink to one, it will remain a
reference to a previous item rather than becoming a value itself.

In the uncompressed domain, joiners have the semantics given
in Figure 15. Thepass-uncompressed rule passes a single value
from the current input tape (S1) to the output tape. Analogously to
splitters, the variableposrepresents the number of items that have
been read from the current input tape and is implicitly updated.
Oncepos reachesn1, it is reset to zero and the input tapes are
switched (tapeS2 will be namedS1 on the next execution).

The first and most powerful way to execute joiners in the com-
pressed domain is to combine repeat tokens from both input streams

//
//
//
//
//

Given thatc items are available on input stream of a splitter,
returns the number of items that can be written to each output
stream before the input is exhausted. Assumes that the splitter is
currently writing to the first output stream, to which pos items
have previously been written in the current execution cycle.

run splitter(c, pos) returns (int, int){
// the number of complete splitter cycles, and the leftover
total cycles= floor(c/(m1 + m2))
total leftover= c%(m1 + m2)

// the last partial cycle may end in three regions:
if total leftover≤ m1 − pos{

// 1. in writing to the first output stream
L1 = total leftover
L2 = 0

} else if total leftover≤ m1 − pos+ m2 {
// 2. in subsequent writing to the second output stream
L1 = m1 − pos
L2 = total leftover−m1 − pos

} else{
// 3. in wrap-around writing to the first output stream
L1 = total leftover−m2

L2 = m2

}

return (m1 ∗ total cycles+ L1, m2 ∗ total cycles+ L2) }

//
//
//
//
//

Given a repeat token with distanced that is input to a split-
ter, returns the maximum count of a repeat token that could
safely be emitted to the current output stream of the splitter. As-
sumes that only a single repeat token can be emitted (i.e., the
pass-compressed-long rule does not apply).

split potential(d) returns int{
offset= d%(m1 + m2)
if offset≤ pos{

// repeat for remainder of this execution cycle
return m1 − pos

} else ifoffset> m2 + pos{
// repeat until referenced data goes out of range
return offset− (m2 + pos)

} else{
// referenced data is on the other output stream
return 0

}
}

Figure 14. Helper functions for COMPRESSED-SPLITTER.

6

S1 • V ; S2 → T |V | = 1 pass-uncompressed
———————————
S1; S2 → V • T

Figure 15. Semantics of JOINER: execution of a roundrobin joiner
in the uncompressed domain.

S1 • V ; S2 → T |V | = 1 pass-uncompressed
———————————
S1; S2 → V • T

let (L1, L2) = repeatlengths(c1, c2, pos) pass-compressed-long
S1 • 〈d1, c1〉;
S2 • 〈d2, c2〉 → T d1%n1 = 0 d2%n2 = 0 d1/n1 = d2/n2

——————————————————————————–
S1 • 〈d1, c1 − L1〉;
S2 • 〈d2, c2 − L2〉 → 〈d1(n1 + n2)/n1, L1 + L2〉 • T

let offset’ = if d%n1 ≤ posthen pos pass-compressed-short (a)
elsed%n1 + n2

let L = min(c, join potential(d))
S1 • 〈d, c〉; S2 • V → T
————————————————–
S1 • 〈d, c− L〉; S2 • V →
〈(n1 + n2)floor(d/n1) + offset’, L〉 • T

let offset’ = if d%n1 ≤ posthen pos pass-compressed-short (b)
elsed%n1 + n2

let L = min(c, join potential(d))
S1 • 〈d, c〉; S2 • 〈d2, c2〉 → T d2%n2 > 0
——————————————————-
S1 • 〈d, c− L〉; S2 • 〈d2, c2〉 →
〈(n1 + n2)floor(d/n1) + offset’, L〉 • T

S1 • 〈d, 0〉; S2 → T prune
————————
S1; S2 → T

Figure 16. Semantics of COMPRESSED-JOINER.

(rule pass-compressed-long in Figure 16). For this to be pos-
sible, both repeat distances must be the same multiple of their re-
spective joiner weight (n1 or n2); the combined token has a repeat
distance that is a multiple ofn1 + n2. Therepeat lengths rou-
tine (Figure 17) calculates the maximum repeat length depending
on the current position of the joiner and the repeat lengths of the
inputs.

The second mode of compressed joiner execution inputs only a
single repeat token, extracting the maximum length that cansafely
move to the output. This rule is needed when the previous one
does not apply: if the second stream ends in a value rather than
a repeat (pass-compressed-short (a)) or the repeat distance
has the wrong granularity (pass-compressed-short (b)). The
join potential routine (Figure 17) determines how much of the
repeat can be moved to the output before the data referenced would
have originated from a different input stream.

As in the case of splitters, further compression gains are possi-
ble by adding rules to coarsen the repeat distance or shift the dis-
tance to align with other streams. We omit the details here.

4. Supported File Formats
As LZ77 refers to a compression algorithm rather than a complete
compression format, there are additional factors to consider in map-
ping computations to real-world image and video codecs. Some
codecs are a subset of LZ77, utilizing only run-length encoding
or a fixed window size; these are supported very efficiently byour
technique. Others are a superset of LZ77, incorporating additional
techniques such as delta coding or Huffman coding; these mayin-

//
//
//
//
//
//

Given thatc1 and c2 items are available on the first and second
input streams of a joiner, returns the number of items that can be
read from each input before one of them is exhausted. Assumes
that the joiner is currently reading from the first input stream,
from which pos items have previously been consumed in the
current execution cycle.

repeat lengths(c1, c2, pos) returns (int, int){
// the number of complete joiner cycles, and the leftovers
total cycles= floor(c/(n1 + n2))
leftover1 = c1 − total cycles∗ n1

leftover2 = c2 − total cycles∗ n2

// the last partial cycle may end in three regions:
if leftover1 ≤ n1 − pos{

// 1. in reading from the first input stream
L1 = leftover1
L2 = 0

} else if leftover2 ≤ n2 {
// 2. in subsequent reading from the second input stream
L1 = n1 − pos
L2 = leftover2

} else{
// 3. in wrap-around reading from the first input stream
L1 = leftover1
L2 = n2

}

return (n1 ∗ total cycles+ L1, n2 ∗ total cycles+ L2) }

//
//
//
//
//

Given a repeat token with distanced on the current input
stream of a joiner, returns the maximum count of a repeat
token that could safely be emitted to the output stream. As-
sumes that only a single repeat token is available (i.e., the
pass-compressed-long rule does not apply).

join potential(d) returns int{
offset= d%n1

if offset≤ pos{
// repeat for remainder of this execution cycle
return n1 − pos

} else{
// repeat until referenced data goes out of range
return offset− pos

}
}

Figure 17. Helper functions for COMPRESSED-JOINER.

cur additional processing overhead. In the following sections, we
describe the practical considerations involved in targeting various
compression formats with our technique. Formats are ordered by
approximate goodness of the achievable mapping.

4.1 High-Efficiency Mappings

All of the formats in this category can be considered to be subsets
of LZ77.

Apple Animation. The Apple Animation codec (which forms the
basis for our experimental evaluation) is supported as partof the
Quicktime MOV container format. It serves as an industry stan-
dard for exchanging computer animations and digital video content
before they are rendered to lossy formats for final distribution [2,
p. 106][16, p. 284] [20, p. 367][27, p. 280].

The Animation codec represents a restricted form of LZ77 in
which repeat distances are limited to two values: a full frame or
a single pixel. A repeat across frames indicates that a stretch of
pixels did not change from one frame to the next, while a repeat
across pixels indicates that a stretch of pixels has the samecolor
within a frame.

7

Flic Video. Flic Video files (FLI/FLC) were originally produced
by Autodesk Animator and are still supported by many animation
packages today. Their compression of frame data is almost identical
to Apple Animation.

Microsoft RLE. Microsoft RLE compression can appear in both
BMP images and AVI animations. Apart from bit-depth and for-
matting details, its capabilities are identical to Apple Animation; it
can perform run-length encoding within a frame, and can skipover
pixels to exploit inter-frame redundancy.

Targa. The Truevision Targa (TGA) format is a simple image for-
mat that is widely used to render frame sequences in the computer
animation and video industries. The format includes an optional
RLE compression stage, making it a good target for our technique.

PXY. The pxy format is a research-based image format designed
to support efficient transpose and rotation of black-and-white im-
ages [31]. It consists of the series of(x, y) coordinates at which the
image changes color during a horizontal scan. As this information
can be converted to a run-length encoding, it can also be targetted
by our technique.

4.2 Medium-Efficiency Mappings

While the formats in this category utilize an encoding that is com-
patible with LZ77, they incur extra overhead because the data is
reorganized prior to the compression stage.

Planar RGB. The Planar RGB video format is supported by Ap-
ple Quicktime files. It utilizes run-length encoding for pixels within
a frame, with partial support for expressing inter-frame repeats
(only the end of lines can be skipped). The red, green, and blue
planes are encoded separately in order to increase compression. For
user transformations that need to process red, green, and blue val-
ues together, this introduces additional alignment overhead when
applying our technique.

OpenEXR. OpenEXR is an emerging image format (backed
by Industrial Light and Magic) for use in digital film. It offers
several compression options, including run-length encoding, zip,
and wavelet-based compression. However, in run-length encoding
mode, the low and high bytes of the pixels are separated and en-
coded as separate run-length sequences; this enables pixels with
variations in the low bytes to nonetheless benefit from compres-
sion of the high bytes. As most user transformations would utilize
the entire bit-width of the pixel, our technique suffers additional
alignment overhead in processing these files.

4.3 Low-Efficiency Mappings

The formats in this category are supersets of LZ77. While ourtech-
nique could offer some gains in exploiting the LZ77 compression, it
would have to undo any compression sitting on top of LZ77 and of-
fers limited benefit for filters (as in PNG) applied underneath LZ77.

DEFLATE. DEFLATE is a general-purpose algorithm that pro-
vides all of the compression for popular formats such as ZIP and
GZIP. The algorithm consists of a full LZ77 encoder followedby
Huffman coding, which resizes the symbols in the stream to match
their usage frequencies. In targeting ZIP or GZIP with our trans-
formations, we would first have to undo the Huffman coding (un-
less the application simply reordered data, in which case the coding
could remain intact). Though Huffman decoding is a lightweight
lookup operation, it would also increase the memory footprint. In
addition, as DEFLATE’s LZ77 algorithm operates on individual
bytes, there may be an exaggerated alignment cost if the application
operates on a larger word size.

PNG. The PNG image format also relies on DEFLATE to com-
press the pixels in the image. However, before running DEFLATE,
the pixels are usually filtered with a delta encoding; each pixel is re-
placed with the difference between its value and a predictedvalue,
where the prediction is a linear combination of neighboringpixels.
While program segments that compute a linear function [17] could
perhaps be mapped to this compressed format, our current tech-
nique only applies if the delta encoding is turned off. Even in this
scenario, there is a large amount of overhead due to the Huffman
coding in DEFLATE.

5. Experimental Evaluation
To demonstrate the potential benefits of mapping into the com-
pressed domain, we implemented a few of our transformationsas
part of the StreamIt compiler. Our current implementation supports
two computational patterns: 1) transforming each individual ele-
ment of a stream (via a pop-1, push-1 filter), and 2) combiningthe
elements of two streams (via a roundrobin(1,1) joiner and a pop-
2, push-1 filter). The program can contain any number of filters
that perform arbitrary computations, so long as the I/O rates match
these patterns. While we look forward to performing a broader im-
plementation in future work, these two building blocks are suffi-
cient to express a number of useful programs and to characterize
the performance of the technique.

Our evaluation focuses on applications in digital video editing.
Given StreamIt source code that operates on pixels from eachframe
of a video, the StreamIt compiler maps the computation into the
compressed domain and emits executable plugins for two popular
video editing tools, MEncoder and Blender. The plugins are written
for the Apple Animation format (see Section 4.1).

Our benchmarks fall into two categories: 1) pixel transforma-
tions, such as brightness, contrast, and color inversion, which adjust
pixels within a single video, and 2) video compositing, in which
one video is combined with another as an overlay or mask.

The main results of our evaluation are:

• Operating directly on compressed data offers a speedup roughly
proportional to the compression factor in the resulting video.

• For pixel transformations, speedups range from 2.5x to 471x,
with a median of 17x. Output sizes are within 0.1% of input
sizes and about 5% larger (median) than a full re-compression.

• For video compositing, speedups range from 1.1x to 32x, with
a median of 6.6x. Output files retain a sizable compression ratio
(1.0x to 44x) and are about 52% larger (median) than a full re-
compression.

The following sections provide more details on our video work-
loads, the evaluation of pixel transformations, and the evaluation of
video compositing.

5.1 Video Workloads

Our evaluation utilizes a suite of 12 video workloads that are de-
scribed in Table 1; some of the videos are also pictured in Fig-
ure 20. The suite represents three common usage scenarios for loss-
less video formats: Internet screencasts, computer animation, and
digital television production. While videos in each area are often
rendered to a lossy format for final distribution, lossless codecs are
preferred during the editing process to avoid accumulatingcom-
pression artifacts. All of our source videos are in the AppleAni-
mation format (described in Section 4.1), which is widely used by
video editing professionals [2, p. 106] [16, p. 284] [20, p. 367] [27,
p. 280]. The Apple Animation format is also popular for capturing
video from the screen or camera, as the encoder is relativelyfast.

Our suite of videos is assembled from a variety of realistic and
industry-standard sources. The first screencast is an online demo

8

COMPRESSION

VIDEO DESCRIPTION SOURCE DIMENSIONS FRAMES SIZE (MB) FACTOR

screencast-demo Online demo of an authentication generator Software website 691 x 518 10621 38 404.8

screencast-ppt Powerpoint presentation screencast Self-made 691 x 518 13200 26 722.1

logo-head Animated logo of a small rotating head Digital Juice 691 x 518 10800 330 46.8

logo-globe Animated logo of a small rotating globe Digital Juice 691 x 518 10800 219 70.7

anim-scene1 Rendered indoor scene Elephant's Dream 720 x 480 1616 10 213.8

anim-scene2 Rendered outdoor scene Elephant's Dream 720 x 480 1616 65 34.2

anim-character1 Rendered toy character Elephant's Dream 720 x 480 1600 161 13.7

anim-character2 Rendered human characters Elephant's Dream 720 x 480 1600 108 20.6

digvid-background1 Full-screen background with lateral animation Digital Juice 720 x 576 300 441 1.1

digvid-background2 Full-screen background with spiral animation Digital Juice 720 x 576 300 476 1.0

digvid-matte-frame Animated matte for creating new frame overlays Digital Juice 720 x 576 300 106 4.7

digvid-matte-third Animated matte for creating new lower-third overlays Digital Juice 720 x 576 300 51 9.7

In
te

rn
e

t

V
id

e
o

C
o

m
p

u
te

r

A
n

im
a
ti

o
n

D
ig

it
a

l

T
e
le

v
is

io
n

Table 1. Characteristics of the video workloads.

of an authentication generator for rails [3]; the second is aPower-
Point presentation (including animations), captured using Camtasia
Studio. As Internet content is often watermarked with a logoor ad-
vertisement, we include two animated logos in the “Internetvideo”
category. These logos are taken from Digital Juice [9], a standard
source for professional animations, and rendered to Apple Anima-
tion format using their software. The animated logos are rendered
full-frame (with the logo in the corner) because compositing oper-
ations in our testbed (Blender) are done on equal-sized videos.

The computer animation clips are derived from Elephant’s
Dream, a short film with entirely open-source content [13]; our
videos are rendered from source using Blender. Finally, thedigital
television content is also taken from a Digital Juice library [9]. The
backgrounds represent high-resolution, rotating backdrops as might
appear in the introduction to a program. The mattes are black-and-
white animations that can be used to synthesize a smaller overlay
(such as a frame or a “lower third”, often used for text) from afull
animated background (see Figure 20b for an example).

The videos exhibit a wide range of compression factors. The
screencasts have very high compression (∼400x-700x) because
only a small part of the screen (e.g., a mouse, menu, or PowerPoint
bullet) is changing on any given frame; the Apple Animation for-
mat compresses the inter-frame redundancy. The compression for
anim-scene1 is also in excess of 200x because motion is limited
to a small animated character. The animated logos are the next most
compressed (∼50-70x), influenced largely by the constant blank re-
gion outside the logo. The computer animation content (∼10-30x
compression) has a high level of detail but benefits from bothinter-
frame and intra-frame redundancy, as some rendered regionshave
constant color. Next are the digital video mattes (∼5-10x compres-
sion), which have fine-grained motion in some sections. Finally, the
digital video backgrounds offer almost no compression gains (1.0-
1.1x) under Apple Animation, as they have pervasive motion and
detail across the entire frame.

The Apple Animation format supports various bit depths. Allof
our source videos use 32 bits per pixel, allocating a single byte for
each of the red, green, blue, and alpha channels.

5.2 Pixel Transformations

The pixel transformations adjust the color of each pixel in auni-
form way. We evaluated three transformations:

• Brightness adjustment, which increases each RGB value by a
value of 20 (saturating at 255).

• Contrast adjustment, which moves each RGB value away from
the center (128) by a factor of 1.2 (saturating at 0 and 255).

• Color inversion, which subtracts each RGB value from 255
(useful for improving the readability of screencasts or forre-
versing the effect of video mattes).

We implemented each transformation as a single StreamIt filter
that transforms one pixel to another. Because the filter has apop
rate of one, it does not incur any alignment overhead.

5.2.1 Setup

The pixel transformations were compiled into plugins for MEn-
coder, a popular command-line tool (bundled with MPlayer) for
video decoding, encoding, and filtering. MEncoder relies onthe
FFMPEG library to decode the Apple Animation format; as FFM-
PEG lacked an encoder for this format, the authors implemented
one. Additionally, as MEncoder lacks an interface for toggling only
brightness or contrast, the baseline configuration was implemented
by the authors.

The baseline configuration performs decompression, pixel
transformations, then re-compression. Because the main video
frame is updated incrementally by the decoder, the pixel transfor-
mations are unable to modify the frame in place (otherwise pixels
present across frames would be transformed multiple times). Thus,
the baseline transformation writes to a separate location in mem-
ory. The optimized configuration performs pixel transformations
directly on the compressed data, avoiding data expansion implied
by decompression and multiple frame buffers, before copying the
data to the output file.

Our evaluation platform is a dual-processor Intel Xeon (2.2
GHz) with 2 GB of RAM. As all of our applications are single-
threaded, the second processor is not utilized. For the timing mea-
surements, we execute each program five times and report the me-
dian user time.

5.2.2 Results

Detailed results for the pixel transformations appear in Table 2.
Figure 18 illustrates the speedups, which range from 2.5x to471x.
As illustrated in Figure 19, the speedups are closely correlated
with the compression factor in the original video. For the highly-
compressed screencasts andanim-scene1, speedups range from
58x to 471x. For the medium-compression computer animations
(including the animated logos), speedups range from 11x to 46x.
And for the low-compression digital television content, speedups
range from 2.5x to 8.9x.

There are two distinct reasons for the speedups observed. First,
by avoiding the decompression stage, computing on compressed
data reduces the volume of data that needs to be stored, manipu-
lated, and transformed. This savings is directly related tothe com-
pression factor and is responsible for the upwards slope of the
graph in Figure 19. Second, computing on compressed data elim-
inates the algorithmic complexity of re-compression. For the Ap-
ple Animation format, the cost of compressing a given frame does
not increase with the compression factor (if anything, it decreases
as fewer pixels need a fine-grained encoding). Thus, the baseline
devotes roughly constant runtime to re-compressing each video,
which explains the positive intercept in the graph of Figure19.

9

VIDEO Brightness Contrast Inverse Brightness Contrast Inverse Brightness Contrast Inverse

screencast-demo 137.8x 242.3x 154.7x 1.00 1.00 1.00 0.90 0.90 1.00

screencast-ppt 201.1x 470.6x 185.1x 1.00 1.00 1.00 0.75 0.74 1.00

logo-head 27.0x 29.2x 25.2x 1.00 1.00 1.00 0.87 0.86 1.00

logo-globe 35.7x 46.4x 36.6x 1.00 1.00 1.00 1.00 0.64 1.00

anim-scene1 66.4x 124.3x 58.5x 1.00 0.98 1.00 0.99 0.92 1.00

anim-scene2 19.3x 27.9x 20.5x 1.00 1.00 1.00 0.99 0.85 1.00

anim-character1 11.5x 12.2x 11.2x 1.00 1.00 1.00 0.96 0.90 1.00

anim-character2 15.6x 15.3x 14.8x 1.00 1.00 1.00 0.95 0.88 1.00

digvid-background1 4.6x 2.6x 4.6x 1.00 1.00 1.00 1.00 0.88 1.00

digvid-background2 4.1x 2.5x 4.7x 1.00 1.00 1.00 0.92 0.91 1.00

digvid-matte-frame 6.3x 5.3x 6.5x 1.00 1.00 1.00 0.98 0.64 1.00

digvid-matte-third 7.5x 6.9x 8.9x 1.00 1.00 1.00 0.83 0.35 1.00

OUPUT SIZE / INPUT SIZE

(Uncompress, Compute, Re-Compress)

In
te

rn
e

t

V
id

e
o

C
o

m
p

u
te

r

A
n

im
a
ti

o
n

D
ig

it
a

l

T
e
le

v
is

io
n

OUTPUT SIZE / INPUT SIZE

(Compute on Compressed Data)SPEEDUP

Table 2. Results for pixel transformations.

0x

50x

100x

150x

200x

250x

sc
re

en
ca

st
-d

em
o

sc
re

en
ca

st
-p

pt

lo
go

-h
ea

d

lo
go

-g
lo

be

an
im

-s
ce

ne
1

an
im

-s
ce

ne
2

an
im

-c
ha

ra
ct

er
1

an
im

-c
ha

ra
ct

er
2

di
gv

id
-b

ac
kg

ro
un

d1

di
gv

id
-b

ac
kg

ro
un

d2

di
gv

id
-m

at
te

-fr
am

e

di
gv

id
-m

at
te

-th
ird

S
p

e
e
d

u
p

Brightness

Contrast

Inverse

471x

Figure 18. Speedup on pixel transformations.

The impact of re-compression is especially evident in the dig-
ital television examples. Despite a compression factor of 1.0 on
digvid-background2, our technique offers a 4.7x speedup on
color inversion. Application profiling confirms that 73% of the
baseline runtime is spent in the encoder; as this stage is absent
from the optimized version, it accounts for1/(1 − 0.73) = 3.7x
of the speedup. The remaining speedup in this case is due to the
extra frame buffer (and associated memory operations) in the de-
compression stage of the baseline configuration.

Another important aspect of the results is the size of the output
files produced. Apart from the first frame of a video2, performing
pixel transformations directly on compressed data will never in-
crease the size of the file. This is illustrated in the middle columns
of Table 18, in which the output sizes are mostly equal to the input
sizes (up to 2 decimal places). The only exception is contrast ad-
justment onanim-scene1, in which the output is 2% smaller than
the input due to variations in the first frame; for the same reason,
some cases experience a 0.1% increase in size (not visisble in the
table).

Though computing on compressed data has virtually no effect
on the file size, there are some cases in which the pixel transfor-
mation increases the redundancy in the video and an additional re-
compression step could compress the output even further than the
original input. This potential benefit is illustrated in thelast three
columns of Table 2, which track the output size of the baseline
configuration (including a re-compression stage) versus the origi-

2 In the Apple Animation format, the first frame is encoded as ifthe previous
frame was black. Thus, adjusting the color of black pixels inthe first frame
may increase the size of the file, as it removes inter-frame redundancy.

1x

10x

100x

1000x

1x 10x 100x 1000x

Compression Factor

S
p

e
e

d
u

p

Brightness

Contrast

Inverse

Compositing

Figure 19. Speedup vs. compression factor for all transformations.

nal input. For the inverse transformation, no additional compres-
sion is possible because inverse is a 1-to-1 transform: two pixels
have equal values in the output file if and only if they have equal
values in the input file. However, the brightness and contrast trans-
formations may map distinct input values to the same output value,
due to the saturating arithmetic. In such cases, the re-compression
stage can shrink the file to as low as 0.75x (brightness) and 0.35x
(contrast) its original size. These are extreme cases in which many
pixels are close to the saturating point; the median re-compression
(across brightness and contrast) is only 10%.

To achieve the minimal file size whenever possible, future work
will explore integrating a lightweight re-compression stage into the
compressed processing technique. Because most of the compres-
sion is already in place, it should be possible to improve thecom-
pression ratio without running the full encoder (e.g., run-length en-
coded regions can be extended without being rediscovered).

5.3 Video Compositing

In video compositing, two videos are combined using a specific
function to derive each output pixel from a pair of input pixels (see
Figure 20). In the case of subtitling, animated logos, and computer
graphics, an alpha-under transformation is common; it overlays
one video on top of another using the transparency information in
the alpha channel. In applying an animated matte, the videosare
combined with a multiply operation, thereby masking the output
according to the brightness of the matte. For our experiments,
we generated composites using each foreground/backgroundpair
within a given application area, yielding a total of 12 composites.

10

VIDEO COMPOSITE EFFECT SPEEDUP

screencast-demo + logo-head alpha-under 20.46x 34 52 1.55

screencast-demo + logo-globe alpha-under 27.96x 44 61 1.39

screencast-ppt + logo-head alpha-under 22.99x 39 54 1.38

screencast-ppt + logo-globe alpha-under 31.88x 55 64 1.18

anim-scene1 + anim-character1 alpha-under 6.72x 7.7 12 1.57

anim-scene1 + anim-character2 alpha-under 9.35x 14 19 1.39

anim-scene2 + anim-character1 alpha-under 4.96x 6.4 10 1.49

anim-scene2 + anim-character2 alpha-under 6.45x 10 13 1.32

digvid-background1 + digvid-matte-frame mul 1.23x 1.0 2.2 2.28

digvid-background2 + digvid-matte-third mul 1.13x 1.0 5.6 5.42

digvid-background2 + digvid-matte-frame mul 1.38x 1.0 1.8 1.84

digvid-background2 + digvid-matte-third mul 1.16x 1.0 4.8 4.91

C
o

m
p

u
te

r

A
n

im
a
ti

o
n

D
ig

it
a

l

T
e
le

v
is

io
n

Compute on

Compressed

Data

Uncompress,

Compute,

Re-Compress Ratio

COMPRESSION FACTOR

In
te

rn
e

t

V
id

e
o

Table 3. Results for composite transformations.

anim-scene1 + anim-character2 = video composite

(a) Computer animation composite (alpha-under)

digvid-background1 + digvid-matte-frame = video composite

(b) Digital television composite (multiply)

Figure 20. Examples of video compositing operations.

In StreamIt, we implemented each compositing operation as a
roundrobin(1,1) joiner (to interleave the streams) followed by a fil-
ter (to combine the pixel values). The intuition of the compressed-
domain execution is that if both streams have the same kind ofre-
peat (inter-frame or intra-frame), then the repeat is copied directly
to the output. If they have different kinds of repeats, or if one stream
is uncompressed, then both streams are uncompressed.

5.3.1 Setup

The compositing operations were compiled into plugins for Blender,
a popular tool for modeling, rendering, and post-processing 3-D
animations. Blender has logged 1.8 million downloads in thelast
year [7] and was used in the production of Spiderman 2 [6]. Like
MEncoder, Blender relies on the FFMPEG library for video cod-
ing, so we utilize the same Apple Animation decoder/encoderas in
the pixel transformations.

As Blender already includes support for video compositing,we
use its implementation as our baseline. The compositing operations
have already been hand-tuned for performance; the implementation
of alpha-under includes multiple shortcuts, unrolled loops, and the
following comment: “this complex optimalisation is because the
’skybuf’ can be crossed in”. We further improved the baseline
performance by patching other parts of the Blender source base,
which were designed around 3-D rendering and are more general
than needed for video editing. We removed two redundant vertical

0x

5x

10x

15x

20x

25x

30x

35x

sc
re

en
ca

st
-d

em
o

+
lo
go

-h
ea

d

sc
re

en
ca

st
-d

em
o

+
lo
go

-g
lo
be

sc
re

en
ca

st
-p

pt
+

lo
go

-h
ea

d

sc
re

en
ca

st
-p

pt
+

lo
go

-g
lo
be

an
im

-s
ce

ne
1

+
an

im
-c

ha
ra

ct
er

1

an
im

-s
ce

ne
1

+
an

im
-c

ha
ra

ct
er

2

an
im

-s
ce

ne
2

+
an

im
-c

ha
ra

ct
er

1

an
im

-s
ce

ne
2

+
an

im
-c

ha
ra

ct
er

2

di
gv

id
-b

ac
kg

ro
un

d1
+

di
gv

id
-m

at
te

-fr
am

e

di
gv

id
-b

ac
kg

ro
un

d2
+

di
gv

id
-m

at
te

-th
ird

di
gv

id
-b

ac
kg

ro
un

d2
+

di
gv

id
-m

at
te

-fr
am

e

di
gv

id
-b

ac
kg

ro
un

d2
+

di
gv

id
-m

at
te

-th
ird

S
p

e
e
d

u
p

Compositing

Figure 21. Speedup on composite transformations.

flips for each frame, two redundant BGRA-RGBA conversions, and
redundant memory allocation/deallocation for each frame.

Our optimized configuration operates in the compressed do-
main. Outside of the auto-generated plugin, we patched three
frame-copy operations in the Blender source code to copy only
the compressed frame data rather than the full dimensions ofthe
frame.

5.3.2 Results

Full results for the compositing operations appear in Table3. Fig-
ure 21 illustrates the speedups, which range from 1.1x to 32x. As
in the case of the pixel transformations, the speedups are closely
correlated with the compression factor of the resulting videos, a
relationship depicted in Figure 19. The highly-compressedscreen-
casts enjoy the largest speedups (20x-32x), the computer anima-
tions have intermediate speedups (5x-9x), while the digital tele-
vision content has negligible speedups (1.1x-1.4x). Overall, the
speedups on video compositing (median = 6.6x) are lower thanthe
pixel transformations (median = 17x); this is because the compres-
sion achieved on composite videos is roughly proportional to the
minimum compression across the two input files.

As for the pixel transformations, the composite videos produced
by the compressed processing technique would sometimes benefit
from an additional re-compression stage. The last three columns
in Table 3 quantify this benefit by comparing the compressionfac-
tors achieved by compressed processing and normal processing (in-
cluding a re-compression step). For screencasts and computer an-
imations, compressed processing preserves a sizable compression

11

factor (7.7x-44x), though the full re-compression can further re-
duce file sizes by 1.2x to 1.6x. For digital television, the matting
operations introduce a large amount of redundancy (black regions),
thereby enabling the re-compression stage to shrink the fileby 1.8x
to 5.4x over the compressed processing technique.

Even if the composite transformation does not introduce any
new redundancy in the video, the compressed processing technique
may increase file sizes by ignoring a specific kind of redundancy
in the inputs. Suppose that in the first frame, both inputs are100%
black, while in the second frame, one input is 100% black and the
other is 100% white. If the inputs are averaged, the second frame
of output will be 100% gray and can be run-length encoded within
the frame. However, because the inputs have different kindsof re-
dundancy on the second frame (one is inter-frame, the other is intra-
frame), the technique is unable to detect the intra-frame redundancy
in the output and will instead produce N distinct pixels (allof them
gray). We believe that this effect is small in practice, though we
have yet to quantify its impact in relation to the new redundancy
introduced by a transformation. Future work will explore alternate
data structures for the compressed processing technique that may
be able to preserve this redundancy with low overhead.

6. Related Work
Several other researchers have pursued the idea of operating di-
rectly on compressed data formats. The novelty of our work istwo-
fold: first, in its ability to map an arbitrary stream program, rather
than a single predefined operation, into the compressed domain;
and second, in its focus on lossless compression formats.

Most of the previous work on mapping algorithms into the com-
pressed domain has focused on formats such as JPEG that utilize
a Discrete Cosine Transform (DCT) to achieve spatial compres-
sion [1, 11, 12, 15, 23, 24, 29, 28, 30, 33, 37]. This task requires
a different analysis, with particular attention given to details such
as the blocked decomposition of the image, quantization of DCT
coefficients, zig-zag ordering, and so-on. Because there isalso a
run-length encoding stage in JPEG, our current technique might
find some application there; however, it appears that techniques de-
signed for JPEG have limited application to formats such as LZ77.
Also, we are unaware of any previous methodology for translating
a generic program to operate on compressed data; previous efforts
have mapped each algorithm in a manual and ad-hoc way.

There has been some interest in performing compressed pro-
cessing on lossless encodings of black-and-white images. Shoji
presents the pxy format for performing transpose and other affine
operations [31]; the memory behavior of the technique was later
improved by Misra et al. [22]. As described in Section 4, the pxy
format lists the(x, y) coordinate pairs at which a black-and-white
image changes color during a horizontal scan. As illustrated in Fig-
ure 13, our technique can also preserve a certain amount of com-
pression during a transpose, though we may achieve lesser com-
pression than the pxy format due to our one-dimensional viewof
the data.

Researchers have also considered the problem of pattern match-
ing on compressed text. A randomized algorithm has been devel-
oped for LZ77 [14] while deterministic strategies exist forLZ78
and LZW [25, 26]. These solutions are specialized to searching
text; they do not apply to our transformations, and our technique
does not apply to theirs.

In the realm of programming languages, Swartz and Smith
present RIVL, a Resolution Independent Video Language [34]. The
language is used to describe a sequence of image transformations;
this allows the compiler to analyze the sequence and, via lazy
evaluation, to eliminate any operations that do not effect the final
output. Such a technique is complementary to ours and could also
be implemented using StreamIt as the source language.

7. Conclusions
In order to accelerate operations on compressible data, this paper
presents a general technique for translating stream programs into
the compressed domain. Given a natural program that operates on
uncompressed data, our transformation outputs a program that di-
rectly operates on the compressed data format. We support loss-
less compression formats based on LZ77. In the general case,the
transformed program may need to partially decompress the data to
perform the computation, though this decompression is minimized
throughout the process and significant compression ratios are pre-
served without resorting to an explicit re-compression step.

While we formulated our transformation in terms of the cyclo-
static dataflow model, the techniques can be applied within other
functional and general-purpose languages so long as the right in-
formation is available and certain constraints are satisfied. The
transformation relies on a regular pattern of data access; we use
a streaming abstraction, but structured iteration over arrays could
also suffice. We rely on static data rates in actors, which could also
be expressed as functions with a fixed number of arguments andre-
turn values. Actors (functions) must be pure, without side effects or
unresolvable dependences on potentially mutable data. While these
properties are intrinsic to a language such as StreamIt, they also
come naturally in most functional languages and may be adaptable
to general-purpose languages in the form of a runtime library with
a restricted API.

We implemented some of our transformations in the StreamIt
compiler and demonstrated excellent speedups. Across a suite of
12 videos in Apple Animation format, computing directly on com-
pressed data offers a speedup roughly proportional to the compres-
sion ratio. For pixel transformations (brightness, contrast, inverse)
speedups range from 2.5x to 471x, with a median of 17x; for video
compositing operations (overlays and mattes) speedups range from
1.1x to 32x, with a median of 6.6x. While previous researchers have
used special-purpose compressed processing techniques toobtain
speedups on lossy, DCT-based codecs, we are unaware of a com-
parable demonstration for lossless video compression. As digital
films and animated features have embraced lossless formats for the
editing process, the speedups obtained may have significantpracti-
cal value.

References
[1] S. Acharya and B. Smith. Compressed domain transcoding of MPEG.

Int. Conf. on Multimedia Computing and Systems, 1998.
[2] About digital video editing. Adobe online education materials,

2006. http://www.adobe.com/education/pdf/cib/pre65_
cib/pre65_cib02.pdf.

[3] Authentication generator demo. Online screencast.http://penso.
info/auth_generator.

[4] S. Benza. Interview transcript. Computer Graphics Society. http:
//forums.cgsociety.org/showthread.php?s=&threadid=
115293.

[5] G. Bilsen, M. Engels, R. Lauwereins, and J. Peperstraete. Cyclo-static
data flow. InICASSP, 1995.

[6] Blender. Wikipedia, The Free Encyclopedia, November 2006.
[7] Blender.org: website statistics. Blender Foundation,2006.
[8] S. Chang. Compressed-domain techniques for image/video indexing

and manipulation.Conference on Information Processing, 1995.
[9] Digital Juice, Editor’s Toolkit 4: High Tech Tools, 2006.

[10] G. Dolbier and V. Megler. Building an animation and special effects
studio from the ground up. IBM Report, 2005.

[11] C. Dorai, N. Ratha, and R. Bolle. Detecting dynamic behavior in
compressed fingerprint videos: distortion.CVPR, 2, 2000.

[12] R. Dugad and N. Ahuja. A fast scheme for image size changein the
compressed domain.IEEE Trans. on Circuits and Systems for Video
Technology, 11(4), 2001.

[13] Elephant’s Dream.http://orange.blender.org/.

12

[14] M. Farach and M. Thorup. String matching in lempelziv compressed
strings.Algorithmica, 20, 1998.

[15] G. Feng and J. Jiang. Image segmentation in compressed domain.
Journal of Electronic Imaging, 12(3), 2003.

[16] R. Harrington, R. Max, and M. Geduld.After Effects on the Spot:
Time-Saving Tips and Shortcuts from the Pros. Focal Press, 2004.

[17] A. Lamb, W. Thies, and S. Amarasinghe. Linear analysis and
optimization of stream programs. InPLDI, 2003.

[18] E. A. Lee and D. G. Messerschmitt. Static scheduling of synchronous
data flow programs for digital signal processing.IEEE Trans. on
Computers, 1987.

[19] S. Levine. Audio representations for data compression and
compressed domain processing. PhD thesis, Stanford University,
1998.

[20] B. Long and S. Schenk.Digital Filmmaking Handbook. Charles
River Media, 2002.

[21] M. Mandal, F. Idris, and S. Panchanathan. A critical evaluation of
image and video indexing techniques in the compressed domain.
Image and Vision Computing, 17(7), 1999.

[22] V. Misra, J. Arias, and A. Chhabra. A memory efficient method for
fast transposing run-length encoded images.Int. Conf. on Document
Analysis and Recognition, 1999.

[23] J. Mukherjee and S. Mitra. Image resizing in the compressed domain
using subband DCT.IEEE Trans. on Circuits and Systems for Video
Technology, 12(7), 2002.

[24] J. Nang, O. Kwon, and S. Hong. Caption processing for MPEG video
in MC-DCT compressed domain.ACM Multimedia, 2000.

[25] G. Navarro. Regular expression searching on compressed text.
Journal of Discrete Algorithms, 1, 2003.

[26] G. Navarro and J. Tarhio. Lzgrep: a boyermoore string matching tool
for zivlempel compressed text.Soft. Pract. Exper., 35, 2005.

[27] D. Pogue.IMovie 3 & IDVD: The Missing Manual. O’Reilly, 2003.
[28] B. Shen and I. Sethi. Convolution-based edge detectionfor

image/video in block DCT domain.Journal of Visual Communication
and Image Representation, 7(4), 1996.

[29] B. Shen and I. Sethi. Direct feature extraction from compressed
images. Proc. SPIE Storage & Retrieval for Image and Video
Databases IV, 2670, 1996.

[30] B. Shen and I. Sethi. Block-based manipulations on transform-
compressed images and videos.Multimedia Systems, 6(2), 1998.

[31] K. Shoji. An algorithm for affine transformation of binary images
stored in pxy tables by run format.Systems and computers in Japan,
26(7), 1995.

[32] B. Smith. A survey of compressed domain processing techniques.
Cornell University, 1995.

[33] B. Smith and L. Rowe. Compressed domain processing of JPEG-
encoded images.Real-Time Imaging, 2(2), 1996.

[34] J. Swartz and B. Smith. RIVL: A resolution independent video
language.Proceedings of the Tcl/TK Workshop, 1995.

[35] W. Thies, M. Karczmarek, and S. Amarasinghe. StreamIt:A language
for streaming applications. InInt. Conf. on Compiler Construction,
2002.

[36] U.S. Geological Survey. Annual report of data sales, distribution, and
archiving, 2004.

[37] B. Vasudev. Compressed-domain reverse play of MPEG video
streams.SPIE Conf. on Multimedia Systems and Applications, 1998.

[38] S. Wee, B. Shen, and J. Apostolopoulos. Compressed-domain video
processing.HP Labs Technical Report, HPL-2002, 282, 2002.

[39] A. Wyner and J. Ziv. The sliding-window Lempel-Ziv algorithm is
asymptotically optimal.Proceedings of the IEEE, 82(6), 1994.

[40] J. Ziv and A. Lembel. A universal algorithm for sequential data
compression.IEEE Transaction on Information Theory, 23(3), 1997.

[41] N. Ziviani, E. Silva de Moura, G. Navarro, and R. Baeza-Yates.
Compression: a key for next-generation text retrieval systems.
Computer, 33(11), 2000.

13

