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Abstract

Due to the high data rates involved in audio, video, and $igra
cessing applications, it is imperative to compress the tiate-
crease the amount of storage used. Unfortunately, thisesthat

any program operating on the data needs to be wrapped by a de

compression and re-compression stage. Re-compressidnaan
significant computational overhead, while decompressieengps
the application with the original volume of data.

In this paper, we present a program transformation thatlgrea
accelerates the processing of compressible data. Giveogagmn
that operates on uncompressed data, we output an equiyatent
gram that operates directly on the compressed format. @Qus+tr
formation applies to stream programs, a restricted butulisidss
of applications with regular communication and computatiat-
terns. Our formulation is based on LZ77, a lossless comjoress
algorithm that is utilized by ZIP and fully encapsulates coom
formats such as Apple Animation, Microsoft RLE, and Targa.

We implemented a simple subset of our techniques in the

Streamlt compiler, which emits executable plugins for twpylar

video editing tools: MEncoder and Blender. For common opera

tions such as color adjustment and video compositing, ngppi
into the compressed domain offers a speedup roughly piopatt
to the overall compression ratio. For our benchmark suité 2f
videos in Apple Animation format, speedups range from 1dx t
471x, with a median of 15x.

1. Introduction

With the emergence of data-intensive applications suchigid
film, medical imaging and geographic information systerhg, t
performance of next-generation systems will often depantheir
ability to process huge volumes of data. For example, eachdr
of a digital film requires approximately 2 megabytes, imptyi
that a fully-edited 90-minute video demands about 300 gitgb
of data for the imagery alone [10]. Industrial Light and Magi
reports that, in 2003, their processing pipeline outpu? 18illion
frames and their internal network processed 9 petabyteatafid].
The U.S. Geological Survey had archived over 13 million feam

of photographic data by the end of 2004, and estimates that 5

years is needed to digitize 8.6 million additional image8][3n
all of these situations, the data is highly compressed toaed
storage costs. At the same time, extensive post-proceissoften
required for adding captions, watermarking, resizing, positing,
adjusting colors, converting formats, and so on. As suchgssing
logically operates on the uncompressed format, the usaatipe

is to decompress and re-compress the data whenever it rebds t
modified.

In order to accelerate the process of editing compresseq dat

researchers have identified specific transformations that e
mapped into the compressed domain—that is, they can opdirate

rectly on the compressed data format rather than on the uncom

pressed format [8, 21, 32, 38]. In addition to avoiding thetod the
decompression and re-compression, such techniquesygredtice
the total volume of data processed, thereby offering laeyings
in both execution time and memory footprint.

However, existing techniques for operating directly on eom
pressed data have two limitations. First, they focus onylassn-
pression formats (e.g., JPEG, MPEG) rather than loss|espres-
sion formats, which are important for the applications ctipge-
viously. Second, they rely on specialized and ad-hoc tectas
for translating individual operations into the compresdecdain.
For example, for DCT-based spatial compression formatE @JP
Motion-JPEG), researchers have developed separatethfgsrior
resizing [12, 23], edge detection [28, 29], image segmimt§i 5],
shearing and rotating inner blocks [30], and arbitrarydineom-
binations of pixels [33]. Techniques extending to DCT-lobteen-
poral compression (MPEG) include captioning [24], reve33d],
distortion detection [11], transcoding [1], and others|[¥®r run-
length encoded images, algorithms have been devised foieeffi
transpose and rotation [22, 31]. A compressed audio forraat h
been invented that allows direct modification of pitch arayphck
speed [19]. While these techniques are powerful, they nerimai
accessible to most application programmers because tmegrak
intricate manipulation of the underlying compression fatnit is
difficult for non-experts to compose existing compressenhain
operations into a complete program, let alone translateraamel
unique operation into the compressed domain.

This paper presents a technique for automatically mapping ¢
plete user-defined programs into the compressed domairte€he
nique applies to stream programs: a restricted but praatieas
of applications that perform regular processing over loatade-
qguences. Stream programming captures the essentialdnabty
needed by image, video, and signal processing applicatibile
exposing the flow of data to the compiler. Our formulationaséd
on LZ77, alossless compression algorithm utilized by Zi, mat-
urally applies to formats such as Apple Animation, MicrasfE,
and Targa (which are special cases of LZ77). Lossless casipre
is widely used in computer animation and digital video edjtin
order to avoid accumulating compression artifacts. By jgiog an
automatic mapping into the compressed domain, our tecbréqu
ables a large class of transformations to be customizedeygar
and directly applied to the compressed data.

The key idea behind our technique can be understood in simple

terms. In LZ77, compression is achieved by indicating thgitvan
part of the data stream is a repeat of a previous part of tharstrlf

a program is transforming each element of the stream in tine sa
way, then any repetitions in the input will necessarily besgnt
in the output as well. Thus, while new data sequences need to b
processed as usual, any repeats of those sequences do thdo nee
be transformed again. Rathéne repetitions in the input stream
can be directly copied to the output streatimereby referencing the
previously-computed values. This preserves the commegsithe
stream while avoiding the cost of decompression, re-cossa,
and computing on the uncompressed data. In this paper, wadxt
this simple idea to a broad class of programs: those whichtinp
and output multiple data items at a time, and those which, spli
combine, and reorder the data in the stream.

We implemented a subset of our general technique in the
Streamlt compiler, which generates plugins for two populdeo
editing tools: MEncoder and Blender. While our current ieapl
mentation handles only certain streaming patterns, it fiicgnt



to express many practical transformations such as pixelsadj
ment (brightness, contrast, color inversion) and videomusiting
(overlays and mattes). Using a suite of 12 videos (scre&s)cas-
mations, stock footage) in Apple Animation format, compgtdi-
rectly on compressed data offers a speedup roughly propaitio
the compression factor. For pixel transformations, speedange
from 2.5x to 471x, with a median of 17x; for video compositing
speedups range from 1.1x to 32x, with a median of 6.6x.

In the general case, compressed processing techniques may
need to partially decompress the input data to support thavwse }
ior of certain programs. Even if no decompression is peréatm
the output may benefit from an additional re-compressiop #te
new redundancy is introduced during the processing (fomgia,
increasing image brightness can whiteout parts of the inddes
effect turns out to be minor in the case of our experiments. Fo
pixel transformations, output sizes are within 0.1% of inpaes
and often (more than half the time) are within 5% of a full re-
compression. For video compositing, output files maintasiza
able compression ratio of 8.8x (median) while full re-coegsion }
results in a ratio of 13x (median).

To summarize, this paper makes the following contributions

e An algorithm for mapping an arbitrary stream program, \eritt
in the cyclo-static dataflow model, to operate directly ossto
less LZ77-compressed data. In addition to transforminga si
gle stream, programs may interleave and de-interleavapteult
streams while maintaining compression (Sections 2-3). }

e An analysis of popular lossless compression formats and the
opportunities for direct processing on each (Section 4).

e An experimental evaluation in the Streamlt compiler, demon
strating that automatic translation to the compressed doma }

rgb->rgb pipeline HalfSize {

rgb->rgb filter AveragePixels(int N) {

rgb->rgb filter InvertColor() {

pixel.g = 255 — pixel.g;
pixel.b = 255 — pixel.b; InvertColor
push(pixel);
}
A 4
void->void pipeline Toplevel() { WriteRGB

struct rgb {

byter, g, b;

ReadRGB

add splitjoin {
split roundrobin(WIDTH,WIDTH);
add Identity<rgb>(); -
add Identity<rgb>(); HalfSize
join roundrobin(1,1); \ 4

roundrobin(W,W)

}
add AveragePixels(4);

work push 1 pop N {
rgb out; intr, g, b;
for (int i=0; i<N; i++) {
rgb in = pop();
r+=in.r; g +=in.g; b +=in.b;

Identity Identity

roundrobin(1,1)

out.r = r/N; out.g = g/N; out.b = b/N;
push(out);
}

AveragePixels

work push 1 pop 1{
rgb pixel = pop();
pixel.r = 255 — pixel.r;

A 4

add ReadRGBY);
add HalfSize();

add InvertColor();
add WriteRGB();

can speedup realistic operations in popular video editogst
Across our benchmarks, the median speedup is 15x (Section 5)

The paper concludes with related work (Section 6) and cenclu
sions (Section 7).

2. Program Representation

Our transformation relies on the cyclo-static dataflow espnta-
tion for input programs and the LZ77 representation of casged
data. These are described in the next two sections.

2.1 Cyclo-Static Dataflow

In the cyclo-static dataflow model, a program is represehied
set of independerdctorsthat communicate using FIFO data chan-
nels [5, 18]. Each actor has an independent program counter a
address space; all communication is done using the dataelsan
Actors have one or more atomic execution steps that exenide i
fixed pattern throughout the lifetime of the program. A kestre-
tion of the cyclo-static dataflow model is that, for each exien of

a given actor, the number of items produced and consumedeon th
data channels is known at compile time. This enables the it@mp
to perform static scheduling of the actors and to guarargadIidck
freedom [5, 18].

Cyclo-static dataflow is a natural fit for many multimedia and
signal processing kernels, as such programs often haveuareg
structure with known communication patterns. As a programm
one can use a high-level language such as Streamlt [35] tegxp
a cyclo-static dataflow program. An example Streamlt pnogra
appears in Figure 1. It reads lines of an RGB image from a file,
shrinks the image by a factor of two, inverts the color of egigkl,
then writes the data to a file. There are three kinds of actors i

Figure 1. Example Streamlt program.

same function on every execution (there is no cyclic pattern
of computations). For example, in thevertColor filter, the
work function specifies the atomic execution step; it declares
that on each execution, it pops (inputs) 1 item from the input
tape and pushes (outputs) 1 item to the outputitape

Splitters have a single input stream and multiple output streams,
and perform pre-defined computations. There are two types of
splitters:duplicate splitters, which replicate their inputs to all
of the target streams, amdundrobinsplitters, which distribute
the input items across the streams. Roundrobin splittexs ar
parameterized: roundrokin;,n2) indicates that the firsh:
items are sent to the first output, and the nexitems are sent

to the second output. Splitters execute in a fine-grainedpey
static fashion: regardless of the parameters, each eracsigp
passes only a single item from the input stream to an output
stream. In Figure 1, the splitter sendSDTH pixels in each
direction, distributing the lines of the image across ake
streams.

Joiners have multiple input streams and a single output stream,
and perform pre-defined computations. The only type of joine
is roundrobin, which acts analogously to a roundrobin tgylit

In Figure 1, the joiner reads one pixel at a time from each
input stream, serving to interleave the pixels from neighrgp
lines. Once the pixels are interleaved, each group of 4 pisel
averaged together in order to decrease the picture widtivdy t

Streamlt programs, and our analysis handles each one tedpara

1Though Streamlt also allows filters to peek at the input sirdae.,
to perform a sliding window computation) and to maintain aflé state

¢ Filters have a single input stream and a single output stream, across executions, these features are uncommon in otearstanguages

and perform general-purpose computation. Filters perfibren

and we do not support them in the current work.



stream := valué stream := (value repeat)

repeat :=(distance, count

(a) Uncompressed domain  (b) Compressed domain (LZ77)

Figure 2. Representation of data in the uncompressed and com-

pressed domains.

input stream == decompress == output stream
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Figure 3. Example of LZ77 decompression.

2.2 LZ77 Compression

LZ77is alossless, dictionary-based compression algoridtamed
after its creators Lempel and Ziv, who published the albamiin
1977 [40], LZ77 is asymptotically optimal [39] and forms thesis
for many popular compression formats, including ZIP, GZi a

Constants
Actor’s pop rates

Variables
S, T Input, output streams

ni, n2

\% List of values (may be empty)m Actor’s push rate
(d,c) Repeat distance & count
Functions (listx list — list)
. List concatenation
F Filter work function, outputsn-element list
Figure 4. Notations used in the semantic rules.
SeV =T |V|l=n ‘ exec—uncompress#d
S—F\V)eT

Figure 5. Semantics of EEC(F): execution of filter F in the un-
compressed domain. Notations are defined in Figure 4.

S S

v

popn ‘ Align(n) ‘

;

‘ Compressed-Exec(F) ‘

v
T T
(a) Uncompressed domain (b) Compressed domain

push m

Figure 6. Overall execution of a filter F in the uncompressed and
compressed domains.

the output is guaranteed to be fully compressed (relativéhéo
compression of the input).
For the sake of presentation, we use an operational sersantic

PNG. As described in Section 4, LZ77 also serves as a general-t0 express the execution under the uncompressed and caegres

ization of simpler encodings such as Apple Animation, Mo
RLE, and Targa, allowing our transformations to naturakiead
to these formats.

The basic idea behind LZ77 is to utilize a sliding window
of recently encoded values as the dictionary for the conspes
algorithm. In the compressed data stream, there are twe tgpe
tokens:valuesandrepeats(see Figure 2). A value indicates a token
that should be copied directly to output of the decoded strefa
repeat contains two parts: a distantand a count; it indicates
that the decoder should start at offddtom the end of the decoded
stream and copy a sequence:@flues to the output. The distances

domains. Though some of the transition rules require dyoalaia
rates and thus fall outside the cyclo-static dataflow moalélof
them have an efficient implementation in Streamlit. The rukss
the notations given in Figure 4, and have the following form:

S—T
S/ — Tl

This rule reads: if the incoming stream has valtieand the
outgoing stream has valug, then after an execution step, the

streams have valug andT”, respectively. As detailed in Figure 2,
we represent streams as lists of tokens; inputs to the stegam

are bounded, which enables the decoder to operate with a fixedadded to the front of the list, while outputs from the stream a

buffer size. It is important to note that the count may excted

distance, in which case some of the values produced by atrepea

operation are also copied by that operation. For examplejuev
A followed by a repeatl, 3) results in an output of “A A A”. An
additional example of LZ77 decoding is given in Figure 3.

3. Program Transformation

Our program transformation inputs a cyclo-static datafloesgpam

and outputs an equivalent program in which all of the datacbks

use a compressed representation. One can think of thisggrase
mapping from the uncompressed domain to the compressedmoma
(see Figure 2). Rather than modifying the code within theract
our transformation treats actors as black boxes and wraps i

a new execution layer. The transformation attempts to preszs
much compression as possible without ever performing ahicéxp
re-compression step. While there exist cases in which thgubu
data will not be as compressed as possible, under certadliticos

removed from the end of the list.
To describe the mapping into the compressed domain, we con-
sider each Streamlt construct in turn: filters, splittersl piners.

3.1 Filters

Filter execution in the uncompressed domain is describethéy
rule in Figure 5. The rule expresses the simple fact that er filt
inputs a list ofn values from the end of its input stream; this list is
denoted byV. The filter pushes its results, denotedB{1"), onto
the front of the output stream.

Filter execution in the compressed domain requires a tagest
transformation (see Figure 6 for an overview, and Figurer7afo
detailed example). First, the input stream is aligned tcaagjarity
n that matches the input rate of the filter. This alignment gotes
that every token in the stream is either a sequencewafiues, or a
repeat in which both the distance and the count are multgfles
The alignment stage (described in detail later) is a no-ofiilfers
that pop only one itemr{ = 1).



char->char filter HyphenatePairs {
work pop 2 push 3 {
. push(‘~); ) . Compressed-Exec
input stream == push(pop(); = output stream input stream == Align(2) — (HyphenatePairs) == output stream
push(pop()); 1
P} 13) 0 24 L A | |
(a) Example filter (13 024y | L A | [pass-uncompressed]
(13) O | 24) L A | [pass-compressed]
input stream == Exec(HyphenatePairs) == output stream (2§)22(§;8 8 I gig t 2 I %:gzgs:dr]-repeat]
1 (2200 | (24 L A | [prune]
OOOOLALALA | 22) | OO0 (24 L A | [pass-uncompressed]
OOOOLALA | LA~ | (22) O O (24) L A | [pass-compressed]
OOOOLA | LA~LA~ | 22) O O 24) | LA~ [exec-uncompressed]
OOOO | LA~LA~LA~ | (22) OO0 | 36) L A ~ [exec-compressed]
OO0 | OO~LA~LA~LA~ | 22) | OO0 ~@3B6) LA~ [exec-uncompressed]
I

| 00O~00~LA~LA~LA~
(b) Normal execution

| (3,3) O O ~ (3,6) L A ~ [exec-compressed]
(c) Compressed-domain execution

Figure 7. Example execution of a filter in the uncompressed and corapdedomains.

SeV —-T |V|=n
S—F\V)eT

‘ exec-uncompress#d

exec-compress%d

Figure 8. Semantics of OMPRESSEBEXEC(F): execution of fil- S
ter F' in the compressed domain. Notations are defined in Figure 4.

SeV =T |Vi=n
S—VeT

‘ pass-uncompress%ad

Se(dc)y—T d¥%n=0 c%n=0

S — (md/n,mc/n)eT

Se(dc)y—T d¥%n=0 c>n
Se(d c%n) — (d,c—c%n)eT

pass-compressed

e(d,cyeV =T expan
c<nV1<|V|<nV (d%n>0A —(d<LCM(d,n)<c)

Se(dc—1)edecodé(d,1)) eV — T
After the alignment stage comes the execution of the com-

!I

~

pressed filter, which appears in Figure 8. Eltec-uncompressed Se(d0)yeV —T
rule deals with values on the input stream, and is identwahat SeV T

in the uncompressed execution. Tdec-compressed rule deals

with repeats on the input stream and encapsulates the kayofde . ‘
the paper. Because the inputs are repeating at the corauou-gr let L = LCM(d, n) t

Se{dc)eV =T d¥%n>0 d<L<c
Se(Lc—(L—d))e(dL_dyeV T

larity, the repeat can be copied directly to the output offther
without performing any new computation. The only changealede
is to adjust the repeat distance and count to match the ibetput
rate.

Figure 9. Semantics of AIGN(n): aligning data to a granularity
of n. The decodefunction uncompresses a repeat token into a list

3.1.1 Stream Alignment of values; other notations are given in Figure 4.

The alignment phase is needed for filters that pop more than on
item from the input stream. Its goal is to align the execubionnd-
aries of the filter with the repeat boundaries of the comgetdsita;
this alignment is required for the compressed executiolowimg
alignment, each execution of a filter will input eitheconsecutive
values, or a repeat token with a distance and count that ardyev  the end of the input stream containsvalues, then alignment
divisible byn (wheren represents the pop rate of the filter). is satisfied and the values are moved to the output stream (rul
The alignment stage sometimes needs to partially decosipres pass-uncompressed). Likewise, if the input contains a repeat in

computing on a smaller volume of data and avoiding the cost of
re-compression. For general algorithms such as gzip, cessmn
can be up to 10x slower than decompression [41].

The semantics of stream alignment are given in Figure 9. If

the data in the stream. Due to the sliding-window dictioniary
LZ77, in general it is difficult to decode only a few items watht
decompressing others. Thus, our formulation assumes theiya

which the distance is a multiple efand the count is at least then
a number of aligned repeats are peeled from the input anddrtove
the output (rulepass-compressed). If the count is not a multiple

decompressed version of the stream is available; the timmsilles
access the decompressed data usinglémedefunction, which re-
turns the sequence of values represented by a repeat tokisn at
current position in the stream. However, in practice, tfésam- output stream, in which case the data needs to be partiatiynae
pression can be avoided whenever the repeat distance iaiiee s pressed (rulexpand). This occurs if the repeat has a count less
as the window size, as this simply causes a value in the window thann, if it occurs in the middle of an aligned stretch.ofvalues,

of n, then part of the repeat is leftover and remains on the input
stream.
There are some cases in which a repeat cannot be moved to the

to be overwritten by itself. This case is very common in saver
practical compression formats; for example, in Apple Ariomg
the vast majority of repeats reference the same pixel in tbep

or ifits distance is not a multiple of (this last condition can some-
times be remedied by another rule, see below). dheand rule
decodes only one value from an unaligned repeat token el

ous frame (which is also the window size), and thus most decom creasing its count by one; the rest of the repeat may becdgredl

pression is avoided. In run-length encoding, the repetdriie and

later. If the count of a repeat reaches zero, it is elimindgdhe

the window size are always equal to one, so no decompression i prune rule.

needed. While general LZ77 does require a decompresseawind

to be maintained, our technique still offers significantddéa by

The final rule,coarsen-repeat, preserves a specific kind of
compression in the input stream. Consider that a filter pos t



Sy S,

pop n7l lpop n,

‘ roundrobin(n,,n,) ‘

lpush n,+n,

M
(b) Notation for joiners

S
lpop m, +m,

‘ roundrobin(m,,m,)

push m,l lpush m,

T, T,
(a) Notation for splitters

Figure 10. Notations used in the semantics for splitters and join-
ers. In addition, the variablposindicates how many items have
been written to (in the case of splitters) or read from (indase of
joiners) the active tape during the current execution cycle

items at a time, but encounters a long repeat with distanee th
and count 100. That is, the input stream contains a regutserpa
of values with periodicity three. Though consecutive exiets of
the filter are aligned at different offsets in this pattewerg third
filter execution (spanning six values) falls at the samenatignt.
In general, a repeat with distandecan be exploited by a filter
with pop raten by expanding the distance to LGNl n). In order
to perform this expansion, the count must be greater than the
distance, as otherwise the repeat references old data #yabave
no periodicity. Also, the stream needs to be padded with LENI
values before the coarsened repeat can begin; this paddieg the
form of a shorter repeat using the original distance.

3.2 Splitters

It is necessary to consider splitters and joiners sepgrditein
general-purpose actors because of their pass-througmsesshe
inputs are distributed to the outputs without performing esmpu-
tation. Our translation to the compressed domain leverduefact
to preserve considerably more compression than would twtpes
if splitters and joiners were viewed as opaque computationdes
with multiple inputs and multiple outputs. Consequentfljteers

S.V*)Tl;TQ
S"V.Tl;TQ

V=1 pass-uncompress%ad

Figure 11. Semantics of SLITTER: execution of a roundrobin
splitter in the uncompressed domain.

SOV—>T1;T2
S—VeTli;Ts

V=1 ‘ pass-uncompressﬁed

let offset= d%(m1 + m2)

let (L1, Lz) = runsplitter(c)

Se(d,c)— Ti;T>» offset=0

S — <dm1/(m1 + 7’)12)7 L1> ° T1;
(dma/(m1 +ma2), L2) e To

‘ pass-compressed-lortg

let offset= d%(m1 + m2)

let offset’ = if offset < posthen offset
elseoffset— mo

let actualrepeat= min(c, split. potentia(d))

Se(d c) — Th;T, offset>0 splitpotentia(d) > 0

S e (d, c — actualrepeat —
(ma = floor(d/(m1 + m2)) + offset’, actualrepea} e T7; T

‘ pass-compressed-shq)rt

let offset= d%(m1 + m2)
Se(d c)— T;T> offset> 0 splitpotentia(d) =0

Se(d c—1)edecodé(d, 1)) — T1;T>

S. <d,0> HTl;TQ
S*)Tl;TQ

Figure 12. Semantics of OMPRESSEBSPLITTER: execution of a
roundrobin splitter in the compressed domain.

and joiners should be employed by the programmer not only as a ® We usepos to denote the number of items (in terms of the

natural expression of parallelism, but as a powerful wayxpbs-
ing the data reordering to the compiler.

As mentioned previously, splitters and joiners adopt a fine-
grained cyclo-static execution model, in which each exeougtep
transfers only one item from an input tape to an output tapat iB,
aroundrobirfk:, k2) splitter or joiner hag: + k- distinct execution
steps. We refer to every grouplof+ k- steps as aaxecution cycle

Duplicate splitters are trivial to transform to the comgexs
domain, as all input tokens (both values and repeats) areaop
directly to the output streams. For roundrobin splittene, ¢entral
concern is that a repeat token can only be transferred toem giv
output tape if the items referenced are also on that tapee it¢éms
referenced by the repeat token were distributed to ancdper, then
the repeat must be decompressed.

The rest of this section focuses on roundrobin splitterssifie
plify the presentation, we consider a splitter with only teuatput
streams. This captures all of the fundamental ideas; dxierne
additional streams is straightforward. Rewrite rules naketthe
following form:

S — T1; T2

S — Ti; 13

whereT; andT: represent the output streams of the splitter (see
Figure 10). In addition, we make two further simplifications

¢ The rules assume that the next execution step of the spiliifier
write to T1. The subscripts should be interpreted without loss
of generality.

uncompressed domain) that have already been written to the
current output streanil{) in the current execution cycle. For
brevity, the rules do not maintain the valuepafs though it is
straightforward to do so.

The semantics for splitter execution in the uncompressed do
main appear in Figure 11. Thess-uncompressed rule simply
passes a single value from the input tape to the current btapa,
T:. Note that the current positioposis implicitly incremented;
onceposreachesn, it is reset to zero and the output tapes are
switched (tap&> will be namedTl; on the next execution).

The compressed-domain semantics for splitters are givEigin
ure 12, and a detailed example appears in Figure 13. As nnexctio
previously, a repeat token can be transferred to an outpet 4a
long as the items referenced also appear on that tape. Howleee
repeat may need to be fragmented (into several repeats sferle
count), depending on the repeat distance. There are twes tase
consider.

The first case, expressed by thess-compressed-long rule
in Figure 12, distributes an entire repeat token to bothuiufpes
without any fragmentation. This is only possible when theea
can be cleanly separated into two independent sequenaesifeat
by m; and the next offset byn,. In other words, the repeat
distance must be a multiple @f; + m2. In this case, the repeat
token is moved to the output streams. The repeat distancalisds
down to match the weight of each stream, and the count isativid
according to the current position of the splitter (a simpletbdious
calculation implemented byun_splitter in Figure 14).
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(a) Example splitjoin (b) Normal execution (c) Compressed-domain execution of splitter (left) and joiner (right)

Figure 13. Example execution of splitters and joiners in the comprsieenain. As illustrated by the input/output pairs in (ag gxample
performs a transpose of a 2x5 matrix. When the matrix is tized (as in (b) and (c)), the input stream traverses theaiesrow-wise while
the output stream traverses column-wise. Due to redundartbg matrix, this reordering can be done largely in the casped domain.

The second case, handled by th&ss-compressed-short
rule, is when the repeat distance is mis-aligned with thitsps
execution cycle, and thus the repeat (if itis long enougbpavally
references items that are distributed to a different outppe.
Nonetheless, part of the repeat may be eligible to pass ghrou
so long as the items referenced refer to the current outjpat ta
This judgment is performed byplit_potential (Figure 14) by // the number of complete splitter cycles, and the leftover
comparing the repeat distance to the current position irothput totalcycles= floor(c/(m1 + mz))
stream. If one or more of the repeated values are in range, the totalleftover= cYo(m1 4 ms)
valid segment of the repeat (of lengiktual _repeat) is moved
to the output tape. As before, the repeat distance needsstcaled
according to the weights of the splitter, and an extra offset
needed if the repeat distance wraps around to referencenthe e
of a previous cycle.

If neither of the above transfers apply, then the input strea
needs to be partially decompressed (according teipend rule)
because the current repeat token references items thaiensiént
to the wrong output tape. Therune rule is also needed to clear
empty repeats generated &ypand.

Though we omit the details, it is also desirable to employ an
analog of thecoarsen-repeat rule (Figure 9) to preserve even
more compression across a splitter. The intuition is thaintreas-
ing certain repeat distances, the splitter's output tapesbecome
more independent (referencing themselves rather thanatheh). t
This enables a compressed rule to fire in place of an expassipn return (m; = totalcycles+ L1, mo * totalcycles+ Lz) }

/I Given thatc items are available on input stream of a splitter,
/I returns the number of items that can be written to each output
/I stream before the input is exhausted. Assumes that theesjdit

/I currently writing to the first output stream, to which posniie

/I have previously been written in the current execution cycle

run _splitter (¢, pos) returns (int, int{

/ the last partial cycle may end in three regions:
if totalleftover < m; — pos{
// 1. in writing to the first output stream
L, = totalleftover
Ly=0
} else iftotalleftover < m; — pos+ ma {
/1 2. in subsequent writing to the second output stream
Li=m1— pos
Lo = total leftover— m; — pos
} else{
/1 3. in wrap-around writing to the first output stream
L, = total_leftover — mo
L2 E N U»)

3.3 Joiners

Analogously to splitters, there are two ways to pass repukains
through a joiner. If the input streams contain compatibleest
tokens, then they can be combined into a long repeat thasspan
multiple execution cycles; otherwise, a shorter repeakisaeted
from only one of the streams. Both of these cases are illestra
by example in Figure 13. Unlike splitters, there is never adne
to decompress repeat tokens into values before passinggtinie
joiner. Though the repeat length may shrink to one, it witheén a
reference to a previous item rather than becoming a valak. its

In the uncompressed domain, joiners have the semantics give
in Figure 15. Thepass-uncompressed rule passes a single value
from the current input tapeS ) to the output tape. Analogously to

/I Given a repeat token with distanegthat is input to a split-
/I ter, returns the maximum count of a repeat token that could
/I safely be emitted to the current output stream of the splitte
/I sumes that only a single repeat token can be emitted (i.e., th
/| pass-compressed-long rule does not apply).
split_potential(d) returns int{
offset= d%(mi + m2)
if offset < pos{
I repeat for remainder of this execution cycle
return mi — pos
} else ifoffset > my + pos{
I repeat until referenced data goes out of range
return offset— (m2 + pos

splitters, the variablposrepresents the number of items that have }3}se~f{ d data i the oth tout st
been read from the current input tape and is implicitly updat reiﬁrireonce ata IS on the other output stream

Oncepos reachesn, it is reset to zero and the input tapes are
switched (tape52 will be namedsS; on the next execution).

The first and most powerful way to execute joiners in the com- }
pressed domain is to combine repeat tokens from both inpaarss

Figure 14. Helper functions for ©MPRESSEBSPLITTER.
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Figure 15. Semantics of JINER: execution of a roundrobin joiner
in the uncompressed domain.
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let offset’ = if d%n; < posthen pos‘ pass-compressed-short ka)
elsed%ni + n2

let L = min(c, join_potentia(d))

Sie(d,c);SoeV —T

S1e(d,c—L);S20V —

((n1 + n2)floor(d/n1) + offset’, L) ¢ T’
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((n1 + n2)floor(d/n,) + offset’, L) o T

51 O<d,0>;SQ — T
51;52 — T

Figure 16. Semantics of OMPRESSEBJOINER.

(rule pass-compressed-long in Figure 16). For this to be pos-
sible, both repeat distances must be the same multiple wfrée
spective joiner weightr{; or ns); the combined token has a repeat
distance that is a multiple of; + n2. Therepeat_lengths rou-
tine (Figure 17) calculates the maximum repeat length ddipgn
on the current position of the joiner and the repeat lengfithe
inputs.

The second mode of compressed joiner execution inputs only a

single repeat token, extracting the maximum length thatsedaly

/I Given thate; and c2 items are available on the first and second
/I input streams of a joiner, returns the number of items that loa
/I read from each input before one of them is exhausted. Assumes
/I that the joiner is currently reading from the first input stra,
/I from which pos items have previously been consumed in the
/I current execution cycle.
repeatlengths(ci, ¢z, pos) returns (int, int){
// the number of complete joiner cycles, and the leftovers
totalcycles= floor(c/(n1 + n2))
leftover, = ¢; — totalcycles* nq
leftover, = c2 — totalcycles* no

/ the last partial cycle may end in three regions:
if leftover, < n; — pos{
/I 1. in reading from the first input stream
L, = leftoven
L,=0
} else ifleftover, < ns {
// 2. in subsequent reading from the second input stream
L1 = n1 — pos
Lo = leftover,
} else{
/I 3. in wrap-around reading from the first input stream
L1 = leftoven
LQ = N2

}

return (ni * totalLcycles+ L1, no x totalLcycles+ Lo) }

/I Given a repeat token with distancé on the current input
/I stream of a joiner, returns the maximum count of a repeat
/I token that could safely be emitted to the output stream. As-
/Il sumes that only a single repeat token is available (i.e., the
/| pass-compressed-long rule does not apply).
join_potential(d) returns int{
offset= d%n.
if offset < pos{
/I repeat for remainder of this execution cycle
return n; — pos
} else{
I repeat until referenced data goes out of range
return offset— pos

}
}

Figure 17. Helper functions for ©MPRESSEBJOINER.

cur additional processing overhead. In the following setdj we

move to the output. This rule is needed when the previous one gescripe the practical considerations involved in tanggtiarious
does not apply: if the second stream ends in a value rathar tha compression formats with our technique. Formats are oddeye

a repeat fass-compressed-short (a)) or the repeat distance
has the wrong granularitypéss-compressed-short (b)). The
join_potential routine (Figure 17) determines how much of the
repeat can be moved to the output before the data referermdd w
have originated from a different input stream.

As in the case of splitters, further compression gains assipo
ble by adding rules to coarsen the repeat distance or shiftit:
tance to align with other streams. We omit the details here.

4. Supported File Formats

As LZ77 refers to a compression algorithm rather than a cetapl
compression format, there are additional factors to cemsidmap-
ping computations to real-world image and video codecs. &Som
codecs are a subset of LZ77, utilizing only run-length enupd
or a fixed window size; these are supported very efficientlypioy
technique. Others are a superset of LZ77, incorporatingiadl
techniques such as delta coding or Huffman coding; theseimay

approximate goodness of the achievable mapping.

4.1 High-Efficiency Mappings

All of the formats in this category can be considered to besetsh
of LZ77.

Apple Animation. The Apple Animation codec (which forms the
basis for our experimental evaluation) is supported as gfattie
Quicktime MOV container format. It serves as an industrynsta
dard for exchanging computer animations and digital videdent
before they are rendered to lossy formats for final distiiouf2,
p. 106][16, p. 284] [20, p. 367][27, p. 280].

The Animation codec represents a restricted form of LZ77 in
which repeat distances are limited to two values: a full faon
a single pixel. A repeat across frames indicates that achtreft
pixels did not change from one frame to the next, while a repea
across pixels indicates that a stretch of pixels has the satoe
within a frame.



Flic Video. Flic Video files (FLI/FLC) were originally produced
by Autodesk Animator and are still supported by many aniomati
packages today. Their compression of frame data is almesti@l
to Apple Animation.

Microsoft RLE. Microsoft RLE compression can appear in both
BMP images and AVI animations. Apart from bit-depth and for-
matting details, its capabilities are identical to AppleifAation; it
can perform run-length encoding within a frame, and can skgy
pixels to exploit inter-frame redundancy.

Targa. The Truevision Targa (TGA) formatis a simple image for-
mat that is widely used to render frame sequences in the dempu
animation and video industries. The format includes anooypti
RLE compression stage, making it a good target for our teglai

PXY. The pxy format is a research-based image format designed
to support efficient transpose and rotation of black-andenvim-
ages [31]. It consists of the series(af, ) coordinates at which the
image changes color during a horizontal scan. As this infoion

can be converted to a run-length encoding, it can also bettecy

by our technique.

4.2 Medium-Efficiency Mappings

While the formats in this category utilize an encoding tlsatom-
patible with LZ77, they incur extra overhead because tha gat
reorganized prior to the compression stage.

Planar RGB. The Planar RGB video format is supported by Ap-
ple Quicktime files. It utilizes run-length encoding for pig within

a frame, with partial support for expressing inter-frampeags
(only the end of lines can be skipped). The red, green, ane blu
planes are encoded separately in order to increase corigoressr
user transformations that need to process red, green, aad/al-
ues together, this introduces additional alignment owethghen
applying our technique.

OpenEXR. OpenEXR is an emerging image format (backed
by Industrial Light and Magic) for use in digital film. It offe
several compression options, including run-length emapdzip,

and wavelet-based compression. However, in run-lengtbding
mode, the low and high bytes of the pixels are separated and en
coded as separate run-length sequences; this enables piitel
variations in the low bytes to nonetheless benefit from ceswyr
sion of the high bytes. As most user transformations woduld:et

the entire bit-width of the pixel, our technique suffers itiddal
alignment overhead in processing these files.

4.3 Low-Efficiency Mappings

The formats in this category are supersets of LZ77. Whildech-
nigue could offer some gains in exploiting the LZ77 compiasst
would have to undo any compression sitting on top of LZ77 &nd o
fers limited benefit for filters (as in PNG) applied underhdaZ 77.

DEFLATE. DEFLATE is a general-purpose algorithm that pro-
vides all of the compression for popular formats such as 2P a
GZIP. The algorithm consists of a full LZ77 encoder followeag
Huffman coding, which resizes the symbols in the stream tizima
their usage frequencies. In targeting ZIP or GZIP with oans$r
formations, we would first have to undo the Huffman coding-(un
less the application simply reordered data, in which casedding
could remain intact). Though Huffman decoding is a lightyti
lookup operation, it would also increase the memory foatptn
addition, as DEFLATE’s LZ77 algorithm operates on indiadlu
bytes, there may be an exaggerated alignment cost if thezapph
operates on a larger word size.

PNG. The PNG image format also relies on DEFLATE to com-
press the pixels in the image. However, before running DEREA
the pixels are usually filtered with a delta encoding; eagbli re-
placed with the difference between its value and a predicak,
where the prediction is a linear combination of neighbopngpls.
While program segments that compute a linear function [bd]a
perhaps be mapped to this compressed format, our curremt tec
nique only applies if the delta encoding is turned off. Evemhis
scenario, there is a large amount of overhead due to the tdoffm
coding in DEFLATE.

5. Experimental Evaluation

To demonstrate the potential benefits of mapping into the-com
pressed domain, we implemented a few of our transformatsns
part of the Streamlt compiler. Our current implementatiopports
two computational patterns: 1) transforming each indiaidele-
ment of a stream (via a pop-1, push-1 filter), and 2) combitiireg
elements of two streams (via a roundrobin(1,1) joiner and@ p
2, push-1 filter). The program can contain any number of §lter
that perform arbitrary computations, so long as the I/Osratatch
these patterns. While we look forward to performing a broate
plementation in future work, these two building blocks anffis
cient to express a number of useful programs and to chaizeter
the performance of the technique.

Our evaluation focuses on applications in digital vidediadi
Given Streamlt source code that operates on pixels fromfeacte
of a video, the Streamlt compiler maps the computation iheo t
compressed domain and emits executable plugins for twolaopu
video editing tools, MEncoder and Blender. The plugins aiitten
for the Apple Animation format (see Section 4.1).

Our benchmarks fall into two categories: 1) pixel transfarm
tions, such as brightness, contrast, and color inversibigiwadjust
pixels within a single video, and 2) video compositing, inieth
one video is combined with another as an overlay or mask.

The main results of our evaluation are:

e Operating directly on compressed data offers a speedujhiyoug
proportional to the compression factor in the resultingeoid

e For pixel transformations, speedups range from 2.5x to 471x
with a median of 17x. Output sizes are within 0.1% of input
sizes and about 5% larger (median) than a full re-compressio

e For video compositing, speedups range from 1.1x to 32x, with
a median of 6.6x. Output files retain a sizable compressitm ra
(1.0x to 44x) and are about 52% larger (median) than a full re-
compression.

The following sections provide more details on our video kwor
loads, the evaluation of pixel transformations, and théuaten of
video compositing.

5.1 Video Workloads

Our evaluation utilizes a suite of 12 video workloads that de-
scribed in Table 1; some of the videos are also pictured iR Fig
ure 20. The suite represents three common usage scenariosso
less video formats: Internet screencasts, computer aioimatnd
digital television production. While videos in each area aften
rendered to a lossy format for final distribution, losslesders are
preferred during the editing process to avoid accumulation-
pression artifacts. All of our source videos are in the Appie-
mation format (described in Section 4.1), which is widelgdiby
video editing professionals [2, p. 106] [16, p. 284] [20, 7B[27,
p. 280]. The Apple Animation format is also popular for captg
video from the screen or camera, as the encoder is relafasty
Our suite of videos is assembled from a variety of realistid a

industry-standard sources. The first screencast is aneodémo



COMPRESSION
VIDEO DESCRIPTION SOURCE DIMENSIONS |FRAMES ([SIZE (MB) |[FACTOR

< screencast-demo Online demo of an authentication generator Software website 691 x 518 10621 38 404.8
IS § screencast-ppt Powerpoint presentation screencast Self-made 691 x 518 13200 26 7221
% S |logo-head Animated logo of a small rotating head Digital Juice 691 x 518 10800 330 46.8
- logo-globe Animated logo of a small rotating globe Digital Juice 691 x 518 10800 219 70.7
g § |anim-scenel Rendered indoor scene Elephant's Dream 720 x 480 1616 10 213.8
‘g_ % |anim-scene2 Rendered outdoor scene Elephant's Dream 720 x 480 1616 65 34.2
g E anim-character1 Rendered toy character Elephant's Dream 720 x 480 1600 161 13.7
O <« |anim-character2 Rendered human characters Elephant's Dream 720 x 480 1600 108 20.6
_ § [digvid-background1 |Full-screen background with lateral animation Digital Juice 720 x 576 300 441 1.1
£ @ [digvid-background2 [Full-screen background with spiral animation Digital Juice 720 x 576 300 476 1.0
g % digvid-matte-frame  [Animated matte for creating new frame overlays Digital Juice 720 x 576 300 106 4.7
= |digvid-matte-third Animated matte for creating new lower-third overlays  [Digital Juice 720 x 576 300 51 9.7

Table 1. Characteristics of the video workloads.

of an authentication generator for rails [3]; the second Foaver-
Point presentation (including animations), capturedgiSiamtasia
Studio. As Internet content is often watermarked with a logad-

vertisement, we include two animated logos in the “Intexnigto”

category. These logos are taken from Digital Juice [9], adaed

source for professional animations, and rendered to Applien&-

tion format using their software. The animated logos areleesd
full-frame (with the logo in the corner) because compogitper-
ations in our testbed (Blender) are done on equal-sizedside

The computer animation clips are derived from Elephant’s
Dream, a short film with entirely open-source content [13]r o
videos are rendered from source using Blender. Finallydibial
television content is also taken from a Digital Juice ligrg@]. The
backgrounds represent high-resolution, rotating bagslas might
appear in the introduction to a program. The mattes are fadk
white animations that can be used to synthesize a smallelagve
(such as a frame or a “lower third”, often used for text) frofula
animated background (see Figure 20b for an example).

The videos exhibit a wide range of compression factors. The
screencasts have very high compressie®@0x-700x) because
only a small part of the screen (e.g., a mouse, menu, or PaiverP
bullet) is changing on any given frame; the Apple Animation-f
mat compresses the inter-frame redundancy. The compnefsio
anim-scenel is also in excess of 200x because motion is limited
to a small animated character. The animated logos are thenest
compressed~50-70x), influenced largely by the constant blank re-
gion outside the logo. The computer animation contesitq-30x
compression) has a high level of detail but benefits from bu#r-
frame and intra-frame redundancy, as some rendered relgaves
constant color. Next are the digital video matte&{10x compres-
sion), which have fine-grained motion in some sections.|Firthe
digital video backgrounds offer almost no compression gé1r0-
1.1x) under Apple Animation, as they have pervasive motioth a
detail across the entire frame.

The Apple Animation format supports various bit depths.dll
our source videos use 32 bits per pixel, allocating a singie for
each of the red, green, blue, and alpha channels.

5.2 Pixel Transformations

The pixel transformations adjust the color of each pixel &
form way. We evaluated three transformations:

We implemented each transformation as a single Streaneit filt
that transforms one pixel to another. Because the filter haspa
rate of one, it does not incur any alignment overhead.

5.2.1 Setup

The pixel transformations were compiled into plugins for ME
coder, a popular command-line tool (bundled with MPlayer) f
video decoding, encoding, and filtering. MEncoder reliesttosn
FFMPEG library to decode the Apple Animation format; as FFM-
PEG lacked an encoder for this format, the authors impleatent
one. Additionally, as MEncoder lacks an interface for taggbnly
brightness or contrast, the baseline configuration wasemehted
by the authors.

The baseline configuration performs decompression, pixel
transformations, then re-compression. Because the mai@ovi
frame is updated incrementally by the decoder, the pixeisfa-
mations are unable to modify the frame in place (otherwiselpi
present across frames would be transformed multiple tinTés)s,
the baseline transformation writes to a separate locatianém-
ory. The optimized configuration performs pixel transfotiors
directly on the compressed data, avoiding data expansiplieich
by decompression and multiple frame buffers, before capyfire
data to the output file.

Our evaluation platform is a dual-processor Intel Xeon (2.2
GHz) with 2 GB of RAM. As all of our applications are single-
threaded, the second processor is not utilized. For thegnmmea-
surements, we execute each program five times and reportehe m
dian user time.

5.2.2 Results

Detailed results for the pixel transformations appear iblg&.
Figure 18 illustrates the speedups, which range from 2.3% fix.

As illustrated in Figure 19, the speedups are closely catedl
with the compression factor in the original video. For thghty-
compressed screencasts andm-scenel, speedups range from
58x to 471x. For the medium-compression computer animsition
(including the animated logos), speedups range from 1160 4
And for the low-compression digital television contentesgups
range from 2.5x to 8.9x.

There are two distinct reasons for the speedups observet, Fi
by avoiding the decompression stage, computing on congutess
data reduces the volume of data that needs to be stored, uranip
lated, and transformed. This savings is directly relatethéocom-

« Brightness adjustment, which increases each RGB value by aPression factor and is responsible for the upwards slopéhef t

value of 20 (saturating at 255).

e Contrast adjustment, which moves each RGB value away from

the center (128) by a factor of 1.2 (saturating at 0 and 255).

e Color inversion, which subtracts each RGB value from 255
(useful for improving the readability of screencasts or rer
versing the effect of video mattes).

graph in Figure 19. Second, computing on compressed daa eli
inates the algorithmic complexity of re-compression. Far Ap-
ple Animation format, the cost of compressing a given framesd
not increase with the compression factor (if anything, itrdases
as fewer pixels need a fine-grained encoding). Thus, thdibase
devotes roughly constant runtime to re-compressing ead®oyi
which explains the positive intercept in the graph of Figl@e



OUTPUT SIZE / INPUT SIZE OUPUT SIZE / INPUT SIZE
SPEEDUP (Compute on Compressed Data) | (Uncompress, Compute, Re-Compress)
VIDEO Brightness| Contrast | Inverse | Brightness | Contrast | Inverse | Brightness Contrast Inverse
= screencast-demo 137.8x 242.3x|  154.7x 1.00 1.00 1.00 0.90 0.90 1.00
£ § screencast-ppt 201.1x 470.6x| 185.1x 1.00 1.00 1.00 0.75 0.74 1.00
-g S [logo-head 27.0x 29.2x 25.2x 1.00 1.00 1.00 0.87 0.86 1.00
- logo-globe 35.7x 46.4x 36.6x 1.00 1.00 1.00 1.00 0.64 1.00
5 S |anim-scene1 66.4x 124.3x 58.5x 1.00 0.98 1.00 0.99 0.92 1.00
3 ¥ |anim-scene2 19.3x 27.9x 20.5x 1.00 1.00 1.00 0.99 0.85 1.00
g g anim-character1 11.5x 12.2x 11.2x 1.00 1.00 1.00 0.96 0.90 1.00
O <« |anim-character2 15.6x 15.3x 14.8x 1.00 1.00 1.00 0.95 0.88 1.00
_ & |digvid-background1 4.6x 2.6x 4.6x 1.00 1.00 1.00 1.00 0.88 1.00
& '@ |digvid-background2 4.1x 2.5x 4.7x 1.00 1.00 1.00 0.92 0.91 1.00
g’% digvid-matte-frame 6.3x 5.3x 6.5x 1.00 1.00 1.00 0.98 0.64 1.00
+ |digvid-matte-third 7.5x 6.9x 8.9x 1.00 1.00 1.00 0.83 0.35 1.00
Table 2. Results for pixel transformations.
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Figure 18. Speedup on pixel transformations.

The impact of re-compression is especially evident in the di
ital television examples. Despite a compression factor.0fdh
digvid-background?2, our technique offers a 4.7x speedup on
color inversion. Application profiling confirms that 73% diet
baseline runtime is spent in the encoder; as this stage enabs
from the optimized version, it accounts fof(1 — 0.73) = 3.7x
of the speedup. The remaining speedup in this case is dueto th
extra frame buffer (and associated memory operations)erdd:
compression stage of the baseline configuration.

Another important aspect of the results is the size of thpudut
files produced. Apart from the first frame of a videperforming
pixel transformations directly on compressed data willenew-
crease the size of the file. This is illustrated in the middiimns
of Table 18, in which the output sizes are mostly equal totipe
sizes (up to 2 decimal places). The only exception is contrds
justment omnim-scenel, in which the output is 2% smaller than
the input due to variations in the first frame; for the sameoea
some cases experience a 0.1% increase in size (not visisthie i
table).

Though computing on compressed data has virtually no effect
on the file size, there are some cases in which the pixel wansf
mation increases the redundancy in the video and an adalitien
compression step could compress the output even furtherthiea
original input. This potential benefit is illustrated in theest three
columns of Table 2, which track the output size of the baselin
configuration (including a re-compression stage) versasotigi-

21n the Apple Animation format, the first frame is encoded diséfprevious
frame was black. Thus, adjusting the color of black pixelthmfirst frame
may increase the size of the file, as it removes inter-frardengancy.
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Figure 19. Speedup vs. compression factor for all transformations.

nal input. For the inverse transformation, no additionahpees-
sion is possible because inverse is a 1-to-1 transform: inel9
have equal values in the output file if and only if they haveatqu
values in the input file. However, the brightness and contrass-
formations may map distinct input values to the same outglutey
due to the saturating arithmetic. In such cases, the re-@ssjon
stage can shrink the file to as low as 0.75x (brightness) &8tk0.
(contrast) its original size. These are extreme cases iohahiany
pixels are close to the saturating point; the median re-cesgon
(across brightness and contrast) is only 10%.

To achieve the minimal file size whenever possible, futurgkwo
will explore integrating a lightweight re-compressionggtanto the
compressed processing technique. Because most of the @mpr
sion is already in place, it should be possible to improvectima-
pression ratio without running the full encoder (e.g., femngth en-
coded regions can be extended without being rediscovered).

5.3 Video Compositing

In video compositing, two videos are combined using a smecifi
function to derive each output pixel from a pair of input péxésee
Figure 20). In the case of subtitling, animated logos, amdpger
graphics, an alpha-under transformation is common; itlaysr
one video on top of another using the transparency infoonati
the alpha channel. In applying an animated matte, the vide®s
combined with a multiply operation, thereby masking thepaut
according to the brightness of the matte. For our experiment
we generated composites using each foreground/backgnoaind
within a given application area, yielding a total of 12 corsipes.



COMPRESSION FACTOR
Compute on Uncompress,
Compressed [Compute,
VIDEO COMPOSITE EFFECT SPEEDUP |Data Re-Compress |Ratio
= screencast-demo + logo-head alpha-under 20.46x 34 52 1.55
£ 9 [screencast-demo + logo-globe alpha-under 27.96x 44 61 1.39
-3 E screencast-ppt + logo-head alpha-under 22.99x 39 54 1.38
- screencast-ppt + logo-globe alpha-under 31.88x 55 64 1.18
E S [anim-scene1 + anim-character1 alpha-under 6.72x 7.7 12 1.57
4 % [anim-scene1 + anim-character2 alpha-under 9.35x 14 19 1.39
g E anim-scene2 + anim-character1 alpha-under 4.96x 6.4 10 1.49
O <« |anim-scene?2 + anim-character2 alpha-under 6.45x 10 13 1.32
_ § |digvid-background1 + digvid-matte-frame _ |mul 1.23x 1.0 2.2 2.28
& @ [digvid-background?2 + digvid-matte-third mul 1.13x 1.0 5.6 5.42
g% digvid-background2 + digvid-matte-frame  |mul 1.38x 1.0 1.8 1.84
 [digvid-background2 + digvid-matte-third mul 1.16x 1.0 4.8 4.91

Table 3. Results for composite transformations.

+ anim-character2

anim-scenel

video composite
(a) Computer animation composite (alpha-under)

Y

digvid-backgroundl + digvid-matte-frame video compmsit

(b) Digital television composite (multiply)

Figure 20. Examples of video compositing operations.

In Streamlt, we implemented each compositing operation as a
roundrobin(1,1) joiner (to interleave the streams) fokalby a fil-
ter (to combine the pixel values). The intuition of the corgsed-
domain execution is that if both streams have the same kimd-of
peat (inter-frame or intra-frame), then the repeat is abplieectly
to the output. If they have different kinds of repeats, onéstream
is uncompressed, then both streams are uncompressed.

5.3.1 Setup

The compositing operations were compiled into plugins fenBer,

a popular tool for modeling, rendering, and post-procesSifD
animations. Blender has logged 1.8 million downloads inlést
year [7] and was used in the production of Spiderman 2 [6]eLik
MEncoder, Blender relies on the FFMPEG library for video-cod
ing, so we utilize the same Apple Animation decoder/encaden
the pixel transformations.

As Blender already includes support for video compositing,
use its implementation as our baseline. The compositingatipes
have already been hand-tuned for performance; the implitiem
of alpha-under includes multiple shortcuts, unrolled Bagnd the
following comment: “this complex optimalisation is becauhe
'skybuf’ can be crossed in”. We further improved the baselin
performance by patching other parts of the Blender sourse,ba
which were designed around 3-D rendering and are more denera
than needed for video editing. We removed two redundanicadrt
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Figure 21. Speedup on composite transformations.

flips for each frame, two redundant BGRA-RGBA conversionsl, a
redundant memory allocation/deallocation for each frame.

Our optimized configuration operates in the compressed do-
main. Outside of the auto-generated plugin, we patchedethre
frame-copy operations in the Blender source code to copy onl
the compressed frame data rather than the full dimensiotiseof
frame.

5.3.2 Results

Full results for the compositing operations appear in Tableig-
ure 21 illustrates the speedups, which range from 1.1x to 88x
in the case of the pixel transformations, the speedups aselgl
correlated with the compression factor of the resultingeosl a
relationship depicted in Figure 19. The highly-compressaéen-
casts enjoy the largest speedups (20x-32x), the computeraan
tions have intermediate speedups (5x-9x), while the digétie-
vision content has negligible speedups (1.1x-1.4x). Qlettze
speedups on video compositing (median = 6.6x) are lowertthan
pixel transformations (median = 17x); this is because tmepres-
sion achieved on composite videos is roughly proportionghe
minimum compression across the two input files.

As for the pixel transformations, the composite videos poed
by the compressed processing technique would sometimeditoen
from an additional re-compression stage. The last thregnuos
in Table 3 quantify this benefit by comparing the compresfan
tors achieved by compressed processing and normal prog€ssi
cluding a re-compression step). For screencasts and cenmguuit
imations, compressed processing preserves a sizable essiqn



factor (7.7x-44x), though the full re-compression canHartre-
duce file sizes by 1.2x to 1.6x. For digital television, thetting
operations introduce a large amount of redundancy (blagikms),
thereby enabling the re-compression stage to shrink thigyfile8x
to 5.4x over the compressed processing technique.

Even if the composite transformation does not introduce any

new redundancy in the video, the compressed processingiteeh
may increase file sizes by ignoring a specific kind of redungan
in the inputs. Suppose that in the first frame, both inputsl@®6
black, while in the second frame, one input is 100% black &ed t
other is 100% white. If the inputs are averaged, the secarddr
of output will be 100% gray and can be run-length encodediwith
the frame. However, because the inputs have different lofds-
dundancy on the second frame (one is inter-frame, the atletra-
frame), the technique is unable to detect the intra-framdendancy
in the output and will instead produce N distinct pixels ¢dithem
gray). We believe that this effect is small in practice, thowe
have yet to quantify its impact in relation to the new reduraya
introduced by a transformation. Future work will exploreeahate
data structures for the compressed processing technigiienthy
be able to preserve this redundancy with low overhead.

6. Related Work

Several other researchers have pursued the idea of opgerditin
rectly on compressed data formats. The novelty of our workds
fold: first, in its ability to map an arbitrary stream prograrather
than a single predefined operation, into the compressed idpma
and second, in its focus on lossless compression formats.

Most of the previous work on mapping algorithms into the com-
pressed domain has focused on formats such as JPEG tha utili
a Discrete Cosine Transform (DCT) to achieve spatial cosipre
sion [1, 11, 12, 15, 23, 24, 29, 28, 30, 33, 37]. This task mgui
a different analysis, with particular attention given tdails such
as the blocked decomposition of the image, quantization©@T D
coefficients, zig-zag ordering, and so-on. Because theatssa
run-length encoding stage in JPEG, our current techniqughtmi
find some application there; however, it appears that tectasi de-
signed for JPEG have limited application to formats suchza7.
Also, we are unaware of any previous methodology for trdimgla
a generic program to operate on compressed data; previfouts ef
have mapped each algorithm in a manual and ad-hoc way.

7. Conclusions

In order to accelerate operations on compressible datp#per
presents a general technique for translating stream pregnato
the compressed domain. Given a natural program that ogevate
uncompressed data, our transformation outputs a prograttith
rectly operates on the compressed data format. We suppsst lo
less compression formats based on LZ77. In the general tese,
transformed program may need to partially decompress ttaetda
perform the computation, though this decompression ismized
throughout the process and significant compression rat@pra-
served without resorting to an explicit re-compressiop.ste

While we formulated our transformation in terms of the cyclo
static dataflow model, the techniques can be applied witthiero
functional and general-purpose languages so long as theing
formation is available and certain constraints are satisfighe
transformation relies on a regular pattern of data accessyse
a streaming abstraction, but structured iteration oveayarcould
also suffice. We rely on static data rates in actors, whicldcalso
be expressed as functions with a fixed number of argumentseand
turn values. Actors (functions) must be pure, without siffiects or
unresolvable dependences on potentially mutable datde\tigise
properties are intrinsic to a language such as Streami, dte»
come naturally in most functional languages and may be atiapt
to general-purpose languages in the form of a runtime fbnath
a restricted API.

We implemented some of our transformations in the Streamit
compiler and demonstrated excellent speedups. Acrosse ui
12 videos in Apple Animation format, computing directly oone-
pressed data offers a speedup roughly proportional to timpiczs-
sion ratio. For pixel transformations (brightness, caostiraaverse)
speedups range from 2.5x to 471x, with a median of 17x; foewid
compositing operations (overlays and mattes) speedugs feom
1.1x to 32x, with a median of 6.6x. While previous researsihave
used special-purpose compressed processing techniqoesaia
speedups on lossy, DCT-based codecs, we are unaware of a com-
parable demonstration for lossless video compression.igitad
films and animated features have embraced lossless foranateef
editing process, the speedups obtained may have significacti-
cal value.
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